
Passwords
January 11, 2024

1

CS 165 – Computer Security

¨ There are lots of users
¤ Normal users
¤ Administrators

¨ And lots of services to use on computer systems
¤ University
¤ Banking
¤ Conferencing
¤ Communication

¨ Each service may need to know who each user is.
Why?

Proving One’s Identity
4

¨ To obtain the rights of a principal, one must prove
that they can act as that principal
¤ Called authentication

¨ Then, to use those rights a principal can perform
authorized operations on the system
¤ Called authorization or access control

Authentication and Authorization
5

¨ You often have to prove your identity to perform
actions in the real world
¤ To purchase jewelry at Tiffany’s you have to present a

valid credit card
n In the old days, you had to show additional identification to

use the credit card

Authentication in the Real World
6

¨ Lots of identifiers
¤ And uses

¨ Examples of identifiers
¤ SSNs prove
¤ Driver’s licenses prove
¤ Credit cards prove
¤ Signatures prove
¤ Passwords prove

¨ Identify a poor mapping between identifier and use

Authentication in the Real World
7

¨ There are four general means of authenticating a user’s
identity
¤ Something the user knows

n Password, personal identification number (PIN)
¤ Something the user possesses

n Smart cards, physical keys, tokens
¤ Something the user is (static biometrics)

n Recognition by fingerprint, face, retina, iris
¤ Something the user does (dynamic biometrics)

n Recognition by voice pattern, handwriting style, typing rhythm

¨ Can be used in combination
¤ Two-factor, multi-factor authentication

Authentication
8

¨ To prove who you are

Authentication

Alice Bob

tim
e à

“I’m Alice”

picks random
number RR

computes
Y=H(R|K)

Y
verifies that
Y=H(R|K) matches
expected value

9

Basic confidentiality requirement
10

Message

Passive Eavesdropper
Eve

Password Authentication

¨ Most widely used authentication method

¨ Key question: How to store passwords on a server
(hard drive)?

11

Agenda

¨ How to Store Password
¨ UNIX Password System Design

12

NEXT

Store in plaintext
13

Username: password
Alice:123
Bob: 123456
…

What’s the problem of this approach?
RockYou hack compromises 32 million passwords
A hacker was able to break into the database of RockYou and obtain 32 million
clear-text passwords through an SQL vulnerability.
http://www.scmagazine.com/rockyou-hack-compromises-32-million-passwords/article/159676/

Confidentiality - Symmetric Key Encryption
14

Decryption

plaintext

decrypt(.)

ciphertext

K

Encryption

plaintext

encrypt(.)

ciphertext

K

plaintext

ciphertext

Store E(k, password)
15

Username: E(k, password)
Alice: E(k, ’123’)
Bob: E(k, ‘123456’)
…

What’s the problem of this approach?
(1) If k gets compromised, all leaked
(2) It reveals two users have the same password if

they choose the same one

Store H(password)
16

Username: H(password)
Alice: H(’123’)
Bob: H(‘123456’)
…

Hash functions are one-way functions

Good idea?
- Do not reveal passwords if file stolen
- Operating systems (e.g., Linux) and server

programs (e.g., Apache) store passwords using hashes

Store H(password)
18

Username: H(password)
Alice: H(’123’)
Bob: H(‘123456’)
…

Any problem with this approach?
- It reveals two users have the same password if

they choose the same one, which still leaks
some information

Store H(password|salt)
19

Username: H(password|salt)
Alice: H(’123456’|salt1)
Bob: H(‘123456’|salt2)
…

Is there any way to find out the
password given a hash?

http://splashdata.com/press/WorstPasswords-2013.jpg

http://www.cbsnews.com/news/the-25-most-common-passwords-of-2013/

Not much different today

20

http://splashdata.com/press/WorstPasswords-2013.jpg
http://www.cbsnews.com/news/the-25-most-common-passwords-of-2013/

Brute Force – password cracking

Password Guessing (dictionary) Attack:
input: passwd_hash to crack
for each i in dictionary file

if(h(i) == passwd_hash)
output success;

Time Space Tradeoff Attack (rainbow table):
precompute: h(i) for each i in dict file in hash_table
input: passwd_hash
check if passwd_hash is in hash_table

How do these attacks work when a salt is used?

21

Brute Force – password cracking

How hard is it to crack passwords?

How many 8-character passwords assuming that 52
characters (upper and lower case) can be used?

52^8 = 53 trillion

22

Agenda

¨ How to Store Password
¨ UNIX Password System Design

23

NEXT

Unix Password Scheme
24

Hash
function

Password Password fileSalt
User ID Salt Hash value

Bob 7a ri79KNd7v6.Sk

Load

Loading a new
password

How to check the password value?

Unix Password Scheme
25

Hash
function

Password Password fileSalt
User ID Salt Hash value

Bob 7a ri79KNd7v6.Sk

Load

Create a new
password

Password file

User ID Salt Hash value

Bob 7a ri79KNd7v6.Sk

Hash
function

PasswordSalt

Compare

Hash value

User ID

Select

Verifying a
password

Cracking Resistance

¨ How can we make the UNIX password scheme more
difficult for cracking?

26

Slow hash function

¨ passwd_hash = H(passwd)
¤ H() is not a single hash function – rather composition

of primitive functions
¨ The composition is called “Slow hash”

¤ To slow down password cracking!
¤ E.g., 1000 times of simple md5 hashes

27

Slow hash
function md5 md5= md5 x1000

How difficult is it to crack passwords?

How many 8-character passwords given that 52
characters (upper and lower case) are available?

52^8 = 53 trillion

CPUs can do millions of primitive hashes per second
= thousands (at least) of password hashes

-> ~100,000 days to brute force

28

UNIX Password Storage
¨ Old method: names and hashes are stored in /etc/passwd

¤ Readable by all processes
¤ Programs may want to know the username: UID mapping

¨ This opens an attack vector
¤ What is it?

29

UNIX Password Storage
¨ Old method: names and hashes are stored in /etc/passwd

¤ Free for anybody to read
¤ Opens up ”dictionary attack”

¨ Safer method: the hashes stored in separate file /etc/shadow
¤ Only root can access to this file

30

UNIX Password File Access
¨ Old method: names and hashes are stored in /etc/passwd

¤ Free for anybody to read
¤ Opens up dictionary attack

¨ Safer method: the hashes stored in separate file /etc/shadow
¤ Only root can access to this file

31

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
zlin:x:1000:1000:zlin,,,:/home/zlin:/bin/bash

root:6OpBsSYf2$2N7.hAERKFhxFg
HGHLOIz4ngC0wlZATZK.yCZ7capUp
kcHjusp1nmQFATZD
anMt/kTpsHKuZYYTYskillxnE/1:1554
9:0:99999:7:::

Password File Access
¨ Old method: names and hashes are stored in /etc/passwd

¤ Free for anybody to read
¤ Opens up dictionary attack

¨ Safer method: the hashes stored in separate file /etc/shadow
¤ Only root can access to this file

¨ Theft of Unix Hashes
¤ Goal: gain access to /etc/shadow
¤ Take away the hard drive

n Physical access

¤ Obtain root privileges (e.g., by using an exploit)

32

root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
zlin:x:1000:1000:zlin,,,:/home/zlin:/bin/bash

root:6OpBsSYf2$2N7.hAERKFhxFg
HGHLOIz4ngC0wlZATZK.yCZ7capUp
kcHjusp1nmQFATZD
anMt/kTpsHKuZYYTYskillxnE/1:1554
9:0:99999:7:::

Questions
33

