CS165 — Computer Security

Software Vulnerabilities
January 18, 2024

Outline

Vulnerabilities!
Elements of a vulnerability

Impact of vulnerability exploitation
Confidentiality
Integrity
Availability

Information Flow

Vulnerability

A vulnerability is a flaw (e.g., in software) that is
accessible to an adversary who can exploit that

flaw

Flaw — A functionality that violates security
What violates security?

Accessible — Adversaries may access the flaw
Flaw is reachable

Exploit — Provide inputs to cause security violation
Adversary can produce an attack payload

E-Voting Application

Suppose you are building an e-voting application

How do you ensure your application satisfies security
requirements?

What does the e-voting application do?

Submit a vote (by voter)
Tally votes (anonymized)

What are its security requirements?
Let’s see how we reason about security

Security Requirements

Security requirements are described in three categories (CIA)
Confidentiality (Secrecy)

Prevent leakage of sensitive data to an adversary
Integrity

Prevent unauthorized modification of sensitive data
Availability

Prevent blockage of use of critical services
What security requirements should an e-voting system have?

Security Requirements of E-Voting

Confidentiality
Must not release how a particular voter voted
Integrity
Must not allow a voter to vote more than once
Each voter must vote under their own identity
Availability
Must be able to tally votes
Not an exhaustive list

Back to Flaws

o A vulnerability is a flaw (e.g., in software) that is
accessible to an adversary who can exploit that
flaw

o Flaw — A functionality that violates security

What violates a security requirement (CIA)?

Back to Flaws

A vulnerability is a flaw (e.g., in software) that is
accessible to an adversary who can exploit that
flaw

Flaw — A functionality that violates security
What violates a security requirement (CIA)?
The process of voting may enable an adversary to

leak another voter’s vote (secrecy) or change
another voter’s vote (integrity)

Checking Security Requirements
e

-1 Can we reason about any of these security
requirements in a systematic way?

To enable detection of some flaws automatically

Checking Security Requirements

Can we reason about any of these security
requirements in a systematic way?

To enable detection of some flaws automatically
Answer is “Yes”
How?

E-Vote Logging

.oy
Struct Vote { char name[LEN], Boolean vote };

File log;

Loop:

Recelive vote request (voter name);

Struct Vote vote = new Struct Vote (voter name);
If (authenticate(vote) == TRUE) { // validate voter is legit
assign user vote(vote); // get voter’s vote

log (vote, 1loq); // write to vote log file

Violation of Confidentiality
24

o Any issues?

o A data flow from the vote object to an external output (log
operation)
m Program does not know who can read the log file

log (vote, log); // write to vote log file

Is an lllegal “Information Flow”
| 13

o Security requirements

Vote object is secret, as it must not be leaked
The external output is public, as it can be read outside the program
This data flow creates a secret = public information flow (illegal)

File {Public} log;

Struct Vote {Secret} vote = new Struct Vote (voter name);

log(vote, log); // write to vote log file

Fix Confidentiality Violations
5y

1 How should we fix this problem?

o In practice...
o1 And with respect to information flow

Secure E-Vote Logging

T e ————

Struct Vote { char name[LEN], Boolean vote };

File {Public} log;

Loop:

Receilve vote request (voter name) ;

Struct Vote {Secret} vote = new Struct Vote (voter name);
If (authenticate(vote) == TRUE) { // validate voter is legit
assign user vote (vote); // get voter’s vote

Struct EncryptedVote {Public} enc = new EncryptedVote (vote);
log(enc, log); // write to vote log file

Fix Confidentiality Violation

-1 Solution: Write encrypted vote to log
Vote object is secret, as it must not be leaked
The external output is public, as can be read outside the program

But we declassify the secret by encryption, making it OK to release
publicly —i.e., changing its label to public

m Assert the result of encryption is public

Declassification creates a public =2 public information flow (legal)

Change Functionality

Maybe we don’t want to log on every vote

For each vote of a particular type, write voter and their vote
(encrypted) to the audit log

E.g., Write all votes since the last logging operation to a log when
there is a vote for a particular candidate

Any issues?

If (vote.vote) { // vote.vote != 0
Struct EncryptedVote {Public} enc = new EncryptedVote (vote);
log(enc, logqg); // write to vote log file

Incremental E-Vote Logging

Any issues?

In addition to perhaps losing some votes on a crash, one can detect
which vote just happened by whether the log was written

Consider the security requirements again
Encrypted vote object is public, and the external output is public
But, the action of writing is conditioned on a secret

The value of the vote

Why can this leak the secret value?

Incremental E-Vote Logging

Any issues?

In addition to perhaps losing some votes on a crash, one can detect
which vote just happened by whether the log was written

Security requirements
Encrypted vote object is public, and the external output is public

But, the action of writing is conditioned on a secret
This creates a secret = public information flow (illegal)

Fix This Confidentiality Violation
.24

o Don’tdoit

=1 Do not write to public objects predicated on any secret

Explicit and Implicit Flows
KN

o Explicit Information Flow

b=a

Explicit Information Flow: a 2 b
o Implicit Information Flow

If (a) Thenb =c

Implicit Information Flow:a 2 b

o In general, we have an information flow a = b in either case

Information Flow Model

- Dorothy Denning

o1 Security pioneer
-1 Wrote Early Security Books
o Cryptography

o Intrusion Detection = ||| CRYPTOGKAPKY L¥D maTa Skcunty

Information Flow Model

A program consists of (recursively)
An elementary statement—-S =S5,
A sequence of elementary statements—-S=S;; ...; S,
A conditional statement—c: S;; ...; S,

A set of sequences conditioned based on the value of c
Statements may create explicit or implicit flows

Implicit flows can only be the result of a conditional

Goal: all explicit and implicit flows are “secure”

What does security mean?

Lattice Security Model

Formalizes security based on information flow models
FM ={N, P, SC, /, >}
Information flow model instances form a lattice

What’s a lattice?
Graph where every node has a LUB and a GLB

N are objects, P are processes, and each are assigned a
security class SC

{SC, >} is a partial ordered set

SC, the set of security classes, is finite

SC has a lower bound

and / is a LUB operator

Lattice Examples
22y

Subset of subjects Med-Right is not a
can access Subset of Med-Left

A

Med-Left is not a
Subset of Med-Right

All subjects
can access

Simple Security Lattice Example

You have N objects and P processes

Each is assigned to a security class in SC
Where SC = {Public, Secret}

{SC, >} forms a partially ordered set where

Secret > Public

Meaning data from Public objects/processes can flow to
Secret objects/processes, but not vice versa

What does this security requirement represent?
SC has a lower bound (Public)

/ is a LUB operator
Represents what happens when two objects are combined
Secret / Public =» ?7??

Complex Security Lattice Example
294

= You have N objects and P processes

o1 Each is assigned to a security class in SC

0 Where SC = {Public, Secret-Energy, Secret-Business, Secret-Any}

Secret-Any

N

Secret-Energy Secret-Business

~_

Public

Complex Security Lattice Example
| 30

= You have N objects and P processes

Each is assigned to a security class in SC

Where SC = {Public, Secret-Energy, Secret-Business, Secret-Any}
=1 {SC, >} forms a partially ordered set where

What information flows are allowed here?
-1 SC has a lower bound (Public)

= /is a LUB operator

Secret-Energy / Public =» ???
Secret-Energy / Secret-Business =» ???

Complex Security Lattice Example
EN

= You have N objects and P processes

Each is assigned to a security class in SC

Where SC = {Public, Secret-Energy, Secret-Business, Secret-Any}
=1 {SC, >} forms a partially ordered set where

What information flows are allowed here?
-1 SC has a lower bound (Public)

= /is a LUB operator

Secret-Energy / Public = Secret-Energy
Secret-Energy / Secret-Business =2 Secret-Any

What Is This Good For?

What Is This Good For?
EEEN =

o Let’s Find Some Vulnerabilities!

Integrity Lattice

We have mainly used information flow to find
vulnerabilities that violate integrity

Security classes for integrity
SC = {High, Low}
{SC, >} forms a partially ordered set where

What information flows are allowed here?

SC has a lower bound (Low) and / is a LUB op

Reverse legal information flows (“no write up”)

Integrity Lattice

We have mainly used information flow to find
vulnerabilities that violate integrity

Security classes for integrity
SC = {High, Low}

{SC, >} forms a partially ordered set where
What information flows are allowed here?

SC has a lower bound (High) and / is a LUB op

Reverse legal information flows (“no write up”)

Subset of Subjects
Can Write

High

\ 4

Low

All Subjects
Can Write

Linux Access Control

Linux introduced checks to
enforce access control

Called the Linux Security Modules /* Code from fs/readwrite.c */
sys_lseek(unsigned int fd, ...)
ldea: Check the access control U eruce fite + files
policy before each “security- file = fget(£d);
sensitive-operation” made by e e e
. if (retval) {
the LInUX kernel /* failed check, exit */
goto bad;
How do we know that all } |
. o] /* passed check, ;?erform operation */
security-sensitive operations retval = llsssk(file, ...);
(e.g., llseek) are checked)

correctly?

Complete Mediation

All security-sensitive operations on an object must be
preceded by an access control check on that object

Controlled Object

[Security Check]

Controlled Object Controlled Object

[Controlled Operation J

How do we use information flow to validate complete
mediation and find vulnerabilities?

Complete Mediation

All system calls produce an “unchecked” object (low)
All checks declassify an “unchecked” object to a “checked”

object (high)

Every security-sensitive operation must be performed on a

”checked” object (high)

U U U U

l

[Security Check]

C<U

C: $checked
U: $unchecked

Vulnerability Found

/* from fs/fentl.c */
long sys_fcntl(unsigned int fd,

Found several vulnerabilities in msigned int od,
{
Linux Security Modules

struct file * filp;

These were fixed prior to S e
upstreaming, providing o < Sk, e, s £
confidence in the
implementation

struct file * filp) {

One example: Found the swiseh(end)

case F_SETLK:

presence of a check, but not on
the object used in the security- .

}

sensitive operation /¢ txom ta/tocka.c +/

fentl_getlk(fd, ...) {
struct file * filp;

filp = fget(fd);

/* operate on filp */

}

Conclusions

Vulnerabilities that compromise confidentiality or
Integrity are common

Theory: Program information flows (according to

Denning’s
with confic
Denning’s
Can be use

We are stil
approach t

nformation Flow Model) must comply
entiality and integrity (as defined by
|attice Security Model)

d to find real vulnerabilities

| building tools that leverage this
oday — albeit augmented

Questions
Laa |

QA

Example

N\

EXAMP LI

E-Vote Logging

Struct Vote { char name[LEN], Boolean vote };

File log;

Loop:

Recelive vote request (voter name);

Struct Vote vote = new Struct Vote (voter name);
If (authenticate(vote) == TRUE) { // validate voter is legit
assign user vote(vote); // get voter’s vote

log (vote, 1loq); // write to vote log file

E-Vote Logging

4 5
Struct Vote { char name[LEN], Boolean {Secret} wvote };

File {Public} log;

Loop:

Recelive vote request (voter name);

Struct Vote vote = new Struct Vote (voter name);
If (authenticate(vote) == TRUE) { // validate voter is legit
assign user vote(vote); // get voter’s vote

log (vote, 1loq); // write to vote log file

E-Vote Logging

Subset of subjects

Struct Vote { char name[LEN], Boolean {Secret} vote }; can access
File {Public} log; -

A
Loop:

Recelive vote request (voter name);

Struct Vote vote = new Struct Vote(voter name);
If (authenticate(vote) == TRUE) { // validate voter is legit

assign user vote (vote); // get voter’s vote

log (vote, 1log); // write to vote log file -
}

All subjects
can access

E-Vote Logging
I

Struct Vote { char name[LEN], Boolean {Secret} vote };

File {Public} log; Subset of subjects
can access

i -
Receive vote request (voter name);
— — — A

Struct Vote vote = new Struct Vote(voter name);

If (authenticate(vote) == TRUE) { // validate voter is legit
assign user vote(vote); // get voter’s vote
log (vote, log); // write to vote log file

All subjects

No label for voter name
— can access

E-Vote Logging

Struct Vote { char name[LEN], Boolean {Secret} vote };

File {Public} log;

Loop:

Receive vote reqguest (voter name) ;

Struct Vote vote = new Struct Vote(voter name);

If (authenticate(vote) == TRUE) { // validate voter is legit
assign user vote(vote); // get voter’s vote

log (vote, log); // write to vote log file

vote.vote is setto null and Secret
vote.name is unlabeled

Subset of subjects
can access

A

All subjects
can access

E-Vote Logging

Struct Vote { char name[LEN], Boolean {Secret} wvote };
File {Public} log; Subset of subjects
can access
Loop:
Receive vote request (voter name); Sefret
Struct Vote vote = new Struct Vote (voter name);
If (authenticate(vote) == TRUE) { / validate voter is legit
assign_user vote (vote); / get voter’s vote
log(vote, 1log); // write to vote log file
}
Public
Suppose authenticate (vote) only returns All subjects
can access

whether the user of vote.name authenticated.
This is public knowledge, so declassified to {Public}

E-Vote Logging
s 4

Struct Vote { char name[LEN], Boolean {Secret} vote };

File {Public} log; Subset of subjects
can access

e -
Receive vote request (voter name);
- - - A

Struct Vote vote = new Struct Vote(voter name);

If (authenticate(vote) == TRUE) { // validate voter is legit
assign_user vote (vote); / get voter’s vote
Tog(voce, 10g), // write to vote log file

All subjects

Vote.vote is updated, which is {Secret} can access

E-Vote Logging
EEE

Struct Vote { char name[LEN], Boolean {Secret} vote };

File {Public} log; Subset of subjects
can access

. -
Receive vote request (voter name);
- - - A

Struct Vote vote = new Struct Vote(voter name);

If (authenticate(vote) == TRUE) { // validate voter is legit
assign user vote (vote); // get voter’s vote
log (vote, log); / write to vote log file

All subjects

Vote.vote isrecorded in 1og, which
can access

creates a {Secret} - {Public} flow. lllegal

E-Vote Logging
sa 4y

Struct Vote { char name[LEN], Boolean {Secret} vote };

File {Public} log; Subset of subjects
can access

. -
Receive vote request (voter name);
- - - A

Struct Vote vote = new Struct Vote(voter name);

If (authenticate(vote) == TRUE) { | // validate voter is legit
assign user vote (vote); // get voter’s vote
log (vote, log); / write to vote log file

All subjects

. . . = l?
What about this implicit flow" can access

E-Vote Logging
s 4

Struct Vote { char name[LEN], Boolean {Secret} vote };

File {Public} log; Subset of subjects
can access

. -
Receive vote request (voter name);
- - - A

Struct Vote vote = new Struct Vote(voter name);

If (authenticate(vote) == TRUE) { | // validate voter is legit
assign user vote (vote); // get voter’s vote
log(vote, 1log); / write to vote log file

All subjects

. . . = l?
What about this implicit flow" can access

Creates a {Public} - {Public} flow. Legal

