
Software Vulnerabilities
January 18, 2024

1

CS165 – Computer Security

Outline

¨ Vulnerabilities!
¨ Elements of a vulnerability
¨ Impact of vulnerability exploitation

¤Confidentiality
¤ Integrity
¤Availability

¨ Information Flow

2

Vulnerability

¨ A vulnerability is a flaw (e.g., in software) that is
accessible to an adversary who can exploit that
flaw

¨ Flaw – A functionality that violates security
¤ What violates security?

¨ Accessible – Adversaries may access the flaw
¤ Flaw is reachable

¨ Exploit – Provide inputs to cause security violation
¤ Adversary can produce an attack payload

3

4

E-Voting Application

¨ Suppose you are building an e-voting application
¤ How do you ensure your application satisfies security

requirements?
¨ What does the e-voting application do?

¤ Submit a vote (by voter)
¤ Tally votes (anonymized)

¨ What are its security requirements?
¤ Let’s see how we reason about security

Security Requirements

¨ Security requirements are described in three categories (CIA)
¨ Confidentiality (Secrecy)

¤ Prevent leakage of sensitive data to an adversary
¨ Integrity

¤ Prevent unauthorized modification of sensitive data
¨ Availability

¤ Prevent blockage of use of critical services
¨ What security requirements should an e-voting system have?

5

Security Requirements of E-Voting

¨ Confidentiality
¤ Must not release how a particular voter voted

¨ Integrity
¤ Must not allow a voter to vote more than once
¤ Each voter must vote under their own identity

¨ Availability
¤ Must be able to tally votes

¨ Not an exhaustive list

6

Back to Flaws

¨ A vulnerability is a flaw (e.g., in software) that is
accessible to an adversary who can exploit that
flaw

¨ Flaw – A functionality that violates security
¤ What violates a security requirement (CIA)?

7

Back to Flaws

¨ A vulnerability is a flaw (e.g., in software) that is
accessible to an adversary who can exploit that
flaw

¨ Flaw – A functionality that violates security
¤ What violates a security requirement (CIA)?

¨ The process of voting may enable an adversary to
leak another voter’s vote (secrecy) or change
another voter’s vote (integrity)

8

Checking Security Requirements

¨ Can we reason about any of these security
requirements in a systematic way?
¤ To enable detection of some flaws automatically

9

Checking Security Requirements

¨ Can we reason about any of these security
requirements in a systematic way?
¤ To enable detection of some flaws automatically

¨ Answer is “Yes”
¤ How?

10

E-Vote Logging

Struct Vote { char name[LEN], Boolean vote };

File log;

Loop:

Receive_vote_request(voter_name);

Struct Vote vote = new Struct Vote(voter_name);

If (authenticate(vote) == TRUE) { // validate voter is legit

assign_user_vote(vote); // get voter’s vote

log(vote, log); // write to vote log file

}

11

Violation of Confidentiality

¨ Any issues?
¤ A data flow from the vote object to an external output (log

operation)
n Program does not know who can read the log file

log(vote, log); // write to vote log file

12

Is an Illegal “Information Flow”

¨ Security requirements
¤ Vote object is secret, as it must not be leaked
¤ The external output is public, as it can be read outside the program
¤ This data flow creates a secret à public information flow (illegal)

File {Public} log;

Struct Vote {Secret} vote = new Struct Vote(voter_name);

…

log(vote, log); // write to vote log file

13

Fix Confidentiality Violations

¨ How should we fix this problem?
¤ In practice…
¤ And with respect to information flow

15

Secure E-Vote Logging

Struct Vote { char name[LEN], Boolean vote };

File {Public} log;

Loop:

Receive_vote_request(voter_name);

Struct Vote {Secret} vote = new Struct Vote(voter_name);

If (authenticate(vote) == TRUE) { // validate voter is legit

assign_user_vote(vote); // get voter’s vote

Struct EncryptedVote {Public} enc = new EncryptedVote(vote);

log(enc, log); // write to vote log file

}

16

Fix Confidentiality Violation

¨ Solution: Write encrypted vote to log
¤ Vote object is secret, as it must not be leaked
¤ The external output is public, as can be read outside the program
¤ But we declassify the secret by encryption, making it OK to release

publicly – i.e., changing its label to public
n Assert the result of encryption is public

¤ Declassification creates a public à public information flow (legal)

17

Change Functionality

¨ Maybe we don’t want to log on every vote
¨ For each vote of a particular type, write voter and their vote

(encrypted) to the audit log
¤ E.g., Write all votes since the last logging operation to a log when

there is a vote for a particular candidate
n Any issues?

If (vote.vote) { // vote.vote != 0

Struct EncryptedVote {Public} enc = new EncryptedVote(vote);

log(enc, log); // write to vote log file

}

19

Incremental E-Vote Logging

¨ Any issues?
¤ In addition to perhaps losing some votes on a crash, one can detect

which vote just happened by whether the log was written

¨ Consider the security requirements again
¤ Encrypted vote object is public, and the external output is public
¤ But, the action of writing is conditioned on a secret

n The value of the vote
n Why can this leak the secret value?

20

Incremental E-Vote Logging

¨ Any issues?
¤ In addition to perhaps losing some votes on a crash, one can detect

which vote just happened by whether the log was written

¨ Security requirements
¤ Encrypted vote object is public, and the external output is public
¤ But, the action of writing is conditioned on a secret
¤ This creates a secret à public information flow (illegal)

21

Fix This Confidentiality Violation

¨ Don’t do it
¤ Do not write to public objects predicated on any secret

22

Explicit and Implicit Flows

¨ Explicit Information Flow
¤ b = a
¤ Explicit Information Flow: a à b

¨ Implicit Information Flow
¤ If (a) Then b = c
¤ Implicit Information Flow: a à b

¨ In general, we have an information flow a à b in either case

23

Information Flow Model

¨ Dorothy Denning
¤ Security pioneer

¨ Wrote Early Security Books
¤ Cryptography
¤ Intrusion Detection

24

Information Flow Model

¨ A program consists of (recursively)
¤ An elementary statement – S = Si
¤ A sequence of elementary statements – S = S1; …; Sn
¤ A conditional statement – c: S1; …; Sn

n A set of sequences conditioned based on the value of c

¨ Statements may create explicit or implicit flows
¤ Implicit flows can only be the result of a conditional

¨ Goal: all explicit and implicit flows are “secure”
¤ What does security mean?

25

Lattice Security Model

¨ Formalizes security based on information flow models
¤ FM = {N, P, SC, /, >}

¨ Information flow model instances form a lattice
¤ What’s a lattice?

n Graph where every node has a LUB and a GLB

¨ N are objects, P are processes, and each are assigned a
security class SC
¤ {SC, >} is a partial ordered set
¤ SC, the set of security classes, is finite
¤ SC has a lower bound
¤ and / is a LUB operator

26

Lattice Examples
27

Secret

Public

High

Low

Med-Left Med-Right

All subjects
can access

Subset of subjects
can access

Med-Left is not a
Subset of Med-Right

Med-Right is not a
Subset of Med-Left

Simple Security Lattice Example

¨ You have N objects and P processes
¤ Each is assigned to a security class in SC
¤ Where SC = {Public, Secret}

¨ {SC, >} forms a partially ordered set where
¤ Secret > Public

n Meaning data from Public objects/processes can flow to
Secret objects/processes, but not vice versa

¤ What does this security requirement represent?

¨ SC has a lower bound (Public)
¨ / is a LUB operator

¤ Represents what happens when two objects are combined
¤ Secret / Public è ???

28

Complex Security Lattice Example

¨ You have N objects and P processes
¤ Each is assigned to a security class in SC
¤ Where SC = {Public, Secret-Energy, Secret-Business, Secret-Any}

29

Secret-Any

Secret-Energy Secret-Business

Public

Complex Security Lattice Example

¨ You have N objects and P processes
¤ Each is assigned to a security class in SC
¤ Where SC = {Public, Secret-Energy, Secret-Business, Secret-Any}

¨ {SC, >} forms a partially ordered set where
¤ What information flows are allowed here?

¨ SC has a lower bound (Public)
¨ / is a LUB operator

¤ Secret-Energy / Public è ???
¤ Secret-Energy / Secret-Business è ???

30

Complex Security Lattice Example

¨ You have N objects and P processes
¤ Each is assigned to a security class in SC
¤ Where SC = {Public, Secret-Energy, Secret-Business, Secret-Any}

¨ {SC, >} forms a partially ordered set where
¤ What information flows are allowed here?

¨ SC has a lower bound (Public)
¨ / is a LUB operator

¤ Secret-Energy / Public è Secret-Energy
¤ Secret-Energy / Secret-Business è Secret-Any

31

What Is This Good For?
32

What Is This Good For?

¨ Let’s Find Some Vulnerabilities!

33

Integrity Lattice

¨ We have mainly used information flow to find
vulnerabilities that violate integrity

¨ Security classes for integrity
¤ SC = {High, Low}

¨ {SC, >} forms a partially ordered set where
¤ What information flows are allowed here?

¨ SC has a lower bound (Low) and / is a LUB op
¤ Reverse legal information flows (“no write up”)

34

Integrity Lattice

¨ We have mainly used information flow to find
vulnerabilities that violate integrity

¨ Security classes for integrity
¤ SC = {High, Low}

¨ {SC, >} forms a partially ordered set where
¤ What information flows are allowed here?

¨ SC has a lower bound (High) and / is a LUB op
¤ Reverse legal information flows (“no write up”)

35

High

Low
All Subjects
Can Write

Subset of Subjects
Can Write

Linux Access Control

¨ Linux introduced checks to
enforce access control
¤ Called the Linux Security Modules

¨ Idea: Check the access control
policy before each “security-
sensitive-operation” made by
the Linux kernel

¨ How do we know that all
security-sensitive operations
(e.g., llseek) are checked
correctly?

36

Using CQUAL for Static Analysis of Authorization Hook
Placement

Xiaolan Zhang Antony Edwards Trent Jaeger
IBM T. J. Watson Research Center

Hawthorne, NY 10532 USA
Email: cxzhang,jaegert @us.ibm.com

June 10, 2002

Abstract

The Linux Security Modules (LSM) framework is a set
of authorization hooks for implementing flexible access
control in the Linux kernel. While much effort has been
devoted to defining the module interfaces, little atten-
tion has been paid to verifying the correctness of hook
placement. This paper presents a novel approach to the
verification of LSM authorization hook placement using
CQUAL, a type-based static analysis tool. With a sim-
ple CQUAL lattice configuration and some GCC-based
analyses, we are able to verify complete mediation of
operations on key kernel data structures. Our results re-
veal some potential security vulnerabilities of the current
LSM framework, one of which we demonstrate to be ex-
ploitable. Our experiences demonstrate that combina-
tions of conceptually simple tools can be used to perform
fairly complex analyses.

1 Introduction

Linux Security Modules (LSM) is a framework for im-
plementing flexible access control in the Linux ker-
nel [3]. LSM consists of a set of generic authorization
hooks that are inserted into the kernel source that enable
kernel modules to enforce system access control policy
for the kernel. Thus, the Linux kernel is not hard-coded
with a single access control policy. Module writers can
define different access control policies, and the commu-
nity can choose the policies that are most effective for
their goals.

The code segment in Figure 1 shows an example of how
LSM hooks are inserted in the kernel. The function
sys_lseek() implements the system call lseek.

/* Code from fs/read write.c */
sys lseek(unsigned int fd, ...)

struct file * file;
...
file = fget(fd);
retval = security ops->file ops

->llseek(file);
if (retval)
/* failed check, exit */
goto bad;

/* passed check, perform operation */
retval = llseek(file, ...);
...

Figure 1: An example of LSM hook.

The security hook, security_ops->file_ops-
>llseek(file), is inserted before the actual work
(call to function llseek()) takes place.

System administrators can provide an implemen-
tation of the corresponding hook functions (e.g.
security_ops->file_ops->llseek()) by se-
lecting a kernel module that implements their desired
policy. Examples of LSM modules under development
include SubDomain [4], Security-enhanced Linux [13],
and OpenWALL.

While much effort has been devoted to placing hooks
in the kernel, this has been a manual process, so it is
subject to errors. Even though the LSM developers are
highly-skilled kernel programmers, errors are unavoid-
able when dealing with complicated software. Thus far,
little work has been done to verify that the hooks indeed
provide complete mediation over access to security-

Complete Mediation

¨ All security-sensitive operations on an object must be
preceded by an access control check on that object

¨ How do we use information flow to validate complete
mediation and find vulnerabilities?

37

Controlled Operation

Security Check

Controlled Object

Controlled Object

Controlled Object

Figure 2: The complete mediation problem.

can define our complete mediation verification problem:
verify that an LSM authorization hook is executed on an
object of a controlled data type before it is used in any
controlled operation. For example, because the variable
file in Figure 1’s function sys_lseek is of a con-
trolled data type, any operations on this variable must be
preceded by a security check on file. Figure 2 shows
the problem graphically.

In order to solve the complete mediation verification
problem, there are a few important subproblems to solve.
First, we must be able to associate the authorized object
with those used in controlled operations. In a runtime
analysis, this is easily done by using the identifiers of the
actual objects used in the security checks and controlled
operations. In a static analysis, we only know about the
variables and the operations performed upon them. Sim-
ply following the variable’s paths is insufficient because
the variable may be reassigned to a new object after the
check.

Next, we need to identify all the possible paths to the
controlled operation. While the kernel source can take
basically arbitrary paths, in practice typical C function
call semantics are used. Thus, we assume that each con-
trolled operation belongs to a function and can only be
accessed by executing that function.

Thus, all inter-procedural paths are defined by a call
graph, but we must also identify which intra-procedural
paths require analysis. Note that the only intra-
procedural paths that require analysis are those where
authorization is performed or those where the variable
is (re-)assigned. These are the only operations that can
change the authorization status of a variable. Since vari-
ables to controlled objects are typically assigned in the
functions where their use is authorized and are rarely re-
assigned, this often limits our intra-procedural analysis

to the functions containing the security checks. Further,
security checks should be unconditional with respect to
the scope for which the check applies, so such analyses
should be straightforward.

Thus, we envision that the complete mediation problem
will be solved by following this sequence of steps for
each controlled object variable:

1. Determine the function in which this variable is ini-
tialized (initializing function).

2. Identify its controlled operations and their func-
tions (controlling functions).

3. Determine the function in which this variable is au-
thorized (authorizing function).

4. Verify that all controlled operations in an authoriz-
ing function are performed after the security check.

5. Verify that there is no re-assignment of the variable
after the security check.

6. Determine the inter-procedural paths between the
initializing function and the controlling functions.

7. Verify that all inter-procedural paths from an ini-
tializing function to a controlling function contain
a security check.

If a re-assignment is found in step #5, then the verifica-
tion is restarted from the location of the new assignment.

2.2 Complete Authorization

Given a solution to complete mediation, the problem of
verifying complete authorization is straightforward, but
finding the requirements is difficult. Each controlled op-
eration requires prior mediation for a set of authoriza-
tion requirements. The verification problem is to ensure
that those requirements have been satisfied for all paths
to that controlled operation. In this case, multiple secu-
rity checks may be required (and thus, multiple autho-
rizing functions), but the overall mechanism is basically
the same. We need to ensure that the set of authoriz-
ing functions that provide the necessary security checks
must occur between the initializing function and the con-
trolling function.

Collection of the authorization requirements for the con-
trolled operations is the more complex task. Our runtime

Complete Mediation

¨ All system calls produce an “unchecked” object (low)
¨ All checks declassify an “unchecked” object to a “checked”

object (high)
¨ Every security-sensitive operation must be performed on a

”checked” object (high)

38

U UU U

C
C: $checked
U: $unchecked

CC

C <- U
Security Check

Figure 4: Detecting Security Violations via Type Infer-
encing.

ical depiction of our approach. All controlled objects
are initialized with an unchecked qualifier. The pa-
rameters to controlling functions that are used in con-
trolled operations are specified as requiring checked
qualified objects (as func_a was above). Authoriza-
tions change the qualified type of the object they autho-
rize to checked. Using these qualifiers, CQUAL’s type
inference and analysis will report a type violation if there
is any path from an initializing function (where the ob-
ject is unchecked) to a controlling function (where the
object must be checked) that does not contain an au-
thorization (a cast from unchecked to checked).

There are three requirements for this solution (equivalent
to steps 1, 2, and 3, in the previous section):

1. All controlled objects must be initialized to
unchecked.

2. All function parameters that are used in a controlled
operation must be marked as checked.

3. Authorizations must upgrade the authorized ob-
ject’s qualified type to checked.

If the number of controlled objects and controlling func-
tions was small, we could manually annotate the source
(as was done by Wagner et. al. to detect format string
vulnerabilities using CQUAL [14]). Unfortunately, both
are far too numerous for manual specification to be fea-
sible. Therefore, we use a modified version of GCC and
a set of PERL scripts to automate this process.

In the following subsections we detail our approach to
each of the seven steps outlined in the previous section.

3.2.1 Step 1: Initializing Controlled Objects to
Unchecked

We locate the origin (i.e., declaration) of all controlled
objects and qualify them as unchecked. There are
three different kinds of variables that a function can ac-
cess: global variables, local variables, and parameters.
Currently we do not consider global variables, which ac-
count for less than 2% of controlled objects.

All locally declared variables of a controlled type are
qualified as unchecked. A special case of this is
when reference to a structure member of a controlled
data type is passed as a parameter to a function (e.g.
f(dentry->d_inode), where field d_inode
is of controlled type). It should also be qualified as
unchecked, because it is equivalent to declaring a
local variable, initializing it to be a reference to the
structure member, and then passing the variable to the
function. To qualify such cases, we explicitly cast the
parameter to unchecked at the function call (e.g.
f((struct inode * $unchecked)dentry-
> d_inode)).

The task of marking local variables of controlled types
is automated using two tools: one for controlled local
variables and one for the passing of structure member
references to functions. First, we modified GCC to out-
put the location (file and line number) of any local vari-
able declaration with a controlled type. To achieve this,
we inserted code that traverses the abstract syntax tree
(AST) for each function as it is compiled. The code
scans the AST for local declarations (VAR_DECL nodes)
and prints the location details if the type (TREE_TYPE)
of the declaration is a controlled type (independent of
the level of indirection). In the case of structure member
references, our GCC code scans the AST for function
calls (CALL_EXPR nodes). If any parameter is a refer-
ence to structure member (COMPONENT_REF node, see
Section 3.2.2 for more discussion), and the type of the
referenced field is one of the controlled types, then GCC
prints out detailed location and type information about
the parameter. Next, this information is input to a PERL
script that inserts appropriate annotations into the source
code.

For parameters in function declarations, we leave their
types unqualified. CQUAL then automatically infers
their type during the analysis process. There are a few
exceptions to this rule, where we manually annotate
function prototypes (in two header files) that we know
expect checked type parameters.

Vulnerability Found

¨ Found several vulnerabilities in
Linux Security Modules

¨ These were fixed prior to
upstreaming, providing
confidence in the
implementation

¨ One example: Found the
presence of a check, but not on
the object used in the security-
sensitive operation

39

/* from fs/fcntl.c */
long sys_fcntl(unsigned int fd,

unsigned int cmd,
unsigned long arg)

{
struct file * filp;
...
filp = fget(fd);
...

err = security ops->file ops
->fcntl(filp, cmd, arg);

...
err = do fcntl(fd, cmd, arg, filp);

...
}

static long
do_fcntl(unsigned int fd,

unsigned int cmd,
unsigned long arg,
struct file * filp) {

...
switch(cmd){
...
case F_SETLK:

err = fcntl setlk(fd, ...);

...
}
...

}

/* from fs/locks.c */
fcntl_getlk(fd, ...) {

struct file * filp;
...

filp = fget(fd);

/* operate on filp */
...

}

Figure 8: Code path from Linux 2.4.9 containing an ex-
ploitable type error.

THREAD-A:
(1) fd1 = open("myfile", O_RDWR);
(2) fd2 = open("target_file", O_RDONLY);
(3) fcntl(fd1, F_SETLK, F_WRLOCK);

KERNEL-A (do_fcntl):
(4) filp = fget(fd1);
(5) security_ops->file_ops

->fcntl (fd1);
(6) fcntl_setlk(fd1,cmd)

THREAD-B:
/* this closes fd1, dups fd2,
* and assigns it to fd1.
*/

(7) dup2(fd2, fd1);

KERNEL-A (fcntl_setlk)
/* this filp is for the target
* file due to (7).
*/

(8) filp = fget (fd1)
(9) lock file

Figure 9: An example exploit.

chance of race conditions when the data structures are
not properly synchronized, which may result in poten-
tial exploits.

Here we present a type error of this kind. Many se-
curity checks that intend to protect the inode structure
are performed on the dentry data structure. For exam-
ple, the following code does the permission check on the
dentry structure, but does the “set attribute” operation
on the inode structure.

/* from fs/attr.c */
...
security_ops->inode_ops

->setattr(dentry, attr);
...
inode = dentry->d_inode;
inode_setattr(inode, attr);
...

It is also quite common in Linux to check on the file
data structure and operate on the inode data structure.

Conclusions

¨ Vulnerabilities that compromise confidentiality or
integrity are common

¨ Theory: Program information flows (according to
Denning’s Information Flow Model) must comply
with confidentiality and integrity (as defined by
Denning’s Lattice Security Model)

¨ Can be used to find real vulnerabilities
¨ We are still building tools that leverage this

approach today – albeit augmented

43

Questions
44

Example
45

E-Vote Logging

Struct Vote { char name[LEN], Boolean vote };

File log;

Loop:

Receive_vote_request(voter_name);

Struct Vote vote = new Struct Vote(voter_name);

If (authenticate(vote) == TRUE) { // validate voter is legit

assign_user_vote(vote); // get voter’s vote

log(vote, log); // write to vote log file

}

46

E-Vote Logging

Struct Vote { char name[LEN], Boolean {Secret} vote };

File {Public} log;

Loop:

Receive_vote_request(voter_name);

Struct Vote vote = new Struct Vote(voter_name);

If (authenticate(vote) == TRUE) { // validate voter is legit

assign_user_vote(vote); // get voter’s vote

log(vote, log); // write to vote log file

}

47

E-Vote Logging

Struct Vote { char name[LEN], Boolean {Secret} vote };

File {Public} log;

Loop:

Receive_vote_request(voter_name);

Struct Vote vote = new Struct Vote(voter_name);

If (authenticate(vote) == TRUE) { // validate voter is legit

assign_user_vote(vote); // get voter’s vote

log(vote, log); // write to vote log file

}

48

Secret

Public

All subjects
can access

Subset of subjects
can access

E-Vote Logging

Struct Vote { char name[LEN], Boolean {Secret} vote };

File {Public} log;

Loop:

Receive_vote_request(voter_name);

Struct Vote vote = new Struct Vote(voter_name);

If (authenticate(vote) == TRUE) { // validate voter is legit

assign_user_vote(vote); // get voter’s vote

log(vote, log); // write to vote log file

}

49

Secret

Public

All subjects
can access

Subset of subjects
can access

No label for voter_name

E-Vote Logging

Struct Vote { char name[LEN], Boolean {Secret} vote };

File {Public} log;

Loop:

Receive_vote_request(voter_name);

Struct Vote vote = new Struct Vote(voter_name);

If (authenticate(vote) == TRUE) { // validate voter is legit

assign_user_vote(vote); // get voter’s vote

log(vote, log); // write to vote log file

}

50

Secret

Public

All subjects
can access

Subset of subjects
can access

vote.vote is set to null and Secret
vote.name is unlabeled

E-Vote Logging

Struct Vote { char name[LEN], Boolean {Secret} vote };

File {Public} log;

Loop:

Receive_vote_request(voter_name);

Struct Vote vote = new Struct Vote(voter_name);

If (authenticate(vote) == TRUE) { // validate voter is legit

assign_user_vote(vote); // get voter’s vote

log(vote, log); // write to vote log file

}

51

Secret

Public

All subjects
can access

Subset of subjects
can access

Suppose authenticate(vote) only returns
whether the user of vote.name authenticated.
This is public knowledge, so declassified to {Public}

E-Vote Logging

Struct Vote { char name[LEN], Boolean {Secret} vote };

File {Public} log;

Loop:

Receive_vote_request(voter_name);

Struct Vote vote = new Struct Vote(voter_name);

If (authenticate(vote) == TRUE) { // validate voter is legit

assign_user_vote(vote); // get voter’s vote

log(vote, log); // write to vote log file

}

52

Secret

Public

All subjects
can access

Subset of subjects
can access

Vote.vote is updated, which is {Secret}

E-Vote Logging

Struct Vote { char name[LEN], Boolean {Secret} vote };

File {Public} log;

Loop:

Receive_vote_request(voter_name);

Struct Vote vote = new Struct Vote(voter_name);

If (authenticate(vote) == TRUE) { // validate voter is legit

assign_user_vote(vote); // get voter’s vote

log(vote, log); // write to vote log file

}

53

Secret

Public

All subjects
can access

Subset of subjects
can access

Vote.vote is recorded in log, which
creates a {Secret} à {Public} flow. Illegal

E-Vote Logging

Struct Vote { char name[LEN], Boolean {Secret} vote };

File {Public} log;

Loop:

Receive_vote_request(voter_name);

Struct Vote vote = new Struct Vote(voter_name);

If (authenticate(vote) == TRUE) { // validate voter is legit

assign_user_vote(vote); // get voter’s vote

log(vote, log); // write to vote log file

}

54

Secret

Public

All subjects
can access

Subset of subjects
can access

What about this implicit flow?

E-Vote Logging

Struct Vote { char name[LEN], Boolean {Secret} vote };

File {Public} log;

Loop:

Receive_vote_request(voter_name);

Struct Vote vote = new Struct Vote(voter_name);

If (authenticate(vote) == TRUE) { // validate voter is legit

assign_user_vote(vote); // get voter’s vote

log(vote, log); // write to vote log file

}

55

Secret

Public

All subjects
can access

Subset of subjects
can access

What about this implicit flow?
Creates a {Public} à {Public} flow. Legal

