
Web Security
February 27, 2024

1

CS165 – Computer Security

The Web Architecture

Web Application Security

¨ The largest distributed system in existence
¨ Multiple sources of threats, varying threat models

¤ Clients (Many)
¤ Servers (Can Be Multiple)
¤ Web Applications

¨ Web Security: Securing the web infrastructure
such that the integrity, confidentiality, and
availability of content and user information is
maintained

HTML

¨ Hypertext Markup Language
¨ For creating web pages
¨ Example

CSS: Cascading Style Sheets

¨ Specify the presentation style
¨ Separate content from the presentation style
¨ Example

Dynamic Content

¨ Adobe Flash
¨ Microsoft Silverlight
¨ ActiveX
¨ Java applets
¨ JavaScript
¨ All run on the browser

JavaScript

¨ Also known as ECMAScript
¨ Scripting language for web pages (run on browser)
¨ Different ways to include JavaScript code

¨ Threat: Enables mixing of code and data

HTTP Server & Web Application Server

Cookies

¨ Web server is stateless
¤ Does not maintain a long-term connection with the

client
¨ HTTP Cookies: used to save information on the

client side
¤ Browsers save cookies
¤ And attach cookies in every request

Session Cookies

¨ A cookie: store session ID
¨ The session ID identifies a session
¨ Session data are typically maintained on the server
¨ Session is typically created after user login

¤ Have the session ID = have the access
¤ Security sensitive
¤ ID: Random number

¨ What if the session data are stored on the client?
¤ Need to ensure integrity via cryptographic signature

Cookie Management

¨ Browser stores cookies from multiple websites
¤ Question: What is the threat model?

Tracking Using Cookies

Prevent Tracking

¨ Using anonymous mode in browsing
¨ Block third-party cookies

¤ First-party cookies are essential for browsing
¤ Third-part cookies are mainly used for advertisement,

information collection, etc.

Cookie Management

¨ Browser stores cookies from multiple websites
¤ Question: What is the threat model?

¨ One website may steal cookies created by another
¤ And other content

Same Origin Policy

¨ A set of policies for isolating content across
different sites (origins)

¨ What is an origin?
¨ site1.com vs site2.com?

Same Origin Policy

¨ A set of policies for isolating content across
different sites (origins)

¨ What is an origin?
¨ site1.com vs site2.com?

¤ Different hosts are different origins

Same Origin Policy

¨ A set of policies for isolating content across
different sites (origins)

¨ What is an origin?
¨ site1.com vs site2.com?

¤ Different hosts are different origins
¨ http://site.com vs https://site.com?

Same Origin Policy

¨ A set of policies for isolating content across
different sites (origins)

¨ What is an origin?
¨ site1.com vs site2.com?

¤ Different hosts are different origins
¨ http://site.com vs https://site.com?

¤ Different protocols are different origins

Same Origin Policy

¨ A set of policies for isolating content across
different sites (origins)

¨ What is an origin?
¨ site1.com vs site2.com?

¤ Different hosts are different origins
¨ http://site.com vs https://site.com?

¤ Different protocols are different origins
¨ http://site.com:80 vs http://site.com:8080?

Same Origin Policy

¨ A set of policies for isolating content across
different sites (origins)

¨ What is an origin?
¨ site1.com vs site2.com?

¤ Different hosts are different origins
¨ http://site.com vs https://site.com?

¤ Different protocols are different origins
¨ http://site.com:80 vs http://site.com:8080?

¤ Different ports are different origins (applications)

Same Origin Policy

¨ A set of policies for isolating content across
different sites (origins)

¨ What is an origin?
¨ site1.com vs site2.com?

¤ Different hosts are different origins
¨ http://site.com vs https://site.com?

¤ Different protocols are different origins
¨ http://site.com:80 vs http://site.com:8080?

¤ Different ports are different origins (applications)
¨ Origin: host:protocol:port

Same Origin Policy

¨ Page from www.bank32.com trying to access
www.bank99.com (using Ajax)

CMPSC443 - Introduction to Computer and Network Security Page

Same-Origin Policy
• Principle: Any active code from an origin can read only

information stored in the browser that is from the
same origin
‣ Active code: Javascript, VBScript
‣ Information: cookies, HTML responses, ...

13

Javascript
Origin A

Javascript
Origin B

Origin A
Data

Origin B
Data

Browser Origin ASOP

Origin B

http://www.bank32.com/
http://www.bank99.com/

Relaxing the Restriction

¨ The same-origin policy is too restrictive
¨ CORS (Cross-Origin Resource Sharing)

¤ Whitelist provided by server: grant permissions
¨ CORS policy on www.bank99.com

http://www.bank99.com/

The Cross-Site Scripting Attack (XSS)

● In XSS, an attacker injects
his/her malicious code to the
victim’s browser via the
target website.

● When code comes from a
website, it is considered as
trusted with respect to the
website, so it can access and
change the content on the
pages, read cookies
belonging to the website and
sending out requests on
behalf of the user.

● Basically, code can do whatever the user
can do inside the session.

Non-persistent (Reflected) XSS Attack

If a website with a reflective behavior
takes user inputs, then :

● Attackers can put JavaScript
code in the input, so when the
input is reflected back, the
JavaScript code will be injected
into the web page from the
website.

Non-persistent (Reflected) XSS Attack

¨ Assume a vulnerable service on website :
http://www.example.com/search?input=word, where word
is provided by the users.

¨ Now the attacker sends the following URL to the victim and
tricks him to click the link:
http://www.example.com/search?input=<script>alert(“attac
k”);</script>

¨ Once the victim clicks on this link, an HTTP GET request will
be sent to the www.example.com web server, which returns
a web page containing the search result, including the
original input (word).
¤ The input here is a JavaScript code which runs when the web page is

loaded, producing a pop-up message on the victim’s browser.

Persistent (Stored) XSS Attack

● Attackers directly send their data
to a target website/server which
stores the data in a persistent
storage.

● If the website later sends the
stored data to other users, it
creates a channel between the
users and the attackers.

Example : User profile in a social
network is a channel as it is set by one
user and viewed by another.

Persistent (Reflected) XSS Attack

¨ These channels are supposed to be data channels.
¨ But data provided by users can contain HTML markups and

JavaScript code.
¨ If the input is not sanitized properly by the website, it is sent

to other users’ browsers through the channel and gets
executed by the browsers.

¨ Browsers consider it like any other code coming from the
website. Therefore, the code is given the same privileges as
that from the website.

● Samy puts the script in the
“About Me” section of his
profile.

● After that, let’s login as
“Alice” and visit Samy’s
profile.

● JavaScript code will be run
and not displayed to Alice.

● The code sends an add-
friend request to the server.

● If we check Alice’s friends
list, Samy is added.

Add Samy As a Friend (via XSS)

Damage Caused by XSS

¨ Web defacing: JavaScript code can access the data stored
inside the hosting page (DOM).
¤ Therefore, the injected JavaScript code can make arbitrary changes

to the page. Example: JavaScript code can change a news article
page to something fake or change some pictures on the page.

¨ Spoofing requests: The injected JavaScript code can send
HTTP requests to the server on behalf of the user.

¨ Stealing information: The injected JavaScript code can also
steal victim’s private data including the session cookies,
personal data displayed on the web page, data stored locally
by the web application.

Countermeasures for XSS

¨ Sanitize inputs: Do not allow insertion of JavaScript (code) in
arguments and web pages (data)
¤ PHP module HTMLawed (on server)
¤ Highly customizable PHP script to sanitize HTML against XSS

attacks.

¨ Do not execute: Change web pages to prevent the execution
of code where data is expected
¤ PHP function htmlspecialchars (on server)
¤ Encode data provided by users, s.t., JavaScript code in user’s inputs

will be interpreted by browsers only as strings and not as code.

Cross-Site Requests

● When a page from a website
sends an HTTP request back to
the website, it is called same-site
request.

● If a request is sent to a different
website, it is called cross-site
request because where the page
comes from and where the
request goes are different.

E.g., a webpage (not Facebook) can
include a Facebook link, so when
users click on the link, HTTP request
is sent to Facebook.

Cross-Site Request Forgery

¨ When a request is sent to example.com from a page coming
from example.com, the browser attaches all the cookies
belonging to example.com.

¨ Now, when a request is sent to example.com from another
site (different from example.com), the browser will attach
the cookies too.

¨ Because of above behavior of the browsers, the server
cannot distinguish between the same-site and cross-site
requests

¨ It is possible for third-party websites to forge requests that
are exactly the same as the same-site requests.

¨ This is called Cross-Site Request Forgery (CSRF).

Cross-Site Request Forgery: Approach

¨ Environment Setup:
¤ Target website
¤ Victim user who has an active session on the target website
¤ Malicious website attacker

¨ Steps:
¤ The attacker crafts a webpage that can forge a cross-site request to

be sent to the targeted website.
¤ The attacker needs to attract the victim user to visit its malicious

website.
¤ The attacker performs requests on the target website as the victim.

How to Prevent CSRF

¨ The server cannot distinguish whether a request is cross-site
or same-site
¤ Same-site request: coming from the server’s own page. Trusted.
¤ Cross-site request: coming from other site’s pages. Not Trusted.

¨ We cannot treat these two types of requests the same

How to Prevent CSRF

¨ The server cannot distinguish whether a request is cross-site
or same-site
¤ Same-site request: coming from the server’s own page. Trusted.
¤ Cross-site request: coming from other site’s pages. Not Trusted.

¨ We cannot treat these two types of requests the same
¨ Does the browser know the difference?

How to Prevent CSRF

¨ The server cannot distinguish whether a request is cross-site
or same-site
¤ Same-site request: coming from the server’s own page. Trusted.
¤ Cross-site request: coming from other site’s pages. Not Trusted.

¨ We cannot treat these two types of requests the same
¨ Does the browser know the difference?

¤ Of course. The browser knows from which page a request is
generated.

How to Prevent CSRF

¨ The server cannot distinguish whether a request is cross-site
or same-site
¤ Same-site request: coming from the server’s own page. Trusted.
¤ Cross-site request: coming from other site’s pages. Not Trusted.

¨ We cannot treat these two types of requests the same
¨ Does the browser know the difference?

¤ Of course. The browser knows from which page a request is
generated.

¨ Countermeasures
¤ Referer header (browser’s help)
¤ Same-site cookie (browser’s help)
¤ Secret token (the server helps itself to defend against CSRF)

Countermeasures: Same-Site Cookies

¨ A special type of cookie in browsers like Chrome and Opera,
which provide a special attribute to cookies called SameSite.

¨ This attribute is set by the servers and it tells the browsers
whether a cookie should be attached to a cross-site request
or not.

¨ Cookies with this attribute are always sent along with same-
site requests, but whether they are sent along with cross-site
depends on the value of this attribute.

¨ Values
¤ Strict (Not sent along with cross-site requests)
¤ Lax (Sent with cross-site requests)

Exploiting Database of a Web Application

¨ A typical web application consists of three major components

¨ SQL Injection attacks can cause damage to the database.
¤ As we notice in the figure, the users do not directly interact with

the database but through a web server. If this channel is not
implemented properly, malicious users can attack the database.

Launching SQL Injection Attacks

¨ Everything provided by user will become part of the SQL statement. Is it
possible for a user to change the meaning of the SQL statement?

¨ The intention of the web app developer by the following is for the user to
provide some data for the blank areas.

¨ Assume that a user inputs a random string in the password entry and
types “EID5002’#” in the eid entry. The SQL statement will become the
following

Launching SQL Injection Attacks

¨ Everything from the # sign to the end of line is considered a comment. The SQL
statement will be equivalent to the following:

¨ The above statement will return the name, salary and SSN of the employee whose
EID is EID5002 even though the user doesn’t know the employee’s password. This
is security breach.

¨ Let’s see if a user can get all the records from the database, assuming that we
don’t know all the EID’s in the database.

¨ We need to create a predicate for WHERE clause so that it is true for all records.

SQL Injection Defenses

¨ Fundament cause of SQL injection: mixing data and code
¨ Fundament solution: separate data and code.
¨ Main Idea: Sending code and data in separate channels to the

database server. This way the database server knows not to
retrieve any code from the data channel.
¤ How: using prepared statement

¨ Prepared Statement: Using prepared statements, we send an
SQL statement template to the database, with certain values
(the data) called parameters left unspecified.
¤ The database performs query optimization on the SQL statement

template and stores the result without executing it.
¤ We later bind the data (from browser) to the prepared statement

Countermeasures: Prepared Statement

The vulnerable version:
code and data are mixed
together.

Using prepared statements, we separate code and data.

Send code

Send data

Start execution

A Fundamental Cause

Mixing data and code
together is the cause of
several types of
vulnerabilities and
attacks including SQL
Injection attack, XSS
attack, attacks on the
return address and the
heap attacks in P3.

Web Browser Warnings

¨ Originally, were mainly due to expired SSL/TLS certificates
¨ Now browsers warn you for a variety of risks
¨ Chrome has warnings for:

¤ The site ahead contains malware: The site you start to visit might try
to install bad software, called malware, on your computer.

¤ Deceptive site ahead: The site you try to visit might be a phishing site.
¤ Suspicious site: The site you want to visit seems suspicious and may

not be safe.
¤ The site ahead contains harmful programs: The site you start to visit

might try to trick you into installing programs that cause problems
when you’re browsing online.

¤ This page is trying to load scripts from unauthenticated sources: The
site you try to visit isn't secure.

48

Conclusions

¨ The “web” is the most complex distributed system
in the world
¤ Manifest in a variety of web applications

¨ Web protocols (http/https) are inherently
stateless, so web applications store state
¤ On server and client (cookies, JavaScript objects, etc.)

¨ XSS and XSRF attacks
¤ Confuse clients and servers about sources of requests

¨ +SQL Injection, mix of data and code is problem

49

Questions
50

