Leveraging IPsec for Mandatory Access Control of Linux Network Communications

Trent Jaeger

Department of Computer Science and Engineering Pennsylvania State University

December 6, 2005

Assumptions

Mutual Trust in Labeling and Enforcement

- Within administrative domain
- Cross-domain trust is more challenging
- Must authenticate, verify enforcement abilities, etc.
- Compatible Policies
 - Labels need to have consistent meaning
 - Negotiation of labels is possible
- Integrity-Preserving Communication
 - Strong crypto
- ☐ Here, we discuss the basic mechanism

7

Alternatives

SSL/TLS

- Secure communication between applications
- PKI identification (know user); no labels (don't know access)
- Difficult to integrate into a kernel-enforced MAC framework

IPsec

- Secure communication between hosts/ports
- Coarse granularity of identification, typically hosts
- Need labels at application granularity

IP Security Options

- IP header labels
- Parser IP headers on each packet -- performance/complexity death

OpenBSD KeyNote

- Authorization statements with keys
- O Integrated with IPsec -- But, discretionary in nature

Labeled IPsec

Leverage IPsec Advantages

- Secure communication
- Easy to integrate to kernel MAC
- Add MAC Labeling to IPsec
 - Control application access to IPsec "channels"
 - Can only send/receive with MAC permission

Results

- Application to application control is possible
- BLP controls between applications on different machines
- Applications can use labeling information
 - Label child processes
- Part of Linux 2.6.15-rc3-mm1 kernel patch
 - **O** Will be in 2.6.16 kernel

Current MAC Network Controls

100

IPsec

Privacy and authentication services at the IP layer

- IPv4 and IPv6
- Protocols: ESP and AH
- Paths: host-host, gateway-gateway, host-gateway
- **Transport or tunnel: single or multiple layers of security protocols**

Security Policy

- Defines security protocols, mode for source-destination (port)
- Input to negotiation
- Security Associations
 - **O** Simplex representation of IPsec connection
 - Per protocol (AH or ESP)
 - One mode (transport or tunnel)

Setkey Policy Changes

Labels on Policy and Associations, not packets **Setkey SPD entries** spdadd 9.2.9.15 9.2.9.17 any -ctx 1 1 "system u:object r:zzyzx t" -P in ipsec esp/transport//require ; spdadd 9.2.9.17 9.2.9.15 any -ctx 1 1 "system u:object r:zzyzx t" -P out ipsec esp/transport//require ; **Setkey SAD entries (optional as racoon can negotiate)** add 9.2.9.15 9.2.9.17 esp 0x123456 -ctx 1 1 "system u:object r:zzyzx t" -E des-cbc 0x00000000000000; add 9.2.9.17 9.2.9.15 esp 0x123457 -ctx 1 1 "system u:object r:zzyzx t" -E des-cbc 0x00000000000000; PENNSTATE

855

New LSM Hooks

New LSM Hooks and SELinux Implementations

xfrm_policy_alloc

- Done when policy is added to the SPD (under xfrm_selector)
- Authorize subject that is updating SPD
- Allocate security data structure in new xfrm_policy
- xfrm_sec_ctx
 - Domain of interpretation
 - Algorithm
 - Context length (string length)
 - Security ID
 - Context String

xfrm_policy_lookup

- Authorize socket's use of policy with security context
- Only retrieve/build SA's with the security context of the policy

xfrm_state_alloc

- O Done when SA is added to SAD
- Authorize subject that is updating SPD
- Allocate security data structure in new xfrm_state

Overall MAC Control

(1) When labeled IPsec packet

- Authorization of policy enforces access
 - Output: SAs must match policy selected
 - Input: SAs must have SPI for corresponding policy
- (2) When IPsec packet with no label
 - Must have access to unlabeled associations
- (3) When not IPsec packet
 - Must have access to unlabeled associations
- Extend existing input (rcv_skb) and output (Netfilter) hooks
 - Output: if no labeled SA, then authorize for 'unlabeled'
 - Input: if no labeled SA, then authorize for 'unlabeled'

Location-independent Usage

- Joint work with IBM Research -- IBM Tech Report RC23778
- Location-independent computing
 - Distributed computation -- e.g., SETI@HOME
 - Mobile identity -- e.g., ATM
 - Geographically-distributed services -- e.g., search engine

Solution: Distributed Reference Monitor

- **O Tamperproof**: Attestation; Virtual Machine; Secure Communication; Integrity Protection
- **O** Mediation: MAC enforced by VM system; MAC policy distribution
- Simplicity: "Smaller code base"; Simpler policy

Issues

Caching

- Mapping of flows to IPsec policy (authorized)
- May be multiple authorized policies per flow -- finer-grained

Another hook

• Get socket sid from module to check cache

Label Extraction

- More general solution needed for UDP
- setsockopt(..., SO_PASSSEC) -- tell kernel to provide label in control message

Supports transport

• Tunnel -- keep interface updated throughout forward

Summary

Aim: Network MAC based on strong authentication on each packet

IPsec is the kernel service that supports network control
XFRM IPsec implementation in Linux 2.6

□ Integrate IPsec with LSM and SELinux

- Control selection of policy for a socket
 - Propagated throughout SA retrieval/construction
- IPsec-Tools modified to support the policy and SA contexts
 - Manual (setkey) and dynamic (racoon)

□ Intrusiveness to critical path is minimal

PENNSTATE

- 2 new LSM hooks on IPsec per packet processing 2 offline
- 1 more SELinux authorization for SA in rcv_skb and Netfilter

• Accepted in Linux mainline kernel

Questions?

Contact

- Trent Jaeger, tjaeger@cse.psu.edu
- O www.cse.psu.edu/~tjaeger
- □ IPsec system prototype report
 - IBM Tech Report
 - RC23642 -- With Serge Hallyn and Joy Latten
- Linux kernel
 - O <u>www.kernel.org</u>

SELinux

O <u>www.nsa.gov/selinux</u>

