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Abstract

Integrity measurements provide a means by which dis-
tributed systems can assess the trustability of potentially
compromised remote hosts. However, current measurement
techniques simply assert the identity of software, but pro-
vide no indication of the ongoing status of the system or
its data. As a result, a number of significant vulnerabilities
can result if the system is not configured and managed care-
fully. To improve the management of a system’s integrity,
we propose a Root of Trust Installation (ROTI) as a foun-
dation for high integrity systems. A ROTI is a trusted sys-
tem installer that also asserts the integrity of the trusted
computing base software and data that it installs to en-
able straightforward, comprehensive integrity verification
for a system. The ROTI addresses a historically limiting
problem in integrity measurement: determining what con-
stitutes a trusted system state in a heterogeneous, evolv-
ing environment. Using the ROTI, a high integrity system
state is defined by its installer, thus enabling a remote party
to verify integrity guarantees that approximate classical in-
tegrity models (e.g., Biba). In this paper, we examine what
is necessary to prove the integrity of the trusted computing
base (sCore) of a distributed security architecture, called
the Shamon. We describe the design and implementation of
our custom ROTI sCore installer and study the costs and ef-
fectiveness of binding system integrity to installation in the
distributed Shamon. This demonstration shows that strong
integrity guarantees can be efficiently achieved in large, di-
verse environments with limited administrative overhead.

1 Introduction
Traditional distributed systems are built upon the as-

sumption that the systems have integrity (i.e., they have not
been compromised). As evidenced by the many serious vul-
nerabilities exploited in the wild, it is difficult to believe that
such an assumption is reasonable. Integrity measurement
hardware, such as the Trusted Computing Group’s (TCG’s)
Trusted Platform Module (TPM) [12] provides a mecha-

nism that may be used to generate integrity statements for
individual machines. A variety of approaches that leverage
the TPM to provide integrity measurement guarantees have
been proposed [27, 33, 32, 19, 16, 23]. However, none of
these approaches have been accepted as a basis for guaran-
teeing the integrity of distributed systems in practice.

We argue that integrity measurement is not being ac-
cepted in practice because current approaches do not satisfy
classical integrity guarantees. In classical integrity models,
such as Biba [5], the integrity of a system depends on in-
tegrity of all the files it reads and executes. If a process
executes a low integrity program or reads data that has been
modified by a low integrity subject, then the process must
also be low integrity. The TPM-based integrity measure-
ment approaches are effective for measuring well-known,
static files, such as program code, but are not effective at
measuring system-specific files (e.g., configurations) or dy-
namic files because the remote party cannot be expected to
know the current value of these files. Further, Smith identi-
fies that a high integrity system must also protect its secrets
(e.g., private keys) to prevent attackers from masquerading
as the system [34]. In TPM-based measurement, sealing1

is used to ensure that data, including secrets, is only re-
leased to approved software configurations. However, once
the data is unsealed it may later be accessible to unautho-
rized subjects through compromised software, misconfig-
ured systems, and uncleared memory.

We identify three types of problems in using prior, TPM-
based integrity measurement approaches: (1) untracked
modification of system-specific and dynamic data; (2) loss
of system secrets to low integrity code; and (3) the lack
of control of software loads after verification. First, since
system-specific and dynamic data cannot be verified using
TPM measurements, incorrect administration and/or com-
promised programs may modify this data, and integrity

1To simplify, the TPM seals secrets in a storage device by encrypt-
ing the source data using a key derived from the TPM-internal secrets and
unique fingerprints of the hardware and running software (via PCRs) [12].
Therefore, subsequent unsealing is only possible by that same TPM, hard-
ware, and software.
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measurement will be ignorant of such vulnerabilities. Sec-
ond, system secrets may be compromised due to the same
vulnerabilities as for dynamic data, but they may also be
leaked across bootcycles. It is well-known that many sys-
tem BIOS’s do not clear physical memory [8], so a high
integrity system may be rebooted into a malconfigured sys-
tem that retrieves the unsealed secrets from memory. Third,
while the TPM enables the verification of the software ex-
ecuted by a system, it does not prevent the execution of
low integrity software in the future. Further, the wider the
variety of software executed on a system, the more likely
a compromise of that system. While we do not want to
“lock down” systems to a single, immutable configuration,
we would like an approach that enables systems to be in-
stalled where the integrity of data as well as software may
be tracked until the next installation.

The remainder of this paper focuses on install, boot, and
runtime activities flowing from the above requirements. We
consider initially how a system can be installed such that
it can subsequently present evidence that all relevant soft-
ware and configuration originated from a known and trusted
ROTI (install). Second, we consider how the system is
booted such that it guarantees that the system state is driven
only by those ROTI-installed system components (boot).
Finally, we develop techniques to produce evidence that the
system continues to execute within that stable, known state
(runtime), e.g., the system runs only the installed software
and that the software and secrets are not compromised.

While conceptually simple, it turns out that The ROTI
approach requires several other complimentary design and
implementation decisions to achieve a high integrity sys-
tem. For example, once installed from a ROTI, the
sCore must be protected to prevent later compromise or
misconfiguration. Further, it is not obvious that the ROTI
approach is flexible enough or performs well enough to sup-
port practical systems. Might it be too expensive to trace
data integrity to its installation? Might the system require
changes that cannot be traced to the ROTI? In this paper, we
define a generic set of integrity requirements and demon-
strate that the sCore software stack be used effectively and
integrity-verified based on these requirements. We do not
claim that the ROTI approach applies to general systems,
but where comprehensive integrity guarantees are required,
the ROTI approach shows how to specialize systems to en-
able such guarantees to be achieved and proven to remote
parties.

In this paper, we consider how a root of trust install can
be used to establish and sustain integrity for a distributed
security architecture, called a Shard Reference Monitor or
Shamon system. A Shamon consists of a set of trusted com-
puting bases, called Shamon Core or sCore, one for each
physical platform, that jointly enforce a single, mandatory
access control policy. In order to build a Shamon, it is im-

perative that each individual sCore be high integrity. We
explore this objective herein by detailing the requirements
of a Shamon, including their measurement and construction.
We show that our enhanced sCore ROTI installation (which
should seldom be needed) can be completed in less than 10
minutes on a commodity desktop, of which less than 10%
is related to the ROTI-specific functions. Further, we show
that the boot time overhead associated with the ROTI in-
tegrity verification is nominal (< 5%). As supported by
these experiments, our claim is that systems that require
strong integrity guarantees, such as the sCore, can be prac-
tically installed and run based on the ROTI principle.

The rest of the paper is structured as follows. We begin
in Section 2 by describing the Shamon architecture and the
traditional integrity measurement approaches and the secu-
rity challenges of extending them to a high integrity system
indefinitely. This includes a detailed discussion of the attack
vectors an adversary may use to exploit a Shamon system.
From this analysis, we develop in Section 3 a broad design
philosophy and outline our working implementation of the
sCore ROTI in Section 4. In Section 5 we present an as-
sessment of the costs associated with ROTI installation and
subsequent integrity measurement. We discuss related work
in more detail in Section 6 and conclude in Section 7.

2 Background
The Shamon project [18] leverages integrity measure-

ment techniques to enable the combination of high in-
tegrity reference monitors on multiple physical machines
into a single unit that still satisfies the reference moni-
tor requirements [3]. Previous integrity measurement ap-
proaches [27, 33, 32] leave several decisions unspecified,
such that it is possible to build a Shamon system that can
be verified as high integrity when it is in fact under the con-
trol of an attacker. Our goal is to develop an approach that
ensures that when integrity measurement claims a compo-
nent is high integrity, it is high integrity relative to the Sha-
mon approach. In a Shamon system, this means building
a high-integrity, verifiable base upon which VMs can run.
While the policies governing the creation, execution, and
verification of VMs themselves is critical to the security of
this system, we defer the discussion of these issues to a fu-
ture work.

2.1 Shamon System
We begin by defining a Shamon system, shown in Fig-

ure 1. A Shamon (i.e., system-wide reference monitor) is
a reference monitoring service for distributed applications.
As shown, distributed applications consist of sets of virtual
machines (VMs), called coalitions, that execute on one or
more physical platforms. For example, Alice’s work VMs
may comprise Coalition A and her gaming VMs may com-
prise Coalition B. The mapping of coalitions to physical
platforms is many-to-many: many coalitions may run on
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Figure 1. A System-Wide Reference Monitor
(Shamon) system: Coalitions of virtual ma-
chines (VMs) may run across physical ma-
chines, but the sCore components collaborate
to form a Shamon that enforces the VM com-
munication requirements within a coalition.

a single platform and, as stated above, a coalition may span
multiple physical platforms.

In order for a physical platform to become a member of
a Shamon system, it must run a high integrity software base,
called the sCore. The sCore provides VM communication
primitives for distributed applications and access control
over those communications. That is, each sCore contains a
reference monitor that is capable of enforcing a mandatory
access control (MAC) policy over VM communications. A
Shamon is constructed from multiple sCore, so a single,
comprehensive MAC policy can be enforced over a set of
VMs (i.e., coalition) that comprises a distributed applica-
tion. For example, different VMs in Alice’s coalition may
have different permissions. In a gaming coalition, the VM
permissions may be determined by user identity and/or their
roles in the game. In a work coalition, Alice’s different lab-
oratory applications may have different permissions. Each
sCore justifies its compliance to a common (Shamon) MAC
policy, and ensures its tamper-resistance using virtual ma-
chine isolation and secure, tamper-detectable communica-
tion channels (e.g., IPsec). The end result is that the combi-
nation of integrity-verified sCore in a Shamon provides the
same function as a single reference monitor, but the Sha-
mon spans multiple physical platforms.

The main breakthrough that enables the implementation
of a Shamon system is hardware-supported, integrity mea-
surement. Traditionally, access control is enforced on indi-
vidual machines with little or no guarantee that other ma-
chines are enforcing a compatible policy. If the machines
are in the same administrative domain, we may provide a
common policy to each, but there is still no guarantee that
the machines are really enforcing that policy (i.e., they may
be erroneously or maliciously misconfigured). Distributed
access control using trust management [7, 6, 20, 21] re-
quires that each system develop its own representation of
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Figure 2. The integrity measurement in the
sCore VM’s boot sequence.

its access control policy, making coherent enforcement im-
practical. Hardware-supported integrity measurement en-
ables systems to verify the function of others, thus enabling
two machines to verify their reference monitor guarantees
and join forces to compose a system-wide reference moni-
tor, our Shamon.

2.2 Shamon Integrity Measurement

We now examine the application of traditional integrity
measurement to an individual sCore. While a variety of
approaches have been proposed [33, 27], we apply the ap-
proach that appears most appropriate for our system and
software architecture, Trusted Platform on Demand [24]
(TPoD) for integrity measurement of the sCore’s privileged
virtual machine (Dom 0, in Figure 2) and the Linux Integrity
Measurement Architecture [32] (IMA) for sCore VM’s ser-
vices. Here, we detail integrity measurements, how they
are constructed, and the semantics of their integrity guaran-
tees. In the next section, we describe integrity vulnerabili-
ties relative to the sCore approach, motivating the need for
an approach that provides a more precise justification for
integrity.

The TPM [12] is a device that provides a limited com-
puting platform and a small amount of storage that is pro-
tected from the host machine. The TPM’s limited com-
puting platform supports operations for extending a hash
chain (extend), signing hash chain values for remote parties
to verify (quote), encrypting data (seal), and decrypting by
particular system configurations (determined by the current
hash chain values, unseal). A TPM hash chain represents
a sequence of files loaded into the system. Some files may
be executables and some may be data files (e.g., configura-
tion). The idea is that each software component measures
(i.e., performs a TPM extend) any software or key file be-
fore it loads it. Note that the authenticated boot semantics
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of the TPM [4] means that it only extends measurements,
but does not enforce integrity itself. If this resultant se-
quence includes only high integrity files loaded in an ac-
ceptable order, then a remote party can verify the system
as high integrity, using the signed hash chain value gener-
ated via quote. Note that verification depends on the remote
party being able to determine the high integrity hash value
for each file measured, so current TPM approaches are only
used to measure executables and static data files.

As shown in Figure 2, integrity measurement of the
sCore boot process (up to the Dom 0 Linux kernel) consists
of a deterministic sequence of well-defined load operations
oulined by TPoD. A caveat to the previous description is
that a core root of trust measurement (CRTM) is necessary
to bootstrap the measurement process by measuring itself
and the rest of the BIOS prior to loading the next layer of
software, the stage 1 bootloader in the master boot record
(MBR) off the primary boot drive (as configured in BIOS
settings). This CRTM is stored in a ROM section of the
BIOS, and thus is at least partially resistant to tampering,
provided the BIOS is implemented correctly. Stage 1 then
measures stage 2 prior to loading it, and stage 2 measures
the Xen hypervisor and privledged operating system ker-
nel (the domain 0 kernel). Since the Xen hypervisor does
not include integrity measurement software, the bootloader
(i.e., stage 2) measures the domain 0 kernel and its initrd
image, even though the Xen hypervisor loads this kernel.
As long as we trust the measured Xen hypervisor to load
the kernel specified by the bootloader, this is acceptable.

The sCore also includes services running in user-level on
the Dom 0 kernel (i.e., in the privileged, Dom 0 Xen VM).
To ensure sCore integrity, all of these user-level services
must be measured, and we use the Linux IMA [15, 32] to
do so. IMA enables automatic measurement of all software
(e.g., executables, libraries, and kernel modules) and can
be used to measure static data files when specified by the
software.

For high integrity data whose values may be system-
specific or change over time, the remote parties cannot pre-
dict the data’s values, so their integrity cannot be verified
by measurement alone. Integrity measurement approaches
use the TPM to encrypt this data (i.e., using TPM seal)
and decrypt it only when a certain software configuration
has been loaded, using TPM unseal. For the sCore, a
sCore key would be sealed that would enable decrypting of
the sCore data. The sCore should verify the integrity of the
system that sealed the key, but this choice of sealing system
is a sCore design choice.

2.3 Potential sCore Vulnerabilities
In identifying potential vulnerabilities of the above in-

tegrity measurement approach for the sCore, we first define
a threat model. We consider both remote attackers and a
limited local attacker. Remote attackers may provide ma-

licious input to the sCore to try to inject code or modify
dynamic data. Integrity measurement should enable justifi-
cation that our sCore can protect itself from such threats.

We also consider the threat of a local attacker who can
control the configuration of the sCore, but does not attack
the TPM itself. Such a local attacker may be a significant
threat because installing software or rebooting an sCore is
much easier and less conspicuous than a hardware attack
on a TPM. Also, we do not address local attacks on the
firmware of devices other than the host computer. Others
have proposals to address this problem [13].

Using the integrity measurement approach above, an
sCore may be vulnerable to the following types of threats:

• Untracked Modification of Data: Malformed inputs
from remote users and misconfigured system due to lo-
cal users may result in the malicious modification of
dynamic data (e.g., system configuration files). For
example, /etc/resolv.conf contains a list of
system-specific DNS servers, so if an attacker could re-
place these with a list of malicious servers they would
compromise system integrity. The value of a DNS
server list may not be meaningful to a remote party, so
the only viable solution is to seal the data to protect its
integrity. Sealing is vulnerable to misconfiguration or
malconfiguration by local attackers, high integrity pro-
grams compromised by remote attackers, and even low
integrity software run by either. In the last case, even
when sealing records the low integrity system state,
this evidence would be erased by a subsequent seal-
ing using a trusted system. An sCore must be able to
justify the integrity of its installed data, even if those
data’s values cannot be predicted in advance.

• Loss of System Secrets: Unsealed secrets may be lost
by compromised high integrity software, the execu-
tion of untrusted software in subsequent bootcycles
and various hardware leaks. Even if we control all
paths that a remote attacker may use to compromise
our software, integrity measurement does not prevent
low integrity software from being run that may simply
leak the secrets. Further, rebooting the sCore presents
some problems because the contents of memory may
persist across a reboot [8]. For example, not all In-
tel BIOS’s clear memory on reboot, so a local attacker
may be able to reboot into a non-sCore system that
is able to retrieve sCore secrets, such as IPsec private
keys, from memory. The sCore design must ensure
that secrets cannot be used by attackers should they be
leaked.

• Integrity after Verification: After a remote party ver-
ifies the integrity of a system, integrity measurement
does not guarantee that the integrity is maintained into
the future. We identify three potential problems: (1)
authenticated boot does not prevent the loading of low
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integrity software, whereas the sCore requires that no
low integrity software be loaded after attestation; (2)
an insufficiently-managed sCore may contain software
that does not adequately protect the system from ma-
licious inputs; and (3) a local attacker may be able
to reboot into a non-sCore system, while maintaining
the Shamon’s communication channel. First, authenti-
cated boot does not prohibit the execution of low in-
tegrity software after verification, so a remote party
cannot be sure that a system remains high integrity.
Second, if the sCore services receive input from any
potentially malicious sources, the integrity of the sys-
tem may be compromised after verification. Finally, if
a local attacker can reboot a system fast enough and
locate the current IPsec session state, a non-sCore sys-
tem may be able to use an sCore communication chan-
nel. The sCore design must use integrity measurement
in a manner that maintains integrity after verification
for a running sCore, and retracts sCore connections
when the sCore is terminated.

3 Solution Approach
The goal of our solution is to ensure that sCore integrity

can be traced back to acceptable roots of trust. For integrity
measurement, the roots of trust are the TPM itself, whose
processing is protected from the host, and the BIOS’s core
root of trust measurement (CTRM), which bootstraps the
integrity measurement process. To design a high integrity
system, we claim that all facets of the system must be linked
to a root of trust in integrity. The lack of this facility in
current integrity measurement leads to the vulnerabilities
detailed above. We claim that one additional root of trust
is necessary (Section 3.1), outline the key design tasks for
constructing high integrity sCore (Section 3.2), and show
how this design will justify sCore integrity (Section 3.3).

3.1 Core Root of Trust Installation

We claim that it is important to leverage the installa-
tion process itself in establishing and maintaining system
integrity. We define trust in the installation as a root of trust
installation (ROTI). A ROTI is an installer system provided
by a system distributor. When a system is installed, the
ROTI loads all software and configures all system-specific
data. All software, system-specific data, and secrets can be
traced to the ROTI. Further, the set of sCore software is lim-
ited to restrict the amount of dynamic data and the ways that
it can be modified. The result is that ROTI-based, integrity
measurement can prove that the sCore software and data
originate from the ROTI, such that a remote party can ver-
ify the integrity of a system only having to trust the CRTM,
TPM, and ROTI. Integrity measurement reverts to proving
association of sCore software and data with these entities.

In this section, we show how integrity measurement is
justified by this design. However, the main challenge in this
paper is to show that the ROTI is a practical way to justify
integrity. First, system distributors already provide system
installations as a unit, even with signed files, so the practi-
cal foundation of verifiable installations is present. Second,
the ROTI is a well-defined installer system provided with
such installations, so the remote party can verify system-
specific data are provided by a particular ROTI via sealing
by that ROTI. Third, as detailed in Section 5, the cost of
installation and verification based on the ROTI are modest.
Since the sCore is designed to be a reliable trusted comput-
ing base, it should not be modified frequently, it should not
require arbitrary system administration and system changes
after installation that could introduce uncertainty into its in-
tegrity. Our claim is that the ROTI limits the flexibility of
system configuration in ways that are reasonable for trusted
software and fundamental to achieving system integrity.

3.2 sCore Design
The sCore design includes three key tasks to enable in-

tegrity measurement to link the system to roots of trust. The
specific function and implementation of these tasks are de-
scribed in Section 4.

Installation: A ROTI installs a sCore system. The TPM
builds statements that a remote party uses to verify that all
software and system-specific configuration data is tracable
to the ROTI installation.
Booting: The booting system uses statements generated at
installation by the ROTI to generate integrity measurements
that bind the speific boot of the sCore to the ROTI and TPM.
The sCore uses the TPM to generate system secrets (e.g.,
IKE private keys) on each bootcycle (and erase them on
shutdown), linking them to the TPM. Only the TPM stores
secrets that span multiple bootcycles.
Runtime sCore : The sCore’s user-level software is limited
to a near-minimal number of services necessary to bootstrap
user VMs2 and monitor their communications, as necessary
for the Shamon. Fixing the sCore software packages en-
ables the remote party to predict the expected sCore soft-
ware, which makes verification more predictable. It also
limits the number of open network ports in the sCore, thus
simplifying the task of showing that high integrity services
protect themselves from malice.

3.3 sCore Integrity
We show how ROTI-based integrity measurement ap-

proximates classical integrity, in this case Biba integrity [5].
The sCore is a two-level system, where each sCore is high
integrity and inputs from any other subjects are low in-
tegrity.

2The code loaded into user VMs is not limited by this approach, al-
though the Shamon policy may restrict it.
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Requirement 1: High integrity sCore installation: A re-
mote party will accept an sCore as high integrity if it can
prove: (a) all executing sCore software originates from an
acceptable ROTI and (b) all sCore data originates from an
acceptable ROTI.

Since the ROTI installer is trusted and all software and
system-specific data can be verified as originating from the
ROTI, then the sCore installation is high integrity. As the
ROTI records the set of hashes for all software and installed
files on the root filesystem, a remote party can verify that
the files have the expected hashes. For system-specific files,
their hashes can be verified based on those generated at in-
stall time. We find that a few files in the root filesystem
may be modified at runtime (see Section 4.2), but they can
be handled as exceptions.

Informally, the goal of the ROTI installer is to estab-
lish an acceptable system state, as defined by the goals of
the system, with respect to both data and code. While a
remote party may use measurement lists to verify running
code, data correctness is much more difficult to verify, as
potential values for data may vary widely from system to
system. The ROTI acts as a trusted party to establish ac-
ceptable operational system data that varies from system to
system. Consequently, this means that if the ROTI installer
turns out to be untrustworthy, the code can still be verified
by a remote party, but the data on the machines (config files,
for example) may be malicious.

Requirement 2: High integrity sCore across bootcycles:
When an sCore system is booted, we have two requirements:
(a) a sCore must verify the integrity of its system-specific
data in a manner that can itself be verified by a remote party
and (b) a sCore must limit any secrets to a single bootcycle
if they may appear in the its memory in cleartext.

First, a remote party depends on the sCore to demon-
strate that it successfully validated its system-specific data
in order to justify requirement 1b on a boot. This measure-
ment must bind the ROTI to a value representative of this
data. Our approach uses a process that does not depend on
such data to compare expected and actual values of such
data. Second, the sCore has a small number of keys that
its uses (i.e., appears in cleartext in sCore memory), such
as its IKE private key. Our sCore design generates such
keys on each bootcycle to prevent their theft and use in an
untrusted system. Using integrity measurement, we asso-
ciate the keys with the bootcycle by using integrity mea-
surement to record the new certificate when it is generated.
The sCore design takes steps to prevent the use of such se-
crets after boot as well. This requirement goes beyond the
traditional Biba requirements to prevent masquerading as
required by Smith [34].

Requirement 3: High integrity sCore at runtime: Af-
ter verifying a high integrity sCore according to Require-
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Figure 3. sCore’s lifecycle: (1) a ROTI in-
stalls the sCore by generating a verifiable root
filesystem and creating TPM keys; (2) the
sCore boots verifying its own root filesystem’s
integrity; (3) two sCore attempt to form a Sha-
mon , each trust service makes a quote re-
quest to generate an attestation; and (4) a
successful Shamon join results in an IPsec
tunnel between the two systems.

ment 1, a remote party will continue to accept an sCore as
high integrity if it can additionally prove: (a) that it has
checked the integrity of all the software will be loaded by the
sCore and (b) all sCore software protect themselves from
malicious input (e.g., code injection).

First, the sCore restricts the software that can be loaded
(i.e., into the domain 0 VM) to a prescribed set, so the re-
mote party can tell that: (1) all the sCore software is mea-
sured and (2) no other software will be loaded. Also, the
sCore does not allow users to login to the system (i.e., there
are no such programs at the sCore level and no user iden-
tities), so user modification of the sCore at runtime is not
possible 3. Since all sCore processes are identified at verifi-
cation time, the system will retain its Biba integrity through-
out its run. Second, Biba requires that processes accept no
low integrity inputs. However, the sCore has four software
components that must have network interfaces (see Sec-
tion 4). Each supports only a small number of legal com-
mands, so a detailed evaluation of the correctness of input
filtering is possible. We do not perform such filtering at
present, but the system design makes such filtering practi-
cal.

4 Implementation
Our prototype sCore is shown in Figure 3. The ROTI

is an Ubuntu Linux installer kernel version 2.6.20 that we
3Note that an user modification of the root filesystem would be detected

at boot-time.
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Type Programs Source Purpose
System Initialization Std User-space initialization
Initialization openssl Std Generate IPsec key pair

TPM utilities Mod TPM ops
Local udevd Std Used by Xen
Daemons logd Std Logging daemon

getty Std Terminal support
Network dhclient Std DHCP client
Daemons racoon Mod IKE daemon

xend Std Load User VMs
trustd New Shamon trust service

Figure 4. User-level software in the sCore:
(1) System initialization software is run at
startup only; (2) Local daemons are not net-
work accessible; and (3) Network daemons
have at least one network interface. Source in-
dicates whether the sCore version is unmod-
ified (Std), modified (Mod), or new for the
sCore (New).

modified to load our near-minimal sCore. The sCore con-
sists of a Xen hypervisor version 3.0-unstable running a
paravirtualized Linux domain 0 kernel version 2.6.18 with
SELinux [2]. We use the Xen sHype [30] and SELinux
Labeled IPsec [17] to authorize inter-VM communications
for enforcing Shamon MAC policies [25]. We have ex-
tended this Linux kernel with the Integrity Measurement
Architecture (IMA) patch [15, 32]. The key sCore ser-
vices (i.e., the ones that implement Shamon operations)
are the: (1) trustd (i.e., the trust service) that imple-
ments Shamon operations; (2) the IKE daemon racoon
that creates secure (IPsec) communication channels to con-
nect sCore into Shamon; and (3) xend that bootstraps user
VMs,

The sCore user-level software is shown in Figure 4. The
software is collected into groups depending upon whether it
is only run at initialization, is only accessible to local pro-
cesses, or is a network-facing daemon (by type). Figure 4
also shows which software was modified for the sCore. The
trust service is a new component specifically for the sCore,
and racoon and TPM utilities have been modified to work
with the trust service. The TPM utilities software is derived
from IBM Research’s TPM software [14].

4.1 Installing the sCore

A typical installation requires the user to answer 10-20
questions regarding the configuration of their system. These
questions cover a variety of topics, such as system prefer-
ences (e.g., language selection, keyboard, etc.), disk par-
titioning, network setup, user names and passwords, and
any additional packages that the user may want to install.
We pre-seed the debian-installer with a file called
srm.seed that provides answers to these questions. Sup-

plying the pre-seeded answers to most of the question is
straightforward (e.g., we use the DHCP client to obtain the
network configuration, and no user accounts are created),
but for disk partitioning, there are several legitimate an-
swers. In our implementation, we choose separate boot and
root partitions to provide the option of an encrypted root
file system. However, other “safe” choices are possible.
Ultimately, we intend to define an interface for the user to
choose among these “safe” options for partitioning.

The sCore ROTI consists of a custom installer
kernel (e.g., including TPM libraries), initrd, the
debian-installer, and the set of packages that
may be loaded. The debian-installer installs the
ubuntu-standard virtual package, which in turn, in-
stalls its dependencies. This part of the install includes
base libraries, such as libc, and a minimal software install
(from the Ubuntu folks perspective). Some of these pack-
ages are not used in the sCore, so they may be removed.
The standard install is followed by an installation of custom
packages that includes: (1) customized TPM software utili-
ties (for generating measurements, attestations, and unseal-
ing); (2) a customized kernel package containing the Xen
hypervisor, the paravirtualized Linux kernel (customized
to include Linux IMA), and supporting configurations and
scripts; (3) ipsec-tools packages; (4) our sCore trust
service; and (5) any additional packages required to fulfill
dependencies. These packages are md5-hashed, and their
values are then signed with our ROTI’s GPG key4 and in-
cluded in a file Release.gpg. The ROTI validates each
software package against its hash prior to installation.

Although we do not implement it, this is the stage of
the installation where signed patches could be automati-
cally downloaded from the same remote package source
used in previous stages of the installation. This would give
the ROTI installer the ability to stay up-to-date with re-
spect to vulnerabilities. However, due to the large number
of complications with respect to the plethora of patching
strategems employed today, we choose to discuss this in fu-
ture work.

Once all the packages are installed, post-installation
scripts complete the configuration. First, this script evicts
the old TPM state and creates new TPM keys for signing
(i.e., quoting) attestations. Second, it generates an entry in
the Grub bootloader’s configuration file (i.e., menu.lst).

The custom installer also links the installed root filesys-
tem to the ROTI. The ROTI computes a hash for each file
in the root filesystem and collects these hashes into a sin-
gle file called md5sums.txt. Since the root filesystem
is of moderate size, this operation is practical (about one
second). The ROTI then uses the TPM to seal the file

4Since we modified some of the packages to be installed, we had to
generate our own GPG key for the ROTI. The intention is for the distributor
to sign their version of the sCore installation.
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install md5sums.txt to the current PCRs for the run-
ning installer, so that it can be opened (i.e., unsealed) only
by the trusted sCore when it is booted. When the file is
unsealed, the sCore measures the sealing PCRs (i.e., of the
installer) to link the file to the ROTI. Note that this file need
not be secret to the sCore.

4.2 Booting the sCore
As the sCore is booted, the individual stages (see Fig-

ure 2) collect integrity measurements to justify that the
sCore’s integrity can be linked to its ROTI installation.
Booting the sCore involves booting the Xen hypervisor
and Linux domain 0 kernel, verifying the integrity of the
root filesystem, initializing the system, and starting the
sCore services. Each step is accompanied by integrity mea-
surement tasks.

First, the Trusted Grub bootloader [1] boots the Xen hy-
pervisor. Prior to booting, Trusted Grub measures the Xen
hypervisor, domain 0 Linux kernel, the stage 2 bootloader,
the initrd, and the command line boot parameters. The
installed Grub configuration file menu.lst specifies the
necessary measurements, and Trusted Grub’s current func-
tionality supports such measurements.

Next, the Xen hypervisor loads the Linux domain 0 ker-
nel. Our domain 0 kernel is a Linux 2.6.18 kernel modified
to run as a Xen virtual machine (i.e., paravirtualized) and
extended to perform integrity measurement using the Linux
Integrity Measurement Architecture (IMA) patch [15, 32].
The bootloader measures the kernel, so we depend on the
integrity of the Xen hypervisor to ensure that the correct do-
main 0 kernel is loaded. Using Linux IMA, each user-level
executable, libraries, and kernel modules are automatically
measured.

Initialization of the sCore user-level services starts by
verifying the integrity of the root filesystem using the in-
stall rootfs quote from the installation. A script in the
initrd checks the hashes of each file in the root filesys-
tem with the hashes in md5sums.txt. The integrity of
md5sums.txt is verified by ensuring that PCRs of the
sealing system correspond to a legitimate ROTI. To enable
remote verification, an IMA measurement entry containing
the sealing PCRs (i.e., the ROTI PCRs) and file name is
recorded. The file contents are system specific, so they need
not be provided in the measurement.

We detected that a small number of files (three) in the
root filesystem are modified in the course of a sCore ini-
tialization. These files include mtab, blkid.tab, and
blkid.tab.old. For example, mtab maintains a list
of currently mounted filesystems, so it is written on each
initialization. There are a number of options for handling
these exceptional cases: (1) verify these files locally using
trusted program; (2) move the files out of the root filesystem
(e.g., link to a file in /var); or (3) submit the modified ver-
sions to the remote party for verification (since the number

is small). As some files may be security-sensitive, such as
mtab, that a mechanism to validate some exceptions will
be necessary.

Next, the sCore generates the IPsec keypair and IPsec
certificates for the bootcycle. Recall that we generate a
fresh keypair on each boot to prevent the theft of such se-
crets from memory (see Section 2.3). The IPsec keypair are
generated using openssl. We bind the new key pair’s cer-
tificate to the TPM by generating an IMA measurement of
the certificate. This binds the keypair to the bootcycle and
TPM. In future work, we will then simply modify ipsec-
tools to check that the attestations being exchanged during
racoon’s negotiation include the openssl certificate used
to secure the connection.

Finally, the sCore must bootstrap itself as a networked
device capable of participating in a Shamon . We use DHCP
to obtain an IP address for the sCore . Thus, the sCore in-
cludes a DHCP client in its software stack. The DHCP
client is the only service that accepts unauthenticated in-
put currently 5. Next, the sCore must be able to locate the
authorities for joining Shamon . This includes one or more
Privacy CAs and one or more Shamon Authorities. The for-
mer enable the sCore to securely obtain the public keys of
other sCore systems. The latter enables the sCore to identify
other sCore and their mapping to distributed applications.
These identities are provided by the installer.

4.3 Running the sCore

Once the sCore is initialized completely, it can partici-
pate in one or more Shamon. In order to join a Shamon,
the sCore must convince a remote party that it is a legiti-
mate, high integrity sCore via an attestation (i.e., a freshly
signed integrity measurement) [27]. After a successful at-
testation, the sCore officially joins the associated Shamon,
downloads the Shamon mandatory access control (MAC)
policy, and runs and migrates virtual machines (VMs) for
the Shamon distributed applications. Over its lifetime, the
sCore must protect itself from malicious modification and
the loss of communication secrets (i.e., IPsec keys).

First, Figure 4 lists the software that is running in our
sCore prototype. All software is loaded at initialization
time, and no further software is executed by the sCore. The
fundamental sCore services are xend which launches and
migrates virtual machines, racoon which is an IKE dae-
mon (specifically, for the ipsec-tools IPsec suite), and
our trust service which performs mutual attestations with
other sCore to build Shamon. The other programs initial-
ize the system (init and getty), support service func-
tions (such as logging in logd), and obtain an IP address
(dhcpc, as described above).

A Shamon join invokes the trust service to perform a mu-
tual attestation with a remote sCore . The trust service re-

5However, methods to authenticate DHCP have been proposed [10].
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ceives a nonce from the remote sCore(i.e., a challenge), and
generates an attestation (e.g., response) using its TPM (e.g.,
see the Linux IMA attestation protocol [32]), plus the trust
service generates the challenge for the other sCore to do its
attestation. The attestation quote is sent with the IMA mea-
surement list to the remote sCore. A successful attestation
requires that: (1) the IMA measurement list of hashes (i.e.,
software loads and verification of the root filesystem) corre-
spond to the hash aggregate signed in the attestation and (2)
that the remote party accepts the ROTI that generated the
root filesystem (whose integrity check is in the IMA mea-
surement list).

Once a Shamon join is complete, the trust service up-
dates the MAC policy for the sCore. The MAC policy is the
current policy being enforced on VM communications. It
consists of three components [25]: (1) the Xen sHype pol-
icy that governs local VM communication; (2) the SELinux
policy for Labeled IPsec that governs remote VM commu-
nications; and (3) the IPsec policy that links cryptographic
provisioning with MAC of communication. These policies
are initialized based on input from the Shamon authorities,
but each Shamon defines its own MAC policy components.
We note that these policies persist only within one boot-
cycle, so there is no impact on the root filesystem or the
integrity of the sCore itself for future boots.

The near-minimal sCore must protect itself from mali-
cious input. Only dhcpc, racoon, xend, and our trust
service may accept messages from remote parties. Further,
all xend messages must originate from Labeled IPsec tun-
nels. While we do not provide a formal proof of secure in-
put handling, verification is practical given the small num-
ber of programs. The trust service messages are limited to
sCore initialization/updates, attestation requests/responses,
and MAC policy updates. Furthermore, xend is written in
Python and has a carefully-designed module to filter input.
Evaluating input filtering of these services is future work.

The remaining challenge is to prevent an IPsec session
from being hijacked by the reboot of an untrusted system
that can read memory from the previous boot. This is only
a problem when a machine is rebooted with the power on.
On a normal shutdown, a script /etc/init.d/stop is
invoked to clear the IPsec state from the kernel. Some sys-
tems crash and reboot automatically without a shutdown, so
the sCore implementation must account for this as well. A
sCore crash should be infrequent and should not automat-
ically reboot the system, but addressing this specifically is
future work. From the remote party’s perspective, it must
detect a broken sCore connection. To do this, we use the
IPsec dead peer detection messages set at 10 second inter-
vals (i.e., longer than the currently practical reboot time) to
detect whether a peer is not longer an active sCore . After
this time, a mutual attestation is required to reconnect the
sCore.

5 Evaluation

We evaluate the ROTI-based sCore by measuring its in-
stallation, boot, and runtime overheads. All of the follow-
ing experiments were run on Dell Precision 380 machines
with 2.8 GHz Pentium D processors, 1G of memory, and
120G PATA disks. The installer is based on Ubuntu Edgy
(6.10), and installs the March 2nd Xen-Unstable build of
Xen, which uses a patched 2.6.18 Linux kernel.

During installation, the ROTI performs several tasks be-
yond what is included in a normal installation, detailed in
Section 4.1. We measure the performance of each of the
following discrete tasks: (1) install sCore -specific soft-
ware packages; (2) create TPM signing keys; (3) update
the bootloader configuration in menu.lst to boot the cus-
tom kernel; and (4) build the root filesystem integrity file
md5sums.txt and TPM-Seal the file (binding it to the
ROTI). Fortunately, these operations have a minimal impact
on performance. As can be seen in Figure 5, the normal op-
erations involved in installing an operating system dominate
the total time to install sCore, as the operations we add only
comprise 8.4% of the total installation time.

We also examine the overhead of the resultant sCore boot
compared to a Xen system boot. The only additional oper-
ations the sCore requires at boot-time are: (1) the integrity
measurements of Linux IMA; (2) the IPsec key pair gener-
ation using openssl; and (3) the root filesystem integrity
validation. The IMA integrity measurements cost on the or-
der of milliseconds for the small amount of measurements
made [32], and the IPsec key generation is also fast at 0.62
seconds.

The root filesystem validation requires hashing the en-
tire root filesystem and comparing to the expected hashes in
md5sums.txt. The hash computation consumes an aver-
age of 1.36 seconds. As we timed the boot sequence, the
total boot process took an average of 69 seconds, making
the overhead added by key generation and filesystem vali-
dation quite small (less than 3%).

After boot, most of the overhead in the sCore drops
out. IMA has already hashed the programs that are loaded
and extended the appropriate PCRs, the root filesystem was
hashed once and does not need to be hashed again, and
the list of md5 hashses has already been unsealed. At this
point, the only notable performance impact on sCore is the
exchange of attestations that takes place before encryption
communication between the sCore is established. This adds
2.31 seconds to the average IPsec negotiation, and needs
only be performed at every phase 1 security association time
out. Of this, 0.93 seconds is used to make the attestation to
be given to the remote party, and 0.07 seconds is used to
verify the remote party’s attestation. The remainder of the
time is devoted to network communications and the actual
transmission of nonces and attestations.
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Custom Package Installation
(30s)

Standard Installation
(489s)

Create / Load
TPM Keys

(1.72s)

Edit Menu.lst
(0.01s)

Hashing
Filesystem

(0.71s)

TPM_Seal
(0.5s)

Figure 5. A performance breakdown of the major tasks in the install phase. The majority of the time
is consumed by the standard install.

6 Related Work

Most integrity measurement approaches involve measur-
ing the software of a system and/or its static files (or mem-
ory) [24, 27, 32, 31, 11]. We have shown that these ap-
proaches are insufficient, but there are other integrity mea-
surement approaches. An alternative is to verify the inputs
to high integrity operations and measure the code and out-
puts of those operations, such as is done in the BIND sys-
tem [33]. However, this implies that only some operations
in high integrity software are really integrity-critical, but
these are difficult to identify and separate. All operations of
all software in the sCore appear to be integrity-critical. An-
other alternative is the PRIMA integrity measurement ap-
proach that ensures that high integrity data is only modified
by high integrity processes [19]. However, PRIMA does not
ensure that the data was installed in a high integrity fashion
and does not guarantee integrity after the attestation.

The Bear system from Dartmouth [23] identifies some of
the challenges of addressed in this work. They identify at-
tacks against data, such as the replay of old dynamic data,
that can impact the integrity of the system. The Bear divides
the system into long-lived core, medium-lived software, and
short-lived data. An enforcer is a long-lived component that
verifies the integrity of medium-lived software and tracks
the values of short-lived data. Verification is based on infor-
mation from a remote Security Admin. The Bear provides
some useful general ideas, but does not address ensure that
the Security Admin can be trusted by remote parties, as the
ROTI can, does not address long-term secrets, and does not
envision managed system configurations, such as the sCore.

We are aware of emerging research that uses hardware
features to guarantee that only authorized code is ever ex-
ecuted by a system [22]. Such work uses the execute pro-
tections of the x86 hardware to prevent a page from being
executed until it is authorized. If we know all the software
that can be executed on a system, such as the sCore, then
we can use such techniques to limit execution to just that
software. We see these types of techniques complimentary
to the sCore. We would use such a function, but we still
need the ROTI to just a high integrity installation, filters
to protect against malicious inputs for data attacks, and the
protection of system secrets.

The Shamon approach also leverages virtual machine
(VM) technology to enforce mandatory access control
(MAC) across a distributed system. Virtual machines pro-
vide a layer of isolation and VM communication is coarser-
grained than OS system calls. Thus, work is underway to
add MAC to VM systems (e.g., sHype and Xen Security
Modules [30, 9] for Xen). Further, NetTop is a VM-based
system for isolating VMs at particular security levels from
one another [26]. NetTop would benefit from a integrity-
verified base and the more flexible MAC proposed from the
Shamon. MAC in a distributed system depends on a secure
communication mechanism that can convey security labels.
We use SELinux’s Labeled IPsec [17], but other alternatives
exist [29, 28]. It is unclear which approach may prove most
effective in the future.

7 Conclusions
In this paper, we developed an approach to building

and verifying high integrity systems based on a root of
trust installation (ROTI). The ROTI links both software and
system-specific configuration files back to the trusted in-
staller that generated them. While the ROTI idea is straight-
forward, a number of challenging design decisions must
be made to implement it correctly using the TPM hard-
ware. Developed from a clearly defined set of requirements
that must be met to build a high-integrity system, we have
explored the systemic requirements of installing, booting,
and measuring the runtime integrity of the ROTI-installed
sCores. The implementation and experiments demonstrate
that we can build a practical large-scale integrity-measured
distributed Shamon system. In the future, we will explore
further use of the Shamon for constructing large distributed
application environments, leveraging the homogeneity of
the integrity-assured components (sCore) to enable dis-
tributed trust.
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