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ABSTRACT

Modern distributed systems are composed from several off-
the-shelf components, including operating systems, virtual-
ization infrastructure, and application packages, upon which
some custom application software (e.g., web application) is
often deployed. While several commodity systems now in-
clude mandatory access control (MAC) enforcement to pro-
tect the individual components, the complexity of such MAC
policies and the myriad of possible interactions among in-
dividual hosts in distributed systems makes it difficult to
identify the attack paths available to adversaries. As a
result, security practitioners react to vulnerabilities as ad-
versaries uncover them, rather than proactively protecting
the system’s data integrity. In this paper, we develop a
mostly-automated method to transform a set of commod-
ity MAC policies into a system-wide policy that proactively
protects system integrity, approximating the Clark-Wilson
integrity model. The method uses the insights from the
Clark-Wilson model, which requires integrity verification of
security-critical data and mediation at program entrypoints,
to extend existing MAC policies with the proactive media-
tion necessary to protect system integrity. We demonstrate
the practicality of producing Clark-Wilson policies for dis-
tributed systems on a web application running on virtual-
ized Ubuntu SELinux hosts, where our method finds: (1)
that only 27 additional entrypoint mediators are sufficient
to mediate the threats of remote adversaries over the en-
tire distributed system and (2) and only 20 additional lo-
cal threats require mediation to approximate Clark-Wilson
integrity comprehensively. As a result, available security
policies can be used as a foundation for proactive integrity
protection from both local and remote threats.

1. INTRODUCTION

A large fraction of modern computation is now deployed
in distributed systems consisting of several, independently-
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developed software components. For example, web appli-
cations (e.g., a LAMP software bundle) consist of: (1) an
operating system distribution and its system services (e.g.,
Linux); (2) a web server (e.g., Apache); (3) a database
and other backend software (e.g., MySQL), and (4) cus-
tom server code (e.g., written in PHP) to which web clients
connect to perform a variety of critical applications. Each
of these components face their own threats and connect-
ing them together into a distributed system only increases
the avenues that adversaries can leverage to compromise the
system.

Computing system compromises occur because data in-
tegrity is not managed effectively. Adversaries use the open
accessibility to many distributed systems to attempt attacks
ranging from malformed network packets to embedded exe-
cutable content to imported files containing malware. One
mechanism introduced into commodity systems to combat
such attacks is mandatory access control (MAC) [33, 49, 51,
54, 27]. MAC enforcement limits processes to program-
specific permissions to protect the kernel’s integrity, even
from some root processes’. MAC enforcement is now avail-
able in virtual machine monitors [9, 42, 22] (VMMs) and
user-level programs [29], in addition to operating systems,
enabling such control throughout the system. Further, such
MAC enforcement is now integrated with network access
control [26, 17, 32], presenting an opportunity for compre-
hensive access control in commercial deployments. However,
the addition of all this enforcement does not seem to be
changing the dynamics of security management. Preventing
compromises is still a reactive task, fixing vulnerabilities as
adversaries identify them.

We find that the current approach to securing systems us-
ing MAC enforcement forces administrators to be reactive.
Commodity MAC policies often consist of many complex
policy rules, so configuring MAC policies is now a task un-
dertaken only by experts. As a result, administrators use the
default MAC policies provided in OS distributions to pro-
tect their distributed systems blindly. However, commodity
system MAC policies are designed based on the expected
functionality required by processes, resulting in least privi-
lege enforcement [43]. Unfortunately, almost every process
in a commodity system is accessible to adversaries, even in
its least privilege operation [53], so current commodity MAC

'A small set of programs are authorized to modify MAC
policies in practice, but not all root processes as was the
case previously.



policies do not protect process integrity comprehensively.
While researchers have developed analysis tools to detect
potential problems in commodity MAC policies [18, 52, 45,
55, 7], determining the resolutions to such problems is still a
complex manual task, requiring MAC policy expertise. The
result is that it is not practical for administrators to foresee
all the possible attack paths available to adversaries, causing
them to react to adversary exploits.

Instead, our goal is to generate MAC policies that protect
system-wide integrity from the available security policies.
Our insights are motivated by the Clark-Wilson integrity
model [8]. The Clark-Wilson integrity model defines strict
requirements for protecting integrity where integrity verifi-
cation procedures (IVPs) validate high integrity data, only
certified transformation procedures (TPs) modify high in-
tegrity data, and TPs protect themselves by upgrading or
discarding any low integrity inputs they may receive. While
MAC policies define the flows to and from processes, they
fail to identify the data whose integrity is critical to those
processes (e.g., require IVPs) or which process entrypoints>
must protect themselves from adversary access. However,
by using the available MAC policies, we find that we can
construct an information flow problem that enables compu-
tation of placements of integrity verification and entrypoint
mediation necessary to resolve all information flow integrity
errors in the system.

In this paper, we develop a mostly-automated approach
to compute the set of integrity verification and entrypoint
mediation sufficient to protect information flow integrity in
distributed systems. First, this method constructs system-
wide data flow graphs from available MAC policies and “con-
nection” policies (e.g., firewall policies) that describe how
individual software components communicate in distributed
systems. Second, we create information flow problems by
adding integrity semantics to nodes in the data flow graph
semi-automatically. Third, we compute a minimal place-
ment of integrity verification and entrypoint mediation nec-
essary to resolve all information flow errors automatically.
Using this placement, we can produce a system-wide data
integrity policy that approximates Clark-Wilson integrity as
described above. We have found [41] that the resultant poli-
cies are equivalent to Decentralized Information Flow Con-
trol policies [20], possibly opening the way to leverage infor-
mation flow-based enforcement mechanisms for commodity
system deployments.

This paper makes the following contributions. First, we
define an information flow problem whose data flow graph
represents an hierarchical system of software components
with independent entry and exitpoints. This enables us to
model information flow system-wide and identify the need
for mediation at program entrypoints. Second, we design a
method to solve such problems using graph cuts, where the
locations of possible cuts are constrained by the integrity
of program packages. Third, we demonstrate our method
on a custom web application running on virtualized Ubuntu
SELinux hosts, which finds that only 27 additional entry-
point mediators and 20 integrity verification procedures are
necessary to provide information flow integrity approximat-
ing Clark-Wilson integrity. This is the first approach to pro-

2A program entrypoint is a program instruction that re-
ceives input from the operating system, such as the caller of
the library function that invoke a system call.
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Figure 1: Example web application consisting of a
web server with three web application components
that handle data of different integrity levels on a
standard web infrastructure. The web client is also
divided into two VMs for regular and protected op-
eration.

duce system-wide access control policies targeted to classical
integrity in a mostly-automated fashion.

The remainder of the paper is structured as follows. In
Section 2, we motivate the problem of deploying a secure web
application using commodity MAC policies. In Section 3,
we motivate the use of Clark-Wilson integrity as a guide for
resolving information flow errors. In Section 4, we describe
how to construct and solve the information flow problems
necessary to compute an approximation of a Clark-Wilson
integrity policy system-wide. In Section 5, we describe the
tool implementation and evaluation results. In Sections 6
and 7, we detail related work and conclude the paper.

2. PROBLEM DEFINITION
2.1 Motivation

When administrators deploy distributed applications, one
problem that they must address is whether that deployment
protects the application’s data integrity end-to-end. As an
example, consider a web application that enables collabora-
tive decision-support for groups of users shown in Figure 1.
Such applications consist of two main tasks: data gather-
ing (upload) and data analysis for decision-making (discus-
sion). First, data is often gathered from external, perhaps
untrustworthy, sources by some clients for others to evalu-
ate. In this example, users use the regular web clients to
gather data for upload to the upload web application com-
ponent. Then, users use the protected client to examine this
data and perform decision-making (with other clients) using
the discussion web application component. To do this, the
discussion web application component produces two streams
of content, one (potentially) untrusted stream from external
sources (from upload) and a second, high integrity stream
from collaborative discussions of trusted sources, where both
streams may be displayed in a manner suitable for users to
distinguish one content stream from the other [13].

While there are multitude of threats that are possible
against such applications, we identify three specific threats
that represent the different types of problems we aim to ad-
dress. First, the web infrastructure (e.g., LAMP software
bundle including web server, database, etc.) may be threat-
ened by remote adversaries. While the web infrastructure
often consists of mature software that has been hardened
against many threats as the result of years of penetrate-
and-patch, new vulnerabilities continue to be discovered.
Second, we have to be careful that a web application deploy-
ment does not introduce new attack paths for itself and the
infrastructure. The web application components are gener-



ally custom software implemented for the specific web appli-
cation, so they are not necessarily hardened to the threats
that they may face. Remote threats that compromise one
web application component may be used as a stepping to
attack other web applications and the web infrastructure.
Third, local threats may also be used to attack the web ap-
plication. Some vulnerabilities are caused by trusting files
that may have been supplied by adversaries by tricking users
or compromised programs to import them. For example, a
user may be tricked into importing malicious libaries to their
home directory, which may lead to a untrusted search path
vulnerability.

As a result, it is difficult to deploy web applications that
protect data integrity end-to-end. Administrators currently
focus their efforts on management of the web infrastructure,
which consists of mature programs, runs on hosts they man-
age directly, and is well-supported by vulnerability report-
ing. Administrators assume that web infrastructure soft-
ware prevents known threats, and they can track vulnera-
bility reports to determine whether new vulnerabilities will
require upgrades or software package changes. This is not
the case for web application components and web client soft-
ware, however. Such programs may be new, be managed at
least partially by end users, and be sufficiently ad hoc that it
is difficult to determine how a new vulnerability may affect
them. That is, the reactive approach may not be effective
because only their configuration may have the vulnerability
and the method of reaction may differ between web appli-
cation configurations. To address this limitation, we aim to
develop a proactive approach to protecting data integrity.

2.2 Proactive Integrity

Designing for integrity traditionally requires finding solu-
tions to an information flow problem that satisfies an in-
tegrity policy. For example, Biba integrity requires that no
process receive any information flow (read or execute) con-
taining data whose integrity level is lower than that of the
process [5]. The information flow problem can be expressed
using the model below:

DEFINITION 2.1. Let Z be an information flow problem,
Z = (G,L,M), to find whether whether a data flow graph
G with a level mapping function M for a lattice L contains
any information flow errors, where:

1. A data flow graph G = (V, E) consists of a set of nodes
V' connected by a set of directed edges E.

2. There is alattice L= {L,=<}. For any two levels l;,1; €
L, l; 2 1; means that l; ‘can flow to’ l;.

3. There is a level mapping function M : V — PE where
PL s the power set of L (i.e., each node is mapped
either to a set of levels in L or to D).

4. The lattice imposes security constraints on the infor-
mation flows enabled by the data flow graph. FEach
pair u,v € Vs.t. [u <g v A (3ly € M(u),l, € M(v).
lu Az lv)], where < means there is a path from u to
v in G, represents an information flow error.

It has been shown that information flow errors in pro-
grams [28] and MAC policies [18, 45, 52] can be found au-
tomatically using such a model. For integrity, the lattice
would represent an integrity policy, and the level mapping

function would map levels in that integrity lattice to subjects
and objects in the system.

Through the addition of a variety of security mechanisms
over the last 10 years, administrators can now make a num-
ber of choices to protect the integrity of their deployments
proactively, but the sum of these measures fall short of sat-
isfying information flow integrity. For example, adminis-
trators can: (1) configure firewall policies, which define the
possible data flows among hosts (including virtual hosts);
(2) choose OS distributions with mandatory access control
(MAQ) policies (supported in several commodity systems [51,
33, 31, 27, 54]), which define the possible data flows among
processes running on that OS; and (3) choose software pack-
ages to run on their hosts, which defines the possible data
flows within programs. The problem is that many of these
authorized data flows allow adversaries to access integrity-
critical data and processing. The reason for this is that such
policies are designed to enforce least privilege [43], where pro-
grams are only limited to the permissions required for them
to function properly. However, in a runtime analysis study,
we found that nearly every program is designed to receive
some adversary-supplied data [53], which can lead to vulner-
abilities when such untrusted data is accessed in unexpected
ways or has unexpected values.

Researchers have long recognized this problem, but thus-
far the solutions proposed involve significant, manual effort.
In general, information flow errors may be resolved by medi-
ators, which ensure that the runtime behavior of the system
is consistent with its security requirements (i.e., integrity
lattice). Mediators may be implemented as entire processes,
such as guards, or as individual program statements, such as
endorsers in security-typed languages [29]. In the informa-
tion flow problem, a mediator associates an edge (u,v) € E
with an integrity level to which data is raised [ € L when
transmitted on the edge by node u.

As system functionality often violates information flow
integrity, the placement of mediators necessary to resolve
such errors is an important and difficult problem. Recently,
researchers have proposed a variety of approaches to en-
force information flow integrity focusing on system abstrac-
tions [21, 47, 50, 20, 56, 57]. All of the above approaches
require that administrators replace the commodity system
policies with a new information flow policy that includes me-
diators. Only Practical Proactive Integrity [50] (PPI) pro-
vides some automated support for producing integrity poli-
cies from existing MAC policies, but it uses simple, two-level
lattices and requires administrators to determine whether a
process can handle all integrity threats, which is a difficult
and error-prone task. To evaluate such risks more precisely,
researchers have realized that it is important to identify and
defend those program entrypoints accessible to adversaries®,
called the program’s attack surface [16, 23]. Some of the in-
formation flow integrity enforcement mechanisms above rea-
son about integrity based on the program entrypoints [47,
20]. See Section 6 for further details.

Rather than requiring administrators to specify a new in-
formation flow policies manually, we argue that such poli-
cies, including the mediators necessary to prevent informa-
tion flow errors, can be computed automatically. Our goal
is to use the system’s available security policies to produce
a system-wide policy with the minimal mediation necessary

3A program entrypoint is a program instruction that re-
ceives input from the operating system.



to resolve the system’s information flow errors as defined in
Definition 2.1. We are motivated by prior work that demon-
strated that a placement of mediators that resolves all infor-
mation flow errors is equivalent to a cut of error paths in the
data flow graph [37, 19]. However, to make this idea prac-
tical, we explore how to produce an information flow policy
for the example web application that resolves its local and
remote threats. As a result, we find several additional chal-
lenges must be addressed, such as finding practical mediator
options and producing cuts for general lattice policies. Thus,
this work is the first to produce mediator placements nec-
essary to resolve information flow errors system-wide. In a
separate technical report [41], we prove that solutions to the
information flow problem above are equivalent to legal De-
centralized Information Flow Control policies in the Flume
model [20], possibly opening the way to leverage information
flow-based enforcement for commodity system deployments.

3. SOLUTION APPROACH

Our approach is motivated by two insights that enable
the solution of information flow problems from the available
security policies in commodity system deployments.

Clark-Wilson Mediators. As a guide for where to place
mediators, we turn to the Clark-Wilson integrity model [8],
which consists of rules that define the high integrity oper-
ation of a system. Of particular interest are the rules that
define how high integrity data is processed securely, where:
(1) high integrity data (CDIs) must satisfy integrity verifi-
cation procedures (IVPs) (Clark-Wilson rule C1); (2) only
approved programs called transformation procedures (TPs)
may modify high integrity data (C2, E1); and (3) TPs may
only receive low integrity data (UDIs) if that data is up-
graded or discarded (C5). That is, TPs protect data in-
tegrity, but they require IVPs to validate that the data an
application depends upon is high integrity and TPs must
be capable of mediating low integrity inputs to upgrade or
discard such data.

Clark-Wilson identifies two types of mediators: IVPs and
the TP program entrypoints. In practice, we find that IVPs
are useful for mediating the integrity of files imported into
the system. In our example, the protected web client may
include restrictions on the files introduced into the user’s
directory, which acts as a mediator to protect the processes
that use such files. Examples of possible IVP mediation in-
clude signed package files, binding files to their values at
installation [46], and policy-sealed data [44]. If the network
inputs and/or local files cannot be validated by IVPs, then
entrypoint mediation is placed to protect processes. In gen-
eral, entrypoint mediation is application-specific, although
researchers have proposed general methods to prevent some
attacks, such as input handling libraries [39] and safe name
resolution [6]. In this paper, we produce an information flow
policy that places mediators sufficient to protect the sys-
tem’s data integrity, but not the mediation code. Providing
effective mediation code remains an open research issue for
all the current information flow enforcement approaches [20,
29], but we are the first to design a method for system-wide
placement of mediation.

Choosing Practical Mediation. Computing mediation
placements solely from the information flow problem alone
ignores some practical considerations. First, several pro-
grams, particularly mature ones, have already been hard-
ened by the reactive approach described earlier. We want to

reuse those mediators in choosing placements. Second, me-
diator placement locations may be limited in their ability
to solve information flow problems. For example, the web
application may need to filter untrusted input data, but it
cannot be trusted to protect the kernel’s integrity. In past
work, these considerations are left as manual tasks.

To address these practical problems, we compute: (1) the
mediator placements for infrastructure components to en-
able their reuse in deployments and (2) the constraints to
limit the maximum integrity level that each mediator may
endorse. First, we break the task of computing mediation
into two steps: we first compute the mediators required for
a default install of the infrastructure VMs to estimate the
mediation that is necessary for any deployment, and then
we compute the additional mediators required for the de-
ployed application at large on this infrastructure. As de-
scribed above, the movement toward pre-configured VMs
encourages their reuse, so we further encourage the reuse
of what should be their fundamental mediation, required in
all deployments. Second, we compute constraints on the
maximum integrity level for each possible mediator location
for input to the mediator placement method. Producing
these constraints is based on prior work that creates mutual-
integrity partitions of labels from MAC policies [53].

These insights can produce a variety of positive effects on
computing mediator placements system-wide. Using Clark-
Wilson integrity as a guide enables mediation placement for
programs that do not enforce MAC policies explicitly, re-
duces the number of mediation locations to consider sig-
nificantly, and provides defense for both local and remote
threats. By estimating infrastructure mediation and lim-
iting the scope of mediation, we distinguish between the
mediation sufficient to protect infrastructure in general and
that additional mediation required when those infrastruc-
ture components are combined with application software and
data and connected into a distributed system. By constrain-
ing the integrity levels to which mediators may raise data,
we limit the number of programs that can endorse data at
each integrity level. We evaluate each of these possible ef-
fects in Section 5.

Assumptions. The key assumption in this work is that
the programs, operating systems, and firewalls that enforce
MAC policies do so correctly. This is a significant assump-
tion given the size and complexity of such software, but it
is the standard assumption in modern computing systems.
Specifically, we assume that the programs, operating sys-
tems, and firewalls satisfy the reference monitor concept [2],
which requires that a reference validation mechanism (i.e.,
MAC enforcement) must “must always be invoked” upon
a security-sensitive operation, “must be tamperproof,” and
must be “small enough to be subject to analysis and tests,
the completeness of which can be assured,” which implies
correctness. The reference monitor concept is certainly the
goal of these MAC-enforcing commodity systems, even if
they do not meet the letter of these requirements.

4. DESIGN

To produce a mediator placement system-wide, we need
to construct a system-wide information flow problem (see
Definition 2.1) and compute a placement that resolves all
the information flow errors in that problem. Given available
security policies, we claim that building system-wide infor-
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Figure 2: Each software component consists of entry
and exit nodes. When the component enforces its
own MAC policy then the entry and exit nodes are
connected to nodes in the MAC policy.

mation flow problems can be largely automated, resulting
a similar effort as configuring information flow problems for
single entities (programs or MAC policies). We design an au-
tomated method to produce mediator placements from such
problems that is an extension of the basic graph cut idea [37,
19] to address general lattices and constrained mediators.

4.1 Building Information Flow Problems

Constructing information flow problems cannot be com-
pletely automated because we cannot predict application-
specific requirements. Nonetheless, we can greatly reduce
the effort necessary to configure such problems, even in com-
plex, distributed environments, such that the task of config-
uring a system-wide information flow problem is compara-
ble to configuring information flow problems for one entity
(e.g., as expected by prior analyses for programs [29] or sys-
tems [52]). In this section, we describe the two main insights
that guide the construction of information flow problems.

Connection Policies. A modern system deployment
now consists of several reference monitors (e.g., firewall, OS,
program) independently enforcing access control policies.
When enforcing mandatory access control, these policies rep-
resent the possible data flows among subjects and objects
governed by their respective reference monitors. However,
because security policies for each reference monitor are spec-
ified independently, the flows among subjects and objects
belonging to different reference monitors are ambiguous. For
example, while firewall policies limit how adversaries may
access the host by port, the specific host processes using
those ports are not identified explicitly. Researchers have
addressed this particular ambiguity by introducing labeled
networking [4], for which there are several implementations
in Linux alone [17, 32, 26]. The problem is that adminis-
trators must then understand the policies (and implications
therein) of each reference monitor necessary to connect the
data flows to produce a system-wide data flow graph.

Instead, we find that such connections are either well-
known or can be derived automatically, so administrator
specification is unnecessary. In the web application, many
subjects can be inferred by the use of privileged ports. Also,
given the emergence of purpose-specific VMs, the subjects
that can possibly use network resources can be easily iden-
tified (e.g., included with its specification). For the web
application example, the use of unprivileged ports by the
browser VMs must be limited to browser processing. A sim-
ilar problem occurs when connecting program entrypoints to

Kernel-Privileged
Privileged

E(ernel-Web Servel]

[Proleued Bmwser] [Regular Emwser]

Kernel-Database

Figure 3: Integrity lattice for the web application.
The infrastructure VM levels are highlighted and
the application levels are shaded.

the subject and object labels in the MAC policy accessed by
those entrypoints. In this case, we use runtime analysis to
collect these data flows in a manner analogous to the con-
struction of MAC policies from the permissions programs
request [38, 31]. Thus, to construct a system-wide data flow
graph for the web application, no administrator specifica-
tion is necessary, if the distributors of purpose-specific VMs
include connections between the network and VM processes
(manual) and between program entrypoints and MAC labels
(runtime analysis).

Using this information, we automatically construct a data
flow graph consisting of components shown in Figure 2.
Each component represents an operating system or program
by its set of entrypoints, a module containing internal au-
thorized data flows, and exitpoints. For operating systems,
the MAC policy they enforce creates a subgraph within the
module. For programs, we treat the program internals as a
single node. If a program is information-flow aware, it can
be represented in the same manner as a MAC enforcing op-
erating system. The system is represented by a hierarchical
graph of these components (we use the model defined by
Alur [1]), where the network is the highest level, followed by
hosts (operating systems) and programs.

Standard Infrastructure Mappings. In order to con-
struct an information flow problem, administrators must
produce an integrity lattice and level mapping function to
the appropriate subjects and objects in each of the security
policies in the distributed system. This task is difficult and
error-prone. Researchers typically address this problem by
limiting the scope of the information flow problem to a single
reference monitor, where an expert can define the expected
mapping for the system entities or program variables.

To simplify this problem, we reuse the integrity lattice
and level mapping functions defined for each of the infras-
tructure components when building the system-wide infor-
mation flow problem to limit the scope of effort required
by administrators. We have defined an integrity lattice and
level mappings for the web server, database, and privileged
VM, and have been able to reuse them unchanged for various
web application deployments. Since infrastructure aims to
support a wide variety of application deployments essentially
unchanged, we expect that reuse for other deployments will
be likely. As a result, administrators will only have to spec-
ify integrity requirements for their application components.



For the web application, we only need to identify the two
types of application data for discussion and external streams
of data. Figure 3 shows the integrity lattice for the web ap-
plication, distinguishing infrastructure levels from those in
the application.

4.2 Computing Minimal Mediation

Researchers had the insight that placing a mediator to
resolve information flow errors for a lattice policy containing
two levels l; and [l; is tantamount to generating an edge
cut? of the data flow graph with the nodes mapped to I; as
the sources and the nodes mapped to l; as the sinks [37,
19]. This property is called Cut-Mediation Equivalence. In
practice, general lattices policies must be enforced, as shown
in Figure 3, so we customize the solution to account for such
policies, restricting components that have limited mediation
abilities (i.e., only mediate for some, but not all, errors).

Given a directed graph G=(V, E) and a lattice L={L, <},
there is a cut problem when there is an information flow error
between two nodes with the level mapping function M. For
general lattices, we must ensure that only information flows
authorized by the lattice are possible in the information flow
problem. In the web application, we must both protect the
application from untrusted inputs, the operating systems
in each VM from its applications, and virtualization infras-
tructure from the guest VMs. As a result, a general lattice
creates a set of cut problems to solve, as many as one for
each pair of integrity levels in the lattice.

DEFINITION 4.1. A cut problem set, C is defined as C =
{(li, 1), l; € L, where l; A1, [3u,v € G .u—=¢g v Al; €
Mu)Al; € M(v)]}, consists of such pairs of integrity levels
li and lj. The problem of finding the minimal cut for a cut
problem set is called the multiway cut problem.

Researchers have shown that the multiway cut problem is
NP-Hard for directed graphs [12]. In the context of security
lattices, researchers previously suggested a simple greedy so-
lution to the problem that returns the union of the solutions
for each individual cut problem [19].

To improve on the simple greedy approach, we use the in-
sight that classical integrity encourages processes to upgrade
input integrity to their level [8]. The semantics of mediation
imply that a node that is picked as a mediator (a node in
the graph cut) solution, will raise the level of the incom-
ing data in order to resolve the information flow error. We
also note that each node has a limit regarding how high it
may upgrade any data; we call this the mazraiselevel of each
node. Therefore, the graph-cut procedure produces media-
tors, R C E x L, where each mediator upgrades the integrity
of the output data on the edge (u,v) to an ! € L, which is at
most the node u’s mazraiselevel. A node’s mazraiselevel is
determined by its program and the levels mapped to it. Us-
ing prior work [53], we identify equivalence classes of labels
in the MAC policy whose programs must mutually trust one
another’s integrity. Each node’s mazraiselevel is the great-
est lower bound of any mapping to a label in its integrity
equivalence class.

We use this insight to define a property called Mediation
Dominance. This property states that solving a cut problem

“In graph theory, given a graph G=(V,E), an edge cut of this
graph with respect to a source and a sink is a set of edges
whose removal will divide the graph into two components,
one containing the source and the other containing the sink,
such that the sink can no longer be reached from the source.

1 MEDIATIONRESOLUTION(G, £, M, M azRaise) {

2 LS « Topological Sort(L)

3 for (I € LS)

4 do { Sources + {l; e L |1l; A1}

5 Mediators < Mediators U

6 MinimumCut(G, 1, Sources, M, MaxRaise)
7

Figure 4: Greedy Mediation Resolution Algorithm

in graph G for level l; may solve any overlapping problem
in the same graph G for a level Iy if [1 < ls. The intu-
ition behind this is that since l; is higher integrity than lo,
the semantics of mediation implies that any mediators that
can mediate for [; can automatically mediate for lo. There-
fore, by solving the cut problems for I; before l2, we get two
advantages: (1) we may solve a smaller problem for l> (com-
pared to solving the problem for I independent of i) since
mediation dominance enables us to remove the mediators
computed for /1 and any flows they fostered before solving
the problem for l2 and (2) if there is an overlap in the graph
between the different cut problems of comparable lattice lev-
els, then the size of ordered cut solution can be smaller than
the naive solution, a union of the individual solutions.

The algorithm, GREEDY MEDIATION RESOLUTION, that
solves a cut problem set of graph G for the lattice L, is
shown in Figure 4. The algorithm receives a data flow graph
G, a lattice £, the mapping M of nodes to levels, and the
mazxraiselevels for the mapped nodes M axRaise. Line 2 first
sorts the levels in the lattice to order the cut problem set
based on mediation dominance as described above creating
the ordered set of levels LS. The algorithm then chooses
the cut problems from the set in order (Line 3), collect-
ing the levels of source nodes that could cause information
flow errors for the current cut problem’s sink level (Line
4) and computing the minimum cut, given the nodes that
map to those levels (from mapping M) and limited by the
constraints on possible cuts (MaxRaise).

The running time of the algorithm is dominated by the
time of computing the MinimumCut for each sink, (for every
label in the lattice £ = {L,=<}). The running time of the
MinimumCut algorithm is O(n?), thus, the running time of
the MEDIATIONRESOLUTION algorithm is O(|L|.n?).

S. EVALUATION

In this section, we present the results of a prototype im-
plementation of our approach on the web application system
presented in Section 2.1. We first describe the prototype
analysis tool and the configuration of the web application
system in Section 5.1. We then evaluate the ability of our
prototype analysis tool to compute mediation placements for
the web application system in Section 5.2. We find that the
remote threats of the web application deployment result in
the need for 27 additional program entrypoints to be medi-
ated to achieve Clark-Wilson integrity. We also explore the
mediation of all possible local threats to the web browser
and web server (including the web application), finding that
85 additional mediated entrypoints or 20 IVPs are sufficient
to protect these processes.

5.1 Prototype and Experimental Systems

The prototype has an Eclipse front-end that provides ac-
cess to: (1) parsers to build system-wide data flow graphs
using XSM/Flask [9], SELinux [33], and iptables policies;



VMs Default | Remote | Local
Database Server 281 15 -
Web Server 217 24 56
Privileged VM 335 0 -
Protected Browser 372 15 47
Regular Browser 371 15 -

| Total | 1576 | 69 | 103 |

| Unique Mediators | 525 [ 27 | 85 |

Table 1: The number of mediators needed for: (1)
infrastructure mediation per VM (default); (2) re-
mote threats when application is deployed; and (3)
local threats to deployment. For “unique mediators”
we count each mediator only once even if it is used
in a different VM.

(2) mapping rules to infer integrity level mappings and in-
tegrity level constraints for constructing information flow in-
tegrity models; (3) the Lemon graph library [34] to compute
graph cuts for our information flow model; and (4) a mod-
ule for generating DIFC-Flume [20] policies with integrity
verification and entrypoint mediation from graph cuts. The
code breakdown is as follows: (1) 4303 source lines of code
(SLOC) for the Bison based parsers; (2) 405 SLOC in Prolog
for mapping rules and some parsing; and (3) 4808 SLOC in
C/C++ for the last two tasks.

The experimental system includes two hosts, for the web
server and web client, which run Xen VM system 4.1. The
web server host runs three VMs: a privileged VM (domain
0), a web server VM including an Apache web server and
web application, and MySQL database VM. The client host
runs two VMs, each configured to run a web browser, corre-
sponding to the protected and regular VMs in Figure 1.

Each VM runs the Linux 2.6.31-23-generic kernel. The
Xen hypervisor enforces XSM/Flask policies [9], and Each
of the VMs enforce SELinux policies [33]. While all of the OS
policies are SELinux, they are independent in the sense that
each policy supports a distinct set of applications and these
policies do not refer to the interactions among VMs. Also,
each VM runs an iptables firewall to govern network com-
munications. We assume that secure communication (e.g.,
IPsec or SSL) is used to protect any channel that carries
application data between hosts. Unprotected channels are
given the “External” level (i.e., system-low).

In addition to separating the functionality of different se-
curity levels using VMs, we also use features of the SELinux
MAC system to protect the web application (on the server)
and web browser (on the clients) processes further. For the
web application, we use the mod_selinux module for Apache
to generate separate web application processes to communi-
cate with protected VMs, regular VMs, and other external
parties. For clients, we use SELinux policy booleans to set
more restrictive permissions. For web browsers, the base
permissions (i.e., booleans are off) include access to system
files (e.g., /etc and /var) and the user’s home directory
(e.g., for plugins).

5.2 Experimental Results

In this section, we show how to use our prototype tool
to compute an information flow policy that approximates
Clark-Wilson integrity for the experimental system.

Infrastructure Mediation. First, we compute the en-
trypoint mediation for each of the infrastructure compo-

nents independently. Recall from Section 3 that the goal
is to identify the mediation required for the deployment of
any application on the infrastructure. We explore the abil-
ity to estimate infrastructure mediation by computing the
mediation required of a VM configured to run the target
package of the component, such as the Apache web server,
MySQL database, or Firefox browser. For example, we con-
figure all VMs with the 12 base modules of SELinux refpolicy
2.20120725, and the servers and web clients are configured
with Ubuntu 11.10 server (28 modules) and Ubuntu 11.10
desktop (29 modules), respectively. Upon this, we install the
application modules (e.g., four policy modules for Apache
are added to the web server VM).

Table 1 (Default) shows our prototype’s estimate of the
minimal mediation provided by each infrastructure compo-
nent. For example, the web server VM requires that at least
217 program entrypoints provide mediation to protect the
web server process and kernel integrity from remote threats
based on the default firewall and MAC policies and given
the runtime trace. The estimates for other VMs are some-
what higher, indicating that the web server may be easier
to defend than the others.

Note, however, that many of the mediators are common
across VMs. There are 525 unique mediator entrypoints
across all programs in these VMs (i.e., a program may ap-
pear in multiple VMs). In particular, 161 entrypoints are
common across all VMs, which is approximately 50-75% of
the mediator entrypoints in each of the infrastructure VMs.

One claim is that by examining entrypoint mediation rather
than process-level mediation we greatly reduce the number
of entrypoints that must be examined. The 122 programs
that require mediation above have 2604 active entrypoints®,
meaning that about 20% of all these programs’ entrypoints
require mediation to prevent illegal information flows in de-
fault configurations. Thus, it is beneficial to focus on the
individual entrypoints threatened by untrusted input.

Remote Threats to Applications. Table 1 (Remote)
shows the entrypoint mediation required to block remote
threats when the web application is deployed on this infras-
tructure. While new mediation is required in most VMs,
only 27 new, unique entrypoints need to be protected due
to the application deployment. 11 entrypoints are necessary
for the new web application programs themselves to receive
untrusted input. In addition, 10 new mediators are neces-
sary for auditctl, a program for managing the kernel’s audit
system. The other six entrypoints occur in the dynamic
linker in some programs (setfiles, modprobe, sh, etc.) that
now have access to files that may be modified by remote
adversaries. As a result, the linker may be prone to new
untrusted search path vulnerabilities when the application
is deployed. New attack paths for particular application de-
ployments can be identified by this analysis.

The browser is not generally part of the web infrastruc-
ture, but we can leverage the idea of infrastructure to sim-
plify mediator placement. First, like all the VMs, the browser
has 161 mediators in common with the web infrastructure
components. Table 1 (Default) shows the mediators required
of our particular browser configurations. While such config-
urations may differ widely, once the administrator settles on

5Note that the number of entrypoints is based on the run-
time analysis used to build the connection policies, see Sec-
tion 4.1. Only the entrypoints actually used in this analysis
are included.



a configuration, they can evaluate the default mediation ex-
pected. This may be useful should the users want to leverage
new software for a particular task. For example, the IceCat
browser is a relatively new GNU browser package, and our
prototype identifies the entrypoints that require mediation
for this new software. We recently found a vulnerability
in IceCat because it did not protect an entrypoint [53], so
identifying where mediation is required may be helpful in
proactively preventing such bugs. Once vetted, the browser
configurations themselves may be reused for many deploy-
ments, thus becoming part of the infrastructure.

Finally, we note that Xen’s domain 0, the privileged VM,
has no new mediation required due to the application de-
ployment. This is to be expected as domain 0 is infrastruc-
ture for the VMs rather than applications.

Local Threat Mediation. Table 1 (Local) shows the
amount of additional mediation sufficient to thwart local
threats that may impact the web application. As the privi-
leged and database VMs are deployed from the distribution,
we only consider local threats to the web server and the web
browser. We identify local threats as those objects (MAC
object labels) that may be modified by subjects (MAC sub-
ject labels) that are not trusted by the target (web browser
or web server). These untrusted subjects are mainly user
subjects for running ad hoc programs on these VMs.

Of the 248 possible threats to the web browser and 217
threats to the web server based on the MAC policy®, only 9
and 11 are unmediated local threats, respectively. That is,
the other threats are already blocked completely by media-
tors placed for infrastructure or remote threats. For these
unmediated local threats, we have a choice of mediating us-
ing integrity verification procedures (IVPs) or more entry-
point mediation. Recall that a Clark-Wilson IVP takes data
as input and produces a certification that the data meets an
integrity requirement (i.e., is a Clark-Wilson CDI). Since
only TPs can modify high integrity data in Clark-Wilson,
a problem in applying IVPs for local threats is that they
are modifiable by untrusted subjects. One approach may be
to apply IVPs to monitor such objects for unsafe values, at
which point mediation is required. Another approach is to
remove untrusted writers of such objects from the system.
We show the administrator the set of untrusted subjects
that can modify these threats, so that the administrator
may choose to remove some of the associated subjects’ or
packages from the component.

For the web server, 56 more mediators are required, whereas
for the browser 47 more mediators are required. As can be
seen, most of these mediators are unique (85 out of 103),
which differs from the mediators selected for infrastructure
and remote threat mediation. Thus, local threats appear to
present difficult challenges if they cannot be mediated at the
source.

Finally, we note that all the objects only writable by TCB
subjects or the target subjects may also present local threats
if they are installed from untrusted sources. There are nearly
800 object labels for these files in each VM, but we expect
that most would be derived initially from the signed pack-
age files. Further study is required to ensure that these files
are installed from trusted sources, otherwise the threat they

STt is just a coincidence the the number of untrusted object
labels and the number of mediators required for the web
server infrastructure in Table 1 (Default) is the same.

VM Nodes | Edges Parse Build Compute
Policy(s) | Graph(s) | Cut(s)
Web Server 2028 6621 1.3 0.19 4.0
Privileged VM 2794 11383 4.3 0.38 6.2
Database Server 2577 | 10065 3.1 0.32 5.0
Protected Browser | 2978 | 11674 3.8 0.34 5.8
Regular Browser 2978 | 11700 3.8 0.35 5.7
Remote Mediators | 13427 | 51716 - - 33.4
Total 13427 | 51716 16.4 1.58 60.1

Table 2: Performance of computing mediator place-
ment shown per VM for the infrastructure media-
tion and for system for remote mediation.

pose could be evaluated using the local threat analysis de-
scribed above.

Analysis Performance. Table 2 shows that mediation
placement performance is practical for the example scenario.
For individual VMs, infrastructure mediation can be com-
puted in 5 to 11 seconds per VM. The VMs range in size
from 2000-3000 nodes and 6000-12,000 edges. For the web
application, the mediation placement can be computed in
less than 80 seconds. Breaking the computation down into
two steps for infrastructure and remote mediation does not
save time, as a mediator placement for the entire informa-
tion flow problem can be computed in 37 seconds (plus 18
seconds for parsing and graph build as in Table 2.

In terms of scaling the analysis to larger systems, we note
two findings. First, there is no difference among the web
client systems, so we are able to evaluate information flow
integrity using just one such system. Second, we find that
the infrastructure mediation required of the privileged VMs
is the same as required when the application is deployed.
This implies that the privileged VMs may be evaluated sep-
arately from the guest VMs. We will explore how to auto-
mate identification of such optimizations in future work.

6. RELATED WORK

Deploying web applications to enforce security require-
ments has been explored mainly by restricting the permis-
sions available to web clients. For example, Tahoma [10]
uses server-supplied manifests to describe the permissions
authorized for web clients as part of that web application.
Alternatively, FlowwolF provides information flow enforce-
ment at each layer in software stack [14]. Also, browsers have
been extended with the ability to enforce arbitrary policies,
motivated by the OP browser design [13]. However, end-to-
end configuration of web applications to satisfy information
flow is not yet supported.

Researchers have long known that end-to-end integrity
protection can be modeled as an information flow problem.
However, classical integrity models [5, 8] rely on formal as-
surance for all high integrity processes that receive untrusted
inputs, but formal assurance methods have not been devel-
oped that scale to the size of modern programs. As a result,
least privilege [43] has been adopted as the security goal for
integrity protection in commodity systems [33, 31, 27, 54].
However, different deployments imply different privileges, so
commodity systems try to accommodate this through mech-
anisms to compute permissions requested by processes [38,
31, 3] and by providing runtime configuration options to
specify permissions for options. Nonetheless, it is important
that default configurations work in most cases, so researchers
have found that the default MAC policies still permit several
operations that would violate classical integrity [7]. Meth-



ods to simplify policies through the use of virtualization do
not eliminate such information flows [14, 36].

Researchers have recently proposed practical approaches
to integrity that approximate classical integrity models [47,
21, 50, 20, 40]. These practical integrity models are all
strictly weaker than classical models, in that they do not
require formal assurance for code with the authority to pro-
tect integrity while receiving untrusted inputs. However,
they express restrictions on how such authority may be used
by high-integrity programs. For example, the Decentralized
Information Flow Control [20, 56] (DIFC) model provides
processes with capabilities to make decisions about handling
untrusted inputs.

With the emergence of MAC enforcement in commodity
operating systems, researchers proposed various policy de-
sign tools to help system administrators and OS distributors
configure policies [18, 52, 45, 7]. Broadly speaking, these
tools enable a policy designer to evaluate compliance using
reachability to identify whether an adversary can perform an
unauthorized operation, even indirectly. Reachability analy-
ses have also been performed for network policies in the form
of attack graphs [35, 48, 30], but these represent attacker
behavior rather than using the system policies. However,
defining which operations are unauthorized and resolving
any problems are manual tasks. Researchers have recently
focused on defending an attack surface [16, 23], which is the
set of program interfaces accessible to adversaries. The idea
would be that if we can minimize the number of interfaces
accessible to attackers, we could minimize our defensive ef-
fort.

The problem of verifying that a MAC policy satisfies a set
of security requirements is a policy compliance problem. In
a policy compliance problem, a policy is said to comply with a
goal if all the operations authorized by the policy satisfy the
constraints of the goal [25, 11, 24, 15]. The problem is that
MAC policies often fail to comply with integrity require-
ments, as discussed above, so we must repair non-compliant
cases. However, any MAC policy changes must also preserve
necessary function, and balancing functional and security re-
quirements is computationally complex in general.

7. CONCLUSION

In this paper, we developed a method for computing infor-
mation flow policies that protect data integrity using media-
tion for distributed systems that are constructed from multi-
ple, independent components. To protect the system’s data
integrity proactively, we have developed a mostly-automated
method to transform a set of commodity MAC policies into
a system-wide policy that provides classical integrity protec-
tion, in particular satisfying an approximation of the Clark-
Wilson integrity model. To do this, we build an information
flow problem and compute mediation by resolving any infor-
mation flow errors by solving a type of graph-cut problem.
We demonstrate our method on a custom web application
running on virtualized SELinux hosts, which finds that only
27 additional entrypoint mediators and 20 integrity verifi-
cation procedures are necessary to provide information flow
integrity approximating Clark-Wilson integrity, showing the
practicality of computing threats proactively for distributed
systems. Solutions can be found in tens of seconds, mak-
ing the proposed approach practical for many distributed
systems.
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