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ABSTRACT
Passwords are the most common form of authentication for
computer systems, and with good reason: they are simple,
intuitive and require no extra device for their use. Unfortu-
nately, users often choose weak passwords that are easy to
guess. Various methods of helping users select strong pass-
words have been deployed, often in the form of requirements
for the minimum length and number of character classes to
use. Alternatively, a site could modify a user’s password in
order to make it more secure; strengthening algorithms have
been proposed that extend/modify a user-supplied password
until achieving su�cient strength. Researchers have sug-
gested that it may be possible to balance password strength
with memorability by limiting automated changes to one or
two characters while evaluating the generated passwords’
strength against known cracking algorithms. This paper
shows that passwords that were strengthened against the
best known cracking algorithms are still susceptible to at-
tack, provided the adversary knows the strengthening al-
gorithm. We propose two attacks: (1) by strengthening the
data sets with the known algorithm, which increases the per-
centage of recovered passwords by a factor of 2-5, and (2)
by a brute-force attack on the initial passwords and space of
possible changes, recovering all passwords produced when a
su�ciently weak initial password was suggested. As a result,
we find that the proposed strengthening algorithms do not
yet satisfy Kerckho↵s’s principle.

Categories and Subject Descriptors
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Systems]: Security and Protection—authentication
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1. INTRODUCTION
Passwords are the overwhelmingly predominant means for

user authentication on computer systems, with the choice of
password almost always left up to the user. The user is con-
fronted with two opposing goals: first, the password should
be easy to remember (functionality) and second, the pass-
word should be hard for anyone else to guess (security). Un-
fortunately, users tend to underestimate the importance of
security, which makes their passwords susceptible to guess-
ing algorithms [4].

To motivate users to consider the security of their pass-
words, many websites utilize password meters to provide
feedback regarding the guessability of their passwords. Other
sites suggest alternative passwords that are closely related
to the original password, perhaps within 1 or 2 edits, and
that are judged to be adequately secure. Whatever mech-
anism is used, the metric used to gauge password strength
is clearly of the utmost importance. If the metric overes-
timates the number of guesses required for an adversary to
learn a password, then the utility of the tool is compromised.

As a result, researchers and adversaries have long studied
the e↵ectiveness of password guessing techniques, whose re-
sults have subsequently been applied to guide users to choose
more secure passwords. A study over three decades ago iden-
tified several commonly used guessing techniques, such as
dictionary words, common proper nouns, and common num-
bers [19]. More recently, researchers have developed guess-
ing algorithms based on Markov chains [20] and probabilistic
context free grammars [26] (PCFGs), which take advantage
of non-uniformity in character sequences and the predictabil-
ity of password structures, respectively. Researchers have
adopted these algorithms as metrics for password strength.
Using estimated time to crack is arguably the only metric
of interest to the user as it directly answers the question of
“How secure is my password?”.

As a result, researchers have produced automated meth-
ods for improving password strength by inserting a small
number of characters into a user-selected password until the
strength exceeds a limit as measured by the PCFG guessing
algorithm [9, 10, 12]. For example, simple, user-chosen pass-
words, such as “life45!”, are changed automatically through
the addition and/or replacement of characters to passwords
such as “lifeˆ45!” whose strength against password guessing
surpasses a threshold using such metrics.

However, the claimed impact of a small number of changes
to formerly weak passwords raises concerns that we may be
overlooking possible vulnerabilities in such methods. This
paper illustrates that even when a sophisticated strength



metric is used, it is nonetheless possible that algorithmically
strengthened passwords are susceptible to attack. This is
particularly true if the number of changes made to the orig-
inal password is limited to one. In this case, the number of
possible alternatives to the user’s given password will be rel-
atively small and therefore, to some extent, the alternative
passwords will have some predictable properties.

For the purposes of this paper, it is assumed that an at-
tacker knows the strengthening algorithm or can determine
it from repeated use, analogous to Kerckho↵’s principle.
Under this assumption, there are two basic ways in which
an attacker might proceed. First, the attacker might try
to build a library of passwords that are statistically simi-
lar to the strengthened passwords; this library could then
be used as the basis for a PCFG-based attack. Alterna-
tively, a guided brute force approach could be taken, with
the attacker guessing the original, weak password and then
trying all strengthened variants. The e�cacy of both ap-
proaches is investigated in this paper. It is shown that both
approaches can be highly e↵ective in guessing attacks, un-
less the strengthening algorithm is aware of its limitations
and takes some precautions.

This paper makes the following contributions:

• In Section 5.1.1, we demonstrate that an adversary
who trains a password cracking program on passwords
generated by applying the strengthening algorithm to
a publicly available password list increases the percent-
age of recoverable passwords by 2 to 5 times.

• Guided brute force guessing is analyzed in Section 5.2
and shown to be e↵ective and practical unless the user-
suggested passwords are required to meet an initial
strength threshold.

• The impact of leaking data used in password strength-
ening is evaluated in Section 5.1.2. We find that the
leakage of the strengthening data typically retained
would enable an adversary to crack 25% of the pass-
words in less than a day. We find that if we do not
store information about the system’s actual passwords,
leakage of the strengthening data provides adversaries
no advantage for recovering passwords, except for a
modest impact on the quality of strengthening.

The outline of this paper is as follows. In Section 2 and
Section 3, there is an introduction to state-of-the-art pass-
word crackers and a discussion of various approaches used
in password strengthening. Section 4 discusses the data and
the algorithms used to measure cracking time and adaptively
strengthen passwords. In Section 5, the e↵ectiveness of two
di↵erent methods of cracking strengthened passwords is an-
alyzed. Lastly in Section 6, the results are summarized and
directions for future work are given.

2. BACKGROUND
It is well known that users tend to create weak passwords

[6, 28]. Adams and Sasse [2] point out that this is to be
expected as users are typically unaware of what makes a
password more secure. The net e↵ect is that the process
of systematically guessing a user’s password is made much
easier than naive statistical analysis would suggest, as the
space of the probable passwords is many orders of magnitude
smaller than the space of all possible passwords.

2.1 Markov Chains
Narayanan and Shmatikov [20] describe a password crack-

ing algorithm based on Markov models. This approach ex-
ploits the fact that the distribution of character sequences
within a language is far from uniform, and the distribution
of character sequences within passwords is likely to follow
this same distribution. For example, in English, ‘w’ is more
likely to be followed by ‘h’ than by another ‘w’. The concept
can be extended to character sequences of arbitrary length,
called n-grams; the 3-gram (or tri-gram) ‘thr’ is far more
likely to be followed by a vowel than by a consonant. By
training the Markov chain on known password lists, dictio-
naries, or both, these distributions can be estimated and
used to generate a list of possible passwords that is signifi-
cantly more e↵ective than random guessing or the publicly
available John the Ripper program [22]. Password composi-
tion protocols such as requiring an uppercase letter, a digit
and a symbol in the password are meant to reduce the ef-
fectiveness of both Markov chains and dictionary attacks.
A more in-depth discussion of how Markov chains can be
applied to password cracking can be found in [18].

2.2 Probabilistic Context-Free Grammars
Weir et al. [26] proposed using a probabilistic context-free

grammar (PCFG) for password cracking. This algorithm is
based on the observation that passwords tend to have pre-
dictable “structures”. The structure of a password is defined
as the way in which the password can be broken into strings
(or tokens) of letters, digits, and symbols (e.g. S1U1L6D2

represents a special character followed by an uppercase let-
ter, then 6 lowercase letters, and ending with two digits).
PCFG attacks are highly e↵ective because when a password
composition policy requires that a digit or symbol be in-
cluded in a password, users are far more likely to append the
required character to an existing password rather than place
it in the middle. Similarly, uppercase letters are predomi-
nantly used at the beginning of an alphabetic string. By
tabulating the number of occurrences of each distinct struc-
ture found in a training set, an attacker can gain valuable
insight into the likely distribution of structures of the pass-
words. Thus, a PCFG-based attack is a counter-measure to
password composition policies, and such an attack can be
markedly more e↵ective than an attack based solely on a
Markov chain.

2.3 Strengthening Algorithms
A strengthening algorithm requires a measuring system

to rate how hard a password is to crack. Password meters,
commonly used to graphically depict to a user how strong
or weak their password is, employ this same concept. As de-
fined in [21], a password strength metric is a function that
takes a string (password) and outputs a positive real num-
ber score s, such that the higher the score, the stronger the
password (i.e., harder to crack). Extending this concept,
the authors define an adaptive strength metric as a func-
tion that takes a list of previously received passwords and
the user’s password as inputs and outputs a score s. Each
password presented to the adaptive password meter would
be included in the list of previously received passwords on
the next invocation so that the scoring is truly adaptive.

Since both Markov chains and PCFG-based algorithms
use known password lists to fine-tune the distribution of
character sequences and structures, it makes sense that a



password scoring system should also use this information
when calculating ease of cracking. Since password distri-
butions are di↵erent from website to website [21], due to
di↵erences in password composition policies and other fac-
tors, a training database that works well for one website may
not be suitable for another website. Adaptive scoring algo-
rithms, because they can see the current passwords, or at
least the distribution of relevant statistical properties of the
passwords, allow the algorithm to give more accurate scores
for di↵erent websites.

Processes for automatically strengthening passwords use
an adaptive approach as described above. If a password
does not generate a su�ciently high score from the scoring
algorithm, one or more changes to the user’s password are
made and the new, altered password is scored. If the process
is successful, one or more altered (strengthened) passwords
are presented to the user for selection. In the event the
user’s password cannot be made su�ciently strong given
the editing rules, the user would have to start over. The
initial password and any strengthened passwords are added
to whatever database the scoring algorithm requires for its
use. This keeps the process adaptive, and helps to reduce
the prevalence of common constructs, which is discussed in
[5] as method of improving security.

3. RELATED WORK
There is a large and growing body of literature on the

insecure password choices that users tend to make [2, 6, 3,
28, 11]. This tendency is understandable as users must bal-
ance the competing goals of security and memorability [8,
28]. Passwords that are more random (through composition
policies or system generation) or contain more characters
are harder for password crackers to guess [14]. However,
users have trouble remembering random or complex pass-
words [7, 16] and resort to insecure workarounds, such as
writing down the password or following predictable patterns
to meet password requirements [13, 15, 24, 27, 3, 23].

Composition policies such as requiring a digit, a symbol
and/or an uppercase letter are very commonly used tech-
niques to increase the security of user’s passwords. In [15,
27, 24], the authors found that in order to satisfy the compo-
sition requirements, users tend to make incremental changes
to an old password, rather than creating new ones. The au-
thors of [14] report that the composition policies of basic16
and comprehensive8 exhibit the best resistance to cracking
attacks. The first policy allows any password of length 16 or
longer. The second policy mandates that all four character
classes be present, and, after stripping out the digits and
symbols, the remaining letters cannot spell a word.

Password strength meters are also commonly used by web-
sites to assist users with creating more secure passwords.
Typically, the strength meter either follows static rules such
rewarding users for simply adding a digit or symbol, or
uses a measure of entropy for strength. As documented
in [27, 17, 3], NIST measures of entropy are deeply flawed
as a resistance-to-guessing measure, significantly overstating
the security of some passwords and significantly understat-
ing the security of others. In [25], the authors state that
strength meters are e↵ective in getting user to create longer
passwords, but significant increases in resistance to guess-
ing were only made with very stringent scoring, which users
found very frustrating in practice.

Automated methods for improving a user-selected pass-

word have been suggested. One such approach is Persuasive
Text Passwords (PTP), as described in [9, 10]. The basic
idea here is for the user to enter their desired password, and
PTP inserts 1-4 random characters at randomly selected po-
sitions. The random selection forces a break from the clus-
tering of patterns seen in [27], although memorability of the
new password is an issue. The authors conclude that two
randomly inserted characters was the best tradeo↵ between
increase in security versus memorability. The authors of
[12] describe a very similar approach in terms of strength-
ening user passwords by using a PCFG database obtained
by training on a previously leaked set of passwords together
with a set of editing rules.

The authors in [21] use Markov chains to estimate the
strength of a user-supplied password and use that estimate
of strength in an adaptive strength meter shown to the user.
By building and maintaining the Markov chain with data
from the actual passwords at the site, the meter automati-
cally adjusts to any cultural or site-specific tendencies that
might cause passwords to cluster.

The work in this article extends the above research in the
following ways. A password-scoring mechanism such as that
described in [21] is assumed to be in use. This mechanism
would adaptively score a newly presented password in the
context of the other passwords already seen at a site and,
using that information, guide users to select strong pass-
words. Following the approaches of [9, 10, 12], an automated
approach to strengthening passwords is taken, with a well-
defined set of editing rules that may be applied to a pass-
word. However, previous work has not examined the ability
of strengthened passwords to be guessed by either an alter-
native algorithm or by attempting to build a PCFG train-
ing set with statistical properties similar to the strengthened
passwords. Results are presented which show that a large
percentage of passwords strengthened and scored using a so-
phisticated algorithm like PCFG can be guessed by precisely
these means. Thus, the apparent success of some strength-
ening algorithms may be illusory.

4. EXPERIMENTAL SETUP
This section first describes the data used. It then describes

the method used to estimate password strength and how
that measure of strength is used within a password guessing
algorithm. Additionally, the algorithm used to strengthen
passwords is described.

4.1 Data
Multiple leaked password lists exist in the public domain.

Using actual passwords lists such as those found at [1] is
the best way to study password distributions and cracking
algorithms in a large scale manner. This paper uses the
passwords from the rockyou website; rockyou had no com-
position policy and a stated minimum length of 5.

In order to keep the password set large , the only con-
straint imposed by this work was that a password needed to
be at least eight characters long, which reduced the size from
14M to 9.5M. Since the assumption is that a strengthening
system is in place, it should either be successful in strength-
ening the user’s password or it should inform the user that
the password cannot be strengthened. Hence, stringent ini-
tial constraints on the password should be unnecessary.

In order to permit out-of-band testing, the rockyou set
was randomly divided into two sets, rockyou-1 and rockyou-



2. In turn, both of these sets were randomly divided into
subsets A, B and C in order to bootstrap the algorithm; see
Section 4.4.1

4.2 Measuring Password Strength
To measure password strength, a program to calculate the

“guess probability” (GP) of a password was implemented.
As described in [26], GP is computed by a PCFG as the
product of the base structure (i.e., L6D2) probability and
the probabilities of the strings which fill each variable (i.e.,
L6 and D2), with the strings selected from an input dic-
tionary. Consequently, only strings that are present in the
dictionary can be guessed. To avoid this restriction, the GP
calculation used in this paper uses both a dictionary and a
Markov chain that are built from the training data. Since
each Markov chain can produce any string within its domain
(digits, symbols, etc.), the Markov chain can be thought of
as a compact representation of a comprehensive dictionary,
capable of generating a complete list of strings and their
associated probabilities.

Specifically, four Markov chains are built from the train-
ing data: a 1-gram chain for symbols only, a 1-gram chain
for digits only, an n-gram chain for alphabetic strings of
length n or longer and a 1-gram chain for alphabetic strings
shorter than n.2 During training, the starting and tran-
sition probabilities for each chain are built. In addition to
building these probability tables, the training algorithm also
builds a dictionary by keeping track of every string seen, and
tabulating the frequencies with which they occur. By track-
ing the observed frequency for each string, the dictionar-
ies capture sequences that appear more frequently than the
product of the corresponding transition probabilities would
indicate, thereby significantly increasing the number of pass-
words that can be guessed in a set interval of time.
With that background, the GP for a token of length L is

computed as:

GP
MC

(token) = max(ObservedFrequency(token),

prob(token1,n) ⇤
L�1Y

i=n

TP (token
i�n+1,i, tokeni�n+2,i+1))

(1)
where token

i,j

is the substring from characters i to j and
TP is the transition probability from one n-gram to another.
For common tokens, GP

MC

is ObservedFrequency, which is
the ratio of the number of occurrences of token to the total
number of strings seen of that same length. For uncommon
or previously unseen strings, GP

MC

is computed using the
probabilities within the Markov chain. For example, given
the token “troubador”, the algorithm multiplies the proba-
bility that a string starts with “tro”, the probability of tran-
sitioning from “tro” to “rou”, and so on. All probabilities
referenced are computed from the training set.3

The strength calculator combines the probabilities from
the dictionaries, Markov chains and PCFG to compute the

1All experiments presented in this paper were repeated on
a second random division of rockyou, with the results from
the second sets matching the first.
2Tri-grams were used for alphabetic strings throughout the
analysis as they appear to be the most e↵ective.
3Since the GP

MC

s do not sum to 1, they are technically not
probabilities. However, “probability” captures the intuition
of what is being measured.

password’s GP as:

GP (password) = SP (password) ⇤
Y

s2SS(password)

GP
MC

(s)

(2)
where SP is the observed probability of the password

structure (e.g., L4S2D1L4) within the PCFG, and SS re-
turns substrings from the password based o↵ the structure
(i.e. “pass**1word”would return {“pass”,“**”,“1”,“word”}).

4.3 Guessing Passwords
In order to determine real-world limits on what level of GP

might be considered secure, the algorithm to compute GPs
was used to create a password-cracking program. Algorithm
1 was used to generate all passwords at or below a threshold
GP (minGP ) using password structures, dictionaries and
Markov chains as described in Section 4.2.

Data: minGP, cracking data
Result: output list of recovered passwords
for each password structure SS do

try all passwords with GP � minGP using Alg. 2;
end

Algorithm 1: Cracking Program

Data: currentGuess, cumulativeGP, password structure
SS, minGP, list of valid passwords

Result: output list of recovered passwords
if SS is empty then

if currentGuess is a valid password then

output G;
end

end

else

S = first element of SS;
MC = the Markov chain used to guess S;
for each word W 2 MC’s dictionary do

if cumulativeGP ⇤GP
MC

(W ) � minGP then

recursive call with currentGuess +W,
cumulativeGP ⇤GPMC(W), SS� S;

end

end

L = list of words W built from MC such that
GP

MC

(W ) � minGP/cumulativeGP ;
for each word W in L do

recursive call with currentGuess +W,
cumulativeGP ⇤GPMC(W), SS� S;

end

end

Algorithm 2: Guess Generating Algorithm

Algorithm 1 invokes the guess generating function (Algo-
rithm 2) for each password structure (e.g., L8D1S1). This
initial call to Algorithm 2 uses an empty currentGuess,
SP (SS) for cumulativeGP and the structure SS.

Whenever the guess generator (Algorithm 2) is called for
a particular password structure (e.g., L8D1S1), it fills in the
first component of the structure (L8) and makes a recur-
sive call to fill the remaining parts of the structure (D1S1).
At each stage of both algorithms, selections are made in
descending probability order: the most common password



Table 1: Run times for Algorithm 1

Min GP # Guesses Run Time, 12 cores
10�9 132M 15 seconds
10�10 1.6B 2 minutes
10�11 15.9B 16 minutes
10�12 136.3B 2.2 hours
10�13 1092.7B 17.3 hours
10�14 – 6 days (est)
10�15 – 1.5 months (est)
10�16 – 1 year (est)

structures are tried first, and similarly for dictionary words
and strings built from the Markov chain’s probability tables.
This guides the program to more likely passwords early on.
Modifying Algorithm 1 to utilize multiple processors is a
simple matter of splitting the password structures into P
groups, where P is the number of processors to use. This
approach to distributing the work load is both simple and ef-
fective and can easily be implemented on a distributed basis.
Assuming an e�cient method of splitting and distributing
the password structures to the processors, if P is increased
by a factor of K, run time would be reduced by that same
factor. This is true only to a point, however: if there were as
many processors as structures, the run time from processor
to processor would vary greatly, depending on the structure
assigned. Nonetheless, an attacker with a large network or
botnet of PCs would be formidable.

Both the number of guesses actually made and the run
time for a range of GPs are shown in Table 14. The PC
used for these results has a 12-core Intel i7 CPU running
at 3.20GHz. The run time reflects the elapsed clock time
when all of the machine’s 12 cores were deployed. Based on
these results, a GP of 10�15 can be considered fairly secure.
Consequently, in the remainder of this paper, passwords will
be strengthened to a GP of 10�16 to allow for an additional
margin of safety.

4.4 Strengthening Algorithm
The basic strengthening algorithm used in this paper is

presented as Algorithm 3 which references a strengthening
database. The strengthening database refers to the collection
of password structures, Markov chains and dictionaries and
their associated probabilities as described in 4.2. If these
same items are used in an attack, rather than in a strength-
ening system, they are referred to as a cracking database.

The way in which the strengthening database is built is
important, as will be detailed in Section 5.1.2. Passwords
in subset A (the original training data) are not strength-
ened and are fully processed into the strengthening database,
meaning that both the probability tables and dictionaries
are updated as described in Section 4.2. In contrast, when
subsets B and C are strengthened, both the original and
strengthened passwords are only partially processed into
the strengthening database, meaning that only the Markov
chain’s probability tables are updated, and the dictionaries
are not. The rationale for this will be detailed in Section
5.1.2.

For the analysis in this paper, it is assumed that any pass-
word successfully strengthened is accepted by the user. In

4Estimated times are based on a log-log regression.

Data: password list X, threshold guess probability TP,
number of edits N

Result: strengthed password list X’
create empty strengthening database SDB;
for each password PW in subset A of X do

fully process PW into SDB;
end

for each password PW in subsets B and C of X do

PW’ = PW;
thisGP = GP(PW’);
while thisGP > TP and maximum number of
attempts not exceeded do

make N edits to PW, yielding PW’;
thisGP = GP(PW’);

end

if thisGP  TP then

output PW’ to X’;
partially process PW’ into SDB;

end

partially process PW into SDB;
end

Algorithm 3: Basic Strengthening Algorithm

practice, the user would have the opportunity to accept the
strengthened password or try again. Assuming all strength-
ened passwords are accepted is likely a best-case scenario: it
is possible that the subset of passwords approved by the user
may share (or lack) particular features, rendering those pass-
words more susceptible to guessing attacks. For instance,
users may be more accepting of an “X” inserted into their
password than a “|” or a di↵erent letter.

Algorithm 3 is similar to the strengthening algorithm used
in [12], with no major conceptual di↵erences: there is a
training phase to build an initial strengthening database,
passwords are evaluated against this database, and both the
original user password and its strengthened counterpart are
incorporated into the database every invocation. At an im-
plementation level, there is a noteworthy di↵erence: in [12],
every password is “fully processed” into the strengthening
database. However, those GP calculations utilized a static
dictionary for alphabetic strings, rather than a dictionary
dynamically built from the observed passwords. Hence, the
impact of the strengthening database being leaked is not
directly comparable to results presented in this paper.

While the strengthening algorithm in [10] could also apply
random edits to an initial password, there was a large con-
ceptual di↵erence: passwords were altered without regard to
their initial strength. Consequently, while the ending pass-
word was almost certainly more secure than the initial pass-
word, there was no mechanism to guide the ending password
to a given level of strength.

4.5 Strengthened Datasets
A set of strengthened passwords was created by strength-

ening rockyou-1 and rockyou-2 according to Algorithm 3,
applying one edit and targeting a GP of 10�16 or stronger.
A second set of strengthened passwords was created by run-
ning the original rockyou-1 and rockyou-2 sets through the
algorithm again, this time applying two edits. An edit could
consist of replacing one character with another, or inserting
a character into the password at any point with the decision
to replace or edit being randomly determined. As with Per-



suasive Text Passwords (PTP) [9, 10], no restrictions were
placed on the characters used in the edits – any printable
character (ASCII 32 to 126, inclusive) could be used.

In contrast, the authors of [12] placed constraints on the
edits: a character inserted into the middle of a string of digits
or symbols had to be of the same type, and no changes could
be made to an alpha string other than changing the case
of one of the letters. Thus, “password123” could be trans-
formed to“passwoRd123”,“password1213”or“password!123”
but not “pass5word123” or “password12h3”.

5. RESULTS
This section first explores the ability of the strengthening

algorithm to prevent passwords from being guessed by a
PCFG-based attack. A second type of attack, guided brute
force (GBF) search, is then explored. The section concludes
with methods that can be taken to reduce the e↵ectiveness
of this second form of attack.

5.1 Resistance to PCFG-based Attacks
Algorithm 3 guarantees that every password which was

output met the required GP threshold, at the time it was
strengthened. However, when processed on a di↵erent data
set (including the same strengthening database at a later
point in time), the calculated GP will vary. Thus, it is pos-
sible that a password deemed secure by the strengthening
database might be judged as weak when using a di↵erent
set of data to measure strength. In this section, two pos-
sibilities for PCFG-based attacks are explored. In section
5.1.1, the viability of attacking the strengthened passwords
using out-of-band data is explored, while in section 5.1.2 the
impact of an accidental leak of the strengthening database
is investigated.

5.1.1 Attacking with Derived Data
A well-known attack vector is to train a password crack-

ing program on a leaked data set such as rockyou, and use
the derived data as the basis for an attack. However, it
would seem that a better course of action would be to take
the rockyou set, strengthen it using the known or derived
strengthening algorithm, and then use only those strength-
ened passwords as the training set for a password cracking
program. If the newly strengthened passwords are statisti-
cally similar to the passwords that are to be guessed, this
would be an e↵ective attack.

In analyzing the e↵ectiveness of this attack, rockyou-1 was
used as the basis to crack the passwords in rockyou-2. The
data needed by Algorithm 1 to mount a guessing attack
was calculated in two ways: from the original, unstrength-
ened rockyou-1 set and also from the rockyou-1 set that was
strengthened by Algorithm 3. In Table 2, a breakdown of
the GPs of the strengthened passwords under these attack
scenarios is given; the rows labeled Weak reflect the first sce-
nario (using only the original rockyou-1 passwords), while
the rows labeled Strong reflect the second scenario (using
only strengthened rockyou-1 passwords). If the strengthen-
ing algorithm were perfect, the worst GP under any scenario
would be the level targeted, or 10�16 and Table 2 would be
all 0s. Results are shown for both 1 and 2 edits.

The top panel in the table shows that, as expected, using
weak passwords as the basis for a PCFG-based attack on
strengthened passwords is largely ine↵ective. Even when
only 1 edit is applied, only 1.3% of the passwords could be

Table 2: GPs using Derived Data

Data Edits % 10�13 % 10�14 % 10�15

Weak 1 1.3 2.2 3.2
Weak 2 0.3 0.5 0.8

Strong 1 2.5 4.6 18.0
Strong 2 0.4 1.3 7.6

Table 3: GPs using Leaked Data

Full Partial Edits % 10�13 % 10�14 % 10�15

– All 1 0.0 0.1 1.5
– All 2 0.0 0.0 0.6

All – 1 58.2 67.3 75.6
All – 2 28.2 38.6 50.0

Orig. Str. 1 21.2 24.4 28.7
Orig. Str. 2 6.4 8.3 10.3

cracked in less than a day (GP of 10�13), and only 2.2%
could be cracked in less than a week. This panel illustrates
that the strengthening algorithm was e↵ective in guarding
against a PCFG-based attack which uses data from typical,
weak passwords.

Moving to the bottom panel, we see that if the PCFG at-
tack uses data derived from passwords which were strength-
ened using the same algorithm as the passwords which are
to be guessed, one edit no longer su�ces. In this scenario,
2.5% of the passwords could be cracked in less than a day,
and 4.6% in less than a week. However, if two edits are
applied rather than one, the strengthening algorithm is still
largely e↵ective, with only 1.3% of the strengthened pass-
words recoverable in a week.

5.1.2 Attacking with Leaked Data
Alternatively, it is possible that a site’s strengthening

database could be accidentally leaked. Ideally, the leakage
of that data should not be su�cient to crack a large percent-
age of the user passwords. Since the strengthening database
contains statistics on the actual passwords, this seems to be
a worst-case scenario.

In Table 3 the GPs for the strengthened passwords are
shown for three di↵erent scenarios, each representing a vari-
ation of Algorithm 3. The top panel utilizes Algorithm 3 as
presented. The middle panel shows the consequences of fully
processing all original and strengthened passwords; in other
words, Algorithm 3 would be modified so that every string
in both the original and strengthened passwords would enter
the dictionaries. The bottom panel shows the results if Al-
gorithm 3 were modified so that it fully processed all original
passwords but still only partially processed the strengthened
passwords. In all scenarios, the training phase (subset A)
fully processes both the original and unstrengthened pass-
words; partial processing can only occur in the strengthening
phase (subsets B and C), if at all.

The top panel is rather surprising as it shows that the
strengthening database for Algorithm 3, as presented, pro-
vides less information to an attacker than does the Weak
data set of Table 2. This lack of success is attributable to
the use of full versus partial processing of the passwords in
Algorithm 3, and the remaining rows illustrate the impor-
tance of this di↵erential in processing.

As the percentages for both the middle and bottom panels



show, either alternative method to building the strengthen-
ing database has the risk that, in the event of a leak of
the strengthening database, a large percentage of passwords
would be guessed in under a day, even with two edits.

As described in Section 4.4, the strengthening database is
built from both the original, weak passwords and the revised,
strengthened passwords. Consequently, it is not surprising
that the rows in the top panel exhibit lower percentages
than the Strong rows in Table 2. In the latter case, the
data used in cracking only reflects the statistics of the pass-
words that are to be guessed, rather than both weak and
strong passwords. It is, however, not immediately appar-
ent why the leaked database would be less e↵ective than
using a database built solely from weak passwords. The an-
swer has to do with the role of the dictionaries in computing
GPMC(token) and thus the password GPs. Because the dic-
tionaries are built only from the training data in Algorithm
3, the dictionaries in the strengthening database are much
smaller than they are in the databases built from either the
original or strengthened passwords. The larger dictionaries
give those data sets an advantage in guessing.

As an example, when the password “pearlharbor1” in the
rockyou-2 set was run through the strengthening process,
the dictionary in the strengthening database did not contain
the string “pearlharbor”. As a result, GPMC(pearlharbor)
was computed using the Markov chain’s probability tables,
and GP(pearlharbor1) calculated to 2.5⇥ 10�17, and there-
fore not in need of strengthening. However, the rockyou-
1 set contained two passwords which contained the string
“pearlharbor”, so the dictionary in the cracking database
computed from rockyou-1 contained “pearlharbor”. Thus,
GPMC(pearlharbor) was much larger (easier to guess) and
the cracking database computed from rockyou-1 would gen-
erate the password “pearlharbor1” quickly.

Clearly, a larger dictionary is advantageous in guessing.
Similarly, when strengthening, the use of a larger dictionary
should produce passwords which are more resistant to guess-
ing as the scenario just described would not have occurred if
the strengthening dictionary contained“pearlharbor”. Thus,
while the partial versus full processing of passwords has the
benefit of not providing an attacker any advantage in the
event of a leak, there is also a cost: the strengthened pass-
words must, due to the smaller dictionary being used, be
more susceptible to a PCFG-based attack. Table 4 shows the
results of a PCFG-based attack on the strengthened pass-
words under the three full/partial processing combinations
used in Table 3: partial processing of both the original and
strengthened passwords, corresponding to the top panel of
Table 3; full processing on both passwords, corresponding to
the middle panel; and fully processed original passwords but
partially processed strengthened passwords, corresponding
to the bottom panel. In each of these cases, the data used
to mount the attack is calculated exclusively from passwords
strengthened from the rockyou-1 set; this corresponds to the
Strong rows in Table 2.

The alternative constructions do produce strengthened
passwords which are more resistant to a PCFG-based at-
tack. However, the di↵erential in the percent of recover-
able passwords is slight, particularly if two edits are used.
Nonethless, if the probability of a leak is deemed su�ciently
small, the superior resilience to cracking seen in the alterna-
tive constructions could be judged as a risk worth taking.

Recall that Algorithm 3 placed no constraints on the edit-

Table 4: GPs using Di↵erent Dictionaries

Full Partial Edits % 10�13 % 10�14 % 10�15

– All 1 2.5 4.6 18.0
– All 2 0.4 1.3 7.6

All – 1 2.0 3.7 16.4
All – 2 0.3 1.1 6.4

Orig. Str. 1 2.4 4.4 17.7
Orig. Str. 2 0.3 1.3 7.5

ing process – inserted or replacement characters could be
any printable character. If constraints along the lines of
what was used in [12] were used, the results are compara-
ble to the figures in Tables 2 and 3, with no meaningful
changes. However, as discussed below, the restricted editing
does have a significant impact in a di↵erent context.

5.2 Resistance to Brute Force Attacks
A second form of attack against strengthened passwords

would be for an attacker to try to guess the original, un-
strengthened password, and then to test all possible variants.
This attack is a brute force approach, but it is guided by the
passwords generated by Algorithm 1. While this GBF search
is far slower than a PCFG-based attack, it is nonetheless fast
enough to be practical as will be illustrated shortly.

Detailed examination of the strengthened passwords shows
one reason why a GBF attack could be successful: often-
times, the change in GP from the original password to the
strengthened one is several orders of magnitude more than
what should be possible. As a somewhat extreme exam-
ple, “12qwaszx” has a GP of 1.04⇥ 10�8; this is quite weak,
due to “qwaszx” being a keyboard pattern used frequently
enough to be included in the cracking database’s dictionary,
and the relatively common structure of D2L6. The strength-
ened password“12qwasJx”has GP of 1.75⇥10�17, reflecting
the extreme improbability of the Markov chain within the
cracking database to generate the string “qwasjx”. While
the calculations from the Markov chain’s transition prob-
ability tables are mathematically correct, it is entirely un-
reasonable to assert that changing a single character within
an 8-character password actually makes it more secure by
9 orders of magnitude – particularly since the number of
possible variants is only 1,607.5 A similar state of a↵airs is
shown in [12]: there the authors present an example that
shows transforming the password “life45!” to “lifeˆ45!” de-
creases the GP by four orders of magnitude – 1.1⇥ 10�12 to
1.8⇥ 10�16.

In order to determine how many passwords could poten-
tially be guessed using this brute force approach, we need
to know the GPs of the passwords which were strengthened.
Passwords with GPs no stronger than 10�12 can be guessed
in about two hours, and thus strengthened passwords built
from these passwords may be vulnerable to a brute force
attack. Table 5 shows a breakdown of the GPs of the pass-
words which were strengthened by Algorithm 3 using one or
two edits. Results are also shown for full editing (no restric-
tions on characters used, denoted “Y”) or restricted editing
(as in [12], denoted “N”).

The percentages in Table 5 reveal that a GBF attack as

5855 variants from inserting one of 95 characters at 9 pos-
sible locations, plus 752 variants from changing any of the
eight characters to one of 94 others.



Table 5: GPs for Passwords Needing Strengthening

Edits Full? % 10�9 % 10�10 % 10�11 % 10�12

1 Y 13.3 22.2 35.2 54.0
1 N 2.4 4.4 6.4 11.4
2 Y 26.5 41.6 60.3 74.5
2 N 4.9 9.5 25.0 49.0

Table 6: Guided Brute Force Run Times

Min GP Edits Full? Run Time, 12 cores
10�9 1 Y 1.2 hours
10�9 1 N 8 minutes
10�10 1 Y 12.7 hours
10�10 1 N 1.3 hours
10�11 1 Y 1 week (est)
10�11 1 N 16.2 hours

10�9 2 Y Guessed 5.4% in 24 hours
10�9 2 N 20.4 hours

described above would be e↵ective in cracking a significant
number of strengthened passwords. With one edit and no
restrictions on editing, 13% of the strengthened passwords
had original passwords with a GP weaker than 10�9. As
observed in Table 1, a search of all passwords at this level
of GP can be done in a minute. Thus, the only barrier to
guessing a large percentage of the strengthened passwords is
the computation time to generate and test all possible vari-
ants of the weak passwords. In this regard, the passwords
strengthened with two edits may be more secure. Despite
the higher percentage of weak original passwords, using two
edits will have a significant impact on the run time.

Notably, if the strengthening process restricts the edits
that can be made, the likelihood of a password with a low
GP being successfully strengthened is significantly less than
in the case with unrestricted edits since it is more di�cult
to strengthen a password with the restrictions in place. As a
side e↵ect, this means that restricted editing actually makes
the passwords less susceptible to a GBF attack. An explicit
exploration of the impact of stronger initial passwords on the
e↵ectiveness of GBF guessing is presented in Section 5.3.

To determine run times for GBF attacks, the guessing
algorithm shown in Algorithm 2 was modified so that when-
ever currentGuess was checked against the list of passwords,
all variants of currentGuess were generated and tested as
well. The results are presented in Table 6.

As was seen in Table 5, restricting the edits (“Full?” col-
umn of “N”) greatly reduces the number of weak passwords
that can be strengthened, which reduces the e↵ectiveness of
a GBF attack. Table 6 shows this advantage is o↵set to a
degree. Here, it is evident that reduction in the size of the
search space that the GBF attack must explore has a large
impact on run time. As exhibited, when compared to unre-
stricted editing (“Full?” column of “Y”) an additional order
of magnitude of GPs can be explored when restricted edits
were used.

The runs which applied two edits would clearly take a long
time to finish. However, the runs for passwords with GPs
no stronger than 10�9 were started and allowed to run for
24 hours before being halted. Even though the search space
with two edits is too large to exhaustively search, a GBF at-
tack was still capable of guessing roughly 5% of the strength-

ened passwords in 24 hours when searching at a GP level of
10�9. Since the goal of the strengthening algorithm was
to ensure that no password could be guessed within weeks,
the strengthening algorithm has therefore not met its goal,
despite the fact that the strengthened passwords are signif-
icantly harder to guess than the original passwords. Addi-
tional, longer runs are required to better assess the overall
security risks.

The GBF search actually guessed slightly more passwords
than was indicated by Table 5 as some of the passwords
which did not need strengthening were within one or two
edits of a weak password. For example, the user password
“k3ybo@rd” would be judged secure by the strengthening
process, but it would be guessed when all 2-edit variants of
“keyboard” were generated. Because of these “extra” hits,
the completed run in the bottom panel of Table 6 guessed
5.1% of the passwords, rather than 4.9% shown in Table 5.

5.3 Counter-measures
In order for a strengthening algorithm to perform as de-

sired, the e↵ectiveness of GBF attacks must be significantly
reduced. One way to accomplish this goal would be to
increase the number of edits as this increases the number
of possible variants for each password by several orders of
magnitude, making GBF attacks significantly more time-
consuming. However, as noted in [9, 10], going beyond two
random edits significantly impairs memorability, so two ran-
dom edits should be considered the limit when using Algo-
rithm 3. A second method would be to require the initial
password to be stronger, thus harder to guess, making a
GBF attack take longer. In short, this would require the
user to clear an intermediate GP hurdle, with Algorithm 3
then decreasing the GP to a secure level with the resulting
password resistant to GBF attack.

Although this approach requires more of the user, tools
could be provided to assist with the initial selection. For in-
stance, in the event the original password’s GP did not meet
a preliminary threshold, the user could be given high-level,
non-specific feedback on how to make the initial password
stronger such as to make the password longer or to use more
character classes. This is admittedly a di�cult challenge, as
we have already noted that stringent password scoring is
frustrating to users. Further, the strength of these initial
passwords is potentially illusory as users may, as with sim-
ple composition policies, find ways to satisfy the requirement
but still produce passwords that fall into patterns which
could be discovered and exploited. However, absent any a
priori knowledge about how users would adjust their pass-
word to score well against an adaptive PCFG-based metric,
it is unclear how an attacker could ease the burden of guess-
ing the initial password.

To test the impact of requiring a stronger initial password,
the original rockyou-1 and rockyou-2 sets were screened for
passwords with a minimum GP of 10�12, which reduced
each set to just over 500K passwords. These subsets were
strengthened to a GP of 10�16, and the strengthened pass-
words were analyzed for resistance to both PCFG-based and
GBF attacks. Table 7 shows the GPs for the strengthened
passwords in rockyou-2, when using the strengthened pass-
words in rockyou-1 as the training set for the cracking algo-
rithm. When applying one edit, less than 1.5% of the pass-
words vulnerable to guessing within a week (GP of 10�14),
which compares favorably to the 4.6% figure in the bottom



Table 7: GPs for Strengthened Passwords, Screened

Subset

Edits Full? % 10�13 % 10�14 % 10�15

1 Y 0.5 0.9 2.2
1 N 0.6 1.4 3.5
2 Y 0.4 0.7 1.3
2 N 0.5 0.9 2.0

Table 8: GPs for Passwords Needing Strengthening,

Screened Subset

Edits Full? % 10�9 % 10�10 % 10�11 % 10�12

1 Y 0.0 0.1 1.2 12.7
1 N 0.0 0.1 0.7 5.5
2 Y 0.0 0.1 1.2 13.9
2 N 0.0 0.1 1.2 13.6

panel of Table 2. Similarly, the results for two edits are
also reasonably low at all GPs shown. This confirms the
hypothesis that starting with an initially stronger password
improves the resistance of the strengthened password to a
PCFG-based attack.

While the starting passwords in this section were initially
screened to have a GP of 10�12 or stronger, recalling the
“pearlharbor1” example, we do not anticipate that 100% of
the initial, unstrengthened passwords to meet this threshold
if a di↵erent database is used to measure GPs. As seen in
Table 8, when cracking passwords using a data set trained
on the screened rockyou-1 passwords, only 1.2% of the ini-
tial passwords in rockyou-2 have GPs one order of magni-
tude weaker than the targeted threshold of 10�12. This is
good news – compared to Table 5, all of the percentages are
markedly lower. Consequently, it will be harder to guess the
password which was strengthened which means that a GBF
attack will take significantly longer.

As noted in Section 5.2, the limiting factor on the e�cacy
of GBF attacks is the run time. As seen previously, the run
times rapidly climb, making exhaustive search impractical
for all but the lowest GP thresholds. When working with
initially stronger passwords, the scenario is similar, with the
run times in Table 9 similar to those in Table 6.

The run times for the lowest GP thresholds are quite
short, but, due to the low number of passwords that are
found this is not the issue that it was in Section 5.2. How-
ever, the last panel of Table 9 is cause for cautious optimism.
Here, as in Table 6, the attacks did not run to completion

Table 9: GBF Run Times, Screened Subset

Min GP Edits Full? Run Time, 12 cores
10�9 1 Y 20 minutes
10�9 1 N 3 minutes
10�10 1 Y 6.5 hours
10�10 1 N 1 hour
10�11 1 Y 5 days (est)
10�11 1 N 17 hours

10�12 1 Y Guessed 0.3% in 24 hours
10�12 1 N Guessed 0.6% in 24 hours
10�12 2 Y 3 passwords in 24 hours
10�12 2 N 28 passwords in 24 hours

but were halted after a reasonable period of time.6. Unlike
Table 6, we see that essentially none of the strengthened
passwords were guessed within a day. Although multi-day
runs are required to better assess the security, applying two
edits to a password that is already fairly strong appears to
adequately defeat a GBF attack, leaving a would-be attacker
with a PCFG-based attack as the best option (cf. Table 7).

6. CONCLUSION
After strengthening two large sets of passwords (rockyou-1

and rockyou-2), the strengthened passwords from rockyou-1
were used to create a cracking database for the strengthened
passwords from rockyou-2. For a PCFG-based cracking al-
gorithm, the results clearly show that in order to reasonably
guarantee that a password cannot be cracked in under a day,
the strengthening algorithm should apply two edits to the
user’s original password rather than just one.

It was also shown that an alternative type of attack could
be even more successful. Since the original password is likely
to be weak and therefore easily guessed, systematic guessing
of all possible variations of passwords that can be quickly
generated by a PCFG-based algorithm is an e↵ective at-
tack, limited only by the computing time required. Even
though the search space is too large to search exhaustively
when two edits are applied, we nonetheless found that 5%
of passwords strengthened with two random edits could be
successfully guessed in the first 24 hours. However, requir-
ing the initial password to be significantly stronger, with an
initial GP of 10�12 or better, seemed to completely thwart a
GBF attack when two edits were used, with essentially none
of the passwords guessable within 24 hours. Still, roughly
1% of the strengthened passwords remain vulnerable to a
PCFG-based attack even with the stronger initial password.

Although the use of a significantly stronger initial pass-
word was successful in markedly reducing the e↵ectiveness
of a GBF attack, a GP of 10�12 is a fairly high hurdle, with
only 7% of the passwords in the rockyou list meeting this
criterion. Since users do not seem predisposed to producing
passwords possessing this level of strength, one area of future
research would be the use of specific feedback (e.g., telling
the user not to use “pearlharbor”) which may help guide
users to selecting stronger initial passwords. More e�cient
algorithms to search the strengthened space could also be
investigated, in order to better understand the security risk
posed by GBF attacks. The e�ciency of the algorithm used
in this paper could be improved. In particular, there was
some redundancy as edits to the structures L7D1 and L6D2

both generate some passwords of the form L7D2.
Finally, ways to bolster strengthening algorithms should

be investigated: for example, rather than simply randomly
replacing or inserting characters in the user’s password, ad-
ditional transformations could be tried. While past work
([9, 10]) has shown that two random edits should be con-
sidered an upper limit with respect to maintaining memo-
rability, other edits may still be feasible. Examples would
be to insert or weave a 3-5 letter word into the user’s pass-
word (transforming“password” to“passCATword”or “Cpas-
sAwordT”), or to reverse a string within the password (trans-
forming “rock&roll” to “rock&llor”). It may also be benefi-

6For the partial runs in Table 9, only passwords with a GP
stronger than 10�11 were modified due to the low probability
of success when modifying weaker passwords



cial to have the strengthening algorithm reject any starting
password which is within two edits of a weak password7; this
could be instead of, or in addition to, a GP threshold on the
initial password. Once again, user studies are required to
determine user acceptance of this policy.
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