
Analyzing the Overhead of File Protection by Linux Security
Modules

Wenhui Zhang
The Pennsylvania State University,
State College, Pennsylvania, 16801
wenhuizhang.psu@gmail.com

Peng Liu
The Pennsylvania State University,
State College, Pennsylvania, 16801

pxl20@psu.edu

Trent Jaeger
The Pennsylvania State University,
State College, Pennsylvania, 16801

trj1@psu.edu

ABSTRACT
Over the years, the complexity of the Linux Security Module (LSM)
is keeping increasing (e.g. 10,684 LOC in Linux v2.6.0 vs. 64,018 LOC
in v5.3), and the count of the authorization hooks is nearly doubled
(e.g. 122 hooks in v2.6.0 vs. 224 hooks in v5.3). In addition, the
computer industry has seen tremendous advancement in hardware
(e.g., memory and processor frequency) in the past decade. These
make the previous evaluation on LSM, which was done 18 years
ago, less relevant nowadays. It is important to provide up-to-date
measurement results of LSM for system practitioners so that they
can make prudent trade-offs between security and performance.

This work evaluates the overhead of LSM for file accesses on
Linux v5.3.0. We build a performance evaluation framework for
LSM. It has two parts, an extension of LMBench2.5 to evaluate
the overhead of file operations for different security modules, and
a security module with tunable latency for policy enforcement
to study the impact of the latency of policy enforcement on the
end-to-end latency of file operations.

In our evaluation, we find opening a file would see about 87%
(Linux v5.3) performance drop when the kernel is integrated with
SELinux hooks (policy enforcement disabled) than without, while
the figure was 27% (Linux v2.4.2). We found that performance of
the above downgrade is affected by two parts, policy enforcement
and hook placement. To further investigate the impact of policy
enforcement and hook placement respectively, we build a Policy
Testing Module, which reuses hook placements of LSM, while al-
ternating latency of policy enforcement. With this module, we are
able to quantitatively estimate the impact of the latency of policy
enforcement on the end-to-end latency of file operations by using a
multiple linear regression model and count policy authorization fre-
quencies for each syscall. We then discuss and justify the evaluation
results with static analysis on syscalls’ call graphs.

CCS CONCEPTS
• Security and privacy→Operating systems security;Access
control; Authorization.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8287-8/21/06. . . $15.00
https://doi.org/10.1145/3433210.3453078

KEYWORDS
Linux Security Module, Hooking, Information Flow Authorization,
Hook Placement, Linux Performance Tuning

ACM Reference Format:
Wenhui Zhang, Peng Liu, and Trent Jaeger. 2021. Analyzing the Overhead
of File Protection by Linux Security Modules. In Proceedings of the 2021
ACM Asia Conference on Computer and Communications Security (ASIA CCS
’21), June 7–11, 2021, Virtual Event, Hong Kong. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3433210.3453078

1 INTRODUCTION
The trade-off between security and performance is an important
consideration in the design pf authorization systems to enforce
security policies in filesystems. During the past decade, we observe
that the relative overhead of authorization hooks in Linux systems
has been increasing substantially. As shown in Table 1, for example,
from Linux v2.4.2 to v5.3.0, the relative overhead of open increases
from 27% to 87%. As performance overhead has long been a serious
concern of filesystem developers, especially for some read heavy
workloads with repetitive open operations, a thorough syscall-level
measurement study on the impact of authorization hooks on filesys-
tem performance is highly desired. To make such a measurement
study rigorous and thorough, we believe that the following four
basic requirements must be met. (1) The impact of the placement
(i.e., where to place a hook) aspect of authorization hooks and that
of the policy enforcement aspect (i.e., to see if an access violates
the security policy) should be measured separately. This decoupling
is important for us to figure out which aspect is a dominant rea-
son. (2) The measurement study should be comprehensive. That
is, every widely-used system call should be taken into consider-
ation. (3) The measurements should be precisely measured, libc
calls etc. in user-space tests could result in misleading measure-
ments. (4) Depth test should be conducted to syscalls related to
directorial accesses. The previous measurement studies, such as
LSM (v2.5.15) [20] and SELinux (Linux v2.4.2)[15, 34], fall short of
meeting these four requirements.

Besides this observation, we are motivated to revisit the over-
head of LSM implementations due to three reasons. First, the size
of the kernel code and LSM hook continues to grow. On Linux
v5.3.0, there are 18,883,646 LOC and 224 hooks, while there were
3,721,347 LOC and 122 hooks in Linux v2.6.0. Second, new features
are introduced into the kernel monthly. Flexible module stacking is
a feature introduced to LSM in year 2019 [33] and integrity protec-
tion of security attributes was introduced to LSM [43] in 2008. The
performance impact of these features has not been evaluated before.
Thirdly, various security modules (e.g. AppArmor, TOMOYO and
SMACK) are merged into mainstream, they implement difference

https://doi.org/10.1145/3433210.3453078
https://doi.org/10.1145/3433210.3453078

Table 1: Performance Differs as LSM and Hardware Evolves. Latency is evaluated with default setting of LMBench2.5 for open, stat and creat,
the lower, the better. Throughput of copy, read and write is evaluated with 4KB files, the higher the better. Latency of read, write and copy is
evaluated with 0KB files, the lower the better. Overhead is compared to the kernel with pure DAC protection, the lower, the better.

Paper Version Hooks CPU L2 Cache
Memory

Size Storage open stat creat copy read write

LSM [20]* 2.5.15 29 700MHz 2000KB 1GB SCSI disk 7.13𝜇s 5.49𝜇s 73𝜇s 191MB/s 368MB/s 197MB/s
Overhead: 2.7% 0% 0% 0% 0% 0%

Current LSM‡ 5.3.0 224 2.50 GHz 3072KB 8GB SSD 1.5𝜇s 0.8𝜇s 13𝜇s 2.45GB/s 10.34G/s 4.96GB/s
Overhead: 7.5% 1.3% 5.1% 3.6% 5.5% 0.6%

SELinux [15]† 2.4.2 122 333MHz 512KB 128MB N/A 14𝜇s 10.3𝜇s 26𝜇s 21𝜇s N/A N/A
Overhead: 27% 28% 18% 10% N/A N/A

Current SELinux‡ 5.3.0 204 2.50 GHz 3072KB 8GB SSD 2.2𝜇s 1.1𝜇s 18.5𝜇s 0.7𝜇s 0.36𝜇s 0.37𝜇s
Overhead: 87% 30% 15.9% 10.5% 13.2% 3.8%

* This is carried out using LMBench2.5 executed on a 700 MHz Pentium Xeon computer with 1 GB of RAM and an ultra-wide SCSI disk.
† This is carried out using LMBench2.5 executed on a 333MHz Pentium II with 128M RAM.
‡ This is tested with LMBench2.5 on 6th Generation Intel® Core™ i7-6500U 2.50 GHz processor with 2 cores, at 1,442MHz each

set of hooks. The performance impact of implementing different set
of hooks has not been evaluated before. These three reasons make
previous results less relevant to research investigations on LSM.

In this work, we provide a systematic evaluation of overhead of
LSM hooks on file accesses. LSM introduces hundreds of security
checks (224 in v5.3.0) scattered over 18 million LOC kernel code
(v5.3.0). To meet the aforementioned requirements in measuring
the performance impact of the hooks is challenging work due to
the complexity of the code. The hooks that each security module
chooses to implement vary greatly even for the same kernel object.
For example, SELinux implements 31 inode-based hooks, and Ap-
pArmor implements 1, while SMACK implements 22. To evaluate
the performance impact of the hooks, we need to decouple the inter-
faces from the other functionalities implemented in the reference
monitor system. To do this, we disable the policy enforcement code,
which is implemented for querying policy from policy store and
policy parsing, processing and checking, in the LSM-based security
modules. By doing this, the impact of invoking the hooks is not
shadowed by the other parts of LSM. We evaluate the overhead
of the hooks in four major LSM-based security modules which
are SELinux, AppArmor, Smack and TOMOYO. Results show that
overheads do vary among these distinct security modules.

We further evaluate performance impact of module stacking of
the LSM framework. Module stacking has been introduced into the
LSM framework lately. It allows the system to have more than one
active security module. With module stacking, the system follows
a whitelist-based checking order. For example, capabilities modules
could be stacked on top of one of the other major modules, or
vice versa. We find that different stacking orders have different
performance impact.

To ensure the property of being tamper-proof, the LSM frame-
work uses integrity modules for measuring and verifying integrity
of a file (i.e., an inode) and integrity of metadata associated with
it. There are 12 hooks (Linux v5.3.0) in LSM which have been in-
strumented with integrity protection code. Such code also impacts
the performance of the hooks. Integrity module supports various
integrity measurements, such as auditing, Integrity Measurement
Architecture (IMA), Linux Extended Verification Module (EVM).
We evaluate performance overhead of auditing, IMA and EVM.

Last but not least, to further investigate where the performance
downgrade is coming from, we implement a special-purpose Linux
security module to study the relationship between the latency of
policy checking and the end-to-end latency of file accessing system
calls. We control the latency of policy checking in our security mod-
ules and measure the end-to-end latency of system calls. We find for
most system calls, the relationship is linear; also, for certain system
calls, such as open and stat, the linear coefficient is proportional
to the number of components in the input path. This suggests that
caching the policy-checking results for directories can improve the
performance of meta-data accessing for the file and sub-directory
underneath them.

In summary, in this work we make the contributions as follows:

• The overhead of a LSM-based security module is caused
not only by invoking the hooks but also by policy enforce-
ment. Prior work only measured the combined overhead.
In this work, we measure the overhead caused by invoking
the hooks (i.e. hooking) and the overhead caused by policy
enforcement separately. We compare hooking overheads of
a spectrum of LSM-based security modules. We also evaluate
stacking order’s impact on performance overhead of these
LSM-based security modules. We find that stacking orders
can make overhead increase to 45x for TOMOYO and 61% for
SELinux. We evaluate the performance impact of integrity
measurements (i.e., auditing, IMA and EVM) on SELinux.

• We decouple policy enforcement and hook placement, and
implement a special-purpose Linux security module to study
the relationship between the latency of policy checking and
the end-to-end latency of system calls for file accesses. By
using a multiple linear regression model, we quantify the
impact of the latency of policy enforcement on the end-to-
end latency of file operations, and identify the over-worked
permission checks on Linux VFS.

• We discuss and identify the causes of the above-measured
overhead, together with static analysis of syscall call graphs
for justification of our findings.

The rest of the paper is organized as follows. Section 2 describes
background knowledge for LSM. Section 4 explains methodology

we used to drive our analysis. We summarize our main findings in
Section 5 before zooming into performance overhead root causes
discussion in Section 6. Section 7 reviews previous evaluationworks.
Section 8 concludes the work.

2 BACKGROUND
In this section, we present background knowledge of evolution of
hooking overhead in LSM. We explain execution path of access
control during accessing files, integrity protection of LSM and the
mechanism of stacking multiple LSM security modules. Lastly, we
discuss limitations of LMBench on evaluation of LSM.

Evolution of Hooking Overhead in LSM. LSM framework is
introduced in 2002 [39], which supports an interface that allows
Linux to have mandatory access controls. It is firstly merged in
Linux v2.5.29, with 29 hooks and 1,249 LOC. The hook number
and implementation becomes more and more complex since then.
SELinux [15, 20, 34], the first mandatory access control system
in mainline Linux, is incorporated into the Linux v2.6.0, with 122
hooks and 10,684 LOC. Increased LSM adapted enhancements aimed
at improving performance [19], such as hooking on network flow,
rather than packets [12]. Smack [5, 31] is adopted to LSM since
Linux v2.6.25, TOMOYO [11] is merged into Linux v2.6.30, and
AppArmor [3] into v2.6.36. LSM has been supporting more and
more MAC since then, when Linux v4.18.5 releases (Ubuntu 16.04),
190 LSM hooks are defined. Now, Linux v5.3.0 (Ubuntu 18.04) has
224 hooks (65,793 LOC), with 204 for SELinux, 68 for AppArmor, 108
for SMACK, 28 for TOMOYO. As the the number of hooks grows,
it becomes complex to reason the root causes of LSM’s overhead.

Entangled Code for Filesystem Access Control. Theoreti-
cally, access control in Linux includes two parts: (1) DAC and (2)
MAC. DAC is amust for access control in Linux, whileMAC coexists
as a supplementary since Linux version 2.6 [20, 39]. The architecture
of DAC-MAC coexistence is shown in Figure 1. The workflow of
Linux’s access control is as follows. User space programs work with
external resources via the kernel, and make requests for accesses
through system calls. When a program executes a system call to
access files, for example, open a file, the kernel performs a number
of checks. Linux first verifies the correctness of the passed argu-
ments, checks the possibility of their allocation. If the file exists, the
request will be handed over to kernel functions. Kernel functions
check if the program has the permission to obtain the requested
resource by DAC, through UID, GID and modes (i.e., read, write,
execute) validation. If the request passes DAC, it is handed over to
LSM. The LSM hooks handle these requests, and query LSM-based
security modules (e.g. SELinux) for permissions. For example, func-
tion inode_permission (i.e., in file fs/namei.c) first checks for read
permission on the filesystem itself (i.e., sb_permission in fs/namei.c).
Then it calls __inode_permission (i.e., in file fs/namei.c) to check for
read/write/execute permissions. Afterwards it checks POSIX ACL
on an inode through do_inode_permission (i.e., in file fs/namei.c).
This procedure concludes DAC permission checking. Finally, LSM
related permissions (e.g. SELinux) are checked through calling secu-
rity_inode_permission (i.e., in file security/security.c). However, the
implementation of DAC and MAC is not always cleanly separated.

Hooking and Reference Monitor Concept. Reference Mon-
itor Concept has three requirements: (1) Complete Mediation, (2)

Figure 1: Linux Security Modules Framework.

Tamper-proofing, and (3) Verifiability. This paper investigates into
overhead of reference monitor systems, in particular LSM-based
security modules, from the above three aspects. Complete media-
tion requires mediating all security-sensitive operations through
security hooks. Hooks are placed on the execution path of security-
sensitive operations, which handle shared security-sensitive objects
(SSOs), and they introduce overhead to these security-sensitive op-
erations. LSM-based security modules implement distinct subsets
of security hooks, also stacking of LSM-based security modules
introduce overhead as well. In this paper, we evaluate the over-
head for distinct security modules by evaluating the performance
of the subsets of hooks they each implement. We also evaluate the
performance impact of different stacking orders. Tamper-proofing
requires that module-defined protection state, e.g., module-defined
labels of processes, and files are protected. For example, the In-
tegrity Measurement module protects the security attributes and
security blobs of files from being modified by malicious processes
through auditing, IMA and EVM. In this work, we also evaluate the
overhead introduced by integrity measurement through the above
3 aspects. Verifiability requires the policies of the authorization
mechanism to be verified to enforce the expected security goals.
Distinct LSM-based security modules often perform authorization
using different policy models, creating module-specific policy se-
mantics. However, the impact of the policy model on overhead is
less significant than the costs related to complete mediation (i.e,
hooking) and tamper-proofing defenses. Regardless of the policy
model all have to perform a similar authorization check. This paper
focuses on the mediation and the checking and each’s overhead
for that, integrity measurement overhead (for tamper-proofing re-
quirement) is also investigated. The rest of the reference monitor
guarantees are provided by the kernel and the policy configuration,
which is out of scope.

Integrity Protection of Security Attributes in LSM. LSM
utilizes a security-tag system, such as extended attributes in Ext4,
BtrFS and etc., to enforce security. Integrity module uses 12 hooks
(Linux v5.3.0) to collect, appraise and store security attributes (i.e., ,
integrity xattr value) for operations. It measures and verifies the

integrity xattr and provide protection of security attributes for LSM.
Integrity module supports different integrity measurements, such
as auditing, the Integrity Measurement Architecture (IMA) [29] and
the Extended Verification Module (EVM) [10]. Auditing keeps track
of the pointers to the security_operations, and records attempts at
access according to syscall audit rules. IMA keeps track of hashes
of the files. Each newly calculated file hash extends one of the
Platform Configuration Registers (PCRs). The value stored in the
PCR is the aggregated hash of all files seen by IMA. EVM is designed
to detect when files on disk have been modified while the system
was shut down. It creates HMAC out of different types of metadata
of individual files including security related extended attributes,
file owner and group and etc.

Module Stacking in LSM. Flexible LSM stacking [5] has been
introduced to LSM framework lately. It allows more than one LSM
modules to be active in the system. It is useful in the containerized
environment where the container requires a different LSM module
to what the host enables [32]. An example is to run Ubuntu con-
tainers on a host with RedHat distribution [32]. The former needs
AppArmor while the later only enables SELinux by default. In this
scenario, the host needs both SELinux and AppArmor to be active.
When multiple LSM modules are active in the system, the order
in which checks are made is specified by CONFIG_LSM during the
compile time. The checking follows a white-list mechanism, which
only gives access to objects if all security modules approve. If the
access is not granted by one security module, it will not be checked
by the next security module. Without a specific LSM built into
the kernel, the default LSM will be the Linux capabilities system.
Most LSM-based security modules choose to extend the capabilities
system, building their checks on top of the defined capability hooks.
For more details on capabilities, see capabilities(7) in the Linux
man-pages project.

LMBench tests on Filesystem syscalls. LMBench builds user-
space tests for filesystem operations involving one or more syscalls
and measures the latency and/or throughput of these syscalls. How-
ever, LMBench is not designed for evaluating individual syscalls,
nor does LMBench span all filesystem syscalls. Among the 382
system calls in Linux version 5.3.0, 43 of them perform file access
operations, of which POSIX defines a minimum set of operations
that must provided for file access [9, 24, 38]. Many of these filesys-
tem syscalls access security-sensitive objects (SSO) [12], such as
superblock, path, inode, dentry and file data structures, requiring
authorization of access to those data structures by invoking LSM
hooks. In addition, many syscalls must be performed atomically
to maintain correctness under concurrent access. However, LM-
Bench also does not cover all filesystem atomic functions. Thus,
LMBench is not directly applicable for measuring overhead for LSM
operations.

3 OVERVIEW
In this paper, we analyze the overhead (on filesystems) caused
by hook placement and policy enforcement. One objective of this
measurement study is to decouple these two factors, so that the
influence of each factor can be separately measured and analyzed.
Another objective of this measurement study is to identify the
causes of the measured overheads.

Table 2: Lines per Hook Varies (Linux version 5.3).

Name # of Hooks General Hooks LOC LOC/Hook

capabilities 18 18 767 43
SELinux 204 170 21266 104

AppArmor 68 62 11918 175
SMACK 108 100 5369 50
TOMOYO 28 27 8245 295
Integrity* 12 (5/7) 11 (5/6) 6107 509

LSM 224 153 65793 N/A
* integrity is measured with lines per hook for IMA and EVM separately, in format of
TotalNum (EVM/IMA)

To achieve these two objectives, a challenge is that LSM interface
and LSM-based security modules’ implementations are complex.
Different security modules provide implementations with different
sets of hooks. As is shown in Table 2, for example, SELinux (Linux
v5.3) implements 10 hooks on files, 31 hooks on inodes, 2 hooks on
dentries, 13 hooks on superblocks; while AppArmor (Linux v5.3)
implements 1 hook on inodes, 7 hooks on files, 3 hooks on su-
perblocks, and 10 hooks on file paths. In addition, the complexity of
the implementations (based on lines of code) for each hook varies,
see Table 2. Capabilities and TOMOYO on average have 43 LOC
per hook and 295 LOC per hook, respectively. SELinux and SMACK
both implement security_file_permission. However, the number of
lines of code they use for implementing this hook are different. Fur-
thermore, the stacking feature adds more complexity for analyzing
overhead of filesystem protection of LSM-based security modules.

In order to identify performance bottlenecks in LSM implemen-
tations, we build a test suite for VFS syscalls to measure latency and
throughput (i.e., operations per second) tests. In addition, we have
developed a special purpose, latency-controllable security module
to diagnose the performance impact of policy enforcement (e.g.
authorization through security_inode_permission and
security_file_permission) and its impact on the performance of VFS
syscalls.

Scope of this work. This measurement study is for filesystem
developers, not for application developers. In our view, diagnosing
the performance bottlenecks at the syscall level is to a large extent
orthogonal to diagnosing the bottlenecks at the application level.
Therefore, an application-level measurement study is out of scope.

4 METHODOLOGY
In this section, the methodology of our evaluation is explained.
The overhead imposed by LSM is a composite of the overhead of
hook placement (i.e., the number of hooks invoked) and the policy
enforcement overhead (i.e., policy authorization). This work focuses
on evaluating how policy enforcement performance impacts the
overhead of file operations. We would like to study the overhead of
hooks’ implementations of policy enforcement for file operations in
LSMs and how different pathname-patterns impact hook invocation
frequency and the end-to-end performance of file operations. Thus,
a evaluation framework is built with two parts as is shown below:
(1) an extension of LMBench2.5 that we call LMBench-Hook that
tests 14 filesystem syscalls and (2) a tunable securitymodule that
enable us to control the policy enforcement latency for assessing the
impact of policy enforcement overhead. We use LMBench-Hook

Table 3: The List of the Benchmarks of LMBench-Hook, the System
Calls Invoked by them in Order and their Category.

No. Test Name Syscall Name Class

1 open open, close File Ops
2 openat openat, close File Ops
3 rename rename File Ops
4 creat rename, creat, close File Ops
5 mkdir mkdir Dir Ops
6 rmdir rmdir Dir Ops
7 unlink open, unlink, close Link Ops
8 symlink symlink, unlink Link Ops
9 chmod chmod Attr Ops
10 stat stat Attr Ops
11 fstatat fstatat Attr Ops
12 read open, read, close Read Write
13 write open, write, close Read Write
14 copy open, open, read, write, close, close Read Write

to comparatively measure the overhead of a variety of hooking
configurations determined by the hooks they support, the LSM
stacking orders, and uses of integrity measurement. A tunable
security module is further developed to study how the latency of
policy enforcement impacts the end-to-end performance of file
accesses. At the end, we discuss the limitations of our evaluation
framework.

4.1 Extending LMBench
Previously, the authors of [39] and [15] used LMBench2.5 [18] to
evaluate performance impact of hooking for LSM and SELinux,
respectively, see Table 1. They evaluated open, stat and creat
for a particular directory/file. They only tested a subset of filesys-
tem operations. Firstly, filesystem operations is more than open,
stat and creat. Hooks are also placed on system calls, such as
read/write/copy, link/unlink/symlink, chmod etc. Secondly,
some filesystem operations’ performance are influenced by direc-
tory depth, such as open and stat. In this work, we would like to
evaluate other hooks invoked by filesystem operations, which fur-
ther include read/write/copy, link/unlink/ symlink, chmod,
rmmdir/mkdir, and etc. We test system call open and stat’s per-
formance with varying path name lengths. To meet our evaluation
purpose, we extend LMBench2.5 as LMBench-Hook, to measure
the performance impact of hooking on file accesses. We modify
LMBench2.5 code to execute tests over more syscall types and to
enable control over the input paths for the tests that need a path
name. Apart from the changes of configuring input paths, we reuse
LMBench2.5’s code to measure the latency of the file operations
listed in Table 3 except rmdir, mkdir, read, write and copy. For
these five file operations, we add new tests and also measure their
throughput (operations per second) instead of latency.

While there are 43 system calls (out of 382) for file accesses in
Linux v5.3.0, we only evaluate a subset of them because they have
more relevance to the hooking overhead we want to measure. For
all 43 systems calls for file accesses, they fall into several categories:
(1) file operations (e.g., open, stat); (2) directory operations (e.g.,
mkdir); (3) link operations (e.g., symlink); (4) basic file attributes
(e.g., chown); (5) extended file attributes (e.g. setxatrr, getxattr, listx-
attr); (6) file descriptor manipulations (e.g. dup, fcntl); (7) file data

read/write (e.g. pread, pwrite); and (8) auditing file events (e.g.,
inotify_init, inotify_add_watch). Those in category (5) and (8) are
privileged operations for the root user and normal users have lim-
ited accessibility to them; those in category (6) do not trigger any
hooks. Therefore, we do not measure the system calls in these three
categories. For the rest categories, we test the representative system
calls which are listed on Table 3. What’s more, the set of the system
calls we measure is exactly the same with those analyzed in [1]
for POSIX standard. The 14 system calls in LMBench-Hook are
enough to trigger the most-common filesystem hooks, which medi-
ate shared Security Sensitive Objects (SSOs) (i.e., file, path, inode
and dentry) [12]. When accessing a file, system calls in Table 3
invoke kernel handler. The kernel first accesses file and path after
parsing the system call arguments. Then, dentry is further visited
by referencing the field in file or path; inode can be accessed
from the filed in dentry. Kernel APIs are called to manipulate these
SSOs. To guarantee complete mediation, Linux performs policy
enforcement to guard the access to these SSOs in these kernel APIs.
Major security modules in Linux implement one or more hooks for
each type of SSO. For example, SELinux (Linux v5.3.0) implements
10 hooks on file, 31 hooks on inode, 2 hooks on dentry. Different
security module implements a different subset of hooks defined by
LSM at their discretion.

We provide a summary of the benchmarks in LMBench-Hook
in Table 3. The open benchmark measures the latency to open
a file for reading and immediately closes it. The stat benchmark
measures the latency to invoke stat system call on a file. Both
open and stat include 11 sub-tests with directory depth from one to
eight, a hard-link, a soft-link, and one non-existing directory test.
The read/write/copy benchmark measures operations per second
and the latency of each operation. For read/write benchmark, each
read/write system call is one operation; a copy operation includes
a read from the source file and a write to the destination file. In
read/write/copy benchmark, we run the tests with various buffer
sizes for system call read and write. For 0KB buffer size, system
call overhead dominates the time of operation. Thus 0KB buffer is
used for measure latency of read/write/copy. The hooking overhead
consists of re-validating permissions for each read, write and copy.
When buffer size increases (e.g.,1KB, 2KB and 4KB), memory copy
cost become more significant to impact latency of system call read
and write, so the hooking overhead becomes less noticeable. Thus,
we do not test buffer size larger than 4 KB. rename and chmod test
measure latency of invoking the corresponding system calls, each
includes 5 sub-benchmarks with directory depth from one to five.
openat, creat, unlink and symlink measure latency of operat-
ing on a particular file, with random filenames. mkdir and rmdir
measure operation per second for 9437 distinct files, with directory
depth of one and creating or removing a file is one operation.

To measure the overhead of the hooking without introducing
authorization overhead, we use the securityfs interface exported
by each security module to disable policy enforcement (e.g. policy
checking). When policy enforcement is disabled, the functions for
policy enforcement are bypassed while the hooks are still invoked.

Table 4: Hooks in Policy Testing Module.

No. Name Description

1 security_bprm_set_creds mediates loading of a file into a process (e.g., on exec), labeling the new process as described above.
2 security_inode_alloc_security initialization of a new inode object, allocate memory space for security blob.
3 security_inode_init_security mediates initialization of a new inode object, setting the label to that of the creating process.
4 security_inode_setxattr mediates modification of the extended attributes of a file’s inode.
5 security_inode_getsecid mediates reading a file’s the extended attributes of a file’s inode (i.e. security tag).
6 security_inode_create mediates the return of a newly created file to the process.
7 security_file_permission mediates operations on a file descriptor, example operations include read, write, append.
8 security_inode_permission mediates file open operations on the file’s associated inode.

4.2 Tunable Security Module for Latency
Modeling

The overhead of LSM framework comes from two aspects, (1) hook-
ing (e.g, security attributes manipulation, hook placement), (2) pol-
icy enforcement. The hooking overhead varies depending on the
hook placement. Nevertheless, for a specific filesystem operation
on a given security module, this hooking overhead can be treated
as a constant. On the other hand, policy enforcement overhead may
change even for the same security module. For example, the time to
evaluate the rules of the policy against an access request may differ
considerably for different policy configurations. Even the under-
lying data structures used for the policy store affect the efficiency
of the enforcement of the policy. However, it is a complex task to
understand how the variations in policy enforcement impacts the
end-to-end performance of file operations. We try to approach this
issue by studying how sensitive the end-to-end latency of a file
operation is to the changes of the latency of policy enforcement. We
assume there is no interaction between the effect of policy enforce-
ment and hooking. Then we can describe the end-to-end latency of
a file operation with a Multiple Linear Regression Model [16], for
a given security module that enforces a fixed policy. We use 𝑇𝑓 𝑜𝑝
to denote the latency of a file operation, 𝑇ℎ𝑜𝑜𝑘 the latency from
hooking mechanism, 𝑇𝑝𝑜𝑙𝑖𝑐𝑦 the latency from policy enforcement,
and 𝜖 for other constant cost. Then, we have Equation (1).

𝑇𝑓 𝑜𝑝 = 𝛽1 ×𝑇ℎ𝑜𝑜𝑘 + 𝛽2 ×𝑇𝑝𝑜𝑙𝑖𝑐𝑦 + 𝜖 (1)

In Equation (1), 𝛽1 and 𝛽2 are partial regression coefficients. Our
goal is to estimate 𝛽2 to quantify how much impacts 𝑇𝑝𝑜𝑙𝑖𝑐𝑦 can
have on 𝑇𝑓 𝑜𝑝 .

In this section, we describe the approach we use to estimate
𝛽2. We develop a dummy security module to meet our goal and
we name it the Tunable Security Module. The Tunable Security
Module follows the design of SELinux [19, 20] and inherits hooks
from SELinux for mediating file accesses except the 8 hooks listed
on Table 4. In these 8 hooks, security_inode_permission and se-
curity_file_permission are interfaces between hooking and autho-
rization modules. Internally, hooks for file access, such as secu-
rity_inode_unlink and security_inode_rename, call
security_inode_permission and security_file_permission for "per-
mission checking". The other 6 hooks are responsible for initializa-
tion and allocation of security blobs, getting/setting file attributes,

getting attributes from user-space programs, and permission con-
trol on files/inodes. The Tunable Security Module implements se-
curity_inode_permission and security_file_permission as a busy-
waiting function. The amount of time to busy-wait is passed from
the user space through securityfs. We also implement the other
6 hooks according to their functionalities described in 4.

The Tunable Security Module has two execution stages: (1) ini-
tialization stage and (2) enforcement stage. For the initialization
stage, the value (in 𝜇s) of the duration of the delay is passed to the
kernel from user space. Enforcement stage handles authorization
queries from the hooks for file accesses and imposes the delay on
the queries and grants the permission.

The Tunable Module behaves as a normal security module ex-
pect policy enforcement. It implements the code to manipulate
the security tags. The user space program can set security tags
through setxattr and getxattr in string format (i.e., "trusted", "un-
trusted", "ignored"). Using the file-system’s extended attributes,
label strings are set as "trusted" , "untrusted" and "ignored" in the
file’s security.test attribute. They are translated into security xattr
in inode->i_security, as an u32 typed integers. Integer 0, 1 and 2
stand for "trusted", "untrusted", and "ignored", respectively. If the
executables (e.g. open.exe) or the test files (e.g. /test/1.txt) have no
security tag, the default security tag, "ignored", is assigned. The
Tunable Module implement its own labeling system. The kernel
objects (e.g., processes and inodes) get their labels based on the
labels of the files that are used to create them.

4.3 Limitations
This work has three limitations: (1)We consider Linux as a file based
system. This work is focusing on testing file operations. Network
and device driver are not considered, though studying hooking over-
head for these subsystems are interesting topics. (2) As hooking
and policy enforcement in LSM are in-memory operations, we are
focusing on in-memory filesystem operations in this work. System
call mount and umount are not considered. (3) The LSM framework
supports various access control models. Each of the access control
models has its own implementation of policy enforcement. Imple-
mentation of policy enforcement procedure varies and affects
latency brought by policy enforcement. Furthermore latency intro-
duced by policy enforcement is affected by how many rules and
which rules users set. There are no standards on synthesizing the
rules. Thus, instead of coming up with some imagined rule sets,

we write a Tunable Security Module, which sets latency of pol-
icy enforcement to a certain value, and checks impact of policy
enforcement on end-to-end performance.

5 EVALUATION RESULTS
This section presents hooking overhead evaluation and analysis
for filesystems. We further make a few key observations before
detailing them in Section 6.

System Setup.We conduct the tests on a 6th Generation Intel®
Core™ i7-6500U 2.50 GHz processor with 2 cores. The machine
also has 8 GB LPDDR3 1866MHz memory and a 512GB PCIe SSD
for persistent storage. The tests are done with power cord on to
avoid CPU frequency shifting. The machine has Ubuntu 18.04 LTS
with Linux kernel v5.3.0. The tests are done on ext4 with default
parameters. When evaluating SELinux, we set 512 as the maximum
AVC entries in the cache.

Evaluation Metrics We use three evaluation metrics: (1) la-
tency; (2) throughput; and (3) performance overhead. We report
the latency or throughput (operations per second) for the 16 tests
mentioned in Section 4.1. For each of the 16 tests, we run 300 times.
Mean and variance of the data points are calculated and reported
for tests. For test 1-5 and 8-13, we measure the latency for a single
system call. For test 6 and 7, wemeasure throughput (i.e., operations
per second) for mkdir and rmdir. For test 14-16, we pre-create a file
with 100KB and then perform sequential read or write upon this
file or sequentially copy this file to a new file. We just wrap around
when tests reaches the end of the file. For these three tests, we first
run the test 10 seconds to warm up the cache, and then run the
test for 30 seconds. We measure the throughput (i.e., operations per
second) for the second phase. To make a comparison of overhead
of each syscall before and after hooking, we also report it with
unmodified kernel v5.3.0 (LSM not enabled) as baseline, which is
denoted as 𝑝𝑒𝑟 𝑓 _𝐷𝐴𝐶 . The performance of the targeted testing’s
performance is denoted as 𝑝𝑒𝑟 𝑓 _𝑇𝑒𝑠𝑡𝑒𝑑 .

Regression of latency is calculated with Equation (2).

𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 :=
𝑝𝑒𝑟 𝑓 _𝑇𝑒𝑠𝑡𝑒𝑑 − 𝑝𝑒𝑟 𝑓 _𝐷𝐴𝐶

𝑝𝑒𝑟 𝑓 _𝐷𝐴𝐶
(2)

Regression of throughput is calculated with Equation (3).

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 :=
𝑝𝑒𝑟 𝑓 _𝐷𝐴𝐶 − 𝑝𝑒𝑟 𝑓 _𝑇𝑒𝑠𝑡𝑒𝑑

𝑝𝑒𝑟 𝑓 _𝐷𝐴𝐶
(3)

Thus, regression rate (i.e., overhead) is calculated with Equation
(4).

𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 :=
|𝑝𝑒𝑟 𝑓 _𝑇𝑒𝑠𝑡𝑒𝑑 − 𝑝𝑒𝑟 𝑓 _𝐷𝐴𝐶 |

𝑝𝑒𝑟 𝑓 _𝐷𝐴𝐶
(4)

5.1 Historical Evaluation Revisited
We first revisit the hooking overhead of SELinux and LSM since
previous evaluation [15, 20] was done 18 years ago. In [20], the
authors evaluated performance overhead of capabilities security
module and the baseline was unmodified Linux kernel (v2.5.15)
without LSM; in SELinux [15], the authors evaluated performance
impact of the SELinux and the baseline was unmodified Linux
kernel (v2.4.2) with only DAC protection. The unmodified Linux
v2.4.2 kernel includes capabilities, which is moved into LSM as its
default security module since Linux v2.5.29. The tests in LSM [20]

and SELinux [15] set a policy in authorization module. However,
no labels are added to files as attributes, and system calls get short
circuited once they enter policy enforcement. To re-measure the
hooking overhead, we compare kernel v5.3.0 with three different
configurations—with only DAC protection, with default LSM (only
capabilities module) and with default SELinux module (i.e., SELinux
stacked with capabilities module, auditing is enabled). For the latter
two, policy enforcement of the hooks is disabled as mentioned in
Section 4.1. The result is shown in Figure 2. Compared with pure
DAC kernel, the hooking overhead of LSM is small for all the tests.
Compared with the results in [20], LSM hooking is still efficient and
does not cause tangible performance impact. However, SELinux
hooking could cause large performance drop for open (87%) and
stat (30%), overhead for open is small in absolute value (about 1 𝜇s),
however the absolute value might be higher for low-end embedded
systems [22]; the overhead for mkdir and rmdir is smaller than 2%;
for the rest of the tests, the overhead ranges from 8% to 19%. We
also report the performance overhead (regression rate) of SELinux
hooking using Equation (4), see Figure 3. Compared with the results
in [15], SELinux hooking introduces more significant overhead; in
[15], the overhead of SELinux was no larger than 28% for the tests
we evaluate, smaller than what we observe.

5.1.1 Hooking Overhead Comparison of LSM-based security mod-
ules. Different Linux distributions uses different LSM-based secu-
rity modules, for example, Ubuntu has AppArmor turned on by
default while Fedora has SELinux turned on by default. Different
LSM-based security modules implement different subset of hooks.
As is shown in Table 5 and Table 2, in Linux v5.3.0, capabilities
module implements 767 LOC with 18 hooks, 4 of which are for
file accesses. SELinux implements 21,266 LOC with 204 hooks, 59
of which are for file accesses. AppArmor implements 11,918 LOC,
with 68 hooks, 24 of which are on file accesses. SMACK implements
5,369 LOC with 108 hooks. TOMOYO implements 28 hooks with
8,245 LOC. In this section, we evaluate how different LSM-based
security modules perform. And as different LSM-based security
modules uses different sets of hooks. We further investigate how
different selections of hooks impact the performance by evaluating
the hooking overhead of 5 existing security modules which are
capabilities, SELinux, AppArmor, TOMOYO, SMACK. We are eval-
uating hooking overhead, thus policy enforcement code is disabled
when we compare LSM-based security modules. Different security
modules impact benchmarks in different ways. Capabilities mod-
ule impacts all benchmarks. SELinux module impacts open higher
than openat. AppArmor impacts open, openat, rename, creat and
especially mkdir and rmdir. TOMOYO with no integrity measure-
ments added introduce tolerable performance overhead. SMACK
has moderate impact on all benchmarks, except for mkdir, where it
has significant low impact. The impact on file read is higher than
file write, and the impact of file copy is between the two. We con-
figure the kernel to have only one of the 5 modules to be active.
The overhead introduced by the hooking of each security module
is shown in Figure 6. For all the tests, the overhead of hooking
for each individual module is within 15%. For creat, capabilities,
SELinux and AppArmor have overhead slightly larger than 5%;
for mkdir and rmdir, capabilities, SELinux and AppArmor have
overhead ranging from 8% to 14%; for stat, capabilities causes 5.6%

ope
n
ope

nat
ren

ame crea
t
unl

ink
sym

link
chm

od stat fsta
tat

0

5

10

15

La
te
nc
y
(𝜇
s)

DAC LSM-Hooking SELinux-Hooking

(a) Latency of System Calls.
Lower is better.

mkd
ir

rmd
ir

0
2
4
6
8

·105

op
s/
s

(b) Throughput.
Higher is better.

readwri
te cop

y
0

1

2

3

4 ·106

op
s/
s

(c) Throughput.
Higher is better.

Figure 2: PerformanceComparison of theKernelwithoutHooks andwithCapabilities or SELinuxHooks. Default depth setting in LMBench2.5
for open and stat, mkdir/rmdir and others are tested with folders of one depth directory, read/write/copy with 0KB files. Overhead for open
is small in absolute value (about 1𝑚𝑢s), however the absolute value is higher for low-end embedded systems [22].

op
en

op
en
at

ren
am
e
cre
at
mk
dir
rm
dir
un
lin
k

sym
lin
k

ch
mo
d sta

t
fst
ata
t
rea
d
wr
iteco

py
0

0.2

0.4

0.6

0.8

Re
gr
es
si
on

Ra
te

Figure 3: Performance Overhead of SELinux. Smaller is better. Per-
formance drop of open (0.87) and stat (0.30) are higher than histori-
cal evaluation.

overhead; for read, the overhead of all modules ranges from 5.8% to
8%; for the other tests, overhead is smaller than 5% for all modules.
We firstly use LMBench-Hook to collect frequencies of security
hook executions for each benchmark. security_file_permission ac-
counts for 99% of security hooks called by read, write and copy.
security_inode_permission and other hooks on inode structure,
such as security_inode_getattr and security_inode_follow_link, ac-
count for 99% of security hooks called by stat. inode related hooks
accounts 60% and file related hooks account for 33% of security
hooks called by open. In summary, security_file_permission and se-
curity_inode_permission dominates all 14 benchmarks’ execution
path. These 14 benchmarks, which include 59 sub-benchmarks, have
to pass either security_file_permission or security_inode_permission,
no matter if the syscall is a successful return or not.

5.1.2 Overhead of Module Stacking. Starting from Linux version
5.3.0, users are given the flexibility to configure stacking order of
security modules. In this section, we evaluate how stacking order
of security modules impacts performance. We evaluated hooking
overhead when the system has 2 active modules. We stack SELinux,
AppArmor, SMACK and TOMOYO on top of capabilities, or vice
versa. In total, we have 8 configurations. For each pair of security
modules which are stacked together, we compare the overhead of
different stacking orders. The result is shown in Figure 7. From a
high level, the hooking overhead of two active modules is larger
than when there is only one active module in many cases. For ex-
ample, when SMACK is stacked before capabilities, the median of
regression rate for all tests is 15.3%, while for SMACK and capabili-
ties alone the respective median is 1.5% and 3.6%. Similar results
also happen to the other three pairs of modules. In addition, we

find that for capabilites and TOMOYO, the regression rate is larger
than 100% for mkstemp, unlink, symlink, chmod, stat and fstatat.

5.1.3 Overhead of Integrity Measurements. This section evaluates
the performance impact of Integrity Measurements in LSM. To
analyze trade-offs of the combinations, we measure: How auditing,
IMA and EVM impact hooking performance? Integrity module
is a stack-able module. Integrity module’s 12 hooks (v5.3.0) are
embedded in general hooks. As is shown in Table 5, integritymodule
implements two categories of hooks, EVM hooks (5) and IMA hooks
(7). EVM has 5 hooks on inode data structure. IMA has 2 hooks
on inodes, 3 hooks on file, 1 hook on mmap and 1 hook on bprm.
Two major modules (i.e., SELinux and SMACK) invoked all these
hooks. We take SELinux as an example to evaluate performance
downgrade brought by integrity module. We evaluate performance
of DAC Linux and SELinux with audit on, and the results is shown
in Figure 8. Both IMA and EVM introduces significant overhead
across all benchmarks. EVM and IMA together brings overhead of
135% on chmod. mkdir, rmdir, fastat, read, copy, link and unlink
gets non-tolerable (more than 50%) performance overheads.

5.2 Impact of Hook Placement on File Accesses
In previous sections, we do not take the performance impact of
policy checking into consideration so that we can evaluate and
compare the impact of hooking across different security modules.
In this section, we evaluate the performance impact of policy check-
ing on the end-to-end latency of file accesses by using a Tunable
Security Module introduced in 4.2. Also, we conduct static analysis
for hooks and their placements for different LSM-based security
modules.

5.2.1 Performance Analysis of Hook Placement on File Accesses. In
the experiment, we tune the latency of policy checking from 0 to
110 𝜇s and measure the end-to-end latency of all the system calls
we test, except for mkdir and rmdir. We plot the result in Figure 4.
We observe that the relationship between policy checking latency
and the end-to-end latency of system calls are nearly linear. We
use linear regression method to calculate the linear coefficient of
the data points and the results are shown on the right of Figure 4.
This coefficient reflects times authorization is invoked with each
benchmark. As shown in Figure 4, end to end latency and latency

Table 5: Hook Placement of Security Modules (Linux version 5.3).

Hook Num
(by category) Capability SELinux AppArmor SMACK TOMOYO YAMA EVM IMA**

inode 3 31 1 22 1 0 5 2
dentry 0 2 0 1 0 0 0 0
file 0 10 7 8 3 0 0 **3

superblock 0 13 3 6 3 0 0 0
mmap 2 2 1 2 0 0 0 **1
path 0 0 10 0 11 0 0 0
bprm 1 3 3 1 2 0 0 1
task 5 15 5 12 2 2 0 0
proc 0 2 0 2 0 0 0 0
ptrace 2 2 0 2 0 2 0 0
cap 3 3 2 0 0 0 0 0

seclabel 0 3 0 3 0 0 0 0
cred 0 3 4 5 1 0 0 0
audit 0 4 4 3 0 0 0 0

Total(File Accessing*) 4 59 24 38 20 0 5 6
Total Num 18 204 68 108 28 4 5 7

* We consider hooks on inode, dentry, file, superblock, path, bprm are file accessing hooks. ** IMA has three file related hooks (i.e. ima_file_mmap, ima_read_file, ima_post_read_file
), and one mmap related hook. This mmap related hook only performs on files (i.e. ima_file_mmap), however not general mmap.

0 20 40 60 80 1000

100

200

300

400

500

600

700

800

Latency of Authorization (𝜇s)

En
d
to

En
d
La
te
nc
y
(𝜇
s)

open* (s=6.0)
openat (s=3.0)
rename (s=6.0)
create (s=7.0)
unlink (s=5.0)
symlink (s=4.0)
chmod (s=2.0)
stat* (s=5.0)
fstatat (s=2.0)
read (s=1.0)
write (s=0.9)
copy (s=2.0)

* open and stat is tested with default input in LMBench2.5, which is opening and
stating file /usr/include/x86_64-linux-gnu/sys/types.h.

Figure 4: End-to-End Latency of the Tests by Increasing the Latency
of Policy Checking (left) and the Slopes Calculated with Linear Re-
gressionMethod (right). The policy checking latency ismuch larger
than the time spent on the rest parts of the benchmark (expect 0).
Slope varies by tests. The 𝑟 2 values of linear regression is 0.999. The
higher the slope, the more significant impact is. The slope reflects
times authorization is invoked by a certain test.

introduced by policy authorization (i.e., policy querying, parsing,
processing and checking) are linearly proportional to one another
with determine of 0.99. However, their impact factor on end to end
latency (slope in Figure 4) differ. For example, slope of openat is 3.0,
while rename is 6.0.

Furthermore, as is shown in Table 6, slope increases while direc-
tory depth increases. For open and stat, we change the input path
and re-calculate the linear coefficient. As shown Table 6, we find
for different paths, the linear coefficient increase as the number
of components in the path increases. However, for the other tests,
when we change the input path, the linear coefficient stay the same.
This means the times authorization invoked vary by different paths

Table 6: Directory depth impacts latency of open and stat (LMBench-
Hook). The first column is the path we use in the open and stat tests.
The last two columns report the slope of linearmodelwe build, with
r-square value of 0.999. The linear model reveals that there is posi-
tive correlation between the latency of policy enforcement and the
latency of end-to-end tests. The slope reflects times authorization
is invoked by a certain test. The higher the slope, the more impact.

Path open stat

AA 2.0 1.0
AA/BB 3.0 2.0
AA/BB/CC/DD 5.0 4.0
AA/BB/CC/DD/EE/FF/GG/HH 8.9 7.9
AA/../HH 4.0 3.0
XX/YY/../../AA/BB/../../HH 9.9 8.9

for open and stat. However for other tests, the times authorization
invoked is a constant value.

5.2.2 Static Analysis of Hook Placement on File Accesses. We per-
form static analysis on call graphs for understanding worst case sce-
narios of hook invocations in execution of VFS syscalls, as is shown
in Table 7. We found that all permissions could be categorized into
read/write permissions either on files, file descriptors or on files’
containing directories. And one authorization hook could perform
read, write or read-and-write permission checks. Call graph analysis
explains the maximum amount of hooks invoked by syscalls, among
which, some are not invoked based on flags passed to LSM interfaces.
Minimum hooking is reasoned from POSIX’s definition of syscalls.
We conservatively assume file descriptors could be read/written
when their associated files has read/write permissions, which is
different form LSM. In LSM, file descriptors, which point to entries
in the kernel’s global file table, are not associated with any permis-
sion checks. However, according to POSIX, the kernel is supposed
to return a file descriptor, only after a process makes a successful
request to open a file. And opening a file requires read permission.

In summary, file descriptors should hold the same permission as
their associated files. For example, a file requires read permission
to perform syscall stat. The details of reasoning is as follows. open
searches, opens and possibly create a file, and read permission is
required for the file’s containing directories and the file itself. Write
permission is required for the file’s direct containing directory, if
open is flagged with CREAT. Meanwhile, openat syscall opens by a
file descriptor, read permission is required for the file itself. close
closes a file descriptor, no permission is required during this pro-
cess. rename, when both parent folders exist, and parent folders
are different, requires read permission and write permissions on
the two files (newly created one, and the original one), and the
two associated direct containing directories. sendfile requires read
permission on one file and write to another file. read/write/chmod
requires read permission on the file itself, write permission on the
file itself, and write permission on the file descriptor (i.e. metadata)
respectively. mkdir/rmdir requires write permissions on files’ con-
taining directories. link/symlink/unlink requires read permission
for searching (execution permission, i.e. read permission) on its
containing directories, and link/symlink also requires write permis-
sion on the file. stat obtains file and related filesystem status named
by the pathname parameter. It requires read permission for the
named file’s file descriptor. Also, directories listed in the pathname,
which leads to the file, must be searchable. Thus, read permission is
required for its containing directories. Different LSM-based security
modules implements different sets of hooks for permission autho-
rization. Some security modules do not meet complete mediation
requirement on call graphs of syscalls. For example, AppArmor
and TOMOYO are path based permission authorization, when cre-
ating files, they do not need to request write permission for the
new files’ containing directories. SMACK and TOMOYO do not
implement file_permission hooks on sendfile/read/write, and do not
support security on above syscalls. While some security modules
over-worked the permission authorization with duplicated policy
checks. For example, SELinux and SMACK implements 7 hooks (5
authorization hooks in form of security_inode_permission and 2 au-
thorization hooks in form of security_inode_rename) on permission
authorization, while only 4 authorization hooks are required.

6 ANALYSIS OF RESULTS
This section discusses the performance overhead evaluated in Sec-
tion 5. We also present some insights for optimizing LSM. For each
root cause, we first review the background of the change before
analyzing its performance impact.

Performance Impact of Stacking Order. As we see in Sec-
tion 5, stacking order matters to performance. In module stacking,
the checking order follows a white-list based approach. We use
an example to illustrate how the performance impact varies for
different stacking orders. We use an example to illustrate how
the performance impact varies for different stacking orders. As
is shown in Figure 5 (a), security module A grants access to file
1, 2 and 3, security module B grants access to file 2, 3 and 4, and
security module C file grants access to 2. If we configure the stack-
ing order as CONFIG_LSM="A,B,C", then file 1-4 will be checked
by security module A first. As security module A allows file 1-3,
they will be further checked by security module B. Similarly, as

Figure 5: White-list Based Module Stacking. Stacking order matters
to performance.

security module B allows file 2-4, only file 2 and 3 will pass module
B and be checked by module C. As security module C allows file
2, only the access to file 2 can be granted. In this process, 4 files
are checked by module A, 3 files are checked by module B and 2
files are checked by module C. If we switch the stacking order as
CONFIG_LSM="C,A,B", as is shown in Figure 5 (b), all 4 files will
be checked by module C first. Module C only allows file 2. Thus,
only file 2 will be checked by security module A and B. In this
example, the second stacking order costs less time. For example, we
test and compare CONFIG_LSM="capability,selinux,apparmor" and
CONFIG_LSM="capability,apparmor,selinux", the latency of open
and stat diffs more than 10% between the two settings. SELinux set
white-listing on special files as in "proc", while apparmor set white-
listing on special file types. A second reason why different stacking
orders cause different performance overhead is that some security
modules implement their own caching mechanism whereas oth-
ers do not. For example, SELinux implements Access Vector Cache
(AVC) while TOMOYO lacks of implementing any cache mechanism.
If SELinux is stacked before TOMOYO, AVC in SELinux might block
the unauthorized operations. This early return situation avoids
performing checks in TOMOYO and saves time. Due to the effect
of where the caching is layered, the order of module stacking can
impact the performance.

Stacking exhibits higher overheads than the sum of the hook-
ing overhead and the checks performed by the stacked modules.
Standalone modules introduce tolerable performance overhead, for
example, SELinux open (0.04𝜇s) and stat (0.02𝜇s), capabilities open
(0.09𝜇s) and capabilities stat (0.04𝜇s). While, stacked SELinux and
capabilities introduce higher latency, open (1.36𝜇s > 0.04𝜇s + 0.04𝜇s)
and stat (0.23𝜇s > 0.02𝜇s + 0.09𝜇s).

Repetitive Permission Check for Directories. For Table 6,
all tests access the same number of files, and the only difference
among these tests is the input path. We can notice that the slope
calculated for each test is proportional to the count of components
in the input path. In the test, we measure the end-to-end latency
of the system calls which is consisted of two parts, the latency of
policy checking and the latency of other parts during the execution
path of the system call. The second part is constant in this experi-
ment. We increase the latency of policy checking from 0 to 110 𝜇s

Table 7: Hook Placement by Syscall (Linux version 5.3).

Syscall Name Similar Syscall Min Hook LSM Interface SELinux AppArmor SMACK TOMOYO

open open 1*dir depth security_inode_permission 3*2*dir depth 0 3*2*dir depth 0

security_file_open 3*2*dir depth 3*2*dir depth 3*2*dir depth 3*2*dir depth

openat openat 1 security_inode_permission 3*2 0 3*2 0

security_file_open 3*2 3*2 3*2 3*2

close close 0 N/A 0 0 0 0

creat creat 1*dir depth security_inode_permission 1*dir depth 0 1*dir depth 0

rename* rename, renameat, renameat2 4
security_inode_rename 2 0 2 0

security_path_name 0 1 0 1

security_inode_permission 5 0 5 0

sendfile sendfile, sendfile64 2 security_file_permission 2 2 0 0

read read, readv, pread, preadv 1 security_file_permission 1 1 0 0

write write, writev, pwrite, pwritev 1 security_file_permission 1 1 0 0

mkdir mkdir, mkdirat 1* dir depth
security_path_mkdir 0 1*dir depth 0 1*dir depth

security_inode_mkdir 1*dir depth 0 1*dir depth 0

security_inode_permission 1*dir depth 0 1*dir depth 0

rmdir rmdir 1* dir depth
security_path_rmdir 0 1*dir depth 0 1*dir depth

security_inode_rmdir 1*dir depth 0 1*dir depth 0

security_inode_permission 1*dir depth 0 1*dir depth 0

symlink symlink, symlinkat 1* dir depth
security_path_symlink 0 1*dir depth 0 1*dir depth

security_inode_symlink 1*dir depth 0 1*dir depth 0

security_inode_permission 1*dir depth 0 1*dir depth 0

unlink unlink, unlinkat 1* dir depth
security_path_unlink 0 1*dir depth 0 1*dir depth

security_inode_unlink 1*dir depth 0 1*dir depth 0

security_inode_permission 1*dir depth 0 1*dir depth 0

chmod chmod, fchmodat 1
security_path_chmod 0 1*dir depth 0 1*dir depth

security_inode_permission 1*dir depth 0 1*dir depth 0

security_inode_setattr 1 0 1 0

fchmod fchmod 1
security_path_chmod 0 1 0 1

security_inode_permission 1 0 1 0

security_inode_setattr 1 0 1 0

stat stat, fstatat, lstat 1*dir depth security_inode_getattr 1 1 1 1

security_inode_permission 1*dir depth 0 0 1*dir depth
*rename, for the situation that both parent folders exists, and are two different parent folders.

with 10𝜇s interval. The physical meaning of the slope is the num-
ber of authorization queries the system call makes. As mentioned
in Section 4.2, in each test the system call is executed 300 times
consecutively. We can infer that all 300 system call queries need
to go through the same permission check for each component in
the file path even though they are visiting the same file in the same
directory. This finding implies that it would be beneficial to cache
the permission check results for directories when a file underneath
it is visited. With this cache, future accesses to the files in the same

directory can spend less time doing permission checks for the par-
ent directory. [36] presents syscall usage across all applications and
libraries in the Ubuntu, it also observed some syscalls, in which
input can yield significantly different behavior, e.g., the path given
to open.

Policy Enforcement of LSM-based security modules for
LMBench-Hook. As shown in Figure 4, these tests are insensi-
tive to the count of components in the path names. For example,
the openat test performs 3 permission checks and rename 6, for

all types of path names according to our analysis. One test might
go through LSM permission check several times. For the openat
test, the process first needs to check execute permission of the
parent directory so that the target file can be looked up in it. After
looking up the parent directory, a file, dentry, and inode object
are created for the target file. More permission checks on file or
inode are needed before granting access to the file. Specifically, se-
curity_file_permission and security_inode_permission are invoked
for the target file. Both checks are needed, as while one process
is lookuping a pathname, another process might make changes
that affect the file. Additionally, security_file_fcntl is introduced
by preparation stage of the openat test in LMBench2.5, which in-
vokes permission as well. The existence of symbolic link is be a
plausible reason for enforcing both permission check for file and
inode objects. Symbolic link is a special file with its own inode,
different to the file or directory it points to. Thus hooks are needed
for this special file as well as the file it is pointing to, the hooks for
file and inode permission check are security_file_permission and
security_inode_permission, respectively. As shown in Figure 4, the
higher the slope is, the more policy authorization it passes for the
particular test. For example, openat passes policy authorization for
3 times, while rename passes policy authorization 6 times. Thus,
rename is more sensitive than openat, in terms of latency of policy
authorization. The more sensitive to policy authorization, the more
non-stable hook placement it is, the worse the implementation is.

Performance-Oriented Hook Placement.We further inves-
tigate the impact of the count of hooks on performance. Intuitively,
the more the number of hooks is, the larger the overhead is. As is
shown in Table 5, SELinux has 31 out of 204 hooks for inode, and
SMACK has 22 out of 108 hooks for inode; AppArmor 10 out of
68 hooks for path and TOMOYO has 11 out of 28 hooks for path.
While TOMOYO has only 28 hooks, which is the smallest of all, its
performance overhead is highest when stacked with capabilities
module (which is enabled by default in Linux), as is shown in Fig-
ure 7. The computational complexity of the implementation of the
hooks is another factor we need to consider to explain the hooking
overhead. Previous hook placement works [6, 8, 13, 21, 22] try to
minimize the count of hooks, not performance. Alternatively, hook
placement algorithms could take performance as the objective.

7 RELATEDWORKS
This section discusses two categories of related prior work: evalua-
tion and analysis of Linux Security Modules and benchmarks on
file accessing.

Evaluation and Analysis of LSM. LSM was first introduced
by Morris et al. [20] in 2002 as a general framework to provide
strong system security for Linux kernel. It shows that performance
overhead caused by LSM is tolerable, less than 8%, with a capa-
bilities module compared with an unmodified Linux kernel with
built-in capabilities support. However, the industry has made sig-
nificant advancement to the hardware of computer systems since
then. This makes the evaluation results of [20] less relevant now.
In our work, the evaluation is done on a computer with modern
hardware; especially, its storage system is equipped with an NVME
device. Previous evaluation of hooking are done for Asbestos [7, 37],
Linux Provenance Modules [2], HiStar [41], Flume [14] and Lami-
nar JVMs [26, 28]. However they are not evaluating main stream

works that are merged into Linux. Since the advent of LSM, various
mandatory access control policies, such as SELinux [34], AppAr-
mor [3], TOMOYO [11] and Smack [30], have been implemented
for it in Linux kernel. Though these work provide thorough im-
plementation details under the LSM framework, the performance
impact of them is not evaluated. LSMPMON [40] performs evalua-
tion on Linux v2.6.30 for latency of hook implementations, however
not for hook placements. Recent literates on evaluation of policies
are based on simulation results [23], however not on real world
systems. Recent work, PeX [42] presents effectiveness of hooks
through a static permission check analysis framework for Linux
kernel. However, these works lack comprehensive evaluation in
efficiency. Moreover, our work also made a comparative evaluation
among security modules.

Benchmarks on File Operations. As stated in [24, 38], when
researchers reason about completeness and correctness of POSIX
standards in file-systems, they analyze 14 system calls. In this pa-
per, this method is followed. Previous standard filesystem bench-
marks are using Intel lkp-tests suite [4] and previous papers [20, 27,
39]: (1) filebench [17], (2) lmbench (2.5 and [18] (3) FS-Mark [25]
and (4) unix-bench [35]. lmbench3 [18] adds scalability test to lm-
bench2.5 [18], however it misses chmod/rename etc., which are
essential for security performance tests. For common functions (i.e.,
read, write , open, close, stat etc.), lmbech2.5 and lmbench3 [18]
uses exactly the same function and implementation. FS-Mark in-
cludes file-size sensitive tests. It is focusing on various of file-sizes,
in security test, in memory tests are needed. Thus the smaller the
files, the better. unix-bench [35] adds file-copy, file-read, file-write.
filebench [17] adds readwholefile (open once, then read several
times, then close once), writewholefile (open once, then write sev-
eral times, then close once), appendfile (open, stat, set offset, write)
etc. for large file processing. Also, security tests for open, close
and read should be timed separately. We are inspired by these four
benchmarks. Our benchmark times individual syscall latency, not
by benchmark, and adds directory depth tests and file size tests.

8 CONCLUSION
In this work, we evaluate the hooking overhead of Linux Security
Modules. We find while the hooking overhead for the LSM frame-
work is similar to what was reported in the previous evaluation,
the hooking overhead of SELinux is much alarming for certain
system calls (i.e., open and stat). We also evaluate and compare the
hooking overhead of five security modules, capabilities, SELinux,
AppArmor, SMACK, and TOMOYO. The performance impact of
module stacking is also investigated. In general, stacking one mod-
ule before another causes larger hooking overhead. We also find
stacking order can impact performance. Moreover, the impact of
the latency of policy enforcement of a security module on the end-
to-end latency of file accesses is studied. In summary, this work
provides comprehensive evaluation and analytic results for today’s
LSM and LSM-based security modules (on Ubuntu 18.04 with Linux
v5.3.0).

ACKNOWLEDGEMENT
This work was partially supported by ARO W911NF-13-1-0421
(MURI), NSFCNS-1814679, NSFCNS-1816282, andNSFCNS-2019340.

We would thank our reviewers for their their thoughtful comments
and efforts towards improving this work. We thank Michael Ferd-
man from Stony Brook University for sharing computer resources.

REFERENCES
[1] Vaggelis Atlidakis, Jeremy Andrus, Roxana Geambasu, Dimitris Mitropoulos, and

Jason Nieh. 2016. POSIX abstractions in modern operating systems: The old,
the new, and the missing. In Proceedings of the Eleventh European Conference on
Computer Systems. 1–17.

[2] Adam Bates, Dave Jing Tian, Kevin RB Butler, and Thomas Moyer. 2015. Trust-
worthy whole-system provenance for the linux kernel. In 24th {USENIX} Security
Symposium ({USENIX} Security 15). 319–334.

[3] Mick Bauer. 2006. Paranoid penguin: an introduction to Novell AppArmor. Linux
Journal 2006, 148 (2006), 13.

[4] Tim Chen, Leonid I Ananiev, and Alexander V Tikhonov. 2007. Keeping kernel
performance from regressions. In Linux Symposium, Vol. 1. 93–102.

[5] Jake Edge. 2019. LSM stacking and the future. https://lwn.net/Articles/804906/.
Last Accessed May. 21, 2020.

[6] Antony Edwards, Trent Jaeger, and Xiaolan Zhang. 2002. Runtime verification
of authorization hook placement for the Linux security modules framework. In
Proceedings of the 9th ACM Conference on Computer and Communications Security.
225–234.

[7] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David
Ziegler, Eddie Kohler, David Mazieres, Frans Kaashoek, and Robert Morris. 2005.
Labels and event processes in the Asbestos operating system. ACM SIGOPS
Operating Systems Review 39, 5 (2005), 17–30.

[8] Vinod Ganapathy, David King, Trent Jaeger, and Somesh Jha. 2007. Mining
security-sensitive operations in legacy code using concept analysis. In 29th
International Conference on Software Engineering (ICSE’07). IEEE, 458–467.

[9] Philippa Gardner, Gian Ntzik, and Adam Wright. 2014. Local reasoning for
the POSIX file system. In European Symposium on Programming Languages and
Systems. Springer, 169–188.

[10] Inc. Gentoo Foundation. 2019. Extended Verification Module. https://wiki.gentoo.
org/wiki/Extended_Verification_Module. Last Accessed May. 21, 2020.

[11] Toshiharu Harada, Takashi Horie, and Kazuo Tanaka. 2005. Towards a manage-
able Linux security. In Linux Conference, Vol. 2005.

[12] Trent Jaeger. 2008. Operating system security. Synthesis Lectures on Information
Security, Privacy and Trust 1, 1 (2008), 1–218.

[13] Trent Jaeger, Reiner Sailer, and Umesh Shankar. 2006. PRIMA: policy-reduced in-
tegrity measurement architecture. In Proceedings of the eleventh ACM symposium
on Access control models and technologies. ACM, 19–28.

[14] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M Frans Kaashoek,
Eddie Kohler, and Robert Morris. 2007. Information flow control for standard OS
abstractions. ACM SIGOPS Operating Systems Review 41, 6 (2007), 321–334.

[15] Peter Loscocco and Stephen Smalley. 2001. Integrating Flexible Support for
Security Policies into the Linux Operating System.. In USENIX Annual Technical
Conference, FREENIX Track. 29–42.

[16] Keith AMarill. 2004. Advanced statistics: linear regression, part II: multiple linear
regression. Academic emergency medicine 11, 1 (2004), 94–102.

[17] Richard McDougall and Jim Mauro. 2005. FileBench. URL: http://www. nfsv4bat.
org/Documents/nasconf/2004/filebench. pdf (Cited on page 56.) (2005).

[18] Larry WMcVoy, Carl Staelin, et al. 1996. lmbench: Portable tools for performance
analysis.. In USENIX annual technical conference. San Diego, CA, USA, 279–294.

[19] James Morris. 2008. Have you driven an SELinux lately. In Linux Symposium
Proceedings.

[20] James Morris, Stephen Smalley, and Greg Kroah-Hartman. 2002. Linux security
modules: General security support for the linux kernel. In USENIX Security
Symposium. ACM Berkeley, CA, 17–31.

[21] D Muthukumaran, T Jaeger, and V Ganapathy. 2012. Leveraging’choice’in autho-
rization hook placement. In 19th ACM Conference on Computer and Commumica-
tions Security.

[22] Divya Muthukumaran, Nirupama Talele, Trent Jaeger, and Gang Tan. 2015. Pro-
ducing hook placements to enforce expected access control policies. In Interna-
tional Symposium on Engineering Secure Software and Systems. Springer, 178–195.

[23] Ronit Nath, Saptarshi Das, Shamik Sural, Jaideep Vaidya, and Vijay Atluri. 2019.
PolTree: A Data Structure for Making Efficient Access Decisions in ABAC. In
Proceedings of the 24th ACM Symposium on Access Control Models and Technologies.
ACM, 25–35.

[24] Gian Ntzik. 2016. Reasoning about POSIX file systems. Ph.D. Dissertation. Imperial
College London.

[25] OpenBenchmarking.org. 2020. FS-Mark. https://openbenchmarking.org/test/
pts/fs-mark

[26] Donald E Porter, Michael D Bond, Indrajit Roy, Kathryn S McKinley, and Emmett
Witchel. 2014. Practical fine-grained information flow control using laminar.
ACM Transactions on Programming Languages and Systems (TOPLAS) 37, 1 (2014),
1–51.

[27] Xiang Ren, Kirk Rodrigues, Luyuan Chen, Camilo Vega, Michael Stumm, and Ding
Yuan. 2019. An analysis of performance evolution of Linux’s core operations. In
Proceedings of the 27th ACM Symposium on Operating Systems Principles. 554–569.

[28] Indrajit Roy, Donald E Porter, Michael D Bond, Kathryn S McKinley, and Emmett
Witchel. 2009. Laminar: Practical fine-grained decentralized information flow
control. In Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation. 63–74.

[29] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. 2004. Design
and Implementation of a TCG-Based Integrity Measurement Architecture. In
Proceedings of the 13th Conference on USENIX Security Symposium - Volume 13
(SSYM’04). USENIX Association, USA, 16.

[30] Casey Schaufler. 2008. The simplified mandatory access control kernel. White
Paper (2008), 1–11.

[31] Casey Schaufler. 2008. Smack in embedded computing. In Proc. Ottawa Linux
Symposium. 23.

[32] Casey Schaufler. 2018. Stacking & LSM Namespacing Redux. https:
//www.linuxplumbersconf.org/event/2/contributions/203/attachments/123/155/
Namespacing_and_Stacking_the_LSM-2018.pdf. Linux Plumbers Container MC
2018.

[33] Casey Schaufler. 2019. LSM: Module stacking for all. https://lwn.net/Articles/
786307/

[34] Stephen Smalley, Chris Vance, and Wayne Salamon. 2002. Implementing SELinux
as a linux security module. Technical Report.

[35] Ben Smith, Rick Grehan, Tom Yager, and DC Niemi. 2011. Byte-unixbench: A
Unix benchmark suite. Technical report (2011).

[36] Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul, and Donald E Porter. 2016. A
study of modern linux api usage and compatibility: What to support when you’re
supporting. In Proceedings of the Eleventh European Conference on Computer
Systems. 1–16.

[37] Steve Vandebogart, Petros Efstathopoulos, Eddie Kohler, Maxwell Krohn, Cliff
Frey, David Ziegler, Frans Kaashoek, Robert Morris, and David Mazieres. 2007.
Labels and event processes in the Asbestos operating system. ACM Transactions
on Computer Systems (TOCS) 25, 4 (2007), 11–es.

[38] Stephen R Walli. 1995. The POSIX family of standards. StandardView 3, 1 (1995),
11–17.

[39] Chris Wright, Crispin Cowan, James Morris, Stephen Smalley, and Greg Kroah-
Hartman. 2002. Linux security module framework. In Ottawa Linux Symposium,
Vol. 8032. 6–16.

[40] Kenji Yamamoto and Toshihiro Yamauchi. 2010. Evaluation of performance of
secure os using performance evaluation mechanism of lsm-based lsmpmon. In
Security Technology, Disaster Recovery and Business Continuity. Springer, 57–67.

[41] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. 2011.
Making information flow explicit in HiStar. Commun. ACM 54, 11 (2011), 93–101.

[42] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed M Azab, and
Ruowen Wang. 2019. PeX: a permission check analysis framework for Linux
kernel. In 28th USENIX Security Symposium (USENIX Security’19). 1205–1220.

[43] Mimi Zohar. 2008. Integrity: Linux Integrity Module(LIM). https://lwn.net/
Articles/287790/

https://lwn.net/Articles/804906/
https://wiki.gentoo.org/wiki/Extended_Verification_Module
https://wiki.gentoo.org/wiki/Extended_Verification_Module
https://openbenchmarking.org/test/pts/fs-mark
https://openbenchmarking.org/test/pts/fs-mark
https://www.linuxplumbersconf.org/event/2/contributions/203/attachments/123/155/Namespacing_and_Stacking_the_LSM-2018.pdf
https://www.linuxplumbersconf.org/event/2/contributions/203/attachments/123/155/Namespacing_and_Stacking_the_LSM-2018.pdf
https://www.linuxplumbersconf.org/event/2/contributions/203/attachments/123/155/Namespacing_and_Stacking_the_LSM-2018.pdf
https://lwn.net/Articles/786307/
https://lwn.net/Articles/786307/
https://lwn.net/Articles/287790/
https://lwn.net/Articles/287790/

9 PERFORMANCE OVERHEAD OF LSM-BASED SECURITY MODULES

open open
at

rena
me crea

t
mkd

ir
rmd

ir
unli

nk
sym

link chm
od stat fstat

at read writ
e copy

0

5 · 10−2

0.1

0.15

Re
gr
es
si
on

Ra
te Capbility SELinux AppArmor SMACK TOMOYO

Figure 6: Performance Overhead of LSM-based Security Modules. Lower is better. Tested with directory depth of one.

10 PERFORMANCE OVERHEAD OF STACKING ORDER

op
en

op
en
at

ren
am
e
cre
at
mk
dir
rm
dir
un
lin
k

sym
lin
k

ch
mo
d sta

t
fst
ata
t
rea
d
wr
ite co

py
0

0.2

0.4

0.6

0.8

Re
gr
es
si
on

Ra
te SELinux+CAP

CAP+SELinux

(a) SELinux and Capability module.

op
en

op
en
at

ren
am
e
cre
at
mk
dir
rm
dir
un
lin
k

sym
lin
k

ch
mo
d sta

t
fst
ata
t
rea
d
wr
ite co

py
0

5 · 10−2

0.1

0.15

Re
gr
es
si
on

Ra
te AppArmor+CAP

CAP+AppArmor

(b) AppArmor and Capability module.

op
en

op
en
at

ren
am
e
cre
at
mk
dir
rm
dir
un
lin
k

sym
lin
k

ch
mo
d sta

t
fst
ata
t
rea
d
wr
ite co

py
0

0.2

0.4

0.6

0.8

Re
gr
es
si
on

Ra
te SMACK+CAP

CAP+SMACK

(c) SMACK and Capability module.

op
en

op
en
at

ren
am
e
cre
at
mk
dir
rm
dir
un
lin
k

sym
lin
k

ch
mo
d sta

t
fst
ata
t
rea
d
wr
ite co

py

2−5

20

25

Lo
g
of

Re
gr
es
si
on TOMO+CAP

CAP+TOMO

(d) TOMOYO and Capability module.

Figure 7: Overhead of Different Stacking Orders of LSM-based Security Modules. In regression rate, the lower the better. Tested with directory
depth of one. (d) TOMOYO shows significant negative performance overhead especially, as there lacks cache for accesses, while SELinux,
AppArmor and SMACK implement their own cache layers.

11 PERFORMANCE OVERHEAD OF INTEGRITY MEASUREMENTS

open open
at

rena
me crea

t
mkd

ir
rmd

ir
unli

nk
sym

link chm
od stat fstat

at read writ
e copy

0

0.5

1

Re
gr
es
si
on

Ra
te

SELinux-audit-off SELinux-audit-on SELinux-EVM SELinux-IMA SELinux-EVM-IMA

Figure 8: Overhead Introduced by Integrity Measurements in LSM-based Security Modules, in regression rate, taking SELinux as an example.
Tested with directory depth of one.

	Abstract
	1 Introduction
	2 Background
	3 Overview
	4 Methodology
	4.1 Extending LMBench
	4.2 Tunable Security Module for Latency Modeling
	4.3 Limitations

	5 Evaluation Results
	5.1 Historical Evaluation Revisited
	5.2 Impact of Hook Placement on File Accesses

	6 Analysis of Results
	7 Related Works
	8 Conclusion
	References
	9 Performance Overhead of LSM-based security modules
	10 Performance Overhead of Stacking Order
	11 Performance Overhead of Integrity Measurements

