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ABSTRACT

IaaS clouds offer customers on-demand computing resources such
as virtual machine, network and storage. To provision and manage
these resources, cloud users must rely on a variety of cloud ser-
vices. However, a wide range of vulnerabilities have been identified
in these cloud services that may enable an adversary to compromise
customers’ computations or even the cloud platform itself. Using
the motivation for adding mandatory access to commercial operat-
ing systems, we argue for the development of a secure cloud oper-
ating system (SCOS) to enforce mandatory access control (MAC)
over cloud services and customer instances. To better understand
the concrete challenges of building a SCOS, we examine the Open-
Stack cloud platform from two perspectives: (1) how attacks propa-
gate across cloud services and (2) how adversaries leverage vulner-
abilities in cloud services to attack hosts. Using this information,
we review the application of three MAC approaches employed by
4AlJsecuredAl commercial systems to evaluate their practical ef-
fectiveness for controlling cloud services. While MAC enforce-
ment can improve security for cloud services, several threats re-
main unchecked. We outline a set of additional security policy
goals that a SCOS must enforce to control threats from potentially
compromised cloud services comprehensively. While we do not
actually construct a SCOS in this paper, we hope that this study
will initiate discussions that may lead to practical designs.
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1. INTRODUCTION

Cloud computing platforms rely on a variety of cloud services to
manage the execution of customer instances. For example, in the
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OpenStack cloud platform [42], cloud services authenticate cus-
tomers, process customer requests to run and update compute in-
stances, manage storage resources, schedule compute resources,
etc. Such services often must collaborate to process a request, so
OpenStack also has a central database for system state and a mes-
saging service for communication among services.

Recently, a wide variety of vulnerabilities have been identified in
these cloud services, ranging from authentication bypass [13, 12,
14] to denial-of-service [25, 23, 24] to failed input validation [33,
32, 31]. These vulnerabilities are particularly problematic because
the OpenStack platform appears to assume complete trust among
services. Thus, a compromise in any one service may impact the
integrity of other cloud services. Further, compromised cloud ser-
vices can launch a variety of programs as sudo “root” processes,
enabling adversaries to install rootkits on cloud service hosts.

While cloud platform vendors take countermeasures to protect
cloud services from attack and protect the host running cloud ser-
vices, current approaches are incomplete. In OpenStack, the goal is
to authorize requests before forwarding them to services. However,
each request is converted to several method calls among services,
and there is no validation that each method call invoked is safe. Fur-
ther, the trust among services means that such attacks can be easily
propagated through the service network. Also, cloud vendors are
now careful to run cloud services under limited user identities to
protect the hosts from attack by compromised services. For exam-
ple, cloud services deployed as web applications (i.e., Horizon) run
under web server identities (e.g., Apache) and other services run
under service-specific user identities. However, many cloud ser-
vices have sudo privilege and/or use other processes that run with
full privilege. Thus, a variety of methods are available to an adver-
sary to leverage vulnerabilities in a cloud service to launch a local
exploit.

Researchers have mainly focused their attention on attacks orig-
inating from the hosted computing. For example, research in hy-
pervisors aims to protect one customer from another when the host
operating system be compromised [62]. Also, researchers have ex-
plored a variety of attacks that leverage covert or side channels
on co-located processing [47, 63, 55]. Commercial vendors have
proposed “cloud operating systems” that mainly focus on how re-
sources are virtualized among customer computing [16, 17]. While
security is not the primary goal in most cases, these operating sys-
tems often offer features that aim to enhance security by protecting
customer data on hosts, reducing the amount of trusted code, etc.
However, these operating system projects do not focus on the big-
ger picture that includes cloud services.

In 1998, Loscocco et al. published a paper called the “The In-
evitability of Failure” [35], which highlighted the problem of hav-
ing application processes manage the security of a system. At the



time, the important security decisions in commercial systems were
made by a variety of applications: authenticating users, configur-
ing access control, installing kernel modules, and launching privi-
leged processes. As application programmers tended to add secu-
rity mechanisms as an afterthought based on the specific vulnerabil-
ities detected, application security mechanisms are often ad hoc and
inconsistent among applications. Further, remote adversaries were
often able to access and exploit vulnerabilities in these applications,
leading to compromise of the entire host. Loscocco et al. argued
for fundamental security mechanisms, such as access control, to
be implemented by a “secure operating system” that would govern
applications. The idea is that the secure operating system should
implement mandatory access control (MAC) enforcement [1] to
ensure that a system-defined access control policy is correctly en-
forced across all applications.

We posit that a similar situation is occurring in cloud comput-
ing. In cloud computing, the cloud services, like applications pre-
viously, are responsible for the security decisions over cloud re-
sources. Similarly, a variety of vulnerabilities have been discovered
in cloud services. Cloud services trust one another completely, en-
abling adversaries to propagate vulnerabilities across services. Fi-
nally, cloud services have powerful permissions on their hosts, en-
abling a compromised cloud service to take over the entire host. As
a result, the cloud resources and cloud platform are both vulnera-
ble to cloud services in much the same way that the host operat-
ing system was vulnerable to application processes as described by
Loscocco et al..

In this paper, we argue for the development of a “secure cloud
operating system” (SCOS) to enforce mandatory access control
over cloud services and customer instances. We examine the pos-
sible designs for a SCOS from three perspectives. First, a SCOS
must enforce a mandatory access control policy that protects the
cloud resources and cloud platform (i.e., the SCOS) from compro-
mise. As a result of the Loscocco et al. paper, commercial operat-
ing systems were enhanced with security mechanisms to enforce
mandatory access [61, 60, 52, 38], but these mechanisms were
used to enforce a variety of policies. So, in Section 4 we review
the application of mandatory access control approaches employed
by “secure” commercial systems to evaluate their practical effec-
tiveness. Second, a SCOS must be able to enforce these policies
and ideally address weaknesses of previous MAC policy models.
In Section 5, we outline a strawman design for a SCOS that mod-
els MAC policies over collections of protection domains associated
with customers and requests. While we do not actually construct a
SCOS in this paper, we hope that this study will initiate discussions
that may lead to practical designs. Third, it may be argued that
despite the addition of MAC security mechanisms in commercial
systems, we still see a wide variety of vulnerabilities. Thus, in Sec-
tion 6 we enumerate ideal policy goals and highlight the benefits
of the SCOS relative to those goals and the challenges in achieving
those goals.

To better understand the concrete challenges of building a SCOS,
we examine these questions in the context of the OpenStack cloud
platform. We study the OpenStack cloud platform from two per-
spectives. First, we examine how customer requests are processed
by the OpenStack services to collect the expected interactions among
services. Second, we study a trace of the permissions actually used
by an OpenStack deployment to examine the efficacy of different
mandatory access control approaches. Using this data, we produce
estimates about the MAC policies that would result from three dif-
ferent policy models employed in commercial systems. Our find-
ings are similar to those found for the commercial MAC enforce-
ment approaches on hosts [15]: a significant number of services

cannot be completely confined, so current MAC enforcement alone
does not close the entire attack surface.

2. BACKGROUND

In this section, we motivate the idea that a cloud platform is
analogous to classical multiuser systems across a distributed sys-
tem using the OpenStack cloud platform as example. Other cloud
platforms, such as OpenNebula [41], CloudStack [2] and Eucalyp-
tus [26] are designed in a similar way.

2.1 Background on OpenStack

OpenStack is an open-source, cloud software stack for building
public or private IaaS clouds [42]. It aims to enable customers
to configure, run, and manage virtualized computations, called in-
stances, with minimal effort and maximal scalability. To do this,
OpenStack provides customers with the ability to launch virtual
machines (VMs) on cloud nodes managed by OpenStack. Cus-
tomers have full flexibility for deciding how to configure their Open-
Stack instances by choosing the system image (e.g., operating sys-
tem distribution), choosing applications to launch in the instance,
and uploading their application data to the instance by submitting
requests using the OpenStack API [43].

OpenStack embraces a modular architecture of services for pro-
cessing customer requests as shown in Figure 1. An API service
converts requests to the OpenStack API into method calls that other
services execute. Services communicate by submitting method calls
through a messaging system that uses the Advanced Message Queue
Protocol (AMQP). Typical OpenStack services are stateless. Any
state or configuration (e.g., users, credentials, and instances) nec-
essary to execute a method call must be retrieved from a central
database that only the OpenStack services are supposed to access.
Services are authorized to perform privileged operations using sudo.
By using sudo, only some programs invoked by services run with
full privilege, limiting the attacks available to adversaries. How-
ever, some root vulnerabilities that exploit sudo processes have
been reported (e.g., [20]).

Customers and cloud administrators can communicate with the
network-facing cloud services through either a web-based interface
called OpenStack dashboard or by directly accessing the Open-
Stack API Service (nova—api) which is a RESTful web service
endpoint. All requests are forwarded to the OpenStack API service
as shown in Figure 1. Using the OpenStack API, customers may
use services to provision (setup) and manage (update) their cloud
instances. All other operations use a separate network and do not
involve the cloud services. Thus, the cloud services are not per-
formance critical, and in OpenStack, the compute-service assumes
that only one request is being processed on an instance at a time
(i.e., no synchronization to prevent race conditions).

To better illustrate the modular design of OpenStack and various
OpenStack services, we show a simplified view of how a customer
request is processed by OpenStack in Figure 1. We will focus on
request to launch an instance, which is just an example. There are
over 100 OpenStack request APIs and OpenStack processes, which
operate in a similar way. In order to launch an instance, a cus-
tomer submits a request (step 1 in Figure 1) via either the dash-
board (web interface) or by directly accessing nova—api service
(through nova CLI). The nova-api requests authentication of the
customer and check if the customer is authorized to create a new in-
stance by consulting the Keystone service (step 2). After autho-
rization, the nova—api receives the request, it creates a database
entry describing the instance (step 3) and sends the handler to the
scheduler (step 4). The scheduler is an OpenStack service named
nova-scheduler. The scheduler selects a specific cloud node
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Figure 1: Illustrating the OpenStack modular service architec-
ture and communications necessary to create a new instance.

running a nova-compute service to host the new instance based
on predefined scheduling policies. The scheduler submits a request
(step 5) to create a new instance containing parameters that define
the new instance, such as a base image, instance type and so on.
Based on these parameters, the nova-compute service will then
retrieve the base image, network configuration, and other resources
necessary to launch the image as specified from the associated ser-
vices, such as the image, volume, and network services (step 6).

2.2 OpenStack Vulnerabilities

A wide variety of vulnerabilities have been discovered in Open-
Stack services. In this section, we review these vulnerabilities to
demonstrate that although few OpenStack services are directly ac-
cessible to remote adversaries and run on a separate network from
customer instances, the discovered vulnerabilities enable compro-
mise of services, propagation of attacks to other services, and even
compromise of the host operating systems.

One fundamental countermeasure cloud platform vendors take
to protect cloud services is network isolation. The network used
by cloud services is isolated from the network used by instances,
and most of cloud services are not addressable from the Internet.
However, in order to serve customers, cloud services such as API
service (e.g., nova-api, neutron-server) and authentication service
(e.g., Keystone) must be made public facing, thus accessible to re-
mote adversaries. Many vulnerabilities have been identified in such
public facing cloud services. One reason is due to the large size and
complexity of the OpenStack API.

Such attacks can easily propagate through the network, even to
services that do not face the public network, because services fully
trust one another. As example, the nova—-compute service ac-
cepts file paths from nova-api service specifying locations to up-
load data to an instance. However, if the file path is not validated
by the nova-compute service, it can cause a directory traversal at-
tack [20, 21, 22] and permit the nova-api service to overwrite
arbitrary files on the compute node. As another example, Open-
Stack object storage service (SWIFT) uses the pickle Python

module to load metadata from the internal network which is as-
sumed to be trusted. Since the pickle Python module allows
its AAIJpickledaAl data to be executed, attackers could escalate
their privileges from network access to arbitrary code execution on
SWIFT nodes [53].

Vulnerabilities in cloud services may further allow adversaries
to gain control over the hosts running those services. For exam-
ple, multiple directory traversal vulnerabilities were found in the
nova-api service, allowing attackers to overwrite arbitrary files
on service host. As another example, OpenStack image service
(Glance) executes commands constructed based on metadata of im-
ages uploaded by cloud users without properly validating it. At-
tackers could then execute arbitrary commands on the Glance ser-
vice host by crafting the metadata of an image and uploading it
to the cloud [28]. Some of these vulnerabilities may be leveraged
to compromise the entire host because many of the cloud services
have sudo privilege and/or use other setuid processes that run
with full privilege. For example, the directory traversal vulnera-
bility [20, 21, 22] discussed above was found in a function where
nova-compute tried to write files on the host via sudo. The con-
sequences are catastrophic, because arbitrary files on the compute
node, even those ones owned by root, could be overwritten.

2.3 Cloud as a Multiuser System

We observe that the cloud ecosystem that is evolving in Open-
Stack (and likely in other cloud platforms) is starting to resemble a
traditional multiusers system, albeit one which is distributed across
several hosts. In a traditional multiuser system, multiple users can
utilize the system resources to execute a common set of applica-
tion programs. To keep users from interfering with one another,
each user is given her own storage, typically in a file system sub-
tree rooted at her home directory. Multiuser systems also run sev-
eral system applications that have privileges that typical users do
not. In particular, these system applications may perform vital and
security-sensitive operations for the system, so their compromising
would lead to a compromised system.

Just this problem befell multiuser systems in the late 1990s and
early 2000s as one system application after another was compro-
mised several times with large-scale impact. While vulnerabilities
were soon patched, it was not long before the next vulnerability
was exploited and the cycle was repeated. More significant coun-
termeasures were necessary. One such proposed countermeasure
was to extend commercial operating systems with mandatory ac-
cess control (MAC) enforcement [1]. The main goal was to pro-
vide a barrier that adversaries could not easily circumvent if they
compromised a single system application. A variety of MAC en-
forcement mechanisms were introduced, particularly for the Linux
operating system [40, 44, 3, 34, 29, 39]. The motivation for such
efforts was captured in the paper by Loscocco ef al. according to
which, commercial multiuser systems in the late 1990s were prone
to compromise because of their heavy dependence on system ap-
plications to manage security [35].

Current cloud platforms parallel traditional multiuser systems in
several ways. First, cloud services make all the decisions regarding
the security of cloud resources. They authenticate customers and
authorize their use of cloud resources. Second, such security deci-
sions are distributed among the services. Keystone controls access
to the compute service, the network service controls network re-
sources, and a variety of storage services manage resource access.
Third, there is no system security policy that governs how the cloud
operates in case some services are compromised. Finally, although
services are not root (admin) processes, they essentially have full
privilege over cloud resources. These privileges can be exploited
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Figure 2: Method calls and caller-callee relationships among
OpenStack services.

to launch a variety of attacks against the hosts in which they run.
There is mutual trust among services, so any service will respond
to any method call from any other service.

It appears that, the OpenStack platform relies too heavily on net-
work controls to protect its services, allowing an adversary free rein
to breach those defenses, as was the case in the late 1990s. As a re-
sult, we argue that it is time to explore the impact of leveraging
MAC enforcement for protecting cloud services. To do this, we
propose to estimate the MAC policies for the most common MAC
policy models applied in commercial systems. We collect traces
of method calls invoked by services, as well as, system calls that
are issued by cloud services to process method calls. We use these
traces as input to estimate the MAC policies. We then propose a
strawman architecture for a “secure cloud operating system” and
examine the impact of this architecture on the solution to some dif-
ficult security enforcement problems.

3. EXPERIMENTS

We designed a set of experiments to better understand the two
problems identified above: (1) how attacks propagate across cloud
services and (2) how adversaries leverage vulnerabilities in cloud
services to attack hosts. For the first problem, we investigated inter-
actions among cloud services by collecting the method calls gener-
ated to perform customer requests (e.g., launching a new instance).
For the second problem, we investigated how the cloud services
use sudo privileges. In both cases, we collected such informa-
tion using a dynamic analysis, we ran a variety of common cloud
operations (boot, delete, suspend, migrate, get-console and create-
network) on an OpenStack cloud and collected the traces of system
calls executed. The testbed cloud is built from OpenStack Icehouse
release with compute core (nova services) and network core (neu-
tron services) installed.

For the first experiment, we studied the interactions between
cloud services when performing certain cloud operations. Cloud
services interact with each other in two ways, by sending messages
over a messaging system or by submitting HTTP(S) requests. Ei-

ther way, the interactions can be viewed as command invocations
where the caller service will send a command call, including a com-
mand name and arguments, to the callee service and the callee ser-
vice will execute that command. The callee service may or may
not return responses to the caller services. Figure 2 shows a call
graph that captures interactions among cloud services for the cloud
operations we performed. Based on the graph, we make the fol-
lowing initial observations. First, not all cloud services need to
interact with each other. For example, nova-api service does not
need to talk to the image service (glance—-x*) or volume service
(cinder—x) directly. Second, even if two cloud services need to
communicate, not all methods that one service supports will be in-
voked by the other service. For example, from the graph we can see
that two nova—compute services can send method calls to each
other. However, the only scenario that two compute services need
to talk is when instances are being migrated.

For the second experiment, we investigated the system calls that
cloud services invoked on their hosts, in order to study how ad-
versaries can leverage service vulnerabilities to compromise hosts.
For example, an attacker could turn a successful attack on a service
into a persistent threat on the host, which would last across ser-
vice updates and even host reboots. We collected system call traces
from a variety of cloud services, while performing cloud operations
mentioned above. We want to answer the following questions: (1)
which cloud service used additional privileges than a normal ap-
plication in order to run? (2) If a cloud service requires additional
privileges, what are they and how are they being used?

Results are shown in Table 1. For each cloud operation per-
formed, the first number in the table is the total number of system
calls issued by the service, and the second is number of system calls
issued via sudo. '

Our first finding is that only few cloud services require root
privileges to run. As shown in the Table 1, the majority of
cloud services such as nova—-api, neutron-server, and
nova-conductor do not require root privilege to process the
customer requests. These services do not manage instances or in-
stance networks directly; they generally provide support for the
cloud infrastructure, such as handling user requests, accessing the
database, and so on. On the other hand, services that directly man-
age instances and instance networks, such as nova—compute and
neutron-plugin-agent require root privilege, as they need
to obtain and manage host resources.

Another thing we noticed is that only certain cloud opera-
tions require root privilege. Take nova-compute as an exam-
ple. It requires root privilege only for some cloud operations
(e.g., launching, destroying, or migrating instances), while not
for others (e.g., suspend, get-console). We performed a simple
code analysis of nova—compute service, and found that 46 out
of 75 of its methods involve exercising root privilege>. How-
ever, the reasons why programs need to be executed via sudo
are diverse. For example, nova-compute sets up the fire-
wall for instances by modifying iptables of the host. This is
done through Linux iptables tools (e.g., iptables—-save and
iptables-restore), which are only accessible by root. As an-
other example, neutron-plugin-agent sets up OVS bridges
to connect the VNIC of instances to the physical network via Open
vSwitch tools (e.g., ovs—-vsctl and ovs-ofctl). These tools
can only be executed by root as well.

!Cloud services perform synchronizing tasks periodically. There-

fore the number of system calls measured is greater than the actual

number of system calls for processing the method call.

2 . .
Interestingly, there are 75 methods of nova-compute in total,

but only 64 of them are actually being used by other cloud services.



Table 1: System calls issued on different cloud operations

boot delete suspend migrate get-console create-network
cloud service total sudo total total | sudo total sudo total | sudo | total sudo

nova-api 21,324 0 13,025 11,874 0 28,437 0 10,735 0 125 0
nova-conductor 7,214 0 4,361 1,976 0 9,324 0 1,106 0 236 0
nova-consoleauth 278 0 120 133 0 176 0 202 0 105 0
nova-compute 120,503 | 25,861 | 53,168 | 10,156 | 17,389 0 193,832 | 37,862 979 0 568 0
neutron-server 4,046 0 3,363 1,331 0 10,115 0 996 0 6,073 0
neutron-agents (network controller) 1,365 0 1,225 850 0 2,041 0 1,068 0 2,231 0
neutron-plugin-agents (compute node) 195,034 | 34,351 | 182,826 | 31,026 153 0 369,275 | 67,252 144 0 156 0

neutron-plugin-agents (network controller) | 32,528 12,721 22,175 12,013 136 0 56,924 | 27,467 121 0 25,361 | 11,075

However, there are cases where root privilege is not necessary
but still used by a cloud service. For example, before spawning an
instance, nova—-compute will upload customer-specific data to
the instance (e.g., customer’s SSH keys) by writing the data to the
instance image. In this case, no root privilege is necessary as both
the data and the instance image are accessible to nova—-compute.
Nevertheless, we found that nova—compute still asserts root
privilege to perform this operation. What nova-compute does
is to first mount the instance image to the local filesystem of the
host, and then writes data to mounted directory. Mount can only be
executed via sudo and the data write also requires root privilege
because after the mount, the target directory within the instance
image (e.g., /root/.ssh) may also be only root accessible. The con-
sequences of unnecessary root privilege can be catastrophic, as now
adversary can easily launch a root exploit against the host leverag-
ing vulnerabilities in the services (e.g., directory traversal [20]).

4. MANDATORY ACCESS CONTROL

In this section, we examine the methods that commercial oper-
ating system vendors have employed to enforce mandatory access
control (MAC). Then we estimate the MAC policies that should
be applied to cloud services using the traces of the previous sec-
tion. Commercial operating system distributors have mainly em-
ployed three approaches to mandatory access control: multi-level
security [7] (MLS), least privilege [48], and targeted least privilege
(typically used for network-facing daemons). The challenge faced
by each approach is to prevent all unsafe operations while permit-
ting operations required by the services. As we see, while signifi-
cant number of vulnerabilities can be blocked by each option, how
they deal with conflicts between security and functionality is criti-
cal to how effective they are.

4.1 Multi-level Security

The first MAC policy models that were adopted by commercial
systems were based on the principle of multi-level security (MLS).
A MLS policy model enforces two security properties: (1) the sim-
ple security property and (2) the *-security property. The simple
security property restricts read operations by subjects, while the *-
security property restricts write operations by subjects. The nature
of the restriction depends on the policy model, but each MLS policy
model enables enforcement of both properties.

The most well-known MLS policy models are Bell-La Padula [7]
and Biba [8] models, which protect data secrecy and integrity, re-
spectively. For both policy models subjects and objects are associ-
ated with a lattice of security levels [19]. Bell-La Padula model
aims to protect data secrecy. Its simple-security property pre-
vents subjects from reading objects of a higher security (secrecy)
level (no “read-up”) and its *-security property prevents subjects
from writing object of a lower security (secrecy) level (no “write-
down”). On the other hand, Biba integrity model protects data in-
tegrity by enforcing a simple-security property that prevents sub-

jects from reading objects of a lower security (integrity) level (no
“read-down”) and a *-security property that prevents subjects from
writing objects of a higher security (integrity) level (no “write-up”).
Note that the lattices of security levels for Bell-La Padula and Biba
policies may be independent.

Multi-level security has been applied in commercial operating
systems since the Multics system in the 1970s [18]. Since then a
few commercial operating systems have also been enhanced to en-
force MLS policies [52, 6, 49], although these systems only enforce
secrecy protection (i.e., Bell-La Padula only). Other systems that
enforce mandatory access control have been extended to enforce
MLS as well, such as SELinux [51]. Researchers have explored
methods to extend these MLS systems with Biba enforcement fea-
tures [37, 50], but they have not been adopted in practice. Microsoft
did introduce a limited form of the Biba integrity model, the Biba
ring policy [8], in their User Account Control [38] (UAC). The
Biba ring policy (and UAC) only enforces the *-security property,
so processes may still read untrusted input.

To estimate the MLS policy for the cloud services, we leverage
the method call graph in Figure 2. We find that it will be diffi-
cult to enforce either secrecy or integrity in the current OpenStack
system. Regarding secrecy, each of the services processes data
from all clients, so the operating system could not enforce Bell-
La Padula. Note that the services are stateless, so in theory Bell-La
Padula could be enforced only if the services are associated with
customers and/or requests as we discuss in the following sections.
Regarding integrity, it is difficult to pinpoint a practical Biba in-
tegrity policy for the OpenStack system. As shown in Figure 2,
the nova-api service receives untrusted customer requests, but
also all the flows necessary to implement requests originate from
the nova—api service. Presumably, the assumption is that the
nova-api service is trusted, but it suffers from several vulnera-
bilities and propagates untrusted inputs that may enable adversaries
to reach input validation vulnerabilities. If it is not trusted then
nova-compute, Keystone, and other services must be trusted to
protect themselves from untrusted input.

These observations are consistent with what was observed in tra-
ditional multiuser systems [35], where systems often run privileged
processes that must communicate with unprivileged processes, pro-
viding an avenue for data leakage and use of untrusted data. Even
half-measures, such as Windows UAC [38], has been proved too re-
strictive, at least on initial release. To enable privileged processes
to interact with untrusted parties, MLS systems permit some privi-
leged subjects to be designed as trusted readers and writers. Such
subjects (and the processes run as these subjects) run without the
restrictions of MLS. Thus, processes in MLS systems are either
contained or trusted to run with no containment. Often many sub-
jects have to be designated as trusted for commercial systems to run
properly. In SELinux over 30 subjects were deemed trusted regard-
ing MLS for secrecy [51]. There are no MLS integrity protections
in SELinux or other MLS security mechanisms in commercial sys-



tems. Further, we rely on isolation to protect customer instances
from one another’.

4.2 Least Privilege

To address the limitations of MLS enforcement, researchers be-
gan to explore alternative MAC policy models based on the no-
tion of least privilege. Least privilege was included as one of the
principles of computer security in the seminal paper by Saltzer and
Schoeder [48], where they stated that “Every program and every
user of the system should operate using the least set of privileges
necessary to complete the job.” The main benefit of least privilege
is that if the subjects truly have all the permissions that they need
to operate correctly, then there is no need for “trusted” subjects that
circumvent the policy. However, least privilege does not enforce
any well-defined security property, as MLS policy models do. That
is, some of the permissions that a subject may require to function
may also be leveraged by adversaries to attack the subject.

The first MAC policy model designed to enforce least privilege
was the type enforcement model [9], which has variants [S]. Type
enforcement associates subjects and objects with labels, as is the
case in MLS policy models, but the permissions available to sub-
jects may be assigned flexibly, enabling the specification of per-
missions independently for each subject. A least privilege policy is
typically configured by dynamic analysis of each subject [45, 39,
4]. First, each object is assigned a label. Then, each subject is
assigned a label and starts running. The subject label is granted
a permission to perform an operation on an object label when dy-
namic analysis shows that the subject performed that operation on
an object of that object label.

In commercial operating systems, least privilege MAC policies
are enforced by the SELinux module [36]. Instead of running priv-
ileged processes with full privilege (e.g., as “root”), each of these
processes are associated with a subject that limits those processes
to a set of least privilege permissions. Thus, if an adversary com-
promises such a process, the permissions available to propagate the
attack (e.g., install a rootkit) are limited. While SELinux is still
supported by several Linux distributions, the true least privilege
policy, called the reference policy [54], is only supported by Red-
Hat. Others focus on targeted security as described below.

Using the experimental data in Table 1, we can see that several
subjects do not perform sudo operations. Thus, presumably we
could define a least privilege policy that would restrict these pro-
cesses from executing privileged processes via sudo. Of course,
other attack vectors may be present in the system, including launch-
ing of setuid processes and modifying resources accessible to priv-
ileged processes. Thus, further study is required to identify if any
of these permissions are used and assess the safety of such permis-
sions.

The main concern with SELinux policies is their complexity.
In theory, the upper bound on the number of policy rules in an
SELinux policy is the sum of the number of files accessed for each
subject in the system. For a policy governing complete Linux OS
distributions, the number of policy rules is order of tens of thou-
sands. However, if we only aim to govern services, we would need
policies for each service and each sudo and setuid process in-
voked by those services. In OpenStack, for example, a total of
61 programs are launched by compute services via sudo and 25
by neutron services. Depending on the operations performed, these
programs may be executed multiple times with different parameters
(e.g., ovs—vsctl). A brief code analysis shows that the number

3MLS does not address covert information flows, so additional
mechanisms are necessary to prevent data leakage due to covert
channels.

of sudo processes that can be invoked by cloud services is approx-
imately 300, counting all cloud operations.

4.3 Targeted Security

An alternative to maintaining least privilege policies for all the
subjects in a system is to focus on blocking the most likely attack
paths in the system. This is the aim of the targeted security MAC
policies. The goal of a targeted policy is to confine those subjects
accessible to adversaries to prevent kernel compromise [39].

In principle, a targeted policy requires identification of the sub-
jects targeted for confinement and identification of permissions that
could enable kernel compromise. To confine the targeted subjects,
the targeted subjects must not be granted that would enable ker-
nel compromise should those targeted subject themselves be com-
promised. Identifying targeted subjects depends on the threats of
concern, such as remote attacks. Subjects accessible to remote ad-
versaries are the typical targeted subjects. Identifying the set of
permissions that would enable kernel compromise involves enu-
merating the set of permissions that could impact kernel integrity,
such as the kernel memory, modules, etc. However, we may also
want to protect other subjects that are accessible to adversaries that
also have these permissions from our targeted subjects.

The targeted policy concept was first employed in a commer-
cial system by the AppArmor Linux module [39]. The AppArmor
policy identifies network-facing daemons as the targeted subjects.
Since network-facing daemons are accessible to remote parties and
historically have run with root privileges, it certainly makes sense
to explore confinement of those subjects. A SELinux module was
also developed to enforce a targeted policy. Chen et al. compared
two targeted policies [15] by computing the attack paths result-
ing from these policies, including the attack path for a remote at-
tacker to install a rootkit. They found that AppArmor had 3 attack
paths of length one (i.e., compromise one process, which then in-
stalls rootkit), whereas SELinux had 6 of such length-one paths. In
some cases, the programs accessible to adversaries were not cho-
sen as targets, but in other cases, the daemon simply needed unsafe
permissions to run (sshd needs kernel module installation permis-
sions). Other methods, such as privilege separation [46], may re-
strict adversary access to such permissions, but the attack path is
still present. We examine other defenses in the next section.

We utilize the experimental data in Table 1 and the method call
graph in Figure 2 for estimating the targeted policy for Open-
Stack services. First, from the method call graph we see that
the only network-facing process is nova-api, so it is our targeted
subject. However, nova—api does not have any sudo invoca-
tions. Thus, our impression, without studying other host attack
paths, is that nova—api can be confined on its host. However,
as we saw in Section 2.2, some root vulnerabilities were caused
by nova—-api propagating malicious requests to other services
(nova-compute). Thus, the targeted policy is only a first layer
of defense when compared to a full least privilege policy, but the
targeted policies may be far more manageable.

5. STRAWMAN SCOS ARCHITECTURE

Figure 3 shows a strawman architecture for a SCOS where
each cloud node runs an element of the SCOS. Like any operat-
ing system, the SCOS manages a set of abstractions for cloud re-
sources, such as instances (processes), volumes (storage), and net-
work (IPC). Also, the SCOS would also provide mechanisms for
scheduling use of these resources and securing access to these re-
sources. In theory, the SCOS would support an API analogous to
the POSIX API, except that this API would be specified in terms of
the SCOS abstractions.
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Figure 3: A strawman architecture for Secure Cloud Operating
System (SCOS).

Although this strawman SCOS is relatively intuitive on the sur-
face, a few key decisions are evident on a closer examination.
This SCOS assumes that instances and services are protection do-
mains [48], launched and controlled using the same SCOS mech-
anisms. Also, the SCOS spans all the hosts in a cloud, but the
ability to confine processing by customer and/or request inspires
the construction of temporary domain collections that partition the
protection domains. We briefly discuss the challenges inherent in
making these horizontal and vertical cuts below.

We have purposely underspecified the SCOS, but it should be
clear that the SCOS API should not refer (directly) to low-level ab-
stractions, such as virtualizing a physical resource or mounting a
file system. Such low-level operations will be performed by the
SCOS internally, where API provides access to the cloud abstrac-
tions built from these resources. However, as we have seen in Sec-
tion 3, currently cloud services implement method calls through a
combination of unprivileged and privileged processes launched by
the services, which has caused the line between the OS and ser-
vices to be blurred in current systems. Thus, the SCOS strawman
proposes that a clear privilege separation [46] be made between the
privileged service processing that operates on OS and virtualiza-
tion resources and unprivileged processing that operates on cloud
resources.

To illustrate how the proposed architecture works, we examine
how the request for uploading a customer’s SSH key to an instance
image would change. Instead of having the service mount the in-
stance file system on the host (a privileged operation), the SCOS
would provide the service with an API over an instance file vol-
ume and individual resources in that volume. If the service has the
permission (for the request) for accessing the customer’s instance,
the instance’s volume, and the volume’s key file, then the operation
will be authorized. The SCOS chooses how to make the volume
available to the service in a secure manner, separating the privi-
leged operations into the SCOS.

A challenge in cloud computing is whether a resource is man-
aged in a centralized or decentralized manner. In OpenStack, a
central database maintains all the stateful information. The same
problem occurs for security. It appears that researchers are in-
terested in exploring decentralized approaches to security, so the
SCOS design aims for decentralization. For example, the self-
service clouds [11] (SSC) approach to cloud computing advocates
having cloud-specific and customer-specific domains running on

the same host. SSC improves the customers’ ability to manage
their instances by creating their own monitoring without requiring
buy-in or introducing security problems for the cloud platform.

For SCOS strawman, we extend this idea by allowing customers
to collect a set of domains into domain collections. We would en-
vision that such collections would be associated with a customer
and a request. As customer requests for their instances are infre-
quent, not performance critical, and linearized (at least in Open-
Stack), such domain collections of services and instances could be
created as necessary to implement a specific request. Once the re-
quest is completed, then the collection may be disbanded.

6. CLOUD SECURITY POLICY GOALS

While commercial vendors aim to confine target processes that
are accessible to adversaries, complete confinement is not practical.
Thus, to design a secure cloud operating system (SCOS) we must
examine in more detail the security policy goals desired for cloud
computing. We focus on two problems: (1) limiting services to the
permissions necessary to perform actual requests and (2) protecting
services and hosts from compromise due to adversary-controlled
inputs when processing requests. In this section, we propose a set
of policy goals for the SCOS design and examine the open chal-
lenges in achieving those goals. Each of these problems are long-
standing challenges in secure operating system design, but perhaps
the structured nature of the cloud will enable effective solutions.

6.1 Limiting Request Permissions

The first problem is to prevent attacks that may occur during
request processing, even if one or more services becomes compro-
mised. For this we examine two types of attacks. First, each service
is potentially capable of misusing permissions over the objects it
manages either maliciously or as the result of an error. Customers
would like to know that a SCOS ensures that the permissions that
services use to process a method call are limited by the require-
ments of the request. Second, currently every service trusts every
method call it receives, so a compromised service may be able to
submit malicious method calls to other services. For example, the
nova—api and Keystone services may not have many resources
of their own, but vulnerabilities in those services may enable them
to propagate malicious method calls to other services. Further, a
compromised service may generate malicious method calls at any
time. Customers would like to know that even compromised ser-
vices must produce method calls in a manner that is compliant with
customer requests.

MAC enforcement may be used to limit the permissions of ser-
vices to only those resources necessary to implement customers’
requests. However, in OpenStack, each service performs duties for
any customer, so a compromised service may maliciously modify
or leak the data of a customer when processing the request of an-
other. Thus, one possible attack is a confused deputy attack [30],
where one customer uses a service to gain unauthorized access to
another customer’s or the cloud’s resources.

Typically, in order to prevent one process running on behalf of
one customer from compromising the resources of a process run-
ning on behalf of another customer, the server will create a new pro-
cess for each request. Then, the permissions of each process may be
constrained to those necessary for the customer and request. For-
tunately, most OpenStack services are stateless by design, meaning
that a new service instance can be created with specialized permis-
sions for each request and/or method call. We envision that the
SCOS strawman proposal would be able to control such services.

A problem is that some services are inherently multiuser. For
example, the database stores the state of the cloud needed by each
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service. However, the proposed SCOS could still identify the do-
main collection (customer and request) that produced a method call
to the database, enabling a multiuser-aware service to reason about
confused deputy attacks. However, this is often error-prone. Thus,
we will first focus on using the SCOS to limit cloud services to
their least privilege, which ideally are the permissions necessary to
process each customer request.

Policy Goal 1 (Prevent Confused Deputy Attacks): Limit the
processing of each customer request to that customer’s permissions
and those permissions necessary for the request only.

Using current MAC enforcement, we could also limit the set of
method calls that any service could produce. This would prevent a
single compromised service from launching arbitrary attacks on a
cloud service of its choice. However, cloud services have complex
APIs and interactions. The nova-compute service can invoke
requests on storage, database, and network services, as shown in
Figure 2. Thus, a compromised nova—-compute could submit to
method calls referring to the objects of any customers, even ones
that do not have instances running on that compute node.

In general, to ensure that a service is only processing a legiti-
mate request, a trusted party could authenticate the request sent by
each cloud service as originating from a customer, using traditional
techniques for secure communication using the Keystone creden-
tials (e.g., SSL). The problem with this approach is that cloud ser-
vices deconstruct the customers’ high-level requests into several
individual method calls to other services, which in turn result in
several system calls over system resources. For example, Figure 2
shows that a single request to create an instance results in many
method calls among services. Each of these method calls causes
a service to retrieve system resources necessary to implement the
method (e.g., retrieve system images) and create the new resources
(e.g., virtual machine). While this modularity provides flexibility
for services to determine how to implement a method call, services
implementing such methods cannot check whether the method call
was legitimate.

To understand this challenge, we explore leveraging methods to
predict the legal sequences of system calls from program code orig-
inally used for intrusion detection [58, 27]. These methods propose
representing policies as state machines of possible system call se-
quences, but they have had difficulty predicting the authorized val-
ues of system call arguments, leading to mimicry attacks [59]. For
the cloud services, we find that such argument values are easily
predicted from request input and cloud configuration. As an ex-
ample, we generated an automaton policy describing the behav-
ior of nova-compute from runtime traces. For each method
of nova-compute, an automaton is generated to prescribe the
operations to be performed as the result of the method invoca-
tion. The automaton places constraints on nova—-compute in

two ways: 1) the sequence of operations that can be performed by
nova-compute and 2) arguments used in each operation. Fig-
ure 4 shows a simplified automaton for the run_instance method of
nova-compute. In this simplified example, nova-compute
can follow only one possible execution path, and each operation
on the path has a constrained set of parameters. For example, the
mount operation can only mount instance image under the /tmp
directory, and the write operation can only write to files under the
directory just mounted.

Policy Goal 2 (Enforce Request-specific Least Privilege): Limit
each service to invoke only the method calls necessary to imple-
ment authenticated customer requests.

6.2 Reducing Attack Surfaces

We now examine how we can reduce the attack surface of a ser-
vice and the host on which it runs. The objectives are to limit the
ability of adversaries to compromise the service (which would en-
able the attacks described in the last section) or the hosts them-
selves (which would compromise the cloud system).

Limiting the services to invoke only method calls based on the
authenticated requests prevents compromised services from gen-
erating malicious requests and limiting each service invocation
to only the requesting customer’s permissions prevents one cus-
tomer’s request from attacking another customer’s requests when
the service is run per-request.

Even when enforcing these restrictions, attacks against customer
instances are still possible. One attack of concern is that a service
processing a request for one customer may be compromised if it
uses resources controlled by an adversary of that customer. For
example, an adversary may control an image booted by the cus-
tomer’s instance. The cloud often allows customers to reuse re-
sources whose provenance is not tracked. The cloud assumes that
the customers are capable of choosing resources for their instances.
However, customers can make mistakes and choose malicious or
poorly configured resources [10]. From a customer’s perspective,
they should be able to ensure that their instances are loaded from
approved images, use customer-defined keys, etc. However, under-
standing what flexibility is necessary for customers while protect-
ing instances is an open problem.

In addition, a version of the same problem may befall services.
Services may also retrieve resources controlled by their adversaries
(e.g., customers) when they expect protected resources. For exam-
ple, the system should be able to guarantee that a service runs using
only system libraries. However, an additional challenge is to dis-
tinguish resources used by the customer and resources used by the
service. This is particularly a problem for multi-user services, as
customers may use the service to attack other customers.

Policy Goal 3 (Prevent Unexpected Attack Surfaces): Prevent a
service from retrieving resources controlled by unauthorized par-
ties for the particular system call, method call, etc.

Finally, we examine the problem of protecting the host from at-
tack from a compromised service. As we see in Section 3, both
the nova-compute and Neutron services are capable of launch-
ing processes running with full privilege. Thus, these services have
the means to easily compromise kernel integrity. However, even if
sudo capabilities are removed from these services, systems often
have several latent vulnerabilities that may allow attacks through
local exploits.

Thus, our aim is analogous to that of the MAC targeted pol-
icy, where services should be confined from having permissions
that enable host compromise. However, the same challenges arise
here, as services are responsible for making decisions over the cre-



ation and use of security-critical resources, such as VLANs and
VMs. As described in Section 3, more than half of the methods
in nova-compute leveraged root privileges. In the SCOS straw-
man, these methods would be implemented in the operating system,
but significant design effort will be necessary to separate the privi-
leged operations from the unprivileged. Thus, SCOS should further
enable confinement, but the design effort will be non-trivial.

Policy Goal 4 (Confine Unprivileged Method Calls): Prevent the
processing of unprivileged method calls from using privileged host
permissions.

One approach to enforce policy goals 3 and 4 is the Process Fire-
wall [57]. The Process Firewall is a kernel mechanism that protects
processes by blocking retrieval of resources that either lead to un-
expected attack surfaces or confused deputy attacks [56]. The Pro-
cess Firewall is able to provide such protection by introspecting
into processes to determine whether the resources being retrieved
are safe for the program context. For the SCOS, understanding
what resoures are unsafe at what times is more complex, as we
discuss above, yet the basic Process Firewall mechanism may still
be appropriate. We will explore extension of the Process Firewall
mechanism to cloud services.

7. CONCLUSION

How to secure cloud computing in existence of vulnerable cloud
services is an open problem. In this paper, we analyzed design
requirements of a Secure Cloud Operating System (SCOS), argu-
ing that mandatory access controls over cloud services are criti-
cal in order to protect cloud computing from vulnerable cloud ser-
vices. Based on a trace study of permissions actually used by an
OpenStack deployment, we then proposed a set of policy goals for
the SCOS design and examined open challenges in achieving these
goals. We hope that this can stimulate further research into manda-
tory access control mechanisms and policies in the cloud.
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