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Abstract—Infrastructure-as-a-Service (IaaS) clouds can be
viewed as distributed systems of cloud services that are
entrusted to execute users’ cloud commands to provision
and manage clouds computing resources (e.g., VM). However,
recent vulnerabilities found in cloud services show that this
trust is often misplaced. By exploiting a vulnerability in a cloud
service, an adversary can hijack or forge commands to modify
user VMs, exfiltrate sensitive information, and even modify
other service hosts. This paper introduces CloudArmor, a
system that detects and blocks the tampering of user commands
without the need for modifications to cloud services. Our insight
is that we can construct state machine models to limit the
system call sequences executed by cloud services. By applying
constraints over system call arguments, we can restrict the way
user commands are executed, blocking unauthorized operations
from compromised cloud services. We implemented a prototype
CloudArmor system for OpenStack, a widely adopted open
source cloud platform. Results show that CloudArmor can
greatly limit attack options available for adversaries while im-
posing less than 1% overhead for user VMs. As a result, cloud
users can leverage CloudArmor to execute user commands
safely even in presence of compromised cloud services.
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I. INTRODUCTION

Cloud computing has revolutionized they way we con-
sume computing resources. Instead of maintaining a locally
administered data center, cloud users obtain resources on
demand from a public cloud utility offered by several cloud
vendors [1], [2], [3]. Cloud vendors enable their users to
obtain cloud resources and manage the use of these resources
through a command API (e.g., the REST API in OpenStack),
instances of which we will call user commands. Such
commands enable users to remotely obtain virtual machines
(VMs) on cloud nodes, select execution images to launch,
assign storage volumes to the VMs, and configure security of
the VMs (e.g., determine who can login, configure firewall
rules, etc.).

Cloud users envision that the commands that they submit
to a cloud vendor will be executed as they specified, but
vulnerabilities in cloud services put such command execu-
tions at risk. Current cloud architectures deploy a variety of
cloud services, which are responsible for managing different
types of resources, such as VMs, images, storage volumes,
etc. Each user command may be processed by a variety
of services. For example, the command to upload a user’s
public key into a user VM on the OpenStack cloud (e.g., to

enable the user to login to her VM via SSH) involves an
API service (to authenticate the user), a database service
(to retrieve the public key file), and a compute service
running of the cloud node hosting the user’s VM. If a
vulnerability in any of these services enables an adversary
to modify command processing, then an adversary may be
able to subvert the command (e.g., load an adversary-chosen
public key). To date, well over 100 vulnerabilities have been
reported in OpenStack cloud services [4], so cloud vendors
would benefit from a method that detects attacks on such
command processing.

Currently, cloud architectures lack defenses to detect
attacks on user commands. Cloud architectures assume that
the cloud services are all trusted components in the cloud
system. However, cloud services are often complex web
applications running on conventional systems, leading to the
large number of vulnerabilities reported. Researchers have
identified that current cloud architectures suffer from similar
design flaws to conventional operating systems circa 2000,
where large amounts of complex, fully trusted code enabled
a single vulnerability to bring down the entire system [5].
However, current research focuses primarily on attacks from
one VM to another on the same cloud node [6], [7], where
defenses proposed to protect user command processing only
address image anomalies and data release [8], [9], not malice
by compromised cloud services.

Cloud users want to believe that their commands are
run as expected, and cloud vendors would like to detect
attacks against their clouds without significant modifications
to their cloud architectures. To achieve these goals given the
current cloud architecture, we leverage the following insight.
Cloud services execute user commands by: (1) collecting the
respective data referenced in the commands and (2) using a
series of programs on the VM host to apply that data to the
user VMs. Thus, we propose a two-stage defense. First, we
check that the data applied by cloud services in executing
a user command corresponds to the data referenced in the
original user command. Second, we check that the sequence
of programs chosen to process that data is expected for that
command. With such restrictions, even a fully compromised
cloud service is quite restricted in the attacks it could launch
against user commands without detection.

In this paper, we explore whether the cloud node’s host
operating system can be modified to enforce the two-stage



defense proposed above. To model the possible sequences
of programs executed for each command, we propose using
a (nondeterministic) finite state machine. The idea is to
limit each command’s execution to the possible sequences
of commands implied by the command’s state machine.
To restrict the possible data values that may be chosen by
services, we annotate the state machine transitions with con-
straints that are instantiated from the user command. These
constraints specify the possible values for the user-supplied
arguments used by cloud services. The key experiment is
to determine whether it is possible to generate such state
machines in a manner that restricts the attacks significantly
without producing false positives.

In addition, once we assume that cloud services are
untrusted and/or performing operations as dictated by remote
users, we want to add defenses on the cloud node to protect
the cloud node’s VM host from the user commands. In
current cloud architectures, the cloud services that run on
cloud nodes may perform privileged operations on the host
VM. However, if we do not trust cloud services and users
can get cloud services to execute privileged programs, then
users can perhaps use flaws in cloud services to attack the
VM host. Thus, we also isolate the compute node’s cloud
services from the VM host by running those services in a
VM as well. We only forward requests to the VM host when
necessary to implement a command and these requests are
limited by the state machine above.

Our work has the following contributions:
• We define a method for detecting attacks on user

command execution using a state machine model. Our
model features a branching factor of 1.22 or less with
causing false positives in our experiments.

• We design the CloudArmor System, which restricts
system calls issued by cloud services using this state
machine model, preventing compromised cloud ser-
vices from performing unauthorized operations.

• We deploy the CloudArmor system in the widely-used
OpenStack cloud. Our evaluation shows that CloudAr-
mor system can greatly limit attack options available for
adversaries, while causing less than 1% performance
overhead to user VMs.

II. BACKGROUND AND PROBLEMS

A. OpenStack Background

In this experiment, we will examine defenses for the
OpenStack, which is an open-source, cloud software stack
for building public or private IaaS clouds [10].

Figure 1 shows the OpenStack architecture evaluating a
user command (see below). OpenStack embraces a modular
architecture, where each module in OpenStack is an inde-
pendent project for providing a suite of services to cloud
users to flexibly manage their VMs and the cloud resources
that their VMs depend on. For example, in OpenStack
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Figure 1. OpenStack processing a command to launch a VM.

Nova module manages VMs, Neutron module manages
networks, Glance module manages images and so on.

Within each module, there are multiple cloud services. To-
gether with other cloud services in the module, they imple-
ment tasks that the module is responsible for. For example,
in the Nova module, a nova-api service parses user’s
commands whereas a nova-compute service launches
and manages VMs.

Users and modules communicate using REST APIs over
HTTP. Commands from cloud users and other modules are
authenticated at the entry point of the module, using user
tokens. Users supply such tokens with their commands and
modules propagate these tokens to enable services to restrict
the resources accessible to the tasks performed as a result of
a particular user’s command. Within a module, services com-
municate using the module’s internal message queue (MQ
in Figure 1), which uses an RPC mechanism rather than the
REST APIs. Note that such messages are not authenticated,
but user tokens are still passed into every cloud service, in
case cloud services may may issue commands to different
modules which requires authentication.

To better illustrate the modular design of OpenStack,
we show how a user launches a new VM in OpenStack
in Figure 1. In order to launch a VM, user submits a
command (step 1) with her token to nova-api service.
Each command is expressed using a set of command options
that describe the specific cloud resources to be processed in
the command. In this example, the user wants to launch
a new VM using an image named Ubuntu with a SSH
key named mykey and to connect the VM to a network
named mynet. nova-api authenticates the user’s token
using the Keystone module. If the command is authen-
ticated, nova-api retrieves the mykey from database
(step 2), and then sends a message to nova-scheduler
to select a cloud node to host the new VM (step 3).
nova-scheduler picks a cloud node, and invokes the
run_instance method of the nova-compute service
running on the node (step 4). nova-compute then lever-
ages the Glance (step 5) and Neutron (step 6) modules
to retrieve the image files and setup a network connection



for the VM, and finally boots up the new VM. As shown in
Figure 1, after receiving commands from nova-compute,
both glance-api and neutron-server need to check
with the Keystone module in order to authenticate the
user token they received in order to authorize access to the
resources they manage.

B. OpenStack Security Issues

While researchers are mostly concerned about security of
VMs, security breaches of cloud services are very real and
happen for various reasons. Researchers have identified over
100 vulnerabilities in various OpenStack cloud services [4].
At least 13 of these cloud service vulnerabilities enable
remote adversaries to completely takeover a cloud node. For
example, a vulnerability [11] was reported in nova-api
service that allows remote adversaries to read/write arbitrary
files on a cloud API node. As another example, a vulner-
ability [12] reported in a Glance service allows remote
adversaries to execute arbitrary code on a cloud image server
node. Since cloud services often run with full privileges
on their host nodes, remote adversaries can leverage cloud
service vulnerabilities to easily gain complete control over
a cloud node.

In addition, insiders play an important role in cloud
node breach. As a large system with potentially thousands
of nodes, cloud management relies on a large crew of
administrators. As much as we would like to trust them,
rogue employees are indeed one of the most significant
problems; many data breach incidents happen due to insider
attacks [13], [14], [15].

Since cloud services are fully trusted by the cloud plat-
form, a compromised cloud service may wreak havoc on
command processing, modifying or forging messages. A
compromised cloud service can modify or forge messages
within a module, neither of which requires authentication or
a user token. For example, a compromised cloud service can
replace user-selected cloud resource for upload in Figure 1
with an adversary-chosen resource instead to make the user
VM run misconfigured images, install adversary-chosen SSH
keys (i.e., so an adversary may login to a user’s VM), etc. In
addition, a compromised cloud service may be able to forge
messages entirely. For example, any compromised nova
service (see Figure 1) may request a snapshot of any running
VM owned by any cloud user, therefore obtaining sensitive
data contained in the VM by forging a single message.

C. Problem Definition

In this work, we want to build a system that detects attacks
against user commands. To do this, we assume that the cloud
node on which the user VM runs has an uncompromised
trusted computing base (i.e., hypervisor and VM host). In
addition, we also trust a service for installing the cloud node
software securely, such as a cloud verifier [16], [17].

On the other hand, we do not trust any cloud service
software on the compute node or elsewhere in the cloud.
In addition, we assume that it is possible that some cloud
nodes, other than the one running the user VM targeted
in the command, may be compromised. Thus, we offer the
guarantee that as long as the cloud node running a user VM
is not compromised, then that node enforces security policies
that restrict how commands for that node’s user VMs are
executed, detecting unauthorized behaviors. Note that we do
not trust the user completely. The user supplies commands,
which we aim to execute as specified by the user, but those
commands must be limited to the users’ VMs.

Prior research has focused primarily on defenses from
attacks originating from code on the same cloud node [7].
In this paper, we explore attacks against user commands that
may be launched from other cloud nodes. Researchers have
highlighted the danger of using publicly-available images for
their user VMs, because these images may be misconfigured
or maliciously configured [8]. However, this work does
not address the problem of an active attacker modifying
messages to change the image or modifying the image
storage maliciously. Other work has explored how users may
set requirements to govern when their data may released to
user VMs [9]. That work has a similar flavor to this work,
as users define requirements to be enforced, although these
requirements only govern the release of data, not the REST
API broadly.

We want a solution whereby it is possible to generate a
security policy that restricts the way that commands may
be executed on the cloud node running the user VM to
detect attacks against command execution. We envision the
following requirements for such a solution.

• Prevent many possible attacks on command execution.
• Not require changes to the cloud services.
• Be possible to deploy without creating false positives.
• Have minimal impact on cloud performance.
In this work, we aim for a solution that prevents as many

attacks as possible without creating false positives. It is
imperative that the solution not produce false positives, as
these will prevent useful work. Thus, we may not block all
possible attacks. In the evaluation, we will examine quanti-
tatively how the adversaries’ attack options are reduced.

III. SOLUTION OVERVIEW

In this paper, we explore use of a state machine security
model for detecting attacks against the execution of the
cloud’s user commands. This choice is inspired by prior
work on host intrusion detection systems (HIDS) [18], [19],
[20] and our insight that we can address some limitations of
this prior work effectively.

Host intrusion detection systems build state machine mod-
els of programs in order to limit the program’s execution to
expected sequences of system calls. We adopt the same idea
to enforce legal sequences of system calls executed by cloud



services for each cloud command. However, researchers
found state machines for system call sequences inadequate
for HIDS because they did not predict the argument values
used in the system calls, leading to opportunities for mimicry
attacks [21]. Since user commands mainly use cloud services
to deliver cloud resources to VMs, we hypothesize that can
predict such system call argument values. Therefore, we
propose to augment the state machine model to restrict the
values of arguments used in system calls.

In this paper, we investigate whether we can generate
and enforce command automata representing legal system
call sequences and argument values for user commands to
enforce a two-stage defense on each system call invoked
by cloud services. First, the idea is that given each user
command we can predict the possible sequences of system
calls on the cloud node that will be invoked by cloud services
to execute that command. We note that cloud services often
invoke other processes to implement the command, which
we will call helper processes. Second, the argument values to
each system call will either be predicted from the command
itself or restricted to safe values. Because we restrict the ar-
guments to helper processes, we can validate their execution
complies with the user command and do not need to track
the system calls of these processes. By enforcing command
automata, we aim to significantly restrict the adversaries’
attack options without blocking authorized operations.

The command automata must prescribe the sequences
of system calls perform safe execution of user commands.
While cloud services perform many system calls, we make
the observation that only those system calls that cloud ser-
vices perform that access security-sensitive resources need
to be authorized. One insight is that a security-sensitive
system call must access resources belonging to user VMs,
which can be detected using the host’s access control policy
(e.g., sVirt [22]). If all these system calls are mediated and
authorized, then only approved system calls may impact user
VM resources. To ensure protection of the host and helper
processes, however, we sandbox the cloud service system
calls that do not impact the user VM; if a command does
not impact a user VM it need not be run in the host VM.

The command automata will be augmented with argument
constraints to limit the values of arguments that will be
accepted in automata transitions. Our insight is that many
argument values can be predicted from the command itself
and that these predictions can be enforced on cloud service
system calls. For the few arguments values that cannot
be predicted in advance, we find that we can prescribe
constraints to limit the system call to values that are safe for
the user VMs. We describe how we use dynamic analysis
results to prepare templates for predicting the values of
arguments in Section IV-B.

The command automata are enforced by the CloudArmor
system described in Section V-B. CloudArmor includes a
user proxy that obtains argument value predictions from

user commands for instantiating the argument constraints,
described in SectionV-A. CloudArmor sandboxes cloud
services to protect VM hosts and enforces the command
automata on system call executions as described in Sec-
tion V-B.

IV. COMMAND AUTOMATA CONSTRUCTION

We leverage dynamic analysis to construct state machine
models for the user commands. To collect traces, we propose
to configure a “training cloud” that is configured in the same
manner as the deployment cloud and generate command
instances to provoke the cloud services’ into processing
these commands (i.e., generating system calls for collection).
To generate command instances, we identify all the com-
mand options and dependencies between command options
(i.e., those required or prohibited by an option) to generate
command instances that apply the legal sets of command
options.

The two challenges in this task are to convert the collected
traces into command automata and to extract argument con-
straints from the traces to annotate the command automata.

A. Constructing Command Automata

Given a trace set for a particular command, we compute
the command automata that describes the system call se-
quences of cloud services when serving the command. The
challenge is to make the state machine precise, such that
spurious system call sequences which may enable mimicry
attacks are not legal in the automata.

We leverage an existing tool, called Synoptic [23], that
builds nondeterministic finite state machines (NFA) from
system call traces by merging the trace set to satisfy three
types of temporal invariants: always followed by, never
followed by, and always precedes. Using these invariants,
Synoptic eliminates impossible paths from the NFA, which
removes many of the cases where executions not found in
the traces would have been accepted by the NFA.

By default, we build a command automata for each
command, feeding the traces for that command into Syn-
optic. However, different combinations of options for a
single command may yield very different traces, so we also
enable the generation of multiple command automata per
command. That is, command automata may be associated
with a command and a set of options.

Take the nova reboot command as an example, if the
option --hard is used, instead of rebooting, a VM will be
destroyed and re-created, causing a very different sequence
of system calls than the default. In this case, we would
like to detect from the system call sequence if adversary
has hijacked the request and changed users reboot option.
However, it is not possible to do so if we have a single
automaton for all nova reboot commands.

The solution we have adopted is to cluster traces for
command options if the traces differ by no more than a



threshold number of system calls. We then produce com-
mand automata for the clusters of command options that
cause significant differences in system call sequences. In
this way, we preserve the ability to prevent an adversary
from modifying command execution undetected without
introducing a large number of automata.

We cannot claim that the state machines constructed
are precise—they may still contain spurious system call
sequences. In Section VI-A we will evaluate the precision of
our command automata and their ability to limit the attack
options available for adversaries.

B. Identifying Argument Constraints

In this task, we use the traces to identify argument
constraints for the system calls in the automata transitions.
There are three classes of arguments we want to identify:
(1) those that are dependent on user input; (2) those that
are constants; and (3) those that are generated by the cloud.
For the first class, constraints can be instantiated once a user
command is specified at runtime. For the second class, the
values can simply be fixed in the command automata. For
the third class, our goal is to restrict these argument values
to ones that are safe for cloud platform and the user VM
targeted by the command.

Given a set of traces for a generated command automata,
we propose to detect dependency between the command’s
options and the system call arguments. To detect dependence
between a specific option and system call arguments in the
trace set, we detect the argument values that change when
only that specific option’s value is changed. We aggregate
the sets of traces that have the same values for all but one
common option. We then examine those traces to identify the
system call argument values that changed in each of those
traces. To make this systematic, we order the traces for a
specific command automata in shortlex order (i.e., options
are alphabetically ordered and shorter option sets precede
longer ones).

After removing the set of arguments that are dependent
on command input, we either have fixed arguments or
arguments that are defined by the cloud services. Fixed
arguments have the same value for each trace in the trace set
for the corresponding system call in the automata. We find
that a large percentage of the system call argument values
are fixed by the cloud configuration.

The remaining argument values are generated by the cloud
services themselves. Many of these include files and direc-
tories created by cloud services to store data temporarily on
the VM host. These argument values are relatively ad hoc,
so we produce argument constraints manually to prevent
using another user VMs’ data and overwriting of other
data belonging to this user VM. Fortunately, we find that
the number of ad hoc argument constraints is modest in
practice. Note that these ad hoc constraints may not prevent
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Figure 2. An overview of CloudArmor enforcement framework.

all possible attacks against the user VM, but we can isolate
these arguments from other user VMs.

V. COMMAND AUTOMATON ENFORCEMENT

An overview of the enforcement framework is shown
in Figure 2. When user sends a command, user proxy
parses the command and sets the argument constraints. The
user proxy uses a resource tuples store to map names of
resources to values. Then argument constraints are sent to the
CloudArmor module in cloud via a secure channel [17]1. The
CloudArmor module then instantiates a command automaton
for the command, and starts authorizing system calls from
cloud services. A system call is allowed to run on the cloud
node if and only if it can cause a state transition of the
command automaton (i.e., fall into an order allowed by au-
tomaton and arguments satisfy constraints). Upon detecting
unauthorized system calls, the CloudArmor module aborts
the execution of cloud services and raises an alarm. If new
cloud resources were created as a result of an authorized
system call, the CloudArmor module returns its value to
user proxy via the secure channel.

A. User Proxy

Instantiation of command automata requires predicting
values for argument constraints. These constraint values are
collected by the user proxy on users’ local machines. Given
a command and its options, the user proxy will automatically
retrieve the expected values for these option values, and send
those constraints to the CloudArmor module via a secure
channel for instantiating the command automata.

The challenge for the design of the user proxy is to predict
values for the system call arguments from the options in
each user command. Fortunately, we find that there exists
a simple mapping between the two. Command options fall
into two categories, names and values. Names are references
to resources that are stored in cloud (e.g., image id, key id).
When serving a command, cloud services resolve these
names to actual values and then use them as arguments in
system calls. Values are often used as-is by cloud services

1We leverage an existing approach [17] to establish the secure channel
between user proxy and the CloudArmor module. The secure channel
should be able to prevent adversary controlled nodes from modifying the
user constraints or replaying them. Refer to the paper [17] for more details.



in system calls. Consequently, producing user constraints
simply boils down to predicting the values of the cloud
resources referenced in each user command.

The idea here is that user proxy would store and main-
tain name-value mappings of cloud resources at runtime.
We refer these mappings as resource tuples, resource =
(type, name, value), with the type being the type of re-
source (e.g., key, image, etc.). However, due to the existence
of adversary-controlled nodes, the user proxy cannot retrieve
trustworthy values of cloud resources from the cloud.

Through investigating different kinds of cloud resources
referenced in OpenStack commands, we find that there are
three ways resource tuples are created. First, they are created
when users store resources in cloud. For example, user
creates SSH keys and stores them in cloud by sending the
nova keypair-add command. In this case, user proxy would
create a resource tuple recording the name-value mapping
of the key being created. Second, if the cloud resources
are created within the cloud (e.g., VMs), the CloudArmor
module would act on behalf of user proxy and return the
value of the resource to the user proxy. Third, users may
manually create resource tuples after verifying that the
values of resources meet their expectations. For example,
user may reference a third-party image in her command,
after she verifies the checksum value of the image and stores
the mapping to the user proxy.

B. CloudArmor Module

CloudArmor module runs as part of the trusted computing
based on cloud nodes2. It intercepts system calls issued by
cloud services, and authorizes them against the instantiated
command automata.

Since command automata only model a subset of system
calls issued by cloud services (See Section III), the CloudAr-
mor module needs to make a decision on what to do with
the rest. One choice is to let them execute freely on the
cloud node, since they are not directly affecting users’ VMs
(i.e., not accessing labeled resource). However, such design
introduces a loophole that enables adversaries to indirectly
affect users’ VMs by launching local exploits. For example,
assume cloud services write an unlabeled file which is not
relevant to a user VM. Later if the same file is accessed by
a helper program which cloud services use to modify a VM,
adversary can exploit vulnerabilities in the helper program
to launch attacks against the VM indirectly. While we could
extend our command automata to authorize these system
calls as well, it introduces a great deal of complexity that
would lead to imprecise model and enable mimicry attacks.
So the design choice we made is to sandbox cloud services.

The CloudArmor module creates a sandbox environment
that is sufficient to run the cloud services (e.g., a virtual

2In this work, we focus on compute nodes since they host users’ core
asset—VMs, but our mechanism can be easily extended to other kinds of
cloud nodes such as API node, Neutron server node , etc..

Table I
AUTOMATON METRICS

Automaton Argument Constraints Average
States Trans. User Built-in Cloud Predictable(%) Branching Factor

boot 42 48 6 140 19 89% 1.14
delete 8 8 3 15 0 100% 1.0

image-create 4 6 2 10 3 80% 1.5
add-secgroup 11 13 3 21 0 100% 1.18

rescue 34 38 5 121 25 83% 1.12
rebuild 46 56 7 158 27 85% 1.22
migrate 81 95 8 193 26 89% 1.17

machine or container). If a system call issued by a cloud
service targets a labeled resource or helper process, the
CloudArmor module authorizes the system call and then
forwards it to the cloud node for execution. Other system
calls such as loading libraries, establishing connections to
message queues, are executed within the sandbox, ensuring
that they cannot affect either the users’ VMs or the cloud
node itself. We leveraged existing mechanisms for system
call forwarding (e.g., Proxos [24] and Prospect [25]). While
such forwarding may incur non-trivial overhead, they are not
on the critical path of VM execution (See Section VI-C).

VI. EVALUATION

A. Automaton Complexity and Precision

In this section, we quantitatively evaluate the restrictive
power of command automata. We evaluate both the pre-
cision of the automata and the percentage of system call
arguments that are constrained. In an ideal case, every user
command would result in an unique sequence of system
calls with pre-determined sets of arguments being executed
on a cloud node. Consequently, adversary-controlled nodes
cannot launch any attack, since any deviation in the system
calls would be detected.

We have evaluated user commands for 55 types of com-
mands in the OpenStack Grizzly release. Due to space
constraints, we only show seven most frequently used ones.
To evaluate automata precision, we use Wagner’s average
branching factor metric [18]. This metric measures the
average number of possible transitions after each state in
each automaton. Smaller numbers are more favorable as
adversaries are afforded less freedom for crafting a malicious
system call sequence without deviating from the model. Ta-
ble I shows the average branching factor for the seven most-
complex OpenStack commands. Our observation is that
command automata are far simpler than the model of general
programs (e.g., sendmail has an average branching factor
larger than 15 [18]); their average branching factors are
close to 1. What this means is that the command automata
describe the behavior of cloud services when serving users’
commands closely; attackers are less likely to launch attacks
without being detected by the automata.

Another interesting fact is the complexity of the automata.
In practice, less complex automata (i.e., fewer states and
transitions) are often more precise. We demonstrate the
complexity of automata by showing the number of states
and transitions in each automaton. Of all 55 commands,



Figure 3. False alarm rate.
migrate is the most complex, and it has only 81 states
and 95 transitions. Automata are simple because they are
constructed using only security-sensitive system calls and
system calls that invoke helper processes.

Next we evaluate how many system call arguments can
be predicted and constrained. We classify system call ar-
guments into three categories: the first category represents
user-specified arguments, whose values are dependent on
user’s command, the second category represent constant
arguments, and the third category represent arguments con-
strained by the cloud environment. Argument values of the
first two categories can be predicted exactly at command
automata instantiation time. Argument values for the third
category can be restricted to satisfy specific set, range, or
filesystem subtree constraints. The number of system call
arguments in each category is shown in Table I. As shown
in the table, most of the system call arguments are in the
second category (an average of 86%). This is due to the fact
that cloud services interact with their host nodes mostly by
invoking helper processes, and the way helper processes are
invoked is fixed for the configuration. User-specified con-
straints account only for 4% of the system call arguments,
although they are a critical set. Both constant and user-
specified constraints are known at command instantiation, so
on average 90% of the system call arguments are predictable.
As a consequence, adversaries can only affect the remaining
10% of the system call arguments to launch attacks. During
the experiments, we find that these arguments are temporary
files (e.g., temporary directory to mount a VM disk) and
file descriptors (e.g., socket to libvirt) which can be easily
constrained using cloud constraints.

B. False Alarms

We evaluate the false alarm rate with respect to the
number of traces generated to build the command automa-
ton. Results are shown in Figure 3, which shows the false
positive rate relative to the number of training commands
run. We only plot data corresponding to the four most
frequently used commands (nova boot, nova delete,
nova resize, and nova migrate). In this experiment,
we generate commands by varying command options and
their values among a set of legal combinations. We then run
the commands and determine whether command automata

Table II
VM PERFORMANCE OVERHEAD.

Vanilla CloudArmor Slowdown

Macro benchmark
KBuild (sec) 70.7 ± 0.1 71.1 ± 0.2 0.5%
Apache (req/s) 8727 ± 325 8654 ± 296 0.8%
dbench (MB/s) 323.5 ± 1.7 322.3 ± 2.1 0.4%

Lmbench
simple syscall 0.1165 0.1167 0.2%
read 0.2576 0.2607 1.2%
write 0.2269 0.2279 0.4%
open/close 1.1323 1.1338 0.2%
fork + execv 177.967 180.233 1.2%

constructed up to that point would authorize the command,
where blocking the command would result in a false positive.
That is, at run of command n, we examine whether that
command would be authorized by a command automata
produced from the previous n− 1 commands.

As we can observe from the figure, three of the commands
register a 0% false alarm rate as soon as we train the model
with 30 variations of the command. The only command that
requires a higher number of command variations is the nova
boot command, which takes about 50 runs. The reason
is because nova boot has several command options and
can be invoked in several ways, due to the high number of
optional arguments.

C. Performance

We evaluate the performance of our framework by mea-
suring the impact on users’ VMs. Our experimental setup
involves: (1) a vanilla OpenStack infrastructure and (2) a
OpenStack infrastructure with CloudArmor enabled. We use
OpenStack Grizzly with KVM. User VMs are configured
with 2 VCPUs, 4 GB memory, and 10 GB virtual disk.
Each cloud node only hosts a single user VM. The following
benchmarks are used to measure the performance of VM: (1)
Kernel Build (KBuild) for CPU intensive workloads, where
we measured the compilation time of Linux kernel 3.0.1;
(2) Apache for network I/O intensive workloads, where we
measured the throughput (request/sec) of Apache web server
2.2.20 using Apache Benchmark (ab) to make 100,000
requests at a concurrency level of 1000; and (3) dbench for
disk I/O intensive workloads, where we measured filesystem
I/O throughput (MB/sec) with 20 concurrent clients. For mi-
crobenchmarks, we used lmbench. The results are shown in
Table II. For various benchmarks, the maximum slowdown
for a VM is less than 1.2%. The overhead is relatively small
because CloudArmor is not intercepting system calls from
users VMs. Instead, it only authorizes system calls issued
by cloud services as a result of user commands.

VII. RELATED WORK

A line of research has investigated guaranteeing the in-
tegrity of cloud resources. Techniques like PeerReview [26],
Accountable VMs [27], and Trinc [28] leverage hardware-
based attestation to verify adherence to known distributed
application protocols and detect Byzantine faults. However,
these approaches focus on application protocol verification



and cannot discover violations that are outside of the proto-
col’s scope.

Research in hardening hypervisors from both co-resident
VMs and insiders has become popular. Approaches like
NoHype [29] minimize the VMM’s attack surface by elimi-
nating all but a small resource management kernel. Other
techniques like formally assured L4 microkernels [30],
CloudVisor [6] and privileged domain separation [24] again
limit the impact a compromised hypervisor or privileged
domain can have on hosted VMs. Finally, low-level monitors
like DeepSafe [31] use the protected System Management
Mode memory region to monitor and enforce hypervisor
integrity at runtime. These works are complementary to
our work. By combining these techniques with CloudArmor
framework, we can better protect client VM against attacks
originated from both cloud services and the VM host.

CloudArmor framework shares many ideas with host-
based intrusion detection systems. Host-based IDS builds
a behavior model of program via static [18], [19], [32] or
dynamic [33] analysis and then checks runtime program
behavior against the model. CloudArmor follows the similar
idea. However, unlike these approaches, CloudArmor does
not build a model upon full set of system calls. Instead, it
only uses a small set of system calls that may potentially
harm user VMs. This greatly reduces the model complexity
in CloudArmor and enables argument value prediction.

VIII. CONCLUSION

The growing popularity of cloud platforms has resulted in
the need for secure cloud platforms. However, current cloud
platforms have a bloated trusted computing base (TCB),
where compromise of any single cloud node may result
in the compromise of the whole cloud platform. In this
paper, we focus on protecting the execution of users’ cloud
commands from attack by compromised cloud services.
To defend against these attacks, we present CloudArmor,
a framework that restricts operations performed on cloud
nodes using a state machine model of command execution
derived from runtime analysis. We implement CloudArmor
for the widely-used OpenStack cloud platform, and show it
can block attacks without incurring false alarms for less than
1.2% performance overhead on user VMs.
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