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Abstract—Microservice architecture allows different parts
of an application to be developed, deployed and scaled in-
dependently, therefore becoming a trend for developing cloud
applications. However, it comes with challenging security issues.
First, the network complexity introduced by the large number
of microservices greatly increases the difficulty in monitoring
the security of the entire application. Second, microservices
are often designed to completely trust each other, therefore
compromise of a single microservice may bring down the entire
application. The problems are only exacerbated by the cloud,
since applications no longer have complete control over their
networks. In this paper, we propose a design for security-as-a-
service for microservices-based cloud applications. By adding
a new API primitive FlowTap for the network hypervisor,
we build a flexible monitoring and policy enforcement infras-
tructure for network traffic to secure cloud applications. We
demonstrate the effectiveness of our solution by deploying the
Bro network monitor using FlowTap. Results show that our
solution is flexible enough to support various kinds of moni-
toring scenarios and policies and it incurs minimal overhead
(∼6%) for real world usage. As a result, cloud applications
can leverage our solution to deploy network security monitors
to flexibly detect and block threats both external and internal
to their network.
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I. INTRODUCTION

There are multiple trends that are forcing modern cloud
applications to evolve. Users expect rich, interactive, and
dynamic user experience on a wide variety of client devices.
Applications must be highly scalable, highly available, and
must run on cloud environments. Organizations want to
roll out frequent updates – sometimes, even multiple times
a day. Consequently, it is no longer adequate to develop
monolithic web applications. The predominant way to ad-
dress this problem today is to use an alternate architecture –
known as microservices architecture [1] – that decomposes
a monolithic application into a set of narrowly focussed,
independently deployable services, called microservices. The
popularity of this architecture is evident from the report
by the popular jobs portal indeed.com [2] that the number
of job openings on microservices-related technologies, such
as JSON and REST, has grown more than 100 fold in the
last six years, whereas jobs in similar technology areas like
SOAP and XML have stayed nearly identical.

The microservices architecture, due to its new design
paradigm, introduces two major security challenges. First,

the microservices design creates many smaller applications
interacting among themselves that results in complex net-
work activity. This makes monitoring and securing networks
for the overall application and individual microservices very
challenging. Second, the trusted computing base (TCB) for
cloud applications usually includes all of the component
microservices and compromise of one could result in the
entire application’s compromise. It gets even more challeng-
ing in the public cloud environment where the application
administrator has limited access to the application network.

One way to address these challenges is to leverage the
software defined networking (SDN) capabilities provided
by modern cloud networking and program the networks in
a way that monitors the complex network interactions and
enforces policies on them. For example, SDN provides the
ability to scan through network packets at every forwarding
element and control the forwarding as per the application
requirements. This also allows to control the granularity of
the network flows (while processing) and even changing
them dynamically based on attack patterns and application
behaviors. It also allows for passive monitoring (e.g. via
copy-and-forward) and active rerouting (e.g. via changing
the forwarding destination) that can be leveraged based on
security requirements.

In this paper, we propose the design, development,
and evaluation of a security-as-service infrastructure for
microservices-based cloud applications. We propose a cloud-
based network security framework that helps cloud applica-
tion administrators/providers to construct a global view of
their application, even when its components are distributed
throughout the cloud. The framework also enables appli-
cation providers/administrators to flexibly implement their
own security control over its services, thus preventing a
compromised service from compromising the rest of the
application or the cloud platform/hypervisor. Our design is
motivated by the micro-kernel design [3], where a security
kernel monitors and mediates security critical operations per-
formed by “server” (aka services) running atop, effectively
removing the services from the TCB of the application.

II. BACKGROUND AND PROBLEM

In this section, we illustrate microservice architecture with
an example application—an online DVD rental store, and
discuss security challenges of this design paradigm. Other



applications will have different service decomposition and
interaction model but the challenges are similar.

A. Mircoservice Architecture

Microservice architecture [4] decomposes an application
into a set of narrowly focused and independently deployable
services, a.k.a. microservices [1], which may communicate
among themselves using lightweight mechanisms, such as
REST APIs. Some examples of popular online services using
this design include Netflix [5], Ebay [6], and Gilt [7]. In
contrast, traditional internet applications are often designed
using a three-tier model with a monolithic application imple-
menting all of the business logic, as shown in Figure 1(a).
In this example, all the logic for renting DVDs runs in a
single process and is deployed as a single executable (i.e.,
a WAR file). For scalability, multiple application instances
are deployed horizontally behind a load-balancer.

There are three problems with monolithic applications.
First, different components of the application have different
scaling requirements – for instance, creating new customers
is less frequent than customers renting DVDs. However,
scaling a monolithic application requires the entire appli-
cation to be replicated, which requires greater resources.
Second, monolithic architecture often means technology
lock-in—it is difficult for application components to evolve
separately and adopt new technologies (e.g., new databases,
new programming languages). Moreover, a small change
made to the application requires the entire application to be
re-built. Finally, as the application becomes more complex,
it is often difficult to separate out DevOps responsibilities,
which results in slow development and deployment.

Microservice architecture addresses these problems by
decomposing a complex monolithic application into a set
of small and autonomous services that work together. In
Figure 1(b), the DVD rental application is broken into many
small and decoupled tasks, and each task is implemented by
a small service. This decomposition allows different services
to be built, deployed, managed, and scaled independently.
During this decomposition, all the function calls across
components are replaced by inter-service communications
that are implemented via well-defined API interfaces, as
illustrated in the Figure 1(b) using connections.

B. Security Issues

Microservice architecture does not make an application
any simpler, it only distributes the application logic into mul-
tiple smaller components, resulting in a much more complex
network interaction model between components [8], which
is evident even in this simplified example in Figure 1(b).
When a real world application is decomposed, it can easily
create hundreds of microservices, as seen in the architecture
overview of Hailo, an online cab reservation application,
depicted in Figure 1(c). Around the circle are microservices
and the lines are the communications between them. The

security challenge brought by such network complexity
is the ever-increasing difficulty in debugging, monitoring,
auditing, and forensic analysis of the entire application.
Since microservices are often deployed in a cloud that the
application owners do not control, it is difficult for them to
construct a global view of the entire application. Attackers
can thus exploit this complexity to launch attacks against
applications. Current cloud platforms lack a mechanism to
assist application owners to effectively collect and monitor
the interactions among distributed microservices in order to
have a better visibility of the application.

Another security concern involves the trust among the
distributed microservices. An individual microservice may
be compromised and controlled by an adversary. For exam-
ple, the adversary may exploit a vulnerability in a public
facing microservice and escalate privilege on the VM that
the microservice runs in. As another example, insiders may
abuse their privileges to control some microservices. As
a result, individual microservices may not be trustworthy.
However, current applications often assume a TCB including
all their microservices. Consequently, adversaries controlling
one microservice may propagate their attacks through the
connections among microservices and bring down the entire
application. For example, in the DVD rental application,
a compromised Contract-Update may send modified
requests to User-Update to cause user account to be
arbitrarily charged. A compromised DVD-Update service
may consume and then delete messages on the queue without
actually shipping out DVDs, causing a denial of service
attack, and so on. As a real world example, a subdomain of
Netflix was compromised, and from that domain, adversary
can serve any content in the context of netflix.com. In
addition, since Netflix allowed all users’ cookies to be
accessed from any subdomain, an adversary controlling a
subdomain was able to tamper with authenticated Netflix
subscribers and their data [9]. Current cloud platforms lack
a mechanism for applications to monitor and enforce the
connections among microservices to confine the trust placed
on individual microservices, limiting the potential damage if
any microservice gets compromised.

C. Problem Definition

Threat and Trust Model. In this work, we aim to assist
cloud applications to monitor and enforce communication
among its microservices. To do this, we assume that the
cloud infrastructure on which application VMs1 run are not
compromised. However, we do not trust VMs that run the
microservices. We assume it is possible that adversaries may
take control over the VM after compromising a microservice.
Thus, we offer the guarantee that the communications among
microservices of an application are completely monitored

1Our approach also works for containers.
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(a) A monolithic DVD rental store (b) A DVD rental store based on microservice architecture (c) Microservice architecture for Hailo. 
Credit: hailoapp.com

Figure 1. Microservice architecture. Figure (b) shows a lifecycle of DVD rental. Step 1: customer sends a request to Contract-Update service to
create a rental contract. Step 2: Contract-Update invokes a method of User-Update to bill the customer’s account. Step 3: Contract-Update
places a RPC message containing the DVD info on the message queue. The message is consumed by DVD-Update. Step 4: DVD-Update invokes
Shipping to ship the DVD. Step 5 and 6: When the customer returns the DVD, DVD-Return updates customer account and DVD repository.

and mediated according to application’s policy, even when
individual microservices are controlled by the adversaries.
Limitations of Prior Research. Prior research has focused
on protecting applications from external threats [10], [11].
They often deploy security services (e.g., IDS/IPS) on
network edges in order to monitor traffic that goes into
or comes out of an application’s private network. However,
these approaches cannot address internal threats that come
from compromised microservices within the application’s
private network. There are some prior work [12], [13] that
try to extend monitoring to the communications among
microservices. However, these approaches often rely on
instrumentation of microservices themselves or their host
VMs. Consequently, if the entire VM is compromised by
adversary, the results collected by the monitoring services
will no longer be trustworthy.

We want a solution that can flexibly monitor the network
communication between microservices and enforce policies
on them in order to detect or prevent both external and
internal threats targeting cloud applications. We envision the
following requirements for such a solution.

• Completeness: the solution should be able to monitor
and enforce over both internal and external network
events of a cloud application.

• Tamper resistance: the solution should work even if in-
dividual application VMs are under adversary’s control.

• Flexibility: the solution should allow applications to
specify their own policies over the kind of network
events they want to monitor and enforce policies on.

• Efficiency: the solution should have minimal impact on
network and CPU resources consumed.

III. DESIGN

To monitor and enforce various network events in mi-
croservice applications, two requirements must be met. First,
the solution needs to provide complete mediation—it must
be able to monitor and enforce all security-sensitive network
events, both external and internal. Second, the solution must
be tamper-proof—it must protect itself from adversaries that
may control individual microservices and their host VMs.

Our solution leverages modern networking technology
(i.e., SDN) to separate the decision about where to place

security monitor from the network flows themselves. The
insight behind such design is that security monitors no
longer need to sit on the network path (e.g., network edge,
Application VMs) in order to monitor the network events,
since the network connection seen by cloud applications are
actually defined by software (i.e., via SDN). Consequently,
we can place security monitors in their own VMs, hereafter
called security VMs, which are deployed just like application
VMs in the cloud. As a result, our solution can achieve
tamper-proof since security VMs are isolated from applica-
tion VMs; complete mediation since network events, either
internal or external, can be delivered to the security VM
via the cloud network that is defined by software; and the
flexibility and efficiency since both security VMs and the
way network events are delivered can be flexibly decided
according to the application’s needs.

To demonstrate our approach, consider Figure 1(b). As-
sume a security monitor is interested in customer requests
sent to the Contract-Update service and the resulting
internal messages sent by the Contract-Update ser-
vice. In this case, the virtual network of the DVD store
application can be re-programmed in a way that all the
incoming and outgoing network traffic of the VM that hosts
Contract-Update service are copied and forwarded to
the security VM for analysis. Network virtualization based
on SDN in the cloud allows the cloud infrastructure to
control each and every network packet to or from individual
application VMs, consequently providing the completeness
guarantee that the security monitor will be able to monitor
both external and internal network events. Such a design
also lends itself to a tamperproof deployment of security
monitors. Since security monitors reside in their own VMs,
adversaries cannot evade or tamper with security monitor
even if they have complete control over application VMs. In
fact, much like a traditional security monitor deployed on
network edges, security VMs are transparent to application
VMs. Adversaries cannot propagate attacks from application
VMs to security VMs unless they can break VM isolation,
which hypervisors are trusted to enforce.

In order to deploy security monitors in VMs, cloud
infrastructure must be able to deliver relevant network events
to corresponding security VMs. In the remainder of this



section, we will describe the architectural support required
from cloud infrastructure to do so and how flexibility and
efficiency goals can be fulfilled.

A. FlowTap Primitive

Deploying security monitors in VMs requires architectural
support from cloud infrastructure in order to deliver relevant
network events to corresponding security VMs. The key
challenge here is to provide flexibility. A naive solution that
copies and forwards all network events, both internal and
external, to a security VM is unlikely to fulfill the diverse
security requirements of all cloud applications. We envision
the following scenarios that a cloud application may need a
security monitor for:

• An application wants to deploy a security monitor to
simply log all internal and external network events seen
by its microservices for later forensics purposes.

• An application wants to deploy a security monitor to
protect its public facing microservices but trust its
internal microservices, in a way similar to traditional
security monitors on network edges.

• An application wants to deploy a special set of security
monitors to protect certain microservices (e.g., SQL
injection detection for DB service).

• An application wants to deploy a security monitor to
selectively monitor certain type of network events (e.g.,
messages sent over message queue) but ignore other
types of traffic (e.g., HTTP requests/responses).

• Building on the above scenarios, applications may
require security monitors to be able to react to network
events differently (e.g., passively monitor vs. block/al-
low vs. redirect for honeypot analysis).

The architectural support provided by the cloud infrastruc-
ture must be flexible enough to support all these scenarios.

The solution we propose is a primitive called FlowTap.
FlowTap is a contract established between application and
cloud infrastructure regarding how to deliver network events.
This contract describes the monitoring functionality for each
application VM by associating that VM with a security VM
and the network events to be monitored, implementing the
illusion that the security VM is physically resident on the
network channel. FlowTap contracts may specify the types
of network events and actions to take upon those events,
but different mappings of events/actions may be delivered
to different security VMs for the same target VM.

The FlowTap primitive is designed to be a cloud API
that can be invoked by cloud applications. Figure 2 shows
a prototype of the API. It accepts four parameters. The
first parameter SRC is the target application VM which
needs to be monitored. The second parameter DST is the
security VM that hosts the security monitor. Both SRC and
DST are specified using port. Port is an abstract concept
in cloud that uniquely represents the connection between a
VM and a virtual network.A port may or may not have an

FlowTap ( SRC, DST, Flow_Syntax, Action )
Flow_Syntax:
in_port, dl_vlan, dl_vlan_pcp, dl_src, dl_dst, dl_type, 
nw_src, nw_dst, nw_proto, nw_tos, nw_ecn, nw_ttl, tp_src, 
tp_dst, icmp_type, icmp_code, table, metadata, vlan_tci, 
ip_frag, arp_sha, arp_tha, ipv6_src, ipv6_dst, ipv6_label, 
nd_target, nd_sll, nd_tll, tun_id, tun_src, tun_dst, reg
Example ( Monitor incoming HTTP requests ): 
nw_src = 0.0.0.0/0;  nw_proto = TCP;  tp_dst = 80

Figure 2. A prototype of FlowTap primitive that uses OpenFlow-based
parameters for the flow syntax.

IP address. Working with ports, FlowTap primitive allows
applications to specify the monitoring relationship without
worrying about the actual deployment. For example, target
VM may be migrated, suspended or rebooted with a new IP
address, but as long as it is plugged into the same virtual
network, cloud infrastructure will honor the contract and
deliver the network events. Moreover, since port can work
without IP address, security VM can be transparent (i.e.,
not addressable) to application VMs. This further protects
security VM from compromised application VMs.

The third parameter Flow_Syntax describes a particu-
lar network flow. Network flow is the basic unit at which
the cloud infrastructure handles traffic routing. It is defined
using different fields of a network packet as shown in
Figure 2. By specifying the Flow_Syntax, application
can ask cloud infrastructure to selectively deliver specific
types of traffic to a security VM. For example, if the
application is only interested in monitoring HTTP traffic,
it can specify a flow with destination TCP port to be 80.
In this way, only HTTP requests/responses sent to or from
microservices will be delivered to the security VM, with the
rest of the traffic (e.g., database access) untouched. Working
at the granularity of network flow, FlowTap primitive allows
applications to specify different monitoring strategies with
maximum flexibility that a cloud network may support2.

The last parameter Action allows an application to
choose different reaction strategies for each type of network
event. Currently, FlowTap implements two kinds of strate-
gies, namely forwarding and redirecting. On forwarding,
relevant network events will be copied and forwarded to
the security VM, with the original network events still
delivered to their intended destination. On redirecting, the
relevant network events will be directed to the security VM,
and depending the decisions made by security monitor, the
network events may or may not reach the their intended des-
tination. Forwarding and redirecting essentially implement
the passive monitoring and active enforcement respectively.

Multiple FlowTap contracts can be established on the
same target application VM with non-overlapping flows. For
example, if a microservice both accepts HTTP requests and
accesses the message queue (e.g., Contract-Update in
Figure 1), the HTTP traffic can be forwarded to a Web

2This is because underlying routing devices in cloud (e.g., virtual
switches) also process network traffic at the granularity of network flow.
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Application Firewall (WAF) to block external attacks and
the message over message queue can be forwarded to an
internal security analysis tool to detect internal attacks.

B. FlowTap Compiler
The FlowTap primitive allows traffic slicing at the gran-

ularity of flows, which operate at layer 4 and below. To
support monitoring policies at a higher level of abstraction,
we provide a FlowTap compiler, ftc. This tool trans-
lates a given set of high level policies – usually pro-
vided by the application – to a sequence of FlowTap API
calls necessary to implement the policies. For example,
a policy such as redirect all incoming HTTP traffic for
public-facing services to a WAF (web application firewall)
will be translated to a sequence of API calls of type
FlowTap(Service Port,WAF Port, (Proto = TCP |
TcpDstPort = 80), Forward) and is pushed out to all the
nodes that host VMs for the particular application. Currently
ftc supports Datalog as the policy language and is designed
to be compatible with the policy language used in OpenStack
Congress [14]. In this example, the policy could be written
as a Datalog rule, monitor http(Tcp dport, InOut, VM1,
VM2) :- http In(Tcp dport, InOut), public vm(VM1),
waf vm(VM2), monHttpAction( ), where the r.h.s. contains
rules to validate the context (the first three terms) and
perform the set-up/action (monHttpAction). The details of
the policy language is left out due to space limitations.

The compiler is designed to generate FlowTap calls ac-
cording to the network monitoring strategy chosen by the
administrator(Refer to Section III-C) in a way that also
maximizes the efficiency of the system. More concretely, in
addition to policy, ftc also takes as input the utilization of
the cloud resource (e.g., cloud node CPU usage, network
load) and can dynamically compile the same policy into
different set of FlowTap calls that maximize the efficiency
of the system. For example, using the monitor per cloud
node strategy mentioned below, ftc may slice the flows
monitored internally on a cloud node and forward part of
them to security monitor on another node for processing if
the CPU of the first node becomes the bottleneck.

C. Monitor Per Application vs. Monitor Per Cloud Node
FlowTap primitive delivers each security VM its relevant

network traffic. This unavoidably creates additional traffic

on the network. Therefore, the next question is where do
we place security VMs such that network monitoring can
be efficient for cloud applications.

There are two distinct approaches for deploying security
VMs, corresponding to two different service models. The
first approach is to deploy a security VM per application
as shown in Figure 3(a). In this case, each security VM
is deployed as part of the application. The service model
is self-service, where each application is responsible for
building and maintaining its security VMs, setting up the
FlowTap contracts, etc. Cloud vendor only exposes the
FlowTap API for delivering the network traffic as specified
by the application. The benefit of this approach is that it pro-
vides applications with maximum flexibility—applications
can choose any security monitors and policies they like and
can directly manage their security monitors.

However, this approach has a drawback in terms of
efficiency. Since security VM may reside on another physical
cloud node, relevant network traffic will be delivered over
the physical IP fabric. Although it appears to be one flat
L2 segment to applications, physical IP fabric is built on
top of multiple L2/L3 tunnels, which can degrade net-
work performance. For example, we measured the network
throughput for GRE tunnels between different cloud nodes
in Table I. Results show that it is 5x slower than the virtual
network within a cloud node. In addition, as reported by
Gartner [15], 80% of traffic within cloud for microservice
applications are going to be east-west (i.e., from application
VM to application VM) instead of north-south (i.e., from
end-user to application VM). Consequently, the bandwidth
on physical IP fabric will likely become a resource that cloud
vendor charge applications for, so applications will want to
minimize utilization of such resources.

Another approach is to deploy a security VM per cloud
node, as shown in Figure 3(b). In this case, security VM is
deployed as part of cloud infrastructure, running as a security
service provided by vendor to applications. The service
model is pay-by-use where applications specify their policies
for security monitoring, and cloud vendor is responsible
for building and maintaining the security VMs, setting up
the FlowTap contracts, etc. This approach has two benefits.
First, it reduces the traffic on physical IP fabric since now
relevant traffic is forwarded to local security VM3. Second,
this approach offers an opportunity to better utilize cloud
resources. Since security monitoring is often CPU intensive,
cloud vendor may leverage FlowTap and the compiler to
re-balance the traffic forwarding such that security VMs on
less loaded nodes get more traffic to monitor.

This approach brings up two challenges. First, application
owners should still have the flexibility to deploy customized

3Security VMs on different nodes may still need to collaborate in order
to enforce a global policy for an application, but the amount of information
necessary to correlate events in a global policy has been found to be orders
of magnitude smaller than the raw traffic [16].



security policies to protect their applications. In other words,
the security monitor deployed by cloud vendor should pro-
vide a comprehensive set of security primitives to analyze
and operate over any kind of network traffic, and be general
enough to support various kinds of security policies. While
a specific design of such security monitor is out of scope
of this paper, we argue that it is possible. The reason is
that network traffic follows protocols. As long as a security
monitor can extract fields from a network packet, the content
analysis can be application policy specific. For example,
the Bro network security monitor [10] already supports
plugin policies in terms of Bro scripts to customize network
security monitoring. Second, since now VMs from different
applications may run on the same cloud node, they are
monitored by the same security VM, so it is important that
security policies from different applications do not interfere.
For example, one application may have a security policy that
blocks all HTTP traffic while another application may have a
security policy that only allows HTTP traffic. This challenge
can be resolved by associating policies to network flows.
The insight is that network flows from different applications
cannot overlap, so if security policies are associated to
flows, they cannot interfere with each other. We rely on the
compiler to do so.

In our work, we adopted the second approach where we
created a Security-as-a-Service provided by cloud vendor
based on the Bro network security monitor [10]. In Sec-
tion V-A, we demonstrate several security policies we used
that can detect and block internal threats from compromised
microservices. In general, we envision a hybrid approach
will be adopted where certain common security monitors
(e.g., malware detection, IP blacklist) will be deployed as
a service provided by cloud vendor, but application owners
have the freedom to deploy highly customized security mon-
itors specific to their applications. Our FlowTap primitive is
designed to be flexible enough to support either deployment
case and service model.

IV. IMPLEMENTATION

Our prototype FlowTap is implemented on OpenStack
Icehouse release. To implement FlowTap, we modified the
virtual routing devices on cloud nodes, including the inte-
gration bridge (i.e., br-int) that connects to VMs and the
tunneling bridge (i.e., br-tun) that tunnels the VM traffic
across cloud nodes. We modified br-int such that when a
packet of the target VM is submitted, it is processed through
the following steps according to the FlowTap API: 1) the
flow is compared with the flow syntax; 2) if it matches, it
is duplicated (if the action is forwarding) or taken as it is
(if the action is redirecting); 3) its destination MAC address
is rewritten to be the MAC of the security VM; and 4) it is
resubmitted. It is resubmitted to either a local port on br-int
if the security VM is on the same cloud node, or to the br-
tun for tunneling. We modified br-tun to establish a tunnel

to the remote cloud node that hosts the security VM upon
the execution of FlowTap API. The packet will be delivered
through the tunnel to the security VM by remote br-int and
br-tun based on its destination MAC.

Although the general implementation is straightforward,
we run into several interesting issues. First, virtual bridges
does not allow the same device port to be used for both
incoming and outgoing flow. Consequently, if a packet
comes from br-tun to br-int, we cannot duplicate it and
send it out to br-tun again. The solution we adopted is to
create another patch port between br-int and br-tun such that
outgoing flow is separated from incoming flow. However,
this creates another challenge. Since now there are two
connections between br-int and br-tun, a loop is created. As
a result, broadcast packets from a VM can propagate back
to itself. This creates a serious issue for DHCP-discovery
packets. Since the VM receives its own DHCP-discovery
requests, Iptables on a cloud node will set the connection
state to be invalid thus preventing the VM from getting valid
DHCP-reply. One options is to modify the iptables such that
invalid connections states are accepted. Another option is to
add new flow tables rules to filter broadcast messages that
are looped back. We adopted the second approach.

V. EVALUATION

We evaluate our solution by: (1) demonstrate its effec-
tiveness by showing an example network security monitor
deployed via FlowTap and how it enforces various security
policies to block internal threats of microservices; and (2)
investigate the performance impact of FlowTap.

A. Case Study

To demonstrate the effectiveness of our solution, we
deployed a Bro network security monitor via FlowTap on
cloud. The security monitor enforces over the internal net-
work events, including HTTP, message, and database access,
among microservices of the example application shown in
Figure 1(b). It enforces the following policies:
Connection Policy. This policy decides whether or not a mi-
croservice can have a direct connection to another microser-
vice. For example, neither Shipping nor DVD-Return
needs to have direct access to the database, therefore the
policy would deny any connection attempts from these two
services to the database. As a result, although they run within
the same application network, they can gain no access to
critical data even if they are compromised.
Request-specific Connection Policy. This policy defines
what kind of request a microservice can make to another mi-
croservice. For example, User-Create service is allowed
to insert an entry into user database, but it is not allowed to
make a query of a specific user. The security monitor parses
the request body and checks for its legitimacy. Moreover, the
security monitor enforces this policy based on user request.
A microservice can only make certain requests to others as



Node-Node VM-VM
(same node)

VM-VM
(different node)

Throughput (mbps) 9200 12000 2600
Table I

NETWORK VIRTUALIZATION PERFORMANCE USING GRE TUNNEL.
Scenario (a) (b) (c) (d)

Baseline (mbps) 2600 2600 12000 12000
FlowTap (mbps) 2100 2600 5100 9100

Table II
FLOWTAP PERFORMANCE UNDER DIFFERENT DEPLOYMENT SCENARIOS

FOR RAW TCP THROUGHPUT WITH DUMMY CONTENT.

required for serving a particular user request. Thus, even if a
microservice is compromised, it is confined through limiting
its connections to other microservices.
Request Integrity Policy. This policy enforces over the
content (e.g. checks for certain invariants, correlations, etc.)
of a request to prevent compromised microservices from
hijacking requests. For example, when user Alice rents
a DVD, her request is handled by Contract-Update.
However, a compromised Contract-Update may send
requests to User-Update indicating user Bob to bill.
Similarly, a compromised User-Update may modify the
database such that the DVD is accounted to Bob instead
of Alice. The security monitor enforcing request integrity
policy analyzes the body of requests to ensure that the same
user is referred to throughout the processing of the user
request by multiple microservices. Similarly, the security
monitor can check other application specific invariants and
correlations to make sure that a compromised microservices
cannot hijack how a user request is served.

B. Network Virtalization Performance

Table I shows the overhead associated with the tunneling.
In the table, the column Node-Node measures the bare metal
bandwidth between cloud nodes, serving as a baseline for
comparison. The bandwidth is measured using the Netperf.
Column VM-VM (same node) measures the throughput
between two VMs running on the same node. Column VM-
VM (different nodes) measures the throughput between two
VMs running on different nodes, in which case traffic will be
tunneled. As shown in the table, due to the GRE tunneling,
the network performance degrades dramatically, almost 5x
slower. The reason is that the offload features on most
existing NICs cannot be utilized by GRE outer header com-
putation. Consequently, tunneling becomes a CPU intensive
task. Other tunneling techniques such as STT and VXLAN
may yield better performance. One interesting observation
is that the network throughput between two VMs on the
same node is 12000, even larger than the bandwidth for VM
hardware (10Gb). This is due to the memory optimization
in hypervisor which allows two VMs to exchange network
packets very quickly.

C. FlowTap performance

Next, we evaluate the performance impact of the FlowTap.
We are interested in knowing how the raw (TCP) network
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Figure 4. Different scenarios of deploying security VM.

throughput of two communicating microservices is affected
due to FlowTap. We consider four different deployment
scenarios shown in Figure 4. For all the scenarios, we used
Netperf to pump TCP packets with dummy content as fast as
it could and used a dummy security VM that would passively
read, count, and ignore the packets. We believe, this is the
worst case scenario for FlowTap, as there is no computation
latency involved for producing or consuming this dummy
content. For simplicity, we name the two communicating
service VM A and B, and the security VM S. S is setup to
passively monitor outgoing traffic of A.

In the first deployment scenario, we deployed A, B and S
on different nodes. The baseline throughput between A and
B is 2600 mbps, due to the GRE tunnels. With FlowTap,
the throughput between A and B drops to 2100 mbps. The
reason for the drop is the added latency for encapsulating
packets for another tunnel—A to S in addition to A to B.

In the second deployment scenario, A and S run on the
same node while B runs on a different node. In this case,
the dominant overhead is the tunneling between A and B.
Therefore we did not see a throughput drop since the local
forwarding from A to S is very fast.

In the third deployment scenario, A and B run on the
same node while S runs on a different node. In this case,
the throughput between A and B drops from the baseline to
5100 mbps, decreasing by more than 55%. The reason is be-
cause of the tunneling from A to S. Since the packet delivery
between A and B is fast, tunneling becomes the dominant
overhead, therefore decreasing the throughput dramatically.
However, we are curious why the throughput between A and
B can be higher than the baseline throughput (2600 mbps),
since in this case FlowTap also forwards the traffic to S on
a different node. By looking at the packet counter, we found
that the reason is because packets are dropped while they
were forwarded to S. Since S is only a passive listener of
packets, A will not stop and wait if buffers on S’s host are
filled up. Consequently, A can send packets at a faster speed
than the baseline case.

In the fourth deployment scenario, A, B and S all run on
the same node. We see a throughput drop from 12000 mbps
to 9100 mbps. Since no tunneling is involved, the sole source
of overhead in this case is the traffic forwarding performed
by FlowTap. FlowTap currently incurs relatively large over-
head due to the expensive operations of packet copying and
rewriting (i.e., rewrite destination MAC address). However,



Baseline FlowTap Throughput loss
Throughput (req/s) 3195 3004 6%

Table III
FLOWTAP PERFORMANCE WHEN MONITORING A WEB SERVER.

this can be avoided by adding more complex flow rules on
virtual devices of cloud nodes such that the packets can be
delivered to security VM without being modified. We are
currently in the process of optimizing our implementation
to address this problem.

As mentioned before, the above measurements are per-
formed on raw TCP traffic between two dummy ends. In
real world, the overhead of FlowTap is often amortized by
application traffic. For example, we measured a case where
external traffic to a web server is monitored by a security
monitor on the same node. As shown in Table III, FlowTap
causes about 6% throughput drop for the web server, which
makes it a practical solution for real world usage.

VI. RELATED WORK

Existing approaches to securing cloud applications fall
into two categories. Infrastructure and/or platform-based
security approaches, such as VMware vCNS [17] and
NSX [18], etc., extend the hypervisor/platform to provide
distributed, and sometimes inline, monitoring for the cloud
applications. They mostly try to implement monitoring tech-
niques inspired by their physical counterparts (e.g. SPAN
and/or TAP ports) in distributed virtual switches [19], fire-
walls [20] and routers [21]. Our work introduces flexibility
to these techniques with more fine grained and dynamic con-
trol, and augments microservice-specific context to address
security issues that are important for this architecture.

Application-based security approaches, such as in Netflix
Fido [13] analyze API-level behaviors within cloud applica-
tions to build application profiles and then use the profiles
to detect anomalous patterns. They, however, have two
drawbacks. First, the analysis often uses hooks within the
VM or the application to monitor the APIs and other appli-
cation behaviors. If an adversary successfully compromises
a microservice and escalates the privileges to control the VM
that hosts the service, it can easily subvert the security of this
framework. Second, this approach usually lacks the visibility
into the underlying infrastructure, thus may lack capability to
respond to the conditions (e.g. they cannot redirect traffic by
themselves and need some infrastructure support). In some
situations, they may also be susceptible to poor performance,
e.g. when sending traffic or application logs to another host
for analytics. We, in comparison, take a middle ground and
leverage the application context from the RPC calls captured
in inter-service communication on top of the monitoring
infrastructure and program the infrastructure for enforcing
security controls via automated and dynamic response. There
are some application health monitoring technologies [22],
but they often focus on individual applications.

VII. CONCLUSION

In this paper, we presented FlowTap, a primitive for the
cloud infrastructure that enables it to support fine grain
virtual network monitoring. FlowTap establishes monitoring
relationships between microservices and security monitors,
allowing them to enforce policies over the network traffic
seen by the microservices. An empirical study shows that
the FlowTap primitive is flexible enough to support various
kinds of monitoring scenarios and policies with minimal
overhead. Using the FlowTap primitive, cloud vendors can
thus provide security-as-a-service for cloud applications that
are based on microservice architecture.
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