
Cloud Verifier: Verifiable Auditing Service for IaaS Clouds

Joshua Schiffman
Security Architecture R&D

Advanced Micro Devices. Inc,
Austin, TX, USA

Josh.Schiffman@amd.com

Yuqiong Sun, Hayawardh Vijayakumar, and Trent Jaeger
Department of Computer Science and Engineering

Pennsylvania State University
University Park, PA, USA

yus138,hvijay,tjaeger@cse.psu.edu

Abstract—Cloud computing has commoditized compute,
storage, and networking resources creating an on-demand
utility. Despite the attractiveness of this new paradigm, its
adoption has been stymied by cloud platform’s lack of trans-
parency, which leaves customers unsure if their sensitive
data and computation can be entrusted to the cloud. While
techniques like encryption can protect customers’ data at rest,
clouds still lack mechanisms for customers to verify that their
computations are being executed as expected, a guarantee one
could obtain if they were running the computation in their own
data center.

In this paper, we present the cloud verifier (CV), a flexi-
ble framework that cloud vendors can configure to provide
cloud monitoring services for customers to validate that their
computations are configured and being run as expected in
Infrastructure as a Service (IaaS) clouds. The CV builds a
chain of trust from the customer to their hosted virtual machine
(VM) instances through the cloud platform, enabling it to
check customer-specified requirements against a comprehensive
view of both the VM’s load-time and run-time properties.
In addition, the CV enables cloud vendors to provide more
responsive remediation techniques than traditional attestation
mechanisms. We built a proof of concept CV for the OpenStack
cloud platform whose evaluation demonstrates that a single CV
enables over 20,000 simultaneous customers to verify numerous
properties with little impact on cloud application performance.
As a result, the CV gives cloud customers a low-overhead
method for assuring that their instances are running according
to their requirements.

Keywords-cloud; integrity; monitoring;

I. INTRODUCTION

Cloud computing has revolutionized they way we con-
sume computing resources. Instead of maintaining a locally
administered data center, resources can be obtained on
demand from a public cloud utility. Clouds come in a variety
of models ranging from virtual machine (VM) hosting to
fully managed web services. For example, Infrastructure as a
Service (IaaS) clouds like Amazon’s EC2 [1] and Rackspace
Cloud Servers [2] provide fully customizable virtualized
computing infrastructures.

While this new model has increased access to affordable
resources, cloud computing makes it more difficult for cus-
tomers to track their own computations on cloud instances.
When customers deploy computations in their own data
centers, they have a variety of tools for monitoring the health

of those computations [3], [4]. However, by using remotely-
administered cloud systems, cloud customers are no longer
in able to maintain visibility into their computing infrastruc-
ture. Little assurance is provided that the security settings
they specify are properly enforced or that their instances
are protected from accidental misconfiguration, malicious
insiders [5], and traditional external threats. The problem is
only compounded when considering the risks that clients of
these customers’ cloud-hosted services must blindly accept
when trusting both the cloud and the customers (service
providers) with their sensitive data.

Researchers have explored methods that enable cloud
customers to obtain greater control over the conditions under
which they will run their instances on a particular cloud.
The Excalibur system [6], for example, allows customers
to select the attributes of cloud platforms that must be
met before releasing their data to be run on those clouds.
However, it only focuses on the platform, so customers
cannot validate whether their instance was launched as
expected nor evaluate runtime properties of the instance.
Self-service clouds [7] (SSCs) extend the cloud infrastructure
by providing per-customer administrative domains, enabling
customers to manage their own instances. However, the
SSC approach wrests too much control away from the
cloud vendors without providing enough information to the
customers. Using SSC, the cloud vendor is forced to reveal a
great deal of information about its own, possibly confidential
cloud node configuration to the customers, and the customer
does not obtain any justification for the rest of the cloud
services upon which the instance depends, such as the cloud
controllers, which have had vulnerabilities reported [8].

In this paper, we present a framework for cloud vendors
to build auditing services that enable customers to obtain a
verifiable chain of trust to a monitor that tracks the runtime
health of their cloud instances. The framework consists of
two parts. First, the Cloud Verifier (CV) service enables
cloud vendors to monitor the health of their own clouds,
produce proofs of cloud health for their customers, and
build verifiable chains of trust between customers and their
instances. Cloud vendors configure CVs to leverage the
cloud’s hierarchical structure to build transitive trust from the
cloud platform to the instances themselves, which customers

Platform

Customer
Client

Service

Instances

Configure

Monitor

Figure 1. Host-based Monitoring.

can then verify to obtain visibility to their instances. Second,
the Instance Monitor (IM) service monitors each instance’s
state to detect violations from its customer’s requirements,
which we call integrity criteria1. Like the SSC approach [7],
we find that by verifying integrity requirements from within
the cloud instead of remotely, more comprehensive and
efficient enforcement can be achieved. Unlike the SSC
approach, we use the CV to build a chain of trust from
the customer to the IM service to monitor instances. In
addition, cloud vendors can provide monitoring modules
for IM services to measure various load-time and runtime
properties of customer instances, enabling customers to write
integrity criteria in terms of queries on those measurements.
The IM service is designed so that customers can take
remediative actions as soon as any integrity criteria are
violated to prevent themselves or clients of their services
from using data from potentially compromised instances or
sending data to those instances.

The rest of the paper is organized as follows: Section II
describes the problems of instance monitoring in IaaS
clouds. Section III introduces two techniques our monitoring
framework builds upon. We present the design overview
of our Cloud Verifier framework and its integration with
OpenStack in Sections IV and V, respectively. Section VI
evaluates the framework. Section VII discusses related work
and Section VIII concludes the paper.

II. PROBLEM DEFINITION

The goal of host-based monitoring is to evaluate proper-
ties of an individual host, such as its performance, resource
usage, and integrity. Figure 1 shows the general approach for
host-based monitoring that we will use in this paper. First,
a host instance is deployed in the context of a platform,
such as a data center or cloud, run by a platform owner
on behalf of a customer. The host instance deployed by the

1Integrity criteria may express a broad range of requirements that
customers may want to monitor and enforce upon their cloud instances.

customer may, in turn, be used by clients, who utilize the
services the customers provide through their instances. Host-
based monitors inspect the instance throughout its lifetime,
from its load time through the duration of its execution. Tra-
ditionally, host-based monitoring mechanisms consist of a
daemon running on the host instance itself and a monitoring
server that runs within the platform, protected from the host
instance, that retrieves input from the monitoring daemon.
Commercial monitoring products utilize this architecture [3],
[4].

A. Host-Based Monitoring

The problem with this approach is that the host instance
may not be fully trusted, such that the host instance may
tamper with the monitoring daemon to change the results it
reports. This is particularly a concern when the daemon’s
job is to monitor host integrity. If an adversary is able to
compromise the host, she may be capable of compromising
the monitoring daemon as well to report falsely that the host
instance is operating as expected.

To counteract this problem, researchers have explored
monitor designs that remove the monitor daemon from
the host instance, yet are still able to provide the desired
monitoring information. One particular way is to utilize
virtualization features of commodity (x86) processors. Many
solutions [9], [10], [11] have been proposed since then for
monitoring VM integrity via virtual machine introspection.
The main challenge in VMI is to provide efficient measure-
ment mechanisms that will monitor the properties of interest
to the customer accurately from outside the host.

B. Host-Based Monitoring in IaaS Clouds

Though aforementioned host-based monitoring mecha-
nisms have proven effective in traditional data centers, they
face serious challenges when deployed in a cloud setting.

First, the trust relationship between customer and platform
changes when the customer moves computation into the
cloud. In traditional data centers, the customer is also the
platform owner and the platform is visible and directly
configured and administered by customer. Consequently,
they can implicitly trust the monitoring services in the
hosting platforms.

However, when moving to a cloud, the owner becomes
a detached customer that no longer maintains such visibil-
ity. Because the cloud platform is configured by external
administrators, threats may arise that prevent customers
from accurately monitoring their instances. One significant
concern, for example, is the fear that privileged insiders
may access the cloud’s management interface and corrupt
a customer’s computing environment. Several studies have
shown that this internal threat does exist and current cloud
platforms lack effective countermeasures to address it [12],
[13].

Second, verification of platforms becomes much harder
in the cloud, as cloud vendors usually hesitate to expose
their infrastructure to outside parties. Customers are left
unsure whether their monitor is functioning correctly and
that the results returned are trustworthy. As administration
of cloud infrastructure may be error-prone, it is likely that
accidental mismanagement, such as an unpatched cloud node
or a misconfigured cloud service, could result in an incorrect
or even vulnerable monitoring facility that would render an
incorrect view over customers’ instances. Moreover, failing
to provide verifiability could prevent adoption of cloud in
many scenarios that require external auditing, such as bank
services or public health databases.

Finally, host-based monitoring mechanisms in general
have an inherent weakness because they only focus on
collecting and reporting instance’s state, relying on customer
to later perform mediation based on the state. Consequently,
a vulnerability window exists between the detection of an
anomaly and the notification of customer, and during such
a window the instance will run in an incorrect state. Such
problems become even more severe in cloud, as remotely
administered platforms inevitably prolong such anomaly
notification delay. Moreover, clouds only export limited API
to customers for controlling their instances, thus limiting the
remediation options that are possible.

We generalize the above challenges into three basic re-
quirements that motivate our design of a verifiable cloud
monitoring service:

Correctness. The cloud monitoring service should gather
and report properties of instances faithfully, despite the
existence of cloud insiders, co-resident VMs, and other
external threats.

Verifiability. Customers should be able to verify that the
monitoring service is configured and running correctly.

Timely Control. As soon as an instance violates its integrity
criteria, the cloud monitoring service blocks the violating
instance from sending or receiving requests and initiates
rememdiation.

III. BUILDING BLOCKS

In this section, we introduce two techniques, Trusted
Computing (TC) and Integrity Verification Proxy (IVP), that
serve as building blocks for our verifiable cloud monitoring
framework.

A. Trusted Computing

TC techniques enable systems to report their configura-
tions (e.g., loaded code and data) to relying parties through
a technique called remote attestation. The Trusted Platform
Module (TPM) [14] is an example of a widely deployed
TC co-processor available in many commodity systems like
servers and laptops. The TPM possesses several platform
configuration registers (PCRs) that store measurements (e.g.,

VM

Integrity
Verification Proxy

VMI vTPM Disk
Access

Host

Remote
Client

Specify integrity
criteria

Figure 2. Integrity Verification Proxy Overview

SHA1 hash chain values) of integrity-relevant events. Var-
ious measurement frameworks like the BIOS, LIM in the
Linux kernel [15], and the Trousers userspace daemon [16]
store sensitive events like code loading in the TPM’s PCRs.
These PCRs are append-only and reset at boot-time to
prevent falsified measurements. The TPM also possesses an
RSA key pair, called an endorsement key (EK), that is burned
into the chip to uniquely identify the physical machine. The
EK certifies RSA attestation identity keys (AIKs) that are
used to sign the PCRs to link the measurements to the
platform.

Definition 1 (Quote): A proving system P reports its
configuration as a signature over the TPM’s current PCR
values with a nonce N for freshness. Formally, QUOTEN =
{PCR||N}AIK−1

P
.

Definition 2 (Attestation): Given a nonce N , an attesta-
tion is ATTN = {QUOTEN ,M}, where M is the measure-
ment list of events corresponding to the PCR values of
QUOTEN .

Researchers have leveraged trusted computing hardware
to verify the integrity of remote systems [17]. While initial
efforts aimed for loadtime verification of individual sys-
tems [18] and isolated execution environments [19], recent
projects have focused on verifying distributed systems [20]
and even cloud platforms [21]. However, such solutions are
insufficient for providing a complete view of the cloud’s
integrity. In particular, their reliance on inefficient and
incomplete attestation protocols limits their utility for mon-
itoring cloud integrity [22].

B. Integrity Verification Proxy

Integrity Verification Proxy (IVP) [22] is a modular ser-
vice that enforces integrity requirements over connections
between clients and remote systems. It monitors any changes
to remote systems that violate clients’ integrity requirements
and immediately terminates clients’ connections. Figure 2
illustrates an overview of IVP. It is designed as a modular
service that collects the evolving state of VMs it hosts
through the available integrity measurement (IM) interfaces

Node
Server

Cloud
Verifier

Master
Image

Cloud
Criteria

Install Node from
master cloud image

Design image
to enforce

cloud policy

Provide policy to
cloud verifierNode attests

to join the cloud

CV monitors
Node for violation

Figure 3. Cloud Join Cycle.

(e.g., VM introspection, vTPM, etc.) used for reporting
integrity-relevant events within the VM. Such accumulated
state is then used by the IVP to determine whether a client
supplied integrity requirement, called as integrity criteria, is
satisfied.

The advantage of leveraging IVP as the basis of our IM
service is twofold. First, IVP resides in the VM host thus al-
ways has the most up-to-date view with which to assess VM
state, by continually gathering information about the VM’s
changing configuration. Second, IVP can be leveraged to
perform timely remediation. Current monitoring approaches
rely on the remote party to make remediation decisions
when a violation is detected by the monitor. This often
introduces windows where malicious or undesirable behavior
may occur because the remote party is notified too late.
IVP can enforce integrity criteria at VM host, consequently
performing remediation right upon detection of anomalies.

Designing an IM service based on the IVP and incorpo-
rating it into a cloud platform incurs many challenges. First,
clouds are opaque to customers. The IVP design assumes
that customers can find and verify that a host is running
an IVP. In cloud platforms, customers often cannot identify
the specific cloud nodes on which their instances run nor
can they communicate directly with the host software of
the node to determine if it runs a valid IM service (e.g.,
IVP). Second, IVPs only focus on the monitoring of a VM
on a host platform. On the other hand, cloud platforms
are complex, comprised of multiple services (e.g. network
service, API service, etc.) that support the execution of
instances. Merely verifying the compute service does not
provide sufficient guarantees that the IM service will monitor
customers’ requirements comprehensively.

IV. CLOUD VERIFICATION ARCHITECTURE OVERVIEW

The goal of the CV is to construct a verifiable cloud
monitoring service. That is, we want to provide customers
with a trustworthy view of their running instances in a
manner that the correctness of the services can be verified by
customers themselves or third parties. To that end, the CV
is designed to enable customers to establish trust through
a cloud platform to the IM service that will monitor and
enforce customers’ requirements.

Enforcing Cloud Platform Integrity. Enabling remote
customers to monitor their instances through a hosting cloud
platform requires the cloud platform to function correctly on
its behalf. That is, the monitoring service should faithfully
report the state of instance, despite potential existence of
cloud insiders, mismanagement and possible network attacks
within cloud infrastructure. To that end, the CV ensures that
all cloud components satisfy an integrity criteria specified by
the cloud administrator, which customers can then compare
to their own requirements. The CV does this by verifying
services like the node controllers, network controllers, and
API endpoints before they can join the cloud and ejects
systems that violate the cloud-wide criteria.

Figure 3 illustrates the high-level protocol for a generic
IaaS cloud node. First, the cloud administrators formulate
an integrity criteria for a trustworthy cloud node. Next, the
administrators design a master disk image for all nodes in
the cloud that satisfies the criteria. The disk image is then
pushed out to all of the node machines through network
installation. When a node boots, it must request to ”join”
the cloud in order to host instances. To do this, nodes send
attestations [23] to the CV, which evaluates the node against
the cloud criteria. If successful, the node joins the cloud, and
the CV monitors the node for changes, ”ejecting” the cloud
node if it violates the cloud criteria.

This protocol ensures all monitored components belong-
ing to cloud platform currently satisfy the cloud criteria.
As a result, the CV effectively speaks for the integrity of
the cloud platform. A remote customer can then assess the
integrity of the cloud by verifying the CV is trustworthy
and then comparing the enforced criteria to the customer’s
requirements2. If they are acceptable, the client monitors
the CV’s runtime integrity and ensure it continues to speak
accurately for the cloud platform. If the CV later violates the
customer’s requirements, then the customer can no longer
trust the CV and must discontinue using it.

Monitoring Instance. The second layer of the CV frame-
work provides a monitoring service over cloud instances
on behalf of remote customers. This is done through the
IM service resident in cloud node. Unlike the Excalibur
system [6] which mainly focuses on measuring host prop-
erties such as hypervisor version, the IM service hooks into
the instance control interface of cloud node, enabling it to
measure load-time properties of instance, and attaches itself
to a running instance through the VMI interface to collect
runtime properties as well.

Remediation. In addition to verifying the integrity of the
cloud platform and monitoring running instances, the CV
enables remote customers to perform remediation in re-
sponse to violations of their criteria. However, the degree

2The cloud vendors can choose what requirements about their cloud can
be verified by their customers to balance secrecy of cloud configurations
with customer-relevant requirements.

Nova
Compute

Nova
Store

Image
Store

RabbitMQ

Nova
Schedule

Nova
Network

Nova API

Instances

Cloud
Customer Client

Cloud
Database

Nova
Verify

Orchestra
Provisioning

Server

Service

Figure 4. Integrating the CV Approach into OpenStack. The shaded
elements required modifications.

of remediation is dependent on the authority of each remote
party over the monitored component. For the cloud admin-
istrator, when the CV detects violating cloud components,
it protects the cloud by ejecting that component from the
cloud. This involves re-imaging the node back to the master
disk image. For the cloud customers like service providers
that host instances on the cloud, when the IM service
detects a violating instance, it can shutdown the image
and rollback the attached storage volume to a snapshot
before the VM started. Finally, the IM service automatically
disconnects clients from cloud instances that violate their
integrity requirements. For each of these remediations, the
IM service is able to perform these actions sooner than
any remote party could by avoiding the delay introduced by
attestation. As a result, the window for malicious behavior
by the monitored system is reduced using the IM service.

V. OPENSTACK INTEGRATION

We now describe our implementation of a proof-of-
concept CV framework for the OpenStack open-source IaaS
cloud platform [24] with KVM virtualization on Linux 3.0
kernels. Figure 4 illustrates a simplified view of the Open-
Stack integration. The main changes are the addition of the
nova-verify service to implement the CV and modification
of nova-compute nodes to support the IM service. Other
OpenStack services have been modified to use the CV
and IM service as described below. Overall, our changes
comprised roughly 2,600 SLOC in Python. Additional code
for implementing modules and measurement interfaces was
under 1,000 SLOC of Python.

A. Building a Verifiable Cloud Node

We designed a single disk image for each component
and installed it on cloud nodes over the network using
the open source Orchestra Provisioning Server. The disk
image in installed using the network-based ROTI installer
(netROTI) [23]. The netROTI uses hardware support to
establish a dynamic root of trust at system reboot [25] to

enable verifiable installation over a hostile network. The
installer generates ROTI proofs by taking measurements of
the installed file system, the Orchestra installer, and the disk
image. Such proofs are then sent to nova-verify service for
authenticating and authorizing the cloud node which we will
discuss later in SectionV-B.

Each component maintains a static filesystem across re-
boots. To do this, we used AUFS to overlay filesystem
branches into a single virtual file system. This allows us
to set the installed filesystem to be read-only while layering
a temporary, RAM file system on top. In this way, modifica-
tions to the installed filesystem will be discarded at reboot,
so the node can return to the installed state on each reboot.

To prevent runtime modifications from exceeding the
allocated temporary filesystem (e.g., caching of VM disk
images) we overlay a writable disk partition over the
cache location so that modifications to this directory will
be preserved. This cache is partitioned from the installed
distribution and is measured only on first access instead of
at boot time.

B. Admitting Compute Nodes

The nova-verify service is responsible for admitting and
evicting nova-compute nodes into and from the cloud.

Registering Compute Nodes. When a nova-compute node
boots, it parses a locally-saved configuration file to locate
the RabbitMQ message queue server and the cloud database.
Normally, it attempts to register itself as an available com-
pute service in the database and RabbitMQ. To mediate
the registration process, we block all nodes except those
that connect through an SSL tunnel (stunnel) proxy service,
which provides SSL functionality without modification to
application. We then provide a port that redirects all non-
stunnel traffic to the nova-verify service to begin the cloud
join protocol (see Section IV), where nodes use the ROTI
proofs above as their attestations. Upon a successful join, the
nova-verify node places the node’s certificate in the directory
of valid certificates on the message queue and database.

Monitoring Compute Nodes. After a nova-compute node
registers itself to the cloud, the nova-verify service mon-
itors that compute node for reboots. We implement node
monitoring by having the nova-compute nodes periodically
query the database per their normal behavior. This is done
to look for the pending requests they should service. This
automatically updates a last-accessed time for the node.
However, if the status of a nova-compute node is not updated
for a certain duration3, the nova-verify service will notice
the missing update and remove the node’s identity certificate
from the message queue. This, in turn, invalidates the stunnel
connection, which isolates the node from the cloud.

3In our case since we believe it is unlikely for a server to fully reboot
into a malicious state from a benign state in less than 30 seconds.

C. Starting an Instance

When loading an instance on the cloud, customer can
choose whether to initiate the IM service at the same time.
We implemented the IM service as a separate daemon
spawned by the nova-manage service running in the nova-
compute node. It is initiated prior to the customer’s instance,
allowing it to collect load-time properties of the instance
using its registered modules.

We modified the euca-run-instances command
in the Eucalyptus command suite to spawn a new
IM service as part of instance initiation. For example,
the euca-run-instances Image_ID -v command
starts up a new instance with Image_ID. We extended
this command to start an IM service as well. When an
IM service is spawned, it obtains handles to the available
measurement modules. These handles are passed to the
modules, which select the monitoring interface (e.g., VM
introspection, vTPM, etc.) they intend to use.

D. Registering Integrity Criteria

After the IM service is initiated, customers connect to it
through cloud by verifying the nova-verify service, which
then forwards the request to the nova-compute node hosting
the IM services. Our prototype is built under OpenStack
FlatDHCP network mode, which places all instances on a
private network whose gateway is the network controller
(nova-network in Figure 4).

Connect to the IM Service. A customer starts the connec-
tion protocol by first communicating with the instance using
a well-known IM service port. The network controller then
redirects the request to nova-verify by responding with the
IP address of the nova-verify service. This tells the customer
that the instance is being hosted on a cloud and that a CV
is available.

Verifying CVs. The customer verifies the ROTI proof and
the current boot cycle of the nova-verify node before pro-
ceeding to use the cloud’s services. Since current commodity
TPMs can only generate one attestation per second, meth-
ods are needed for nova-verify to produce attestations for
several customers concurrently. We addressed this problem
by using the batch attestation approach described by Santos
et al. [6]. Using this method, nova-verify server batches
multiple customer attestation requests into a Merkle hash
tree and produces a single attestation that all customers can
verify.

Monitoring CVs. If the verification succeeds, the customer
then monitors nova-verify to detect when it reboots. This can
be done through heartbeat signals over a SSL tunnel between
nova-verify node and the customer. But in practice, we found
that maintaining multiple tunnels is expensive, as it greatly
reduces the number of simultaneous customer connections
that a nova-verify node can support. As an alternative, we

explored the solution of using attestation as the heart beat
signal. Customers will continue requesting nova-verify node
to generate attestations and verify the attestations. Since such
attestations can only be produced by the TPM on nova-
verify node, the liveness of nova-verify node can thus be
guaranteed. We investigated the number of simultaneous
connections supported by this scheme. Results show that
a single nova-verify node can support more than 20,000
concurrent customers with a heartbeat window setup to be
10 seconds, in which case the TPM produces one attestation
every 10 seconds.

Request Connection to IM service. The customer then
requests to connect to the IM service through a new API
command euca-register-criteria. The arguments
for the command are: 1) the public IP of the intended
instance, 2) a port on the instance, and 3) the criteria
the customer wishes to have monitored and enforced. We
added a function to the nova-api service to forward the
request through the message queue to the compute node
hosting the instance with the specified IP. We also added
a special handler in the nova-compute service to respond to
the criteria registration RPC call to interact with IM service,
as described below.

Register Integrity Criteria. When the IM service receives
a customer’s request, it first registers the customer’s integrity
criteria with each measurement module. If the modules
report that the criteria are satisfied, the IM service unblocks
a randomly assigned port Pcriteria for IPinstance in the
compute node (the VM host) firewall. This port then redi-
rects requests to Pservice on the instance. For example, the
IM service will add a firewall rule to redirect HTTP traffic
from port 9000 to port 80 for that nova-compute node using
iptables. By using this “criteria” port (port 9000 in this
case), the customer obtains a guarantee that that instance
will only send or receive data using that port if it satisfies
the associated integrity criteria. That is, if a violation of that
criteria is later detected by IM service, this rule is deleted
and all traffic to port 9000 will be denied. Considering the
limited number of ports on compute node, we aggregate the
connections based on the 〈Ccriteria, Pcriteria〉 tuple. If more
than one set of criteria are registered, different ports will be
assigned to represent different sets of criteria.

E. Serving Clients

Upon successful registration of integrity criteria for an
instance, the customer obtains an instance certificate and
a node certificate from the nova-verify service. The in-
stance certificate is signed by compute node, containing
the instance’s public key generated by the IM service and
the details of the connection request. Upon receipt of an
instance certificate from a registered nova-compute node, the
nova-verify service produces a node certificate containing
the public key of the compute node signed by the nova-

verify service. Customer will then announce IPinstance and
Pcriteria to clients. Clients who wish to use such security
enhanced service can then establish a TLS connection over
IPinstance:Pcriteria to the service, using the certificate chain
provided by customer. Note that Pcriteria is associated with
a set of integrity criteria, violation of which will disable all
connections to Pcriteria immediately. Clients also have the
flexibility to choose different sets of criteria, if registered
by customer, or even no criteria, in which case clients will
connect over the original service port.

Accessing the same service using different ports re-
flects groups of clients with different security requirements.
Clients who only read public information, may be more in-
terested in using a non-disruptive service through accessing
the original service port. Clients who use such cloud-hosted
services to process their sensitive data would be more willing
to immediately cut their connections once anomalies are
detected in the service. This is a trade-off between security
enhanced service and an ”always-on” service that clients
need to evaluate.

VI. EVALUATION

We evaluated performance overhead of our OpenStack CV
prototype for cloud applications. Results show that the CV
framework poses less 3% overhead for cloud hosted web
servers. We attribute such overhead to the VMI interface
that IM service uses to collect runtime properties within
instances. We refer the reader to the IVP paper by Schiffman
et al. [22] for more details.

We also evaluated our CV framework’s ability to monitor
and enforce customers’ requirements by designing vari-
ous monitoring modules that collect a variety of instance
properties. Several example interfaces are implemented for
these modules to demonstrate the framework’s flexibility and
tested their correctness using example criteria that checked
for example properties.

Monitoring VMinfo. The VMinfo interface exposes proper-
ties of the instance profile such as number of vcpus, memory
size, boot parameters, network devices, etc. This information
can be compared against the customer’s requirements to
ensure the instances are given the correct resources and are
not being cheated. The interface uses the libvirt Python API
directly to query the VM instance object.

Monitoring Network and Host Security Policies. Inter-
faces are provided to monitor iptables and SELinux policies
and authorized operations. For networks, iptables conntrack
interface is monitored via ulogd to obtain the network
flows connecting to the monitored instance. In other words,
Netflow modules can track the IPs of remote systems that
connect to the instance. The flows are stored in a local
sqlite3 flat file database. Customer criteria can use
this information to detect if unwanted hosts are using the
instance, such as known botnet C&C networks. In addition,

the customer can use these flows to check that the firewall
rules specified to the cloud are actually enforced.

Monitoring Memory. A proof-of-concept VMI interface
lets modules check for writes to specific memory locations
in the instance. When an instance spawns, we attach a gdb
thread to it and set the hardware debug registers to watch
specific kernel data structures defined in the kernel symbol
table. Each module can set a hardware watchpoint4 and
when a write is performed, the module is notified of the
change. For example, we use this to verify that all security
policy changes meet integrity requirements and that each
file executed satisfies a white-list of programs. By checking
these properties, customer can verify that instances are
enforcing the expected security constraints at runtime. Since
changes to these values are infrequent, so are interrupts that
pause the VM.

VII. RELATED WORK

We now present a summary of work related to verifying
cloud computing platforms.

Virtual Machine Security. Research in hardening hypervi-
sors and protecting instances has become popular with the
rise of cloud platforms. Techniques like SecVisor [26] and
XenAccess [11] introduce VMI interfaces for monitoring
VM integrity. However, these approaches are designed to
monitor specific integrity requirements at install-time and
are not flexible enough to support various customer specified
criteria. Moreover, the power of these tools are unmitigated
in their deployment and give administrators far more access
to sensitive VM data than should be permitted. The CV
framework can benefit from the inclusion of these VMI tools
that targets more integrity-relevant memory locations.

Cloud Security. Another research direction is to enable
customers to obtain greater control over the conditions under
which they will run their instances on a cloud. Excalibur [6]
and self-service clouds [7] are examples. However, Excal-
ibur [6] focuses only on properties of compute node, failing
to provide more meaningful monitoring such as runtime
properties of instances. Self-service clouds [7], on the other
hand, allows customers to manage their own instances, but
fails to protect the rest of the cloud services, such as network
service and api service, upon which the instances depend.
Moreover, they cannot provide responsive yet flexible con-
trol over customers’ instances upon detection of anomalies,
as our CV does.

Other work looks at hardening the hypervisor from both
co-resident VMs and insiders. Approaches like NOVA [27]
and NoHype [28] minimize the VMM’s attack surface by
essentially eliminating all but a small resource management

4The Intel x86 hardware has four hardware debug registers, supporting
four hardware watchpoints per instance. If more watchpoints are required,
previous work has demonstrated the feasibility of adding software-managed
VMI watchpoints in KVM [10].

kernel. Other techniques such as HyperSafe [29] use the
protected System Management Mode memory region to
monitor and enforce hypervisor integrity at runtime. The CV
can use these to provide strong guarantee that the runtime
integrity of the cloud components are maintained.

VIII. CONCLUSION

In this paper, we presented the Cloud Verifier, a frame-
work that cloud vendor can configure to provide cloud
monitoring service in IaaS clouds. The CV is an independent
and verifiable service in the cloud that enforces a cloud
administrator’s integrity criteria over the cloud components.
Customers can then build transitive trust through the CV and
cloud platform to the Instance Monitor (IM) service which
monitors various loadtime and runtime properties of their
instances. We constructed a proof of concept CV for the
open source OpenStack cloud platform and demonstrated
several monitoring options that customers can utilize to
enforce the healthy state of their instances. We further eval-
uated the framework on two of the most popular application
instances used in Amazon’s EC2 cloud. Our experiments
show negligible overhead is incurred by the instances due
to monitoring and that the CV is capable of supporting
more than 20,000 concurrent customers. We believe that,
by adopting the CV framework into an IaaS cloud platform,
cloud providers can provide a both effective and efficient
way for assuring customers that their instances are running
according to their requirements.

REFERENCES

[1] “Amazon EC2,” http://aws.amazon.com/ec2.

[2] “Rackspace Cloud Servers,” http://www.rackspace.com/
cloud/.

[3] “Nagios IT Infrastructure Monitoring,” http://www.nagios.
org/.

[4] “Ganglia Monitoring System,” http://ganglia.sourceforge.net/.

[5] F. Rocha and M. Correia, “Lucy in the sky without diamonds:
Stealing confidential data in the cloud,” in DSNW ’11. IEEE
Computer Society, 2011.

[6] N. Santos, R. Rodrigues, K. P. Gummadi, and S. Saroiu,
“Policy-sealed data: A new abstraction for building trusted
cloud services,” in USENIX Security Symposium, 2012.

[7] S. Butt, H. A. Lagar-Cavilla, A. Srivastava, and V. Ganapathy,
“Self-service cloud computing,” in Proceedings of the 2012
ACM conference on Computer and communications security,
ser. CCS ’12. New York, NY, USA: ACM, 2012, pp. 253–
264.

[8] S. et al, “All your clouds are belong to us: security analysis
of cloud management interfaces,” in ACM CCSW ’11.

[9] T. Garfinkel and M. Rosenblum, “A Virtual Machine Intro-
spection Based Architecture for Intrusion Detection,” in Proc.
NDSS, 2003.

[10] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-
vm monitoring using hardware virtualization,” in CCS ’09.
ACM, 2009.

[11] B. D. Payne, M. Carbone, and W. Lee, “Secure and Flexible
Monitoring of Virtual Machines,” in ACSAC, 2007.

[12] E. Kowalski, D. Cappelli, and A. Moore, “Insider Threat
Study: Illicit Cyber Activity in the Information Technology
and Telecommunication Sector,” U.S. Secret Service and
CMU, Tech. Rep., 2008.

[13] M. Keeney, “Insider Threat Study: Computer System Sabo-
tage in Critical Infrastructure Sectors,” U.S. Secret Service
and CMU, Tech. Rep., 2005.

[14] TCG, “Trusted Platform Module,” https://www.
trustedcomputinggroup.org/specs/TPM/, 2005.

[15] “Integrity: Linux Integrity Module(LIM),” http://lwn.net/
Articles/287790/.

[16] “Trousers,” http://trousers.sourceforge.net.

[17] B. Parno, J. M. McCune, and A. Perrig, “Bootstrapping Trust
in Commodity Computers,” in IEEE SP ’10, 2010.

[18] T. Jaeger, R. Sailer, and U. Shankar, “PRIMA: Policy-
Reduced Integrity Measurement Architecture,” in Proc. 11th
ACM SACMAT, 2006.

[19] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki, “Flicker: An Execution Infrastructure for TCB
Minimization,” in Proc. 3rd ACM SIGOPS/EuroSys, 2008.

[20] J. McCune, S. Berger, R. Caceres, T. Jaeger, and R. Sailer,
“Shamon: A System for Distributed Mandatory Access Con-
trol,” in Proc. ACSAC, 2006.

[21] S. Bleikertz, T. Groß, and S. Mödersheim, “Automated veri-
fication of virtualized infrastructures,” in ACM CCSW ’11.

[22] J. Schiffman, H. Vijayakumar, and T. Jaeger, “Verifying
system integrity by proxy,” in TRUST ’12, 2012.

[23] J. Schiffman, T. Moyer, T. Jaeger, and P. McDaniel,
“Network-based Root of Trust for Installation,” IEEE Security
& Privacy, 2011.

[24] “OpenStack,” http://www.openstack.org/.

[25] “Trusted Execution Technology,” http://www.intel.com/
technology/security/.

[26] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: A
Tiny Hypervisor To Provide Lifetime Kernel Code Integrity
For Commodity Oses,” in SOSP ’07. ACM, 2007.

[27] U. Steinberg and B. Kauer, “Nova: a microhypervisor-based
secure virtualization architecture,” in EuroSys ’10. ACM,
2010.

[28] J. Szefer, E. Keller, R. B. Lee, and J. Rexford, “Eliminating
the hypervisor attack surface for a more secure cloud,” in
CCS ’11. ACM, 2011.

[29] Z. Wang and X. Jiang, “Hypersafe: A lightweight approach to
provide lifetime hypervisor control-flow integrity,” in SOSP
’10. IEEE Computer Society, 2010.

