

FIXER: Flow Integrity Extensions for Embedded

RISC-V
Asmit De

School of EECS

The Pennsylvania State University

University Park, USA

asmit@psu.edu

Aditya Basu

School of EECS

The Pennsylvania State University

University Park, USA

azb254@psu.edu

Swaroop Ghosh

School of EECS

The Pennsylvania State University

University Park, USA

szg212@psu.edu

Trent Jaeger

School of EECS

The Pennsylvania State University

University Park, USA

trj1@psu.edu

Abstract—With the recent proliferation of Internet of Things

(IoT) and embedded devices, there is a growing need to develop a

security framework to protect such devices. RISC-V is a promising

open source architecture that targets low-power embedded

devices and SoCs. However, there is a dearth of practical and low-

overhead security solutions in the RISC-V architecture. Programs

compiled using RISC-V toolchains are still vulnerable to code

injection and code reuse attacks such as buffer overflow and

return-oriented programming (ROP). In this paper, we propose

FIXER, a hardware implemented security extension to RISC-V

that provides a defense mechanism against such attacks. FIXER

enforces fine-grained control-flow integrity (CFI) of running

programs on backward edges (returns) and forward edges (calls)

without requiring any architectural modifications to the RISC-V

processor core. We implement FIXER on RocketChip, a RISC-V

SoC platform, by leveraging the integrated Rocket Custom

Coprocessor (RoCC) to detect and prevent attacks. Compared to

existing software based solutions, FIXER reduces energy overhead

by 60% at minimal execution time (1.5%) and area (2.9%)

overheads.

Keywords—Buffer overflow, ROP, Shadow Stack, RISC-V

I. INTRODUCTION

A. Security Vulnerabilities

Traditional computing systems are inherently vulnerable to
a wide attack surface from the topmost application level to the
systems architecture level, leading to serious security and
integrity concerns such as leaking private SSH keys or launching
Denial-of-Service (DOS) attacks. Programming languages like
C which are closer to the hardware, provide a lot of flexibility in
terms of memory and IO access to facilitate system and device
level programming. However, this also means that such
languages often tend to have inherent security deficiencies and
can lead to vulnerabilities if not used with proper and secure
practices. Buffer overflow is the most commonly exploited
vulnerability that can cater to a wide attack surface. In a program
without bounds checking, an adversary can overload a user input
with excess data that can overrun the buffer capacity and
overwrite nearby memory locations with potentially malicious
data (Fig. 1), leading to several attack scenarios, such as return-
oriented programming (ROP), VTable hijacking, function
pointer manipulation and even violation of data flow in program.

B. Defense Mechanisms

Stack canaries [1] are sacrificial words placed on the stack
at stack frame boundaries to detect potential return address
overwriting. If an adversary overflows a buffer in order to

overwrite the return address, the canary word will also be
overwritten. Before returning in call stack, canary word is
checked, and if modified, the return address is assumed to be
compromised, and the program is halted.

Data Execution Prevention (DEP) [2] is employed to
prevent an adversary from injecting malicious code onto the
stack. Memory pages are marked W⊕X, meaning, a page can
either be executable (code) or be writable (stack, heap), but not
both. This prevents an adversary from executing malicious code
from the stack. However, an adversary can return to existing
code in the program or functions in the linked library using
gadget chains (return-to-libc attack).

Address Space Layout Randomization (ASLR) [3]
randomizes the code, stack, heap, and shared library locations
on the address space, to make it difficult for the adversary to
determine the specific addresses and launch attacks. However,
buffer over-read and side-channel vulnerabilities can be used by
an adversary to reverse engineer the randomized address.

Control Flow Integrity (CFI) [4] involves statically
computing a valid control flow graph (CFG) of the program and
ensuring that during runtime, the program abides by that CFG.
A coarse-grained approach to ensuring control flow integrity
while returning from functions is the use of a shadow stack (a
separate stack residing in a secure memory location) [5]. On
each function call, the return address is saved on the shadow
stack alongside being put on the stack normally. While returning
from a function, the return address on the stack is validated
against the one on the shadow stack. On mismatch, it is assumed
that the return address has been compromised and the program
execution is halted. However, a shadow stack can be expensive
and can hurt performance since the pages housing the shadow
stack may not be present in cache and will require hundreds to
thousands of cycles to bring the page onto the cache and perform
the validation. Several software and compiler level systems have
been proposed in literature for supporting shadow stack [6-7].

Fig. 1. Buffer overflow exploit.

Args to bar()

Return address

Saved %ebp

Local variables

Buffer

fo
o(

)
S
ta
c
k
F
ra
m
e

ba
r(

)
S
ta
c
k
F
ra
m
e

System Stack foo():
▪ Some code
▪ Push args for bar()
▪ Push return address on stack
▪ Jump to bar()

bar():
▪ Some code (adversary injects

payload here)
▪ Begin bar() epilogue actions
▪ Jump to malicious location

L
i
n
k
s

t
o

m
a
l
i
c
i
o
u
s

l
o
c
a
t
i
o
n

3
Args to bar()

Return address fo
o(

)
S
ta
c
k
F
ra
m
e

M
a
l
i
c
i
o
us

P
a
y
lo
a
d

1

1

2

2

3

3

Even with the presence of a shadow stack, an adversary can
bend the control flow of a program. To prevent such incorrect
control flows for indirect calls, the program is first analyzed to
compute a coarse-grained or fine-grained CFG [4]. A control-
flow policy matrix can then be created from the CFG that
specifies the allowed call targets for each call site. During
execution of the program, for each indirect call, the policy
matrix is looked up to determine the validity of the call target.
However, this approach still suffers from similar performance
degradation if the policy resides in memory. Compile-time and
runtime enforcement of CFI have been shown in [8-9]. Lazy CFI
[10-11] can somewhat alleviate the performance loss, but that
leaves room for generating false negatives.

Secure hardware platforms e.g., ARM TrustZone [12] and
Intel Software Guard Extensions (SGX) [13] isolate the
hardware so that the access to systems assets are restricted.
Hardware acceleration of security validation has been proposed
to address the performance impact partially while covering a
subset of security threats e.g., Intel CFI Enforcement
Technology (CET) [14] to protect against control-flow
hijacking. Intel Memory Protection Extensions (MPX) [15] with
extended instruction set architecture is developed to prevent
memory safety violations such as buffer overflow, heap
overflow and pointer corruption. Intel Transactional
Synchronization Extensions (TSX) [16] exposes and exploits
hidden concurrency in multi-threaded applications. Intel PT [17]
logs TSX events when a transaction begins, commits or aborts.
It has been shown in [18] that tagging of code and data using
software-defined metadata and processing the tag using custom
designed processor can detect ROP, code reuse, buffer overflow,
code injection, memory safety violation and pointer corruption.
Although effective, this new architecture cannot be readily
deployed due to lack of re-configurability, and, area, energy and
performance overhead. Other hardware-assisted techniques to
protect forward and backward edges in control flow are
proposed in [19-22]. Data flow protection in stack and heap
using hardware assistance is also proposed [23-24]. Specialized
hardware stack redundancy systems have also been developed
for embedded systems [25-28], however these are architecture
dependent and cannot be updated post-deployment.

The common challenges associated with the existing secure
hardware platforms include design overhead, lack of provisions
to patch the design and keep pace with rapidly evolving threats,
need of code changes or instrumentation of the program
binaries, compiler modifications, and, lack of adaptability to
adjust the security level in runtime as needed. Furthermore,
these platforms are associated with performance impact. To
alleviate these issues, a decoupled architecture using hardware
performance monitors implemented on a RISC-V coprocessor
has been proposed in [29].

In this work, we propose Flow Integrity eXtensions for
Embedded RISC-V (FIXER), a low energy, low overhead
security solution that ensures integrity of backward and forward
edge control flow of programs running on a RISC-V core.
FIXER decouples the security architecture from the RISC-V
core architecture, enabling a highly flexible security system
design. In the target deployment platform, the unmodified
RISC-V core will be a hard IP, while the dynamically
reconfigurable FIXER coprocessor will be implemented on an

on-chip FPGA. Such an approach has the potential to be scaled
to hybrid processor designs e.g., a Xeon + FPGA core [30]. In
such designs, the primary core can be completely unmodified,
while the re-configurable FPGA core can be utilized to
implement the security architecture. The FPGA also provides
the flexibility to change and update the security architecture in
demand to new threats, without a complete redesign of the
primary computing core. With the number of vulnerabilities
rapidly increasing, it demands an efficient low-power flexible
and scalable security solution that is sustainable for long periods
of time. FIXER potentially unlocks the design capability to
protect our systems from such cybersecurity threats. Software
based CFI techniques are also limited by the size of the address
space, which can be overcome by FIXER’s flexible FPGA
implementation. Compared to NILE [29], FIXER achieves
better performance. Although NILE uses an unmodified RISC-
V core similar to FIXER, the core-coprocessor interface is
modified for the coprocessor to tap into more resources of the
core. Table I shows a qualitative comparison of FIXER with the
state-of-the-art memory protection solutions. The major
contributions of this work are, (a) a decoupled and flexible
coprocessor based design for security assurance; (b)
enforcement of backward edge and forward edge CFI
protection; (c) low energy overhead than [29]; (d) ease of re-
configurability to address new security threats and attacks.

The paper is organized as follows: Section II provides an
overview of the RocketChip and the Rocket Custom
Coprocessor architecture. Section III describes the FIXER
design flow and implementation. Experimental results are
presented in Section IV. Security implications are discussed in
Section V and conclusions are drawn in Section VI.

II. OVERVIEW OF THE ROCKETCHIP ARCHITECTURE

FIXER architecture is based on Rocket Chip [31] (written in
CHISEL [32]), an open source parameterized system-on-chip
(SoC) design generator. We use the RocketChip generator to
generate synthesizable RTL for the standard Rocket Core SoC,
a six-stage single-issue in-order pipeline processor that executes
the 64-bit scalar RISC-V ISA (Fig. 2(a)). The Rocket Tile
consists of the scalar core, the L1 instruction and data caches,
and the Rocket Custom Coprocessor (RoCC). The RoCC acts as
a user customizable accelerator for the core and can be triggered
by a set of custom instructions capable of communicating
between the core and the RoCC over the RoCCIO interface.

TABLE I. QUALITATIVE COMPARISON OF FIXER WITH RELATED WORKS

C
an

ar
y
 [

1
]

A
S

L
R

 [
3

]

C
F

I
[4

]

P
U

M
P

 [
1
8

]

H
A

F
IX

 [
2

0
]

G
R

IF
F

IN
 [

2
2

]

H
D

F
I

[2
4

]

N
IL

E
 [

2
9

]

F
IX

E
R

Control flow hijacking protection ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Data flow hijacking protection ` ✓ ✓ ✓

Maintains high-performance ✓ ✓ ✓ ✓

Low energy overhead ✓ ✓ ✓

No architecture modifications ✓ ✓ ✓ ✓ ✓ ✓

No source code pre-processing ✓ ✓ ✓ ✓ ✓ ✓

No compiler modifications ✓ ✓ ✓
Software flexibility ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Hardware flexibility ✓ ✓

Dynamic patching ✓ ✓ ✓ ✓

RoCC Instructions: In general, 32-bit RoCC instructions
extend the RISC-V ISA and are encoded as shown in Fig. 2(b).
The four custom instructions supported by Rocket Chip is shown
in Table II. The xs1, xs2, and xd bits control read and write of
the core registers by the RoCC instruction. If xs1 is 1, then the
64-bit value in the integer register specified by rs1 is passed to
the RoCC. If the xs1 bit is clear, no value is passed over the
RoCCIO interface. Similarly, xs2 bit controls the read of register
specified by rs2. If the xd bit is 1 and rd is not 0, the core will
wait for a value to be returned by the coprocessor over the
RoCCIO after issuing the instruction to the coprocessor. The
value is then written to the register specified by rd. If the xd is 0
or rd is 0, the core will not wait for a value from RoCC. The
opcode field specifies the custom instruction for the RoCC, and
the funct7 field further specifies a user-defined function
implemented in the RoCC. The RoCC is responsible for
signaling illegal instructions to the core.

RoCCIO Interface: The RoCC interacts with the Rocket
core and the shared memory system via the standard RoCCIO
interface (Fig. 2(a)). The core initiates a coprocessor command
by passing the RoCC instruction directly to the coprocessor via
inst, as well as the relevant register values via rs1 and rs2. If the
instruction supplied to the RoCC set the xd bit, then the RoCC
must eventually supply a response value over the RoCC
response interface via data.

III. FIXER SECURITY ARCHITECTURE

A. FIXER Design for Backward-Edge CFI

The first security primitive implemented in FIXER to
prevent a memory corruption vulnerability is a Shadow Stack. C
programs compiled with the GNU GCC Toolchain for RISC-V
target architecture do not provide any protection against
memory corruption vulnerabilities such as, buffer overflow. An
adversary can provide malicious inputs to a program and is
capable of overwriting the return address of a function and

redirecting the control flow of the program. The Shadow Stack
security primitive can enforce CFI at the backward edge (return
to functions). The RoCC is used to implement the Shadow
Stack, thus preventing the need to modify the core system
architecture. The Shadow Stack is designed as a hardware
memory on the RoCC. Fig. 3 shows the steps for detecting CFI
violation using a Shadow Stack. The return address is pushed on
the system stack by default when a function call is made in the
program. During this time, same return address is sent using a
RoCC custom instruction to the RoCC to push it on the Shadow
Stack as a backup. The return address is popped from the system
stack to the instruction pointer register for execution when
returning from a function. During this return the RoCC Shadow
Stack is queried to retrieve the backup return address and
compare against the one from the system stack. If they match,
the program proceeds with normal execution, else a potential
memory corruption is detected and program execution is
stopped. Note that compared to HAFIX [20] where Shadow
Stack is part of core, FIXER implements it in the coprocessor
leaving the core architecture untouched. It is to be noted that
FIXER is complementary to existing DEP protection, since the
FIXER instructions must be tamperproof to ensure protection.

Fig. 4(a) details the software design flow for FIXER. The
source code is first marked with CFI tags (for saving to shadow
stack and validation) and compiled to an intermediate assembly
code using the RISC-V GNU toolchain. The assembly code is
parsed by expanding the tags and injecting the required RoCC
instructions in the assembly. The lifted assembly code is
generated using a custom parsing script or a compiler pass and
then assembled and linked to produce the fully compiled RISC-
V binary. These steps are further elaborated in Section II.B.

Fig. 4(b) shows the hardware design flow for FIXER (coded
in CHISEL [32] as a RoCC). The hardware implementation of
FIXER in RoCC is described in Section II.C. The relevant
configuration files for RoCC targeting the FPGA platform are
also written. The RocketChip with the RoCC is then compiled
with the RocketChip Generator to output the synthesizable
Verilog code, from which the FPGA bitstream is compiled. The
required RISC-V Linux system image, the FPGA devicetree and
the generated bitstream is then deployed to the FPGA to run the
RocketChip system. This FIXER assisted RocketChip system
can successfully protect against CFI violations on the RISC-V
programs compiled with FIXER assisted compilation process.

B. RISC-V Software Design with FIXER

Any program that needs to be backward-edge CFI enforced,
is compiled and processed by the following steps:

(a) (b)
Fig. 2. (a) RocketChip architecture. FIXER coprocessor is also shown, (b)

RoCC instruction encoding.

TABLE II. ROCC INSTRUCTION OPCODES

RoCC Instruction Opcode

custom0 0001011

custom1 0101011

custom2 1011011

custom3 1111011

Fig. 3. CFI violation detection using a Shadow Stack.

RoCCIO

MemoryL2 Cache

Rocket Tile

R
o
c
k
e
t
C
h
i
p
S
c
a
l
a
r

C
o
r
e

R
o
c
k
e
t

C
u
s
t
o
m

C
o
p
r
o
c
e
s
s
o
r

[
F
I
X
E
R

S
e
c
u
r
i
t
y

M
o
d
u
l
e
]

L1 I$ L1 D$

T
i
l
e
L
i
n
k
I
O

MemIO

inst[31:7]

rs1[63:0]

rs2[63:0]

ready

valid
rd[4:0]

data[63:0]

valid

ready

R
e
q
u
e
s
t

I
n
t
e
r
f
a
c
e

R
e
s
p
o
n
s
e

I
n
t
e
r
f
a
c
e

31

25
24

20
19

15
14
13
12
11

7
6

0

f
u
n
c
t
7

r
s
2

r
s
1

xd
xs1
xs2

r
d

o
p
c
o
d
e

7

5

5

1
1
1

5

7

Args to bar()

Return address

Saved %ebp

Local variables

Buffer []

f
o
o
(
)

S
t
a
c
k

F
r
a
m
e

b
a
r
(
)

S
t
a
c
k

F
r
a
m
e

System Stack foo():
▪ Some code
▪ Push args for bar()
▪ Push return address on stack
▪ Push return address on RoCC

Shadow Stack
▪ Jump to bar()

bar():
▪ Some code (adversary may inject

payload here)
▪ Retrieve return address from

RoCC Shadow Stack
▪ Compare retrieved address with

the return address on stack
• Match: Proceed execution
• Mismatch: Throw CFI error

3
Args to bar()

Return address f
o
o
(
)

S
t
a
c
k

F
r
a
m
e

1Return address

1

2

2

3

Shadow Stack

R
o
C
C

S
t
a
c
k

F
r
a
m
e

4

3

4

CFI error
if mismatch

Step 1 - Source code annotation: We annotate the function
calls and returns with a special tag to indicate the sites where the
enforcement needs to take place. We use CFI_CALL tag before

a function call and a corresponding CFI_RET tag just before a

return from the called function, as shown in Fig. 5.

Step 2 – Tag expansion: We expand the CFI tags to actual
RISC-V assembly instructions. During compilation, we
intercept the intermediate assembly code of the program and
inject the RoCC custom instructions to communicate with the
RoCC. Fig. 6 shows the assembly instructions corresponding to
CFI_CALL and CFI_RET, that are placed just before the call

and jr ra (return) instructions respectively.

For CFI_CALL, we first retrieve the current value of the

program counter from the instruction pointer register using the
auipc instruction and add 14 bytes offset (instructions are

variable length) to calculate the target return address. We save
the computed return address in a temporary register t0. Then we
craft the RoCC instruction cfi_call to push the return

address from t0 to the Shadow Stack. A generic 32-bit RoCC
instruction extends the RISC-V ISA and is encoded in the
format as shown in Fig. 3. There are four RoCC instructions
available (custom0-3) that are identified by the 7-bit opcode
field, as shown in Table I. The funct7 field can be used to further
specify a particular function of the RoCC instruction. We use
custom0 to implement the CFI instructions. We set the funct7
field to b’0000000 (0) for cfi_call and to b’0000001 (1) for

cfi_ret. We use the rs1 field to set it to use the t0 register

(b’00101), where we temporarily stored the computed return
address and set the corresponding xs1 bit to 1. The final crafted
instruction word for cfi_call is represented by 0x0002a00b.

For CFI_RET, we set the funct7 field to b’0000001 (1) and

set the rd field to use the t0 temporary register (b’00101) along
with xd bit as 1. The final crafted instruction word for cfi_ret

is represented by 0x0200428b. During a return from a function,
the saved return address is popped from the system stack on to
the link register ra. We then use the cfi_ret custom

instruction to retrieve the backup return address from the RoCC

Shadow Shack on to the temporary register t0. The value in t0 is
then compared against the value in the register ra using the bne

instruction. If they match, the execution proceeds by completing
the return (jr ra: jump register), else we throw a CFI error.

Step 3 – Compilation: The final CFI enforced assembly
code is passed to the compiler to assemble, link and generate the
final executable binary of the program. No compiler
modifications are necessary to embed the instructions in the final
binary since we provided the custom instruction as a binary
instruction word, and the RoCC instruction format is already
supported by the GNU toolchain.

C. FIXER Hardware Implementation in RoCC

Fig. 7 shows the FIXER implementation in the RoCC. The
program binary runs on the Rocket Core and sends RoCC
instructions over the RoCCIO whenever a security validation is
required. The RoCC instruction is first passed through the Cmd
decoder, which extracts the individual fields of the RoCC
instruction, and the contents of the two registers rs1 and rs2 if
specified. The opcode field is decoded to the custom0 instruction
in our implementation. The funct7 field is decoded to interpret a
cfi_call or a cfi_ret.

For cfi_call, the contents of core register t0 (the return

address) is sent through the rs1[63:0] field of the RoCCIO
interface. The shadow stack is implemented as a SRAM
memory with 64-bit wide words. A top-of-stack register (ToS)
holds the address of the top of the shadow stack. If a
cfi_call is interpreted, the content of the ToS register is

incremented by 1. The updated value in the ToS register is used
to decode the write address for the shadow stack. The value in
the rs1 field is written to this address on the shadow stack. This
operation is non-blocking, so the core can continue execution
after issuing the cfi_call instruction. There is a command

queue at the RoCCIO interface to prevent race conditions. If the
instruction function is interpreted as cfi_ret, then the ToS

register is read to obtain the address for the shadow stack. This
address is used to read the saved return address from the
shadow stack memory. The value is then sent back to the core

void main () { void myFunc() {

 CFI_CALL CFI_RET
 myFunc(); return;
 ... }
}

Fig. 5. Source code annotation

CFI_CALL # CFI_RET
auipc t0,0 .word 0x0200428b
add t0,t0,14 bne t0,ra,_cfi_error
.word 0x0002a00b jr ra
call myFunc

Fig. 6. Tag expansion

Fig. 7. FIXER implementation in RoCC.

(a) (b)

Fig. 4. FIXER design flow in (a) software and (b) hardware.

R
o
c
k
e
t

C
u
s
t
o
m

C
o
p
r
o
c
e
s
s
o
r

[
F
I
X
E
R
]

R
o
C
C
I
O
C
m
d

D
e
c
o
d
e
r

cfi_call

cfi_ret

Shadow
Stack
Memrs1[63:0]

ToS Reg

T
o
S
A
d
d
r

D
e
c
o
d
e
r

M
U
X+1

-1

Control
signals

R
o
C
C
I
O
R
e
s
p

I
n
t
e
r
f
a
c
e

rd[63:0]

En

R/W

R/W

R
o
c
k
e
t

C
o
r
e

RoCCIO

M
U
X

cfi_fwd

cfi_matld

C
a
l
l
e
r

A
d
d
r

D
e
c
o
d
e
r

Callee Addr
Decoder

Policy
Matrix
Mem

M
U
X

rs2[63:0]

R/W

B
a
c
k
w
a
r
d

E
d
g
e

F
o
r
w
a
r
d

E
d
g
e

Source Code
Annotation

• Mark CFI
Tags

• Generate
assembly

Tag
Expansion

• Parse asm
• Insert RoCC
CFI instn

• Lift
assembly

Compilation

• Assemble
• Link
• RISCV
binary

FIXER Design

• FIXER code
in CHISEL

• FPGA Config

Synthesis

• Generate
Verilog

• Synthesize
Verilog

• FPGA
bitstream

Deployment

• Pack bin
• Generate
devicetree

• Compile
riscv-linux

• Flash FPGA

by writing to the rd[63:0] field of the response interface of the
RoCCIO, which writes the value to the t0 register on the core
as indicated by the RoCC instruction. Our proof-of-concept
implementation of the shadow stack can accommodate 1000
addresses. However, this can be updated on demand by simply
reconfiguring the FIXER module on the FPGA, a benefit
exclusive to our implementation. The size of the shadow stack
will be limited by the memory available on the target FPGA.

D. Forward-edge Protection with FIXER

A shadow stack only protects control flow on return
boundaries. However, programs often use function pointers to
jump to multiple function addresses. To ensure the validity of
such function calls using function pointers, a pre-computed call
policy is enforced. A static or runtime analysis is performed on
the program to construct a control flow graph (CFG). The CFG
is represented as a policy matrix that indicates the valid call
targets for each function call made using a function pointer. The
policy matrix is loaded in memory and at runtime, it is queried
to validate the call target for every indirect function call. This
forward-edge protection is implemented as another FIXER
security module (Fig. 7). The policy matrix memory is created
in the RoCC along with peripheral caller and callee address
decoders. Our proof-of-concept implementation has 64 rows
(each represents an originating call site address) in the matrix
and each row holds a 64-bit policy vector (each bit represents a
call target address). A set (unset) bit indicates that the call is
valid (invalid) for that (caller, callee) pair. A RoCC instruction
cfi_matld is used to load the policy bitmap into the FIXER

module prior to the program execution. A RoCC instruction
cfi_fwd is inserted before every indirect function call in the

source code. The cfi_fwd instruction sends the caller and the

dereferenced function pointer (callee) addresses to the RoCC for
validation. The forward-edge FIXER module then validates the
action using the policy matrix and sends back a 1 or 0 indicating
allow or disallow respectively. Similar to the shadow stack
implementation, the policy matrix size can also be updated post-
deployment by reconfiguring the FPGA.

IV. EXPERIMENTAL RESULTS

We implemented FIXER on a Xilinx Zynq FPGA. The
hardware architecture of the security module is coded in
CHISEL in the RocketChip Generator. The high level CHISEL
code is translated to synthesizable Verilog code using the
available tools in the RocketChip Generator. We prepared a
FPGA system image using the generated Verilog and ran the
system on a Zybo board. A sample program is written with 1
billion iterations of function calls and returns. One version of the
code implemented a simple software version of the shadow stack
(softcfi). The software shadow stack is created as a regular stack
in the address space. During function calls, the return address is
simultaneously placed on the system stack as well as the shadow
stack. Another version instrumented the code with the proposed
RoCC CFI instructions (FIXER). We compiled the baseline
(base code with no CFI checks), the softcfi and FIXER versions
using the RISC-V GNU GCC compiler. The three versions of
the program were run on the RocketChip system running on the
FPGA. The base code takes 19 seconds to execute, whereas the
software enforced CFI code takes 74 seconds. FIXER takes 29

seconds resulting in ~1.5X overhead over the base code and
~2.55X lower overhead compared to the pure software
enforcement. The FPGA on idle draws 370mA current, while on
load (with the program running) draws 420mA current, resulting
in 1.13X increase. The corresponding energy overhead is 3.89X
for the pure software enforced CFI and only 1.53X for the
FIXER (60.52% improvement). The FIXER RoCC module
incurs only 2.9% area overhead over the vanilla RocketChip
without RoCC.

We evaluated FIXER by enforcing it on the set of
benchmarks provided for testing RISC-V architecture. The
benchmarks are modified to create three versions for
performance comparison: (i) the baseline with no CFI
enforcement, (ii) the softcfi with the software based CFI
enforcement, and (iii) the FIXER with RoCC based CFI
protection. We ensured that the benchmark code remains the
same across all the three versions except the CFI enforcement
code. We compiled the benchmarks with the RISC-V GNU
toolchain without any compiler optimizations and ran the
compiled binaries on the Zybo FPGA board. Fig. 9 show the
evaluation results backward-edge FIXER. The corresponding
instruction overheads are shown in Table IV. With the
backward-edge protection, the execution time overhead with
softcfi is ~18% on average across the six benchmarks compared
to 1.5% with FIXER. The softcfi increases the CPI (cycles per
instruction) by 4.6% over the baseline, while the FIXER
increases the CPI by only 0.5%. With the forward-edge
protection, the execution time overhead with softcfi is ~2% on
average across the six benchmarks compared to 0.61% with
FIXER and CPI reduces 0.4% on average, which is negligible.

V. SECURITY IMPLICATIONS

Performance vs. Security: FIXER is targeted for hybrid
architectures, e.g., CPU+FPGA, or ASIC+FPGA. Our current
results are based on both the RocketChip and the RoCC
accelerator being on the FPGA since we do not have access to
such architecture. It is true that if the FPGA is off-chip, there
could be performance degradation (due to speed gap between
CPU and FPGA) if the checking is performed in a synchronous
and fine-grained manner. One of the ways to reduce the
performance issues is by making the checking asynchronous, by
using interrupts. In such cases the program can continue

(a) (b)

Fig. 8. RISC-V benchmark evaluation for backward-edge protection w.r.t. (a)

execution time (number of cycles), and (b) effective CPI.

TABLE III. BENCHMARK INSTRUCTION OVERHEADS

 Backward-edge Improvement over softcfi

rsort 1.000019X 0.0126%

median 1.000305X 0.2310%

qsort 1.00434X 3.1770%

vvadd 1.000622X 0.5080%

multiply 1.008037X 5.7140%

dhrystone 1.068607X 32.7930%

0

1

2

rsort median qsort vvadd multiply dhrystone

Execution Time

baseline softcfi FIXER

1.6

2.4

3.2

rsort median qsort vvadd multiply dhrystone

CPI

baseline softcfi FIXER

execution, until the FPGA raises an interrupt to halt the program.
However, it cannot be guaranteed that the adversary has not been
able to take control of the system before the FPGA detects the
attack. When the FPGA is on-chip, e.g., Intel Xeon with
embedded FPGA, the performance overheads can be alleviated
due to QuickPath Interconnect (QPI) interface between the core
and the FPGA for fast communication.

Security Vulnerabilities and Limitations: FIXER enforces
protection for a single process only. For a simultaneous multi-
process protection, the FIXER design can be expanded to
accommodate multiple shadow stacks and policy memories for
different processes. A round-robin scheduler on the FIXER
module can assign the shadow stacks and policy memories to
each process based on the process ID. The FIXER module on
the FPGA also needs to be protected from tampering or data
leaks. The current RocketChip implementation allows the entire
code containing custom RoCC instructions to be run with
supervisor privileges. However, this can be restricted via system
calls so that the RoCC instructions are first verified and then run
with supervisor privileges. It should be noted that FIXER is still
vulnerable to buffer over-reads. Similar to HAFIX and NILE,
FIXER will not enforce security if the adversary can modify
binary to skip the custom instructions.

Security Guarantees and Benefits: FIXER implemented in
the FPGA offers benefits compared to other core based or
system level protection schemes. Designs e.g., NILE which use
the virtual address space to house the shadow stack, are limited
by the size of the address space, and cannot scale based on the
branch sequence depth. HAFIX has a separate limited memory
on the core to store the CFI tags. However, in case of FIXER,
the design can be scaled up or down based on the actual
workload of the system. Typically, embedded devices e.g., IoTs
have a limited set of workloads, and FIXER module on the
FPGA on the IoT’s SoC can be scaled appropriately based on
the workload. For example, if a new workload is being
introduced to the system, which requires a larger shadow stack,
the FPGA can be reconfigured to accommodate that (the
maximum size being limited by available LUTs).

VI. CONCLUSIONS

We proposed FIXER, a CFI security architecture to
implement a shadow stack and a policy memory in the RISC-V
coprocessor for uninterrupted program flow without modifying
or instrumenting the existing binary layout. FIXER
implemented on FPGA can enable dynamic reconfiguration to
allow flexible on-demand resizing of the shadow stack and
policy memory, and also to adapt to new security threats.
FIXER exhibits small energy footprint and significant
performance gain over traditional software shadow stack.

ACKNOWLEDGMENT

This work is supported by Semiconductor Research
Corporation (SRC) [2727.001], National Science Foundation
(NSF) [CNS-1722557, CCF-1718474, DGE-1723687 and
DGE-1821766] and DARPA Young Faculty Award
[D15AP00089].

REFERENCES

[1] Cowan et al. "StackGuard: automatic adaptive detection and prevention
of buffer-overflow attacks." In SSYM, 1998.

[2] Data Execution Prevention, https://msdn.microsoft.com/en-
us/library/windows/desktop/aa366553(v=vs.85).aspx

[3] Team, PaX. "PaX address space layout randomization (ASLR), 2003."
URL: https://pax. grsecurity. net/docs/aslr.txt

[4] Abadi et al. "Control-flow integrity." In Proc. ACM CCS, 2005.

[5] Park et al. "Microarchitectural Protection Against Stack-Based Buffer
Overflow Attacks." IEEE Micro, 2006.

[6] Nishiyama et al. "SecureC: control-flow protection against general buffer
overflow attack," COMPSAC, 2005.

[7] Sinnadurai et al. "Transparent runtime shadow stack: Protection against
malicious return address modifications," 2008.

[8] Zeitouni et al. “ATRIUM: runtime attestation resilient under memory
attacks.” ICCAD 2017.

[9] Iwainsky et al. "Compiler Supported Sampling through Minimalistic
Instrumentation," ICPPW, 2014.

[10] Pappas et al. "Transparent ROP exploit mitigation using indirect branch
tracing." In USENIX SEC, 2013.

[11] Cheng et al. "ROPecker: A Generic and Practical Approach For
Defending Against ROP Attack." NDSS Symposium 2014.

[12] Alves et al. "TrustZone: Integrated hardware and software security."
ARM white paper, 2004.

[13] McKeen et al. "Innovative instructions and software model for isolated
execution." In HASP@ ISCA, 2013.

[14] Intel: Control-Flow Enforcement Technology Review, 2016.

[15] Ramakesavan et al. "Intel memory protection extensions (intel mpx)
enabling guide," 2015.

[16] Yoo et al. "Performance evaluation of Intel® transactional
synchronization extensions for high-performance computing." SC-Intl
Conf for HPC, Networking, Storage and Analysis. 2013.

[17] Kasikci et al. "Failure sketching: a technique for automated root cause
diagnosis of in-production failures." In SOSP, 2015.

[18] Dhawan et al. "Architectural support for software-defined metadata
processing." SIGARCH Computer Arch News, 2015.

[19] Wang et al. "Hypersafe: A lightweight approach to provide lifetime
hypervisor control-flow integrity." In IEEE S&P, 2010.

[20] Davi et al. "HAFIX: hardware-assisted flow integrity extension." in DAC,
2015.

[21] Jin et al. "Hardware control flow integrity." The Continuing Arms Race.
ACM and Morgan & Claypool, 2018.

[22] Ge et al. “GRIFFIN: Guarding Control Flows Using Intel Processor
Trace” In ASPLOS, 2017.

[23] Arias et al. "HA2lloc: Hardware-Assisted Secure Allocator." in HASP,
2017.

[24] Song et al., "HDFI: Hardware-Assisted Data-Flow Isolation," IEEE
Symposium on Security and Privacy (SP), 2016.

[25] Bresch et al. "A red team blue team approach towards a secure processor
design with hardware shadow stack," IVSW, 2017.

[26] Bresch et al. "Stack Redundancy to Thwart Return Oriented Programming
in Embedded Systems," in IEEE ESL, 2018.

[27] Panis et al. "Scaleable shadow stack for a configurable DSP concept," in
IWSOC, 2003.

[28] Ming et al. "Shadow Stack Scratch-Pad-Memory for Low Power SoC," in
IEEE Intl Symposium on Embedded Computing, 2008.

[29] Delshadtehrani et al. "Nile: A Programmable Monitoring Coprocessor,"
in IEEE Computer Architecture Letters, 2018.

[30] www.extremetech.com/extreme/184828-intel-unveils-new-xeon-chip-
with-integrated-fpga-touts-20x-performance-boost

[31] Asanovic et. al, “The Rocket Chip Generator”, technical report,
www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[32] Bachrach et al., "Chisel: Constructing hardware in a Scala embedded
language," In DAC, 2012.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366553(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366553(v=vs.85).aspx

