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Abstract—With the recent proliferation of Internet of Things 

(IoT) and embedded devices, there is a growing need to develop a 

security framework to protect such devices. RISC-V is a promising 

open source architecture that targets low-power embedded 

devices and SoCs. However, there is a dearth of practical and low-

overhead security solutions in the RISC-V architecture. Programs 

compiled using RISC-V toolchains are still vulnerable to code 

injection and code reuse attacks such as buffer overflow and 

return-oriented programming (ROP). In this paper, we propose 

FIXER, a hardware implemented security extension to RISC-V 

that provides a defense mechanism against such attacks. FIXER 

enforces fine-grained control-flow integrity (CFI) of running 

programs on backward edges (returns) and forward edges (calls) 

without requiring any architectural modifications to the RISC-V 

processor core. We implement FIXER on RocketChip, a RISC-V 

SoC platform, by leveraging the integrated Rocket Custom 

Coprocessor (RoCC) to detect and prevent attacks. Compared to 

existing software based solutions, FIXER reduces energy overhead 

by 60% at minimal execution time (1.5%) and area (2.9%) 

overheads. 
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I. INTRODUCTION 

A. Security Vulnerabilities 

Traditional computing systems are inherently vulnerable to 
a wide attack surface from the topmost application level to the 
systems architecture level, leading to serious security and 
integrity concerns such as leaking private SSH keys or launching 
Denial-of-Service (DOS) attacks. Programming languages like 
C which are closer to the hardware, provide a lot of flexibility in 
terms of memory and IO access to facilitate system and device 
level programming. However, this also means that such 
languages often tend to have inherent security deficiencies and 
can lead to vulnerabilities if not used with proper and secure 
practices. Buffer overflow is the most commonly exploited 
vulnerability that can cater to a wide attack surface. In a program 
without bounds checking, an adversary can overload a user input 
with excess data that can overrun the buffer capacity and 
overwrite nearby memory locations with potentially malicious 
data (Fig. 1), leading to several attack scenarios, such as return-
oriented programming (ROP), VTable hijacking, function 
pointer manipulation and even violation of data flow in program. 

B. Defense Mechanisms 

Stack canaries [1] are sacrificial words placed on the stack 
at stack frame boundaries to detect potential return address 
overwriting. If an adversary overflows a buffer in order to 

overwrite the return address, the canary word will also be 
overwritten. Before returning in call stack, canary word is 
checked, and if modified, the return address is assumed to be 
compromised, and the program is halted.  

Data Execution Prevention (DEP) [2] is employed to 
prevent an adversary from injecting malicious code onto the 
stack. Memory pages are marked W⊕X, meaning, a page can 
either be executable (code) or be writable (stack, heap), but not 
both. This prevents an adversary from executing malicious code 
from the stack. However, an adversary can return to existing 
code in the program or functions in the linked library using 
gadget chains (return-to-libc attack). 

Address Space Layout Randomization (ASLR) [3] 
randomizes the code, stack, heap, and shared library locations 
on the address space, to make it difficult for the adversary to 
determine the specific addresses and launch attacks. However, 
buffer over-read and side-channel vulnerabilities can be used by 
an adversary to reverse engineer the randomized address. 

Control Flow Integrity (CFI) [4] involves statically 
computing a valid control flow graph (CFG) of the program and 
ensuring that during runtime, the program abides by that CFG. 
A coarse-grained approach to ensuring control flow integrity 
while returning from functions is the use of a shadow stack (a 
separate stack residing in a secure memory location) [5]. On 
each function call, the return address is saved on the shadow 
stack alongside being put on the stack normally. While returning 
from a function, the return address on the stack is validated 
against the one on the shadow stack. On mismatch, it is assumed 
that the return address has been compromised and the program 
execution is halted. However, a shadow stack can be expensive 
and can hurt performance since the pages housing the shadow 
stack may not be present in cache and will require hundreds to 
thousands of cycles to bring the page onto the cache and perform 
the validation. Several software and compiler level systems have 
been proposed in literature for supporting shadow stack [6-7]. 

 
Fig. 1. Buffer overflow exploit. 
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Even with the presence of a shadow stack, an adversary can 
bend the control flow of a program. To prevent such incorrect 
control flows for indirect calls, the program is first analyzed to 
compute a coarse-grained or fine-grained CFG [4]. A control-
flow policy matrix can then be created from the CFG that 
specifies the allowed call targets for each call site. During 
execution of the program, for each indirect call, the policy 
matrix is looked up to determine the validity of the call target. 
However, this approach still suffers from similar performance 
degradation if the policy resides in memory. Compile-time and 
runtime enforcement of CFI have been shown in [8-9]. Lazy CFI 
[10-11] can somewhat alleviate the performance loss, but that 
leaves room for generating false negatives.  

Secure hardware platforms e.g., ARM TrustZone [12] and 
Intel Software Guard Extensions (SGX) [13] isolate the 
hardware so that the access to systems assets are restricted. 
Hardware acceleration of security validation has been proposed 
to address the performance impact partially while covering a 
subset of security threats e.g., Intel CFI Enforcement 
Technology (CET) [14] to protect against control-flow 
hijacking. Intel Memory Protection Extensions (MPX) [15] with 
extended instruction set architecture is developed to prevent 
memory safety violations such as buffer overflow, heap 
overflow and pointer corruption. Intel Transactional 
Synchronization Extensions (TSX) [16] exposes and exploits 
hidden concurrency in multi-threaded applications. Intel PT [17] 
logs TSX events when a transaction begins, commits or aborts. 
It has been shown in [18] that tagging of code and data using 
software-defined metadata and processing the tag using custom 
designed processor can detect ROP, code reuse, buffer overflow, 
code injection, memory safety violation and pointer corruption. 
Although effective, this new architecture cannot be readily 
deployed due to lack of re-configurability, and, area, energy and 
performance overhead. Other hardware-assisted techniques to 
protect forward and backward edges in control flow are 
proposed in [19-22]. Data flow protection in stack and heap 
using hardware assistance is also proposed [23-24]. Specialized 
hardware stack redundancy systems have also been developed 
for embedded systems [25-28], however these are architecture 
dependent and cannot be updated post-deployment. 

The common challenges associated with the existing secure 
hardware platforms include design overhead, lack of provisions 
to patch the design and keep pace with rapidly evolving threats, 
need of code changes or instrumentation of the program 
binaries, compiler modifications, and, lack of adaptability to 
adjust the security level in runtime as needed. Furthermore, 
these platforms are associated with performance impact. To 
alleviate these issues, a decoupled architecture using hardware 
performance monitors implemented on a RISC-V coprocessor 
has been proposed in [29]. 

In this work, we propose Flow Integrity eXtensions for 
Embedded RISC-V (FIXER), a low energy, low overhead 
security solution that ensures integrity of backward and forward 
edge control flow of programs running on a RISC-V core. 
FIXER decouples the security architecture from the RISC-V 
core architecture, enabling a highly flexible security system 
design. In the target deployment platform, the unmodified 
RISC-V core will be a hard IP, while the dynamically 
reconfigurable FIXER coprocessor will be implemented on an 

on-chip FPGA. Such an approach has the potential to be scaled 
to hybrid processor designs e.g., a Xeon + FPGA core [30]. In 
such designs, the primary core can be completely unmodified, 
while the re-configurable FPGA core can be utilized to 
implement the security architecture. The FPGA also provides 
the flexibility to change and update the security architecture in 
demand to new threats, without a complete redesign of the 
primary computing core. With the number of vulnerabilities 
rapidly increasing, it demands an efficient low-power flexible 
and scalable security solution that is sustainable for long periods 
of time. FIXER potentially unlocks the design capability to 
protect our systems from such cybersecurity threats. Software 
based CFI techniques are also limited by the size of the address 
space, which can be overcome by FIXER’s flexible FPGA 
implementation. Compared to NILE [29], FIXER achieves 
better performance. Although NILE uses an unmodified RISC-
V core similar to FIXER, the core-coprocessor interface is 
modified for the coprocessor to tap into more resources of the 
core. Table I shows a qualitative comparison of FIXER with the 
state-of-the-art memory protection solutions. The major 
contributions of this work are, (a) a decoupled and flexible 
coprocessor based design for security assurance; (b) 
enforcement of backward edge and forward edge CFI 
protection; (c) low energy overhead than [29]; (d) ease of re-
configurability to address new security threats and attacks. 

The paper is organized as follows: Section II provides an 
overview of the RocketChip and the Rocket Custom 
Coprocessor architecture. Section III describes the FIXER 
design flow and implementation. Experimental results are 
presented in Section IV. Security implications are discussed in 
Section V and conclusions are drawn in Section VI. 

II. OVERVIEW OF THE ROCKETCHIP ARCHITECTURE 

FIXER architecture is based on Rocket Chip [31] (written in 
CHISEL [32]), an open source parameterized system-on-chip 
(SoC) design generator. We use the RocketChip generator to 
generate synthesizable RTL for the standard Rocket Core SoC, 
a six-stage single-issue in-order pipeline processor that executes 
the 64-bit scalar RISC-V ISA (Fig. 2(a)). The Rocket Tile 
consists of the scalar core, the L1 instruction and data caches, 
and the Rocket Custom Coprocessor (RoCC). The RoCC acts as 
a user customizable accelerator for the core and can be triggered 
by a set of custom instructions capable of communicating 
between the core and the RoCC over the RoCCIO interface. 

TABLE I.  QUALITATIVE COMPARISON OF FIXER WITH RELATED WORKS 
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Control flow hijacking protection ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Data flow hijacking protection ` ✓  ✓   ✓   

Maintains high-performance     ✓  ✓ ✓ ✓ 

Low energy overhead       ✓ ✓ ✓ 

No architecture modifications ✓ ✓ ✓   ✓  ✓ ✓ 

No source code pre-processing ✓ ✓ ✓ ✓ ✓ ✓    

No compiler modifications  ✓    ✓   ✓ 
Software flexibility ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Hardware flexibility        ✓ ✓ 

Dynamic patching ✓ ✓ ✓      ✓ 

 



RoCC Instructions: In general, 32-bit RoCC instructions 
extend the RISC-V ISA and are encoded as shown in Fig. 2(b). 
The four custom instructions supported by Rocket Chip is shown 
in Table II. The xs1, xs2, and xd bits control read and write of 
the core registers by the RoCC instruction. If xs1 is 1, then the 
64-bit value in the integer register specified by rs1 is passed to 
the RoCC. If the xs1 bit is clear, no value is passed over the 
RoCCIO interface. Similarly, xs2 bit controls the read of register 
specified by rs2. If the xd bit is 1 and rd is not 0, the core will 
wait for a value to be returned by the coprocessor over the 
RoCCIO after issuing the instruction to the coprocessor. The 
value is then written to the register specified by rd. If the xd is 0 
or rd is 0, the core will not wait for a value from RoCC. The 
opcode field specifies the custom instruction for the RoCC, and 
the funct7 field further specifies a user-defined function 
implemented in the RoCC. The RoCC is responsible for 
signaling illegal instructions to the core.  

RoCCIO Interface: The RoCC interacts with the Rocket 
core and the shared memory system via the standard RoCCIO 
interface (Fig. 2(a)). The core initiates a coprocessor command 
by passing the RoCC instruction directly to the coprocessor via 
inst, as well as the relevant register values via rs1 and rs2. If the 
instruction supplied to the RoCC set the xd bit, then the RoCC 
must eventually supply a response value over the RoCC 
response interface via data.  

III. FIXER SECURITY ARCHITECTURE 

A. FIXER Design for Backward-Edge CFI 

The first security primitive implemented in FIXER to 
prevent a memory corruption vulnerability is a Shadow Stack. C 
programs compiled with the GNU GCC Toolchain for RISC-V 
target architecture do not provide any protection against 
memory corruption vulnerabilities such as, buffer overflow. An 
adversary can provide malicious inputs to a program and is 
capable of overwriting the return address of a function and 

redirecting the control flow of the program. The Shadow Stack 
security primitive can enforce CFI at the backward edge (return 
to functions). The RoCC is used to implement the Shadow 
Stack, thus preventing the need to modify the core system 
architecture. The Shadow Stack is designed as a hardware 
memory on the RoCC. Fig. 3 shows the steps for detecting CFI 
violation using a Shadow Stack. The return address is pushed on 
the system stack by default when a function call is made in the 
program. During this time, same return address is sent using a 
RoCC custom instruction to the RoCC to push it on the Shadow 
Stack as a backup. The return address is popped from the system 
stack to the instruction pointer register for execution when 
returning from a function. During this return the RoCC Shadow 
Stack is queried to retrieve the backup return address and 
compare against the one from the system stack. If they match, 
the program proceeds with normal execution, else a potential 
memory corruption is detected and program execution is 
stopped. Note that compared to HAFIX [20] where Shadow 
Stack is part of core, FIXER implements it in the coprocessor 
leaving the core architecture untouched. It is to be noted that 
FIXER is complementary to existing DEP protection, since the 
FIXER instructions must be tamperproof to ensure protection. 

Fig. 4(a) details the software design flow for FIXER. The 
source code is first marked with CFI tags (for saving to shadow 
stack and validation) and compiled to an intermediate assembly 
code using the RISC-V GNU toolchain. The assembly code is 
parsed by expanding the tags and injecting the required RoCC 
instructions in the assembly. The lifted assembly code is 
generated using a custom parsing script or a compiler pass and 
then assembled and linked to produce the fully compiled RISC-
V binary. These steps are further elaborated in Section II.B.  

Fig. 4(b) shows the hardware design flow for FIXER (coded 
in CHISEL [32] as a RoCC). The hardware implementation of 
FIXER in RoCC is described in Section II.C. The relevant 
configuration files for RoCC targeting the FPGA platform are 
also written. The RocketChip with the RoCC is then compiled 
with the RocketChip Generator to output the synthesizable 
Verilog code, from which the FPGA bitstream is compiled. The 
required RISC-V Linux system image, the FPGA devicetree and 
the generated bitstream is then deployed to the FPGA to run the 
RocketChip system. This FIXER assisted RocketChip system 
can successfully protect against CFI violations on the RISC-V 
programs compiled with FIXER assisted compilation process.  

B. RISC-V Software Design with FIXER 

Any program that needs to be backward-edge CFI enforced, 
is compiled and processed by the following steps: 

(a)  (b)  
Fig. 2. (a) RocketChip architecture. FIXER coprocessor is also shown, (b) 

RoCC instruction encoding. 

TABLE II.  ROCC INSTRUCTION OPCODES 

RoCC Instruction Opcode 

custom0 0001011 

custom1 0101011 

custom2 1011011 

custom3 1111011 

 

 
Fig. 3. CFI violation detection using a Shadow Stack. 

RoCCIO

MemoryL2 Cache

Rocket Tile

R
o
c
k
e
t
C
h
i
p
S
c
a
l
a
r
 
C
o
r
e

R
o
c
k
e
t
 
C
u
s
t
o
m
 
C
o
p
r
o
c
e
s
s
o
r

[
F
I
X
E
R
 
S
e
c
u
r
i
t
y
 
M
o
d
u
l
e
]

L1 I$ L1 D$

T
i
l
e
L
i
n
k
I
O

MemIO

inst[31:7]

rs1[63:0]

rs2[63:0]

ready

valid
rd[4:0]

data[63:0]

valid

ready

R
e
q
u
e
s
t
 

I
n
t
e
r
f
a
c
e

R
e
s
p
o
n
s
e
 

I
n
t
e
r
f
a
c
e

31

25
24

20
19

15
14
13
12
11

7
6

0

f
u
n
c
t
7

r
s
2

r
s
1

xd
xs1
xs2

r
d

o
p
c
o
d
e

7

5

5

1
1
1

5

7

Args to bar()

Return address

Saved %ebp

Local variables

Buffer []

f
o
o
(
)
 
S
t
a
c
k
 
F
r
a
m
e

b
a
r
(
)
 
S
t
a
c
k
 
F
r
a
m
e

System Stack foo():
▪ Some code
▪ Push args for bar()
▪ Push return address on stack
▪ Push return address on RoCC 

Shadow Stack
▪ Jump to bar()

bar():
▪ Some code (adversary may inject 

payload here)
▪ Retrieve return address from 

RoCC Shadow Stack
▪ Compare retrieved address with 

the return address on stack
• Match: Proceed execution
• Mismatch: Throw CFI error

3
Args to bar()

Return address f
o
o
(
)
 
S
t
a
c
k
 
F
r
a
m
e

1Return address

1

2

2

3

Shadow Stack

R
o
C
C
 
S
t
a
c
k
 
F
r
a
m
e

4

3

4

CFI error
if mismatch



Step 1 - Source code annotation: We annotate the function 
calls and returns with a special tag to indicate the sites where the 
enforcement needs to take place. We use CFI_CALL tag before 

a function call and a corresponding CFI_RET tag just before a 

return from the called function, as shown in Fig. 5.  

Step 2 – Tag expansion: We expand the CFI tags to actual 
RISC-V assembly instructions. During compilation, we 
intercept the intermediate assembly code of the program and 
inject the RoCC custom instructions to communicate with the 
RoCC. Fig. 6 shows the assembly instructions corresponding to 
CFI_CALL and CFI_RET, that are placed just before the call 

and jr ra (return) instructions respectively. 

For CFI_CALL, we first retrieve the current value of the 

program counter from the instruction pointer register using the 
auipc instruction and add 14 bytes offset (instructions are 

variable length) to calculate the target return address. We save 
the computed return address in a temporary register t0. Then we 
craft the RoCC instruction cfi_call to push the return 

address from t0 to the Shadow Stack. A generic 32-bit RoCC 
instruction extends the RISC-V ISA and is encoded in the 
format as shown in Fig. 3. There are four RoCC instructions 
available (custom0-3) that are identified by the 7-bit opcode 
field, as shown in Table I. The funct7 field can be used to further 
specify a particular function of the RoCC instruction. We use 
custom0 to implement the CFI instructions. We set the funct7 
field to b’0000000 (0) for cfi_call and to b’0000001 (1) for 

cfi_ret. We use the rs1 field to set it to use the t0 register 

(b’00101), where we temporarily stored the computed return 
address and set the corresponding xs1 bit to 1. The final crafted 
instruction word for cfi_call is represented by 0x0002a00b.  

For CFI_RET, we set the funct7 field to b’0000001 (1) and 

set the rd field to use the t0 temporary register (b’00101) along 
with xd bit as 1. The final crafted instruction word for cfi_ret 

is represented by 0x0200428b. During a return from a function, 
the saved return address is popped from the system stack on to 
the link register ra. We then use the cfi_ret custom 

instruction to retrieve the backup return address from the RoCC 

Shadow Shack on to the temporary register t0. The value in t0 is 
then compared against the value in the register ra using the bne 

instruction. If they match, the execution proceeds by completing 
the return (jr ra: jump register), else we throw a CFI error. 

Step 3 – Compilation: The final CFI enforced assembly 
code is passed to the compiler to assemble, link and generate the 
final executable binary of the program. No compiler 
modifications are necessary to embed the instructions in the final 
binary since we provided the custom instruction as a binary 
instruction word, and the RoCC instruction format is already 
supported by the GNU toolchain.  

C. FIXER Hardware Implementation in RoCC 

Fig. 7 shows the FIXER implementation in the RoCC. The 
program binary runs on the Rocket Core and sends RoCC 
instructions over the RoCCIO whenever a security validation is 
required. The RoCC instruction is first passed through the Cmd 
decoder, which extracts the individual fields of the RoCC 
instruction, and the contents of the two registers rs1 and rs2 if 
specified. The opcode field is decoded to the custom0 instruction 
in our implementation. The funct7 field is decoded to interpret a 
cfi_call or a cfi_ret.  

For cfi_call, the contents of core register t0 (the return 

address) is sent through the rs1[63:0] field of the RoCCIO 
interface. The shadow stack is implemented as a SRAM 
memory with 64-bit wide words. A top-of-stack register (ToS) 
holds the address of the top of the shadow stack. If a 
cfi_call is interpreted, the content of the ToS register is 

incremented by 1. The updated value in the ToS register is used 
to decode the write address for the shadow stack. The value in 
the rs1 field is written to this address on the shadow stack. This 
operation is non-blocking, so the core can continue execution 
after issuing the cfi_call instruction. There is a command 

queue at the RoCCIO interface to prevent race conditions. If the 
instruction function is interpreted as cfi_ret, then the ToS 

register is read to obtain the address for the shadow stack. This 
address is used to read the saved return address from the 
shadow stack memory. The value is then sent back to the core 

void main () {               void myFunc() { 
    ...                        ... 
    CFI_CALL                   CFI_RET 
    myFunc();                  return; 
    ...                      } 
} 

Fig. 5. Source code annotation 

 

# CFI_CALL   # CFI_RET 
auipc   t0,0   .word   0x0200428b 
add     t0,t0,14   bne     t0,ra,_cfi_error 
.word   0x0002a00b  jr      ra 
call    myFunc 

Fig. 6. Tag expansion 
 

Fig. 7. FIXER implementation in RoCC. 

(a)  (b)  

Fig. 4. FIXER design flow in (a) software and (b) hardware. 
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by writing to the rd[63:0] field of the response interface of the 
RoCCIO, which writes the value to the t0 register on the core 
as indicated by the RoCC instruction. Our proof-of-concept 
implementation of the shadow stack can accommodate 1000 
addresses. However, this can be updated on demand by simply 
reconfiguring the FIXER module on the FPGA, a benefit 
exclusive to our implementation. The size of the shadow stack 
will be limited by the memory available on the target FPGA.   

D. Forward-edge Protection with FIXER 

A shadow stack only protects control flow on return 
boundaries. However, programs often use function pointers to 
jump to multiple function addresses. To ensure the validity of 
such function calls using function pointers, a pre-computed call 
policy is enforced. A static or runtime analysis is performed on 
the program to construct a control flow graph (CFG). The CFG 
is represented as a policy matrix that indicates the valid call 
targets for each function call made using a function pointer. The 
policy matrix is loaded in memory and at runtime, it is queried 
to validate the call target for every indirect function call. This 
forward-edge protection is implemented as another FIXER 
security module (Fig. 7). The policy matrix memory is created 
in the RoCC along with peripheral caller and callee address 
decoders. Our proof-of-concept implementation has 64 rows 
(each represents an originating call site address) in the matrix 
and each row holds a 64-bit policy vector (each bit represents a 
call target address). A set (unset) bit indicates that the call is 
valid (invalid) for that (caller, callee) pair. A RoCC instruction 
cfi_matld is used to load the policy bitmap into the FIXER 

module prior to the program execution. A RoCC instruction 
cfi_fwd is inserted before every indirect function call in the 

source code. The cfi_fwd instruction sends the caller and the 

dereferenced function pointer (callee) addresses to the RoCC for 
validation. The forward-edge FIXER module then validates the 
action using the policy matrix and sends back a 1 or 0 indicating 
allow or disallow respectively. Similar to the shadow stack 
implementation, the policy matrix size can also be updated post-
deployment by reconfiguring the FPGA.  

IV. EXPERIMENTAL RESULTS 

We implemented FIXER on a Xilinx Zynq FPGA. The 
hardware architecture of the security module is coded in 
CHISEL in the RocketChip Generator. The high level CHISEL 
code is translated to synthesizable Verilog code using the 
available tools in the RocketChip Generator. We prepared a 
FPGA system image using the generated Verilog and ran the 
system on a Zybo board. A sample program is written with 1 
billion iterations of function calls and returns. One version of the 
code implemented a simple software version of the shadow stack 
(softcfi). The software shadow stack is created as a regular stack 
in the address space. During function calls, the return address is 
simultaneously placed on the system stack as well as the shadow 
stack. Another version instrumented the code with the proposed 
RoCC CFI instructions (FIXER). We compiled the baseline 
(base code with no CFI checks), the softcfi and FIXER versions 
using the RISC-V GNU GCC compiler. The three versions of 
the program were run on the RocketChip system running on the 
FPGA. The base code takes 19 seconds to execute, whereas the 
software enforced CFI code takes 74 seconds. FIXER takes 29 

seconds resulting in ~1.5X overhead over the base code and 
~2.55X lower overhead compared to the pure software 
enforcement. The FPGA on idle draws 370mA current, while on 
load (with the program running) draws 420mA current, resulting 
in 1.13X increase. The corresponding energy overhead is 3.89X 
for the pure software enforced CFI and only 1.53X for the 
FIXER (60.52% improvement). The FIXER RoCC module 
incurs only 2.9% area overhead over the vanilla RocketChip 
without RoCC.  

We evaluated FIXER by enforcing it on the set of 
benchmarks provided for testing RISC-V architecture. The 
benchmarks are modified to create three versions for 
performance comparison: (i) the baseline with no CFI 
enforcement, (ii) the softcfi with the software based CFI 
enforcement, and (iii) the FIXER with RoCC based CFI 
protection. We ensured that the benchmark code remains the 
same across all the three versions except the CFI enforcement 
code. We compiled the benchmarks with the RISC-V GNU 
toolchain without any compiler optimizations and ran the 
compiled binaries on the Zybo FPGA board. Fig. 9 show the 
evaluation results backward-edge FIXER. The corresponding 
instruction overheads are shown in Table IV. With the 
backward-edge protection, the execution time overhead with 
softcfi is ~18% on average across the six benchmarks compared 
to 1.5% with FIXER. The softcfi increases the CPI (cycles per 
instruction) by 4.6% over the baseline, while the FIXER 
increases the CPI by only 0.5%. With the forward-edge 
protection, the execution time overhead with softcfi is ~2% on 
average across the six benchmarks compared to 0.61% with 
FIXER and CPI reduces 0.4% on average, which is negligible. 

V. SECURITY IMPLICATIONS 

Performance vs. Security: FIXER is targeted for hybrid 
architectures, e.g., CPU+FPGA, or ASIC+FPGA. Our current 
results are based on both the RocketChip and the RoCC 
accelerator being on the FPGA since we do not have access to 
such architecture. It is true that if the FPGA is off-chip, there 
could be performance degradation (due to speed gap between 
CPU and FPGA) if the checking is performed in a synchronous 
and fine-grained manner. One of the ways to reduce the 
performance issues is by making the checking asynchronous, by 
using interrupts. In such cases the program can continue 
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Fig. 8. RISC-V benchmark evaluation for backward-edge protection w.r.t. (a) 

execution time (number of cycles), and (b) effective CPI. 

TABLE III.  BENCHMARK INSTRUCTION OVERHEADS 

 Backward-edge Improvement over softcfi 

rsort 1.000019X 0.0126% 

median 1.000305X 0.2310% 

qsort 1.00434X 3.1770% 

vvadd 1.000622X 0.5080% 

multiply 1.008037X 5.7140% 

dhrystone 1.068607X 32.7930% 
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execution, until the FPGA raises an interrupt to halt the program. 
However, it cannot be guaranteed that the adversary has not been 
able to take control of the system before the FPGA detects the 
attack. When the FPGA is on-chip, e.g., Intel Xeon with 
embedded FPGA, the performance overheads can be alleviated 
due to QuickPath Interconnect (QPI) interface between the core 
and the FPGA for fast communication. 

Security Vulnerabilities and Limitations: FIXER enforces 
protection for a single process only. For a simultaneous multi-
process protection, the FIXER design can be expanded to 
accommodate multiple shadow stacks and policy memories for 
different processes. A round-robin scheduler on the FIXER 
module can assign the shadow stacks and policy memories to 
each process based on the process ID. The FIXER module on 
the FPGA also needs to be protected from tampering or data 
leaks. The current RocketChip implementation allows the entire 
code containing custom RoCC instructions to be run with 
supervisor privileges. However, this can be restricted via system 
calls so that the RoCC instructions are first verified and then run 
with supervisor privileges. It should be noted that FIXER is still 
vulnerable to buffer over-reads. Similar to HAFIX and NILE, 
FIXER will not enforce security if the adversary can modify 
binary to skip the custom instructions. 

Security Guarantees and Benefits: FIXER implemented in 
the FPGA offers benefits compared to other core based or 
system level protection schemes. Designs e.g., NILE which use 
the virtual address space to house the shadow stack, are limited 
by the size of the address space, and cannot scale based on the 
branch sequence depth. HAFIX has a separate limited memory 
on the core to store the CFI tags. However, in case of FIXER, 
the design can be scaled up or down based on the actual 
workload of the system. Typically, embedded devices e.g., IoTs 
have a limited set of workloads, and FIXER module on the 
FPGA on the IoT’s SoC can be scaled appropriately based on 
the workload. For example, if a new workload is being 
introduced to the system, which requires a larger shadow stack, 
the FPGA can be reconfigured to accommodate that (the 
maximum size being limited by available LUTs).  

VI. CONCLUSIONS 

We proposed FIXER, a CFI security architecture to 
implement a shadow stack and a policy memory in the RISC-V 
coprocessor for uninterrupted program flow without modifying 
or instrumenting the existing binary layout. FIXER 
implemented on FPGA can enable dynamic reconfiguration to 
allow flexible on-demand resizing of the shadow stack and 
policy memory, and also to adapt to new security threats. 
FIXER exhibits small energy footprint and significant 
performance gain over traditional software shadow stack. 
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