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ABSTRACT
Programs trusted with secure information should not release
that information in ways contrary to system policy. How-
ever, when a program contains an illegal flow of informa-
tion, current information-flow reporting techniques are in-
adequate for determining the cause of the error. Reasoning
about information-flow errors can be difficult, as the flows
involved can be quite subtle. We present a general model
for information-flow blame that can explain the source of
such security errors in code. This model is implemented by
changing the information-flow verification procedure to: (1)
generate supplementary information to reveal otherwise hid-
den program dependencies; (2) modify the constraint solver
to construct a blame dependency graph; and (3) develop an
explanation procedure that returns a complete and minimal
error report. Our experiments show that information-flow
errors can generally be explained and resolved by viewing
only a small fraction of the total code.

1. INTRODUCTION
It is essential for programs, especially those that are en-

trusted with critical personal information, to enforce secu-
rity goals. Information-flow security is a key requirement
for secure programs; if a program is information-flow se-
cure, then secret information cannot flow to public channels
at runtime [9]. Security-typed languages can be used to build
applications that are information-flow secure [10, 19, 20, 21].
Once the programmer has annotated the security require-
ments on variables and I/O channels, the compiler verifies
that these annotations do not permit an illegal information
flow.

Although secure systems have been built using security-
typed languages, at present these have only been built from
scratch [2, 6, 15]. To scale to real systems, we must be able to
retrofit legacy code for security. However, such retrofitting
is difficult for two reasons. Because the original code was
not necessarily written with information-flow requirements
in mind, it will contain a large number of security violations,
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some of which may correspond to expected system behavior
(releasing the result of a password check), and some of which
may not (the unintended release of a patient’s social security
number). These errors can be quite complex, as any runtime
program path may cause an error. Program paths can span
procedures, and conditionals and exceptions create subtle
dependencies between data. In even moderately-sized code,
the number of possible program paths means that deducing
the source of an error, given just the location of where an
error manifested itself, can be daunting.

The information-flow blame problem is to identify the pos-
sible sources of an error in a program. An effective solution
to the blame problem is an error report that is both complete
(everything that caused the error is reported) and minimal
(what is reported does not contain spurious information).
The blame problem has been well-studied for runtime er-
rors [5, 14], typing errors [28], and incorrect value computa-
tion [16, 27, 29]. However, current methods for determining
causes of information-flow errors are either incomplete and
non-minimal [8], or require computationally expensive aux-
iliary solvers for high precision [13].

In this paper, we present a model for information-flow
blame and an algorithm for extracting the core reason for
program inconsistency from a constraint solver. We imple-
ment our model by extending the Jif information-flow com-
piler [20] with an interprocedural constraint-based program
analysis. We then demonstrate how our analysis performs
on a variety of Java programs and briefly describe the kinds
of information-flow errors that these programs permit. This
paper makes the following contributions:

• We show how to build a blame dependency graph of con-
straints that enables queries to retrieve the slice of the
graph that contributes to a violation.

• We show how the dependency graph can be used to gener-
ate a complete and minimal set of constraints that caused
an error.

• We expand the Jif compiler to display error explanations
generated by Java code.

• We apply our analysis to a variety of programs, showing
that the errors reported accurately describe the cause of
an illegal information flow. We find that our blame model
reduces each error to viewing a small fraction of the pro-
gram (less than 0.5% of the original source for each bench-
mark), making error resolution straightforward. Our ex-
perience with our analysis suggests that the percentage
of constraints needing to be examined remains constant
as the size of the program increases.

The remainder of the paper is organized as follows: Sec-



tion 2 outlines the current blame procedure in security-typed
languages and why it is presently inadequate. We then out-
line our model for determining blame for security errors in
programs. The formal background for a constraint solver
commonly used for security-typed language extensions is de-
tailed in Section 3. In Section 4, we describe the blame de-
pendency graph1, a data structure that allows tracing the
reason why a program contains an illegal flow of informa-
tion. In Section 5, we outline the modifications we needed
to make to the Jif compiler for our analysis. In Section 6,
we describe the result of our experiments on several open-
source and non-trivial Java programs (> 1000 lines of code).
In Section 7, we describe some related work, and we give
concluding remarks in Section 8.

2. PROBLEMS WITH CURRENT BLAME
We now outline some current problems in finding and

resolving information-flow errors in program code. As an
example of a typical information-flow analysis2, we inves-
tigate the security-typed language Jif [20], an extension of
JFlow [19]. We first give some background on how Jif verifies
the information-flow security of its programs.

A program is information-flow secure if high security vari-
ables do not affect the values stored in low security vari-
ables [9]. Explicit information flows occur when high se-
curity data is directly written to low security data, while
implicit information flows occur when low security data is
otherwise affected by high security data. If h is a high se-
curity variable and l is a low security variable, then the as-
signment l := h enables the explicit flow of information from
h to l, while the conditional if (h == 0) then l := 0 enables
the implicit flow of information from h to l.

To determine if a program contains an illegal flow, Jif
generates label constraints for the statements in the code. An
assignment statement v := e generates the constraint Le ≤
Lv, where Lv is the security level of v, Le is the security level
of e, and Le ≤ Lv is read as “the security level of Le is less
or equal to that of Lv”. This constraint requires the security
level of the expression e to be lower than the security level
of the variable v. If the security level of e is not known (as
it may not be explicitly labeled), a variable βe is introduced
and used in place of Le.

To detect implicit information flows, the compiler keeps
track of the security of the program counter; the security
level of the program counter is the level of information re-
leased by executing a particular line in a program. Assign-
ments that occur inside a conditional must be to variables
of a level no lower than the program counter. For exam-
ple, if program variables i, j, and k have security levels αi,
βj , γk respectively, then conditional if (i == 0) then j := k

generates the label constraint αi t γk ≤ βj : both i and k

must not have a higher security level than j. Nested assign-
ments, loops, and exceptions are treated in a similar way:
any expression that can affect the control-flow of the pro-
gram taints the program counter.

1While the traditional program dependency graph tracks
dataflow in the program, the blame dependency graph stores
information from the constraint solver to enable an expla-
nation after a constraint inconsistency is detected.
2Most implementations of information-flow checkers behave
in the way described in this paper, though their underlying
type systems may vary.

1 User[{Secret}] user; // information in User is Secret
2 OutputStream[{Public}] out; // output stream writes to Public
3
4 private void handleRetr() {
5 // fileIn is a secret file reader
6 BufferedReader fileIn = user.getReader(msgNum);
7 String currentLine = fileIn.readLine();
8 while (currentLine != null) {
9 this.write(currentLine);

10 currentLine = fileIn.readLine();
11 }
12 }
13
14 private void handleTop() {
15 // whether a message is deleted or not is secret information
16 if (user.getMessage(msgNum).isDeleted())
17 this.write(MESSAGE_NO_SUCH_MESSAGE);
18 }
19
20 private void write(String message) {
21 // writes a message out (Public sink)
22 out.print(message);
23 }

Figure 1: Fragment of code from the POP3 pro-
cesser in the JES Email Server.

Once the label constraints for representing the informa-
tion flows permitted by the program have been generated,
Jif runs a modified implementation of the Rehof-Mogensen
constraint solver [22] (described in Section 3.1), generat-
ing an assignment of variables to security levels such that
each constraint is satisfied. If no such assignment exists,
the solver reports the first constraint that it could not sat-
isfy, and then fails. The constraint generation and solving
process is together called label checking.

2.1 Current Problems With Blame
The primary difficulty with the above approach to

information-flow blame is that blaming the first constraint
at which an error was detected always blames a sink of se-
cure information. Information-flow security annotations to
programs fall into two different categories: sources or sinks.
For example, if a field containing a PIN number is labeled
as Secret, then that field is a source of Secret information.
If a public output stream is labeled as requiring Public data,
then it is a sink for Public information. A field or variable
annotated by a security label is a source, while the variable
on the left-hand-size of an assignment or a formal parameter
of a method call are sinks. Sinks impose a security require-
ment on flows through the program: if a sink has security
label L, then any source that flows to the sink must have a
label L′ such that L′ is not more restrictive than L (written
L′ ≤ L).

Figure 1 contains code from the JES, an open source Java
email server3. The situation in the code is a common one:
a secret source, here the user’s mailbox, flows to an public
output, here a socket’s output stream, in more than one
way. By examining the code, we can see that there are two
information leaks: the leak of whether or not a message has
been deleted (caused by line 16) and leaking the contents of
a message (caused by line 9). We would prefer to treat each
information flow separately: while information flows can be
permitted by adding an explicit declassifier, it would not be
good practice to automatically declassify any information
leaving the system through the write method, as we lose

3http://www.ericdaugherty.com/java/mailserver/



track of exactly what information is being leaked by the
system.

The approach that the Jif compiler currently takes to
information-flow blame is to simply blame the first con-
straint that failed during label checking. Using that ap-
proach for analysis of a Java program, we would highlight
the line out.print(msg) and indicate that this line might send
out secret information. We claim that this error message is
unsatisfactory, as it does not highlight the cause of the er-
ror. In the situation where a client is sending a message msg

out over a Public socket, it may be possible that Secret data
has affected msg (in at least one way), but this error message
does not display how.

We claim that for a solver’s error message to be satisfac-
tory, it must be complete: everything that caused a con-
straint to fail must be available to the programmer. More-
over, the error message must be minimal: it should not
show anything unrelated to a specific failure. Specifically, it
should show how each line of the program’s code contributes
to an illegal flow. In the previous example, we should report
either that message was raised to contain Secret data because
of the implicit flow from line 16 to the output, or because of
the explicit flow from line 9.

Current analyses for explaining information-flow errors
are also unsatisfactory. Program slicing can be used to find
and resolve information flows [13, 26], as the presence of a
secret source in the backward slice of a public sink implies
a possible runtime information-flow violation. However, the
only existing exploration that we are aware of to use slicing
to find witnesses for illegal information-flows [13] relies on
path conditions, which are boolean conditions for determin-
ing when exactly a given program path is executed [24]. This
requires an extra analysis to determine if an information-
flow violation occurs. However, our experience programming
in security-typed languages suggests that most information-
flow violations do not require the precision that path condi-
tions allow. Other analyses for explaining information-flow
errors do not track implicit flows [12], do not operate on a full
programming language [8], or require an advanced solver to
determine the conditions under which a leakage occurs [13].

A final technical difficulty with using Jif for retrofitting
existing Java code is that its analysis requires programmers
to annotate, for all methods, the security value of each argu-
ment and the side effects the method may release. This can
lead to labeling conflicts rather than true security errors [6,
15].

2.2 Our Approach
To find information-flow errors in existing Java codebases,

we modified the Jif compiler to operate on Java programs;
this required only minor changes to each aspect of the label
checking procedure. Figure 2 summarizes our approach.

To use our tool, a programmer first gives security anno-
tations on various program elements such as variables and
fields. The blame algorithm will then output relevant parts
of program paths that witness an information flow violation
to the user. We find these program paths by instrumenting
the solver contained in the Jif engine with a blame depen-
dency graph that records information to determine why a
label constraint became unsatisfiable. The constraint set
is generated by an interprocedural label analysis that allows
programmers to only label security-relevant code. The anal-
ysis infers the rest of the security annotations for the rest

of the program, removing the need for the programmer to
label every method with the security type of its arguments.
Our experiments show that our blame algorithm, provided
with an interprocedural label analysis, can accurately iden-
tify illegal information flows in programs.

3. SOLVER BACKGROUND
The first step in building our comprehensive blame model

is to modify the constraint solver to extract the constraints
that contributed to a failure. In this section, we provide a
formal description of the constraint solver used by Jif. This
will be necessary to understand the motivation behind the
blame dependency graph, given in the next section.

3.1 Rehof-Mogensen Constraint Solver
To verify the information-flow security of program code,

Jif uses a variant of the Rehof-Mogensen solver, a linear-
time constraint solver [22]. The Rehof-Mogensen solver op-
erates in two phases: the first adjusts variables based on
constraints with a variable on the right-hand side, while the
second makes sure that constraints with a label from the
security lattice on the right-hand side are still satisfied. We
now give some theoretical background for this constraint
solver; we will later revisit how the Jif compiler uses it.

Let P be a partially-ordered set (poset) and F be a finite
set of monotone functions f : P af → P where af ≥ 1 is
the arity of f . The pair Φ = (P, F ) is called a monotone
function problem or MFP. Given a MFP Φ, the set of Φ-
terms (denoted by TΦ) is given by the following grammar:

τ = α | β | · · · | L | f(τ1, · · · , τaf ) ,

where L ranges over constants in P , f ∈ F , and
τ, τ1, · · · , τaf are Φ-terms. Let the set of all variables, as-
sumed to be a denumerably infinite set, be V. We use lower-
case Greek letters as variables: α, β, γ, . . .. The set of vari-
ables occurring in a term τ is denoted by Vars(τ). A con-
straint is of the form τ ≤ τ ′, where τ, τ ′ ∈ TΦ. A constraint
set C is a finite set of constraints over Φ.

Let C be a constraint set. A valuation ρ is a function
from V to P . Given a valuation ρ, ρ(τ) is the value of the
term τ under ρ. A valuation ρ satisfies the constraint τ ≤ τ ′
iff ρ(τ) ≤ ρ(τ ′); we write this P, ρ |= τ ≤ τ ′. A valuation
ρ : V → P satisfies C iff ρ satisfies every constraint in the
set C. The set of all valuations that satisfy C, denoted
by sol(C), is called the set of all solutions to C. Given a
MFP Φ = (P, F ), the decision problem Φ-SAT is defined as
follows:

Given a constraint set C over Φ, determine
whether C is satisfiable.

For the rest of the paper, we assume that P is a lattice
L with bottom element ⊥. The join and meet operators for
L are denoted by t and u, respectively. Let Φ = (L, F ) be
a MFP. Let an atom be a variable (α or β) or a constant
L ∈ L. A constraint set C over Φ in which every inequality
is of the form τ ≤ A, with an atom on the right hand side,
is called definite. A definite set C = {τi ≤ Ai}i∈I can be
written as C = Cvar ∪Ccnst where Cvar are constraints in C
that have a variable on the right-hand-side (rhs) and Ccnst

are constraints in C that have a constant on the rhs. The
algorithm for Φ-SAT where C is a definite set of constraints
is shown in Figure 3. A detailed explanation for the algo-
rithm, including proofs of its tractability and completeness,
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RMSolve(C)

1 ρ(β)← ⊥ for all β ∈ V
2 W ← {τ ≤ β | τ ≤ β ∈ C such that L, ρ 6|= τ ≤ β}
3 while W is non-empty
4 τ ≤ β ← Pop(W )
5 if L, ρ 6|= τ ≤ β
6 ρ(β)← ρ(β) t ρ(τ)
7 for each τ ′ ≤ α ∈ C with β ∈ Vars(τ ′)
8 W ← Push(W, τ ′ ≤ α)
9 for each τ ≤ L ∈ C

10 if L, ρ 6|= τ ≤ L
11 raise exception
12 return ρ

Figure 3: The Rehof-Mogensen constraint solver

is given by Rehof and Mogensen [22]. Given a fixed run of
the solver, a partial valuation ρt refers to the t-th valuation;
ρt is the approximation of the final valuation ρ produced by
the solver after the t-th time that line 6 is executed.

In this paper we always assume that Φ-terms τ have the
form τ ≡ β0 t · · · t βk t L1 t · · · t Lj . As information-flow
is a monotonically increasing property, terms that include
the meet (u) do not make sense for our analysis. This as-
sumption simplifies the presentation of our blame algorithm
in the upcoming section.

3.2 Constraint Solving Example
Let C = {L1 ≤ β0, L2 t β0 ≤ β1, β0 t β1 ≤ β2}, where

security labels L1 and L2 are incomparable. When run on
C, the solver will construct a valuation ρ such that L, ρ |=
ρ(C). Initially, ρ(β) = ⊥ for all variables β. The solver
first considers L1 ≤ β0. Because β0 is currently mapped to
⊥ under ρ, the solver raises ρ(β0) to L1. Next, the solver
considers L2 t β0 ≤ β1. Because ρ(β1) = ⊥, the solver
modifies ρ(β1) = L2 t ρ(β0) = L1 t L2. Finally, the solver
considers β0 t β1 ≤ β2; since ρ(β2) = ⊥, it sets ρ(β2) =
ρ(β0) t ρ(β1) = L1 t L2. With this ordering of constraints,
the for loop in line 7 is not executed as its condition is always
false. As there are no constraints of the form τ ≤ L ∈ C,
the solver succeeds, returning ρ.

Suppose instead the constraint β0tβ1 ≤ β2 was considered
first. Because initially all variables are mapped to ⊥, the
solver does not modify β2. However, after either β0 or β1

was modified, β0 t β1 ≤ β2 would be added to the worklist
W by line 8 and so β2 would eventually be raised to L1tL2.

For the constraint set C′ = C ∪ {β2 ≤ L2}, the solver

initially performs as described above. However, after each
constraint of the form τ ≤ β is considered, the solver at-
tempts to check that β2 ≤ L2 holds under ρ. However, as
ρ(β2) = L1 t L2 and L1 t L2 6≤ L2, the solver reports an
error, specifically that it has failed on β2 ≤ L2.

From the constraint set, it is not obvious why β2 was
raised above L2. We know that β0tβ1 ≤ β2 modified β2 (as
it is the only constraint with β2 on the right-hand side), but
knowing why β2 was raised above L2 involves knowing why
either β0 or β1 were raised above L2. In larger constraint
sets, determining which constraints caused an error can be
even more difficult.

4. BLAME IN THE SOLVER
In this section, we present a structure for assessing blame

at the solver level. This is a first step towards the blame
model described in Section 2. The blame dependency graph
is a data structure that acts as a backend for failure expla-
nation in the Rehof-Mogensen solver that can be queried to
provide complete error explanations. We then present an
algorithm that, for each error, reports a set of constraints X
with the property that the constraints in X cause the error
(the error reported is complete), and each constraint in X
contributes to the error (the error reported is minimal).

4.1 The Blame Dependency Graph
As described in the previous section, the Rehof-Mogensen

solver is used to determine if a Jif program has any illegal
flows. In order to assign blame to information-flow errors in
Java programs, we construct the blame dependency graph
during the run of the Rehof-Mogensen solver. The intuition
behind the dependency graph is to record the run of the
solver by keeping track of which constraints τ ≤ β raise
the level of a variable β. If the constraint β ≤ L fails,
meaning that β was raised too high, the solver can use this
information and determine whether or not the particular
constraint τ ≤ β was responsible for this.

4.1.1 Definition
The blame dependency graph (hereafter referred to as the

dependency graph) is a directed graph that records the his-
tory of the valuation produced by the solver. Let ρi be the
valuation the i-th time that line 6 in Figure 5 is executed;
we refer to this as time i. The dependency graph contains
each of the ρi and information connecting each ρi with ρi+1.



(β0, 0,⊥)

L1≤β0

��

(β1, 0,⊥)

��

(β2, 0,⊥)

��
(β0, 1, L1)

��

L2tβ0≤β1

''OOOOOOOOOOOO
(β1, 1,⊥)

��

(β2, 1,⊥)

��
(β0, 2, L1)

��

β0tβ1≤β2

++XXXXXXXXXXXXXXXXXXXXXXXX (β1, 2, L1 t L2)

��

β0tβ1≤β2

((QQQQQQQQQQQQQ
(β2, 2,⊥)

��
(β0, 3, L1) (β1, 3, L1 t L2) (β2, 3, L1 t L2)

Figure 4: The dependency graph after a solver run

Definition 4.1 (Blame Dependency Graph) The
blame dependency graph B = (V,E) is a graph that
maintains the history of the valuations produced by a run
of the solver. The dependency graph has the following
properties:

• If at time t, the valuation ρt(α) = L, then the node
(α, t, L) ∈ V .

• For all t, if (α, t − 1, L), (α, t, L′) ∈ V , then the edge
((α, t− 1, L), (α, t, L′)) ∈ E.

• If α is set to L′ at time t because of a constraint τ ≤ α,
then for each β ∈ Vars(τ) and node (β, t − 1, Lβ) ∈ V ,
((β, t− 1, L), (α, t, L′)) ∈ E, and this edge is labeled with
the constraint τ ≤ α.

A visualization of the dependency graph for the solver run
over constraint set C from Section 3.2 is given in Figure 4.
Initially each of the variables β0, β1, β2 begin at ⊥. The
dependency graph indicates that the constraint L1 ≤ β0 is
responsible for raising β0 from ⊥ to L1. Next, it shows that
β1 was raised because of the constraint L2tβ0 ≤ β1. Finally,
it identifies that the constraint β0 tβ1 ≤ β2 was responsible
for raising β2 to L1 t L2.

4.1.2 Using the Blame Dependency Graph
As an abstract data type, the dependency graph supports

two operations.

• Record(t, β, L, τ ≤ β) records that the variable β has
been modified at time t to the label L because of the
constraint τ ≤ β.

• FailureCause(τ ≤ L) returns the constraint τ ′ ≤ β
after which τ ≤ L first became unsatisfiable under the
valuation ρ constructed by the solver.

The operation Record(t, β, L, τ ≤ β) adds the node
(β, t, L) to the dependency graph, and adds an edge for each
α ∈ Vars(τ) from (α, t− 1, ρt−1(α)) to (β, t, L) labeled with
the constraint τ ≤ β. To implement FailureCause(τ ≤ L),
we trace through the dependency graph to find the time j at
which ρj(τ) ≤ L, but ρj+1(τ) 6≤ L. The variable β changed
at time j was modified because of a constraint τ ′ ≤ β.
FailureCause returns the constraint τ ′ ≤ β; at time j,
ρj(τ) ≤ L was true, while afterwards ρj+1(τ) 6≤ L. The
constraint τ ≤ L fails because the variable β (occurring in
τ) was raised to a security level above L by the constraint
τ ′ ≤ β. This gives an explanation for the constraint’s failure
that can be determined from the blame dependency graph.

4.1.3 Generating the Blame Dependency Graph
To populate the dependency graph during the run of the

RMSolve-DependencyGraph(C)

1 ρ(β)← ⊥ for all β ∈ V
2 W ← {τ ≤ β | τ ≤ β ∈ C such that L, ρ 6|= τ ≤ β}
3 t← 0
4 while W is non-empty
5 τ ≤ β ← Pop(W )
6 if L, ρ 6|= τ ≤ β
7 Record(t, β, ρ(β) t ρ(τ), τ ≤ β)

8 ρ(β)← ρ(β) t ρ(τ)
9 t← t+ 1

10 for each τ ′ ≤ α ∈ C with β ∈ Vars(τ ′)
11 W ← Push(W, τ ′ ≤ α)
12 for each τ ≤ L ∈ C
13 if L, ρ 6|= τ ≤ L
14 X ← RecursiveExplain(ρ(τ) ≤ L)

15 raise exception “τ 6≤ L because X”
16 return ρ

RecursiveExplain(τ ≤ L)

1 if τ ≤ L is unsatisfiable
2 return ∅
3 τ ′ ≤ β ← FailureCause(τ ≤ L)
4 return {τ ′ ≤ β} ∪RecursiveExplain(τ ′ ≤ L)

Figure 5: The Rehof-Mogensen Solver extended
with error explanation

RMSolve algorithm, after each execution of line 6 in the
original solving algorithm, we record that at time t, β was
modified from ρ(β) to ρ(β) t ρ(τ) because of the equation
τ ≤ β and increment the current time. The modified solver
algorithm is presented as RMSolve-DependencyGraph,
shown in Figure 5.

4.2 Reporting the Cause of an Error
We described a procedure FailureCause that returns, for

a single constraint τ ≤ L, the constraint τ ′ ≤ β that caused
it first to fail. Because of our assumption that labels contain
only joins, this constraint τ ′ ≤ β suffices to cause the failure
of τ ≤ L. However, τ ′ ≤ β may not provide every reason
as to why the constraint τ ≤ L failed. For example, τ ′ may
contain variables, making it unclear why τ ′ itself was raised
above L.

The algorithm RecursiveExplain, given in Figure 5, re-
cursively explains why a constraint τ ≤ L failed, returning
every constraint that contributed to its failure. When τ ≤ L
fails, RecursiveExplain consults the dependency graph to
see why τ ≤ L has failed, receiving the answer τ ′ ≤ β. Since
τ ≤ L failed because β was raised above ρ(τ ′), to determine
why τ ′ was raised that high, the algorithm makes a recur-
sive call to determine which constraints caused τ ′ ≤ L to
fail. This continues until the algorithm is called on an un-
satisfiable constraint. In Section 4.3, we will see that this
procedure can be optimized to run in O(n) time, where n is
the number of constraints given to the solver.

To concretely illustrate this procedure, we again revisit
the example from Section 3.2 by examining the blame set
returned by our explanation algorithm for the unsatisfiable
set C′, which contains the extra constraint β2 ≤ L. When
the solver is run on C′, the solver fails attempting to verify
ρ(β2) ≤ L2. Instead of reporting this constraint as the sole
cause of the violation, RecursiveExplain searches for the
constraint that first caused β2 ≤ L2 to fail. The first point



at which β2 ≤ L2 fails is at time 3, when β2 was raised to
L1 tL2. The incoming edges to (β2, 3, L1 tL2) are marked
with β0tβ1 ≤ β2, so we look for the time where β0tβ1 ≤ L2

first failed. This first failed at time 1, when L1 ≤ β0 raised
β0 to L1. Finally, we attempt to explain L1 ≤ L2, which is
unsatisfiable. The algorithm then reports: “β2 6≤ L2 because
{β0 t β1 ≤ β2, L1 ≤ β1}”. These are the constraints that
caused β2 ≤ L2 to fail.

4.2.1 Broader Explanations
The recursive procedure described above only returns the

first constraint τ ′ ≤ β that caused τ ≤ L. We can also use
the dependency graph to perform broader error reporting.
If a satisfiable constraint τ ≤ L becomes unsatisfiable under
ρ, then for some {β0, . . . , βk} ∈ Vars(τ ′), we have ρ(βi) 6≤
L for 0 ≤ i ≤ k. With the dependency graph, we can
answer why each of the constraints βi ≤ L failed. This will
identify why each variable βi was raised above level L, giving
multiple, possibly redundant, reasons why one constraint
τ ′ ≤ L failed.

4.3 Error Reporting Properties
In this section, we show that RecursiveExplain satisfies

a number of important properties. First, we show that a call
to RecursiveExplain is guaranteed to terminate. We then
show that the sets returned by RecursiveExplain are are
complete and minimal, i.e. they actually witness an error
and do not contain any smaller explanations.

Appendix ?? contains a proof that finding an error set of
minimum size for a constraint τ ≤ L is NP-complete. This
shows that finding an error set with more global minimality
properties is likely to be computationally difficult.

We first show that RecursiveExplain will not loop in-
finitely. This requires the auxiliary definition of failure time,
the time (given by the first argument to Record) at which
a constraint first became unsatisfiable.

Definition 4.2 (Failure Time) The failure time for the
constraint τ ≤ L, written fail(τ ≤ L), is the unique j at
which ρj(τ) ≤ L, but ρj+1(τ) 6≤ L.

Lemma 4.3 RecursiveExplain always terminates.

Proof. We show that if RecursiveExplain(τ ≤ L)
calls RecursiveExplain(τ ′ ≤ L), then fail(τ ′ ≤ L) <
fail(τ ≤ L). Therefore, the failure time of a constraint re-
turned by FailureCause will always be strictly decreasing.
As the failure time for a constraint cannot be negative, even-
tually RecursiveExplain will be called on an unsatisfiable
constraint and terminate.

Assume fail(τ ≤ L) ≤ fail(τ ′ ≤ L); we show a contra-
diction. Let j = fail(τ ≤ L), therefore ρj(τ) ≤ L and
ρj+1(τ) 6≤ L. Note that β ∈ Vars(τ) (otherwise modify-
ing β could not cause τ to fail), and so as τ is a collection
of joins, ρj(β) ≤ L.

Because τ ≤ L does not fail before τ ′ ≤ L, ρj(τ
′) ≤ L.

However, ρj+1 = ρj{β 7→ ρj(τ
′) t ρj(β)}, so ρj+1(τ) =

ρj(τ [τ ′tρj(β)/β]). Because ρj(τ) ≤ L, ρj(τ
′) ≤ L, ρj(β) ≤

L, and since τ is a collection of joins, we therefore have
ρj+1(τ) ≤ L, which contradicts j as the first failure time for
τ . The recursion is thus well-founded.

We now show that using our explanation algorithm in con-
junction with the dependency graph accurately identifies a
cause of an error without displaying useless constraints. We

first define what it means for a set of constraints to be un-
satisfiable.

Definition 4.4 A set C of constraints is unsatisfiable under
security lattice L if there does not exist a valuation ρ such
that L, ρ |= C.

Of particular interest for explanations of the an error
caused by τ ≤ L are sets of constraints X that, together
with τ ≤ L, are unsatisfiable. In this case X contains every
constraint that caused an error. The set X is thus a com-
plete explanation for τ ≤ L. We use the term error set to
refer to a complete explanation.

Definition 4.5 (Completeness) Let C be a set of con-
straints and X ⊆ C. We say X is an error set for a con-
straint τ ≤ L if X ∪ {τ ≤ L} is unsatisfiable. If X is an
error set for τ ≤ L, then we say X is a complete explanation
for τ ≤ L.

We are interested in returning minimal error sets: these
are error sets that do not contain any smaller error set. Min-
imal error sets are small witnesses to a specific information
flow violation.

Definition 4.6 (Minimality) Let X be an error set for
the constraint τ ≤ L. We say X is a minimal error set if
there is no X ′ ⊂ X such that X ′ is an error set for τ ≤ L.

We now show that the sets returned by Recursive-
Explain(τ ≤ L) accurately describe the cause of the
failed constraint τ ≤ L. For notational convenience, if
RecursiveExplain(τ ≤ L) = X, we write X as Xτ≤L.
We first prove a lemma showing that, if the set returned by
the recursive call RecursiveExplain(τ ′ ≤ L) is an error
set, then the set {τ ′ ≤ β} ∪ RecursiveExplain(τ ′ ≤ L)
is also an error set. This will form the inductive step of
Theorem 4.8.

Lemma 4.7 Let R be an error set for τ ′ ≤ L and β ∈
Vars(τ). Then R ∪ {τ ′ ≤ β} is an error set for τ ≤ L.

Proof. Proof by induction on the structure of τ . By the
assumption β ∈ Vars(τ), we know τ cannot be a constant
or a variable distinct from β. If τ = β, since R ∪ {τ ′ ≤ L}
is unsatisfiable, then R ∪ {τ ′ ≤ β} ∪ {β ≤ L} must be also
be unsatisfiable; the result follows.

Otherwise τ ≡ τ1t· · ·tτn, so β ∈ Vars(τi) for some τi. By
induction R ∪ {τ ′ ≤ β} is an error set for τi ≤ L. Therefore
R∪{τ ′ ≤ β} is an error set for τ ≤ L. (if an inequality τ ≤ L
is unsatisfiable, then for any τ ′ the inequality τ t τ ′ ≤ L is
also unsatisfiable)

With Lemma 4.7, we can show that RecursiveEx-
plain(τ ≤ L) returns an error set for τ ≤ L.

Theorem 4.8 (Completeness) Xτ≤L is an error set for
τ ≤ L.

Proof. Proof by induction on Xτ≤L. If Xτ≤L = ∅, then
τ ≤ L must be unsatisfiable, and so ∅ is an error set for
τ ≤ L.

Otherwise, Xτ≤L = {τ ′ ≤ β} ∪ Xτ ′≤L, where τ ′ ≤ β is
the constraint after which τ ≤ L first failed. By induction,
Xτ ′≤L is an error set for τ ′ ≤ L. Let k be the time at which
τ ≤ L first failed. Because β was the only variable modified
at time k, β ∈ Vars(τ). By Lemma 4.7, Xτ ′≤L ∪{τ ′ ≤ β} is
an error set for τ ≤ L.



Next, we show that the sets returned by RecursiveEx-
plain are minimal; they do not contain any smaller er-
ror sets. Minimal error sets for a failed constraint τ ≤
L are of great interest for error explanation; since they
only contain constraints which caused the error, they are
the “best” failure explanation that we can give. We first
need a lemma regarding the structure of sets returned by
RecursiveExplain(τ ≤ L).

Lemma 4.9 If RecursiveExplain(τ ≤ L) = X, then
X can be ordered as 〈τ0 ≤ α0, τ1 ≤ α1, . . . , τn ≤ αn〉,
where:

1. for i < j, fail(τi ≤ L) < fail(τj ≤ L)

2. each αi is distinct.

3. for i+ 1 < j, αi 6∈ Vars(τj) ∪Vars(τ).

Proof. Construct the ordering by sorting the τi ≤ αi
according to their failure time; by Lemma 4.3, each recursive
call has a distinct failure time.

To see that each αi is distinct, observe that from the pre-
vious proof, fail(αi ≤ L) = j = fail(τi+1 ≤ L), and so as the
failure time fail(τj ≤ L) is unique for all j, each variable also
must be unique.

To show αi 6∈ Vars(τj), observe αi ∈ Vars(τj) implies
fail(τj ≤ L) ≤ fail(αi ≤ L) = fail(τi+1 ≤ L); therefore, each
of the αi must not occur in any later τj . The full statement
follows from fail(αn ≤ L) = fail(τ ≤ L).

In particular, once RecursiveExplain considers a valu-
ation ρj , it does not need to consider any valuations ρk for
k > j. Therefore, as mentioned at the end of Section 4.2,
RecursiveExplain can be optimized to run in O(t) time,
where t is the running time of the solver. As the Rehof-
Mogensen solver is a linear-time solver on the number of
constraints n, RecursiveExplain can run in O(n) time.

Theorem 4.10 (Minimality) There is no X ′ ⊂ Xτ≤L
such that X ′ is an error set for τ ≤ L.

Proof. Suppose X ′ ⊂ Xτ≤L is an error set for τ ≤ L.
We show a contradiction. First, consider the possibility that
X ′ = ∅; if so, then τ ≤ L is unsatisfiable; however, if this is
so, then Xτ≤L = ∅, contradicting X ′ ⊂ Xτ≤L. We are left
with the case where X ′ 6= ∅.

By Lemma 4.9, the error set X can be ordered by failure
time as 〈τ0 ≤ α0, τ1 ≤ α1, . . . , τn ≤ β〉, with each of the
variables occurring on the right-hand side of the equation
is distinct. Let k be the first τk ≤ αk ∈ Xτ≤L such that
τk ≤ αk 6∈ X ′. For m > k, Vars(τm) ∩ {α0, . . . , αk−1} = ∅.
Therefore, we can satisfyX ′∪{τ ≤ L} by running the Rehof-
Mogensen solver over {τ0 ≤ α0, . . . , τk−1 ≤ αk−1} and leav-
ing αk+1, . . . , αn at ⊥. As τ does not share variables with
α0, . . . , αn−1 and X ′ is nonempty (so τ ≤ L must be satis-
fiable), the valuation ρ produced from this run will satisfy
ρ(τ) ≤ L. This is a contradiction.

4.4 Error Traces From Code
Figure 6 and Figure 7 show the error sets returned by our

blame algorithm for two of the errors as described in Fig-
ure 1 together with the lines of code that generated each
constraint. An error trace is a subset of the program that
witnesses an information-flow violation, similar to a pro-
gram slice. In the error sets (at the top of each figure),
a semicolon (;) represents the join of two labels, {Secret}
and {Public} are explicit security labels, and everything else

failed: {message@callto:write:2; pc1} <= {Public}
1: {message@callto:write:2} == {inst(NO_SUCH_MESSAGE);

write_receiver:2; pc33}
2: {pc33} ==_{def} {isDeleted:value_returned; pc32}
3: {pc32} ==_{def} {getMessage:return_observed; pc31}

{getMessage:return_observed} ==_{def} {Secret}

failed: {message@callto:write:2; pc1} <= {Public}
failure site: out.println(message); [line 22]

1: if >>(user.getMessage(msgNum).isDeleted())<<
2: >>user.getMessage(msgNum).isDeleted()<<
3: >>user.getMessage(msgNum)<<

why:
{getMessage:return_observed} ==_{def} {Secret: }

Figure 6: Error set and error trace for first error
from the code in Figure 1. The expression associated
with each constraint is indicated offset by >> <<.

failed: {message@callto:write:2; pc1} <= {Public}
1: {message@callto:write:2} == {currentLine; pc22}
2: {readLine:value_returned; pc18} <= {currentLine}
3: {readLine:value_returned} ==_{def} {L_var@1782}
{L_var@1782} == {Secret}

failed: {message@callto:write:2; pc1} <= {}
failure site: out.println(message); [line 22]

1: >>this.write(currentLine)<<;
2: String currentLine = >>fileIn.readLine()<<;
3: BufferedReader fileIn = >>user.getReader(msgNum)<<;

why:
{L_var@BufferedReader} == {Secret: }

Figure 7: The error set for second error from the
code in Figure 1.

is a label variable. Variables beginning with pc represent
the program counter at a specific program point: these are
discussed more in Section 5.3. Definitional constraints, spec-
ified by contraints of the form v =def l, are syntactic sugar
for a constraint l ≤ v, where v first appears in this con-
straint.

For both figures, the failed constraint is the same: how-
ever, the reason is different. Our tool first returned the
error set associated with Figure 6, indicating the implicit
flow from whether a specific user’s message was deleted.
When we inserted a declassifier to allow this information
flow, our analysis returned the error set associated with
Figure 6, showing the explicit flow from the BufferedReader

that operated on the message from the user. The variable
L_var@BufferedReader is the variable representing the secu-
rity of the BufferedReader returned by the getReader method.

By looking at each line of the error trace along with the
error set, we can see the exact cause of the two reported
information flow errors. For the first trace, the write out
constraint fails because of an implicit flow from observing
the return of the method getMessage, a method invocation
performed on a Secret data structure. This implicit flow af-
fects the value returned by isDeleted, which affects whether
or not the write method is called. The second trace is
caused by an explicit flow: the data written out is equal
to currentLine, which is retrived from data stored in the in-
stance of BufferedReader (L_var@1782); this is explicitly set
equal to Secret by the annotation on line 1.

5. BLAME IN PROGRAM CODE
The Rehof-Mogensen solver together with the dependency

graph can give explanations for why constraints failed, inde-



pendent of determining errors in Java code. We first show
the type of error traces that our tool returns from Java code,
and then detail modifications that we needed to make to the
Jif constraint generator in order to effectively use our blame
algorithm to find security errors in Java code, as described
in Section 6.

5.1 Handling Jif Constraints
The information-flow constraints generated by the Jif en-

gine have a different form than Rehof-Mogensen constraints;
a constraint c need not be definite, and so the right-hand side
of its inequality may be a join of multiple labels [19]. The
current implementation of the Jif solver solves constraints of
this form through an implementation of the Rehof-Mogensen
solver that uses backtracking when it needs to satisfy con-
straints with more than one component on the right-hand
side. This backtracking is done only rarely: most of the
constraints that Jif generates are definite. Only one of our
code examples required backtracking; the analysis of the JES
Email Server attempted to perform backtracking on 21 of its
constraints (out of a total of 9539 constraints). None of the
other examples required backtracking.

The key property of the Rehof-Mogensen solver that we
use in our definitions of the blame dependency graph is its
monotonicity: if a variable α is assigned to label L, then α
will not later be assigned to a label L′ such that L 6≤ L′.
While the Jif compiler uses an implementation of an ex-
tended version of the Rehof-Mogensen solver, it is still mono-
tonic; we can therefore use the blame dependency graph to
find errors using the Jif solver. The only modification to the
method described in Section 4 is that, when the Jif solver
performs a backtracking step, a separate copy of the blame
dependency graph is given to each recursive call to the back-
tracker. In the event that a backtracking call cannot satisfy
a constraint without causing another constraint to fail, these
copies can be used to provide an error explanation. Our ex-
perience has been that backtracking is performed very rarely,
and so the overhead associated with this step will be mini-
mal.

5.2 Interprocedural Label Checking
To focus on resolving security conflicts in Java code with-

out annotating every formal argument and side effect bound
to each method, we modified the Jif compiler to perform in-
terprocedural label checking. Procedures whose arguments
are tagged with security labels are checked normally. Oth-
erwise, the constraints for a procedure are inferred using
method summaries, a standard technique in static analy-
sis [25]. During label checking, we assign each procedure
a list of constraints that must be satisfied by the argu-
ments to the procedure for the code to be information-
flow secure. Unlabeled methods are assigned summary vari-
ables, which represent security labels that are not known. If
a procedure p has summary variables v1, . . . , vk and sum-
mary constraints Cp, then the call of p with actual la-
bel arguments a1, . . . , ak generates the summary constraints
Cp[a1/v1, . . . , ak/vk], where a1/v1 represents the substitu-
tion of a1 for all instances of v1. We can only label-check
a procedure if its constraints have no unbound summary
variables.

Because procedures may be recursive or mutually recur-
sive, we generate summary constraints for each strongly-
connected component of a program’s call-graph. Summary

constraints for recursive procedures are generated by taking
the fixed point of each strongly-connected component. This
fixed point will always exist because the number of recursive
calls within a strongly-connected component is finite and the
join operator is idempotent.

In our experiments, we found that a context-insensitive
interprocedural approach worked well on a variety of Java
programs. Our analysis reported several false positives aris-
ing from context-insensitivity in cases where a program vari-
able was treated as having two different security levels. For
example, if a method is used to return both high-security
and low-security values, our tool will report an error. We
found only a few false positives when examining the program
code: we found 2 false positives in JES, 8 in tinySQL, and
none in the other three applications that we evaluated.

When we detected a false positive that occurred because
of the context insensitivity of our analysis, we were able
to resolve it by adding a label parameter, a feature of the
underlying Jif language, to the enclosing class. A label pa-
rameter allows for variables in a class to be given a label
based on an immutable label assigned to the enclosing in-
stance of the class; this allows the class to be treated in
a context-sensitive fashion. For example, the Java Card
Purse (described in Section 6) used a special utility Decimal

class to perform arithmetic operations. Some instances of
Decimal contained Tainted information (low-integrity), while
some contained Untainted information (high-integrity)4. We
parameterized Decimal with a label parameter, changing
the definition to Decimal[label L], and then annotated each
field of Decimal as having security level L. We then anno-
tated instances of Decimal that contained Untainted data as
Decimal[{Untainted}]. Our analysis then automatically in-
ferred the labels required for every other instance of Decimal.
To aid programmers in the process of annotating programs,
we are investigating ways to automatically determine which
classes and methods may cause context-insensitive false pos-
itives.

5.3 Program Counter Variables
The dependency graph can trace the interactions between

variables to explain why a label constraint of the form τ ≤ L
failed, assuming that such a constraint is satisfiable in the
first place. However, under the standard implementation
of the program counter, illegal implicit flows can generate
unsatisfiable constraints that cannot be explained using the
dependency graph.

For example, if the program counter is {Bob} before an
assignment to an {Alice} variable (where Alice and Bob rep-
resent incomparable security levels), then the assignment
statement will cause the constraint {Bob} tβdata ≤ {Alice}
to be generated; here βdata is a label variable for expression
on the right hand side of an assignment statement. This
constraint cannot be satisfied as {Bob} and {Alice} security
levels are incomparable, and so the value of βdata is irrel-
evant. Without a technique to explain why the program
counter was set to {Bob}, we cannot explain error in a satis-
factory way.

To better explain implicit flows with the dependency
graph, we introduce temporary variables indicating when
the label associated with the program counter has changed,

4
Tainted and Untainted form an integrity-dual lattice to the

traditional Secret and Public lattice: Untainted information
can flow to Tainted, but not vice versa.



Application LOC
Constraint Set

Size Time (s)

Java Card Wallet 296 237 0.60
Mental Poker 1499 6021 5.12
JES Email Server 2595 9539 6.99
Java Card Purse 5581 20924 36.63
tinySQL 8240 23518 102.71

Table 1: A table summarizing the runtime behavior
of our analysis. Column 1 contains the name of the
application. Column 2 contains the size of the ap-
plication in source-lines-of-code, (the lines of code
without whitespace). Column 3 contains the total
number of constraints generated by the program,
while Column 4 contains the time for constraint gen-
eration.

called program counter variables. These variables are a layer
of indirection that allow the dependency graph to trace er-
rors across program counter changes. Whenever the pro-
gram counter is changed from pc to L, a fresh variable αpc is
introduced, a definitional equality constraint αpc == pctL
is created, and the program counter is set to αpc. If a
constraint generated by code checked under this program
counter fails because αpc is raised too high, there is then a
clear path back to where the program counter was set.

This process is similar to converting a program to SSA
form [7]. We found that using program counter variables
greatly improved our error explanations at the cost of in-
creasing their length.

6. EVALUATION
We evaluated our blame algorithm on several codebases,

and show that it aids in the process of finding and resolving
errors in Java programs. We compared the source-to-sink
error traces returned from our tool to a backwards slice from
that sink (comparing with previous work using slicing to
discover witnesses for information flow [13]). We used the
WALA libraries for program analysis [1] to create program
slices. Our experiments demonstrate the following:

• Each of the error sets returned contained a reasonable
target site to resolve the illegal information flow.

• The errors returned by our information-flow blame
framework were much smaller than backwards slices
on the violating sink, corresponding to past use of pro-
gram slicing for information flow [13].

Our analysis ran on an Intel Core 2 Duo running at 2.20
GHz with 2 GB of memory. Though we ran our tool on
a multiprocessor system, our analysis is presently single-
threaded. Statistics about the total number of generated
constraints and the running time of our analysis are given
in Table 1.

The goal of our experiments was to demonstrate that the
error sets returned by our tool contained an expression that
caused the error (completeness) and were small enough that
we could easily find this expression. A complete catalogue
of the source-to-sink violations found along with candidate
resolutions is available at our website http://www.cse.psu.

edu/~dhking/jlift/.

6.1 Java Card Wallet
The Java Card Wallet is a small example designed to

teach Java programmers how to program in Java Card 5.
It represents a Java Card program that contains a balance
that can be credited, debited, or retrieved. To protect the
card from unauthorized tampering, the application stores
the wallet’s PIN in a member field OwnerPIN pin. We la-
beled field OwnerPIN pin as having secret data and labeled
the APDU, a Java Card data structure representing input and
output, as having public data. We also labeled the security
data revealed by termination of the main process method as
Public.

We found eight total information flows from source to sink,
six of which had the same underlying cause. We found three
violations: the APDU would be written to only if the PIN
was validated (two instances), and failing to verify the PIN
would throw an exception that was visible to the user. These
errors were resolved by adding declassifiers around the calls
to checking and verifying the PIN of the Wallet. In many of
our other experiments, we often found that one declassifier
would resolve multiple errors.

The backwards slices computed by Wallet were particu-
larly small. The Wallet source code represents a best-case
scenario for backwards slices: there were only three paths
through the program, and each represented an information-
flow violation.

6.2 Mental Poker
Mental Poker was one of the original implementations of a

non-trivial application in a security-typed language [2]. We
ran our analysis tool on a prototype Java implementation
provided by the authors. Most classes in the implementa-
tion were designed to store either Secret data or Public data,
making manual annotation of the field data in the classes
simple. We found 8 separate resolution points in the pro-
gram, each corresponding with a cryptographic operation
associated with the Mental Poker cryptographic protocol.

6.3 Java Card Purse
The PACAP Purse is a prototype designed to secure in-

formation flow in Java Card applications [4]. We added in-
tegrity labels to its source code: input from the user was
marked as Tainted, while state kept in the Purse was marked
as Untainted. Our analysis tool returned 110 errors, as each
member of the Purse class was marked as being an Untainted

container, meaning that each code location that modified a
field of Purse was treated as a separate sink. However, we
found that all of the errors could be resolved by adding six
declassifiers at places in the code that corresponded to an
existing card verification mechanism. These resolution sites
were either a call to verify a PIN or a call to an access con-
trol table with one of five different arguments, corresponding
to the operation that was about to be performed (initialize
debit, initialize credit, initialize exchange, initialize PIN ver-
ification, or initialize administrative mode).

6.4 JES Email Server
As described in Section 2, JES is an open-source Java

email server with full POP3 and SMTP functionality. Its
functionality is a superset of JPMail [15], an information-
flow secure email server that was manually developed in Jif.
To determine how the data stored by the JES server inter-
acted with the user’s inputs and outputs, we labeled user
data as Secret (confidential and high integrity) and labeled

5http://developers.sun.com/mobility/javacard/
articles/intro/



the input and output sockets as containing Tainted (public
and low integrity) data. Tainted data should not be allowed
to influence the user configuration file without being sani-
tized, and Secret data should not be released outside the
system without being declassified. The security lattice for
this example had three labels: Tainted and Secret (two in-
comparable levels) and Public (a level below both Tainted

and Secret).
We found that five distinct program points created errors

in JES, and that these error sites were exclusively either in-
tegrity violations or confidentiality violations; no site caused
both kinds of violations. In total, we found that we needed
to insert 66 (51 confidentiality violations, 15 integrity vio-
lations) different resolutions to remove the information-flow
errors in the mailbox. Most of the confidentiality violations
corresponded to expected behavior of the mail server. For
example, the POP implementation of the mail server sent
information about the size of a user’s mailbox in response
to a STAT command. With respect to integrity violations,
we found that the application already contained functions
to parse and sanitize input; once these were marked appro-
priately, there were only a few other points in the program
that caused an integrity violation. The process of manually
inserting these fixes took a few hours.

6.5 tinySQL
tinySQL is a minimal implementation of an SQL client

and server on DBF and text files6. We marked System.out

as a Public output stream and marked the contents of a
SQL table as Secret. We found that we needed to manually
resolve 30 separate information-flow violations. The major
difference between tinySQL and JES was that tinySQL did
not separate logging output from normal system output: a
debugging flag being enabled caused secret data to be sent
to the screen, which we had labeled as Public. Using an au-
tomatic find/replace, we changed over 60 calls to System.out

behind debugging conditionals to calls to a logger, and then
manually resolved the remainder. We found that the er-
rors corresponded to expected system behavior, with the
exception of several unnecessary System.out calls in the code
revealing data about unnecessary table structure during a
query.

6.6 Comparison to Program Slicing
Using slicing to explain information-flow errors has not

been well investigated. Previous work by Hammer et al. [13]
uses program slicing in order to avoid false positives com-
mon to many type-based analyses from such sources as flow
and object insensitivity. Hammer et al. determine violating
program paths by taking, for each sink at a label L, the set
of all sources in the backwards slice of that sink that would
cause a violation by flowing to L. To gain greater precision,
they use path conditions [24] to precisely specify the condi-
tions under which such a leakage occur. However, they do
not specify how long path conditions generated by a real
program take to solve, and do not provide small witnesses,
beyond augmenting a backwards slice with path conditions.
The Wallet and Purse Java Card applications that we use
were also used by Hammer et al. in their work. The prin-
cipal difference between our experimental results is that the
Jif program analysis is relative imprecise, while Hammer et
al. build flow-sensitive and object-sensitive program depen-
dence graphs for greater precision.

6http://www.jepstone.net/tinySQL/

Both slicing and type-based analyses (such as those in
security-typed language compilers) can be used to find
information-flow errors. The principal advantage of our
framework is that it provides complete and minimal expla-
nations of information-flow errors. Another benefit of the
approach in this paper is that it requires few modifications
to the Rehof-Mogensen solver, meaning that it can be eas-
ily integrated with existing verification engines that use the
same constraint solver. We believe that slicing technology
could be adapted to provide similar explanations.

6.7 Discussion
Table 2 compares the average size of a context insensi-

tive backwards slice (computed using the WALA program
analysis libraries), meant to simulate the behavior of past
slicing work without path conditions, to the average size of
an error trace returned by our system. The statistics given
for error set size are the statistics that our tool gave during
an inital run of our program, rather than during subsequent
runs after fixes were applied. The largest error set sizes en-
countered during the error resolution process were: Wallet:
13, Purse: 18, JES: 57, Mental Poker: 14, tinySQL: 35.

In most cases there was a high degree of overlap between
most error traces, meaning that often the whole error trace
did not need to be inspected due to familiarity with past
error traces. A common situation was that each error for
a Public sink included a different reason (often within the
same Java class) for Secret information tainting that sink,
and then a common path back to a Secret sink. This cor-
responds with the expected use of program slices in prac-
tice [23].

Due to our recursive approach of blaming the first mod-
ification that caused a constraint to become unsatisfiable,
our tool only reports one error for each constraint associ-
ated with a sink. Once that error is resolved, it may report
another error for that sink, meaning that there was a dif-
ferent program path that caused a violation. Sometimes
a resolution inserted to fix one error fixed many others;
this corresponded to the situation where many sinks were
hidden behind a common authorization hook, such as en-
cryption (Mental Poker) or PIN/password verification (Java
Card Purse). To free programmers from having to manually
evaluate each error trace, we are working on a system for
automatically suggesting candidate fixes.

6.8 Limitations
Our source code analysis has a few limitations; most are

common to all static analysis techniques. We must have the
source code to analyze a program. In particular, to analyze
calls to a library, we must either have the source code for the
library or make a simplifying assumption about the security
behavior of a library. The Jif language handles library calls
by relying on class signatures, which give an explicit security
labeling for each call to an external method (these can be
thought of as a security annotation on header files). To au-
tomatically assign a conservative security policy to external
library calls, we developed a tool for automatically generat-
ing Jif class signatures from Java source7. By default, exter-
nal libraries are treated as containing security data at some
immutable level L: all data that enters and leaves the library
must be of security level L. This conservative labeling pre-
vents programs from laundering data through mutable data

7http://www.cse.psu.edu/~dhking/siggen.



Application
# Failed

Constraints
# Fixes
Required

Avg. Size of
Error Set

(# constraints)

Avg. Size of
Error Set
(# lines)

Avg. Backwards
Slice Size

(# bytecode instructions)
Java Card Wallet 8 3 10 9.88 31
Mental Poker 65 8 9.86 6.91 397.69
JES Email Server 5 66 19 13.40 356.20
Java Card Purse 110 6 16.36 15.49 1416.93
tinySQL 120 30 28.61 19.37 312.56

Table 2: A table containing information about how our error traces compare to other tools for determining
information-flow errors. Column 1 contains the number of failed constraints in each program (the number
that would be reported by Jif). Column 2 contains the number of resolutions, specific to each application,
required for an application to be information-flow secure (performed by hand based on our analysis). Column
3 and 4 contains the average size of an error set returned by our tool on the initial run over each program,
first in the number of constraints and second in the number of lines of program code. Column 5 contains the
average size of a backwards program slice as computed by the WALA library.

structures in libraries. However, these files may still require
manual annotation for libraries with system-specific security
behavior (for example, all Sockets in an application might be
treated as outputting public data). The number and size of
the automatically generated signature files scales with the
size of application being analyzed. The Wallet Java Card
signature files consisted of 150 lines of code (disregarding
comments), while the tinySQL signature files required 712
lines of code.

At present, our analysis framework does not handle
dataflows as caused by threads or reflection. For the ap-
plications that we analyzed that used threads (most no-
tably the JES email server), we replaced calls of the form
new Thread(ThreadClass.class).run() with explicit calls to
new ThreadClass().run(): for the purposes of our label anal-
ysis, these two calls have identical security behavior. The
applications that we surveyed used Java’s reflection capac-
ities in a very limited way; the most common method was
using the Apache logger log4j, which is initialized with a
java.lang.Class object.

7. RELATED WORK
In this section, we describe some related work in more

depth.

7.1 Determining Error Causes
There is a large amount of work towards explaining the

cause of type inference errors in ML-like languages. Our
work follows a common theme of adding information to
the compiler in order to produce more helpful error mes-
sages [28]. The major difference between error messages in
ML and our work is that a type error in ML may have a syn-
tactic fix, while resolving an information-flow error requires
a semantic fix.

Efficient generation of counterexamples and finding the
root cause of a counterexample has also been studied by the
model checking community. Explaining counterexamples by
keeping auxiliary information during fixed-point computa-
tions has been investigated in model checking [11]. Finding
root-causes of counterexample traces has been used in soft-
ware verification for abstraction refinement [3].

7.2 Explaining Information-Flow Errors
Hammer et al. [13] view detecting illegal information flow

as a path traversal problem in the program dependency
graph. Errors detected using this method will have clear
error messages by observing the path from high informa-
tion to low information. However, their analysis takes much

longer to complete (up to 40 times longer when computing
context-sensitive slices) because of a need to compute path-
sensitive conditions for conditionals, while their computed
relevant slices are much larger.

Deng and Smith have presented a method for security
error explanations in a simple language featuring while

loops and arrays [8]. Instead of generating constraints for
information-flows, they use a customized solver algorithm
that records the histories of which variables influenced the
modification of another variable. When a program fails to
type, the history of all of the variables that were involved in
determining the type of the broken expression is recursively
reported. While this gives good error messages in practice,
such explanations may not be minimal. Additionally, as
their approach is language-specific, providing error reports
for different languages will require expanding and modifying
their solver algorithm.

7.3 Type Qualifiers
Our tool has a similar goal to that of CQual, a tool that

refines the C type system with qualifiers on types [12], allow-
ing programmers to find inconsistencies between program
points. CQual has been used to find bugs in the Linux ker-
nel [17, 30]. A user of CQual annotates code with additional
annotations, such as kernel_ptr or user_ptr, and applies a
constraint-based analysis to the source code to determine
inconsistencies between the annotations, where, for exam-
ple, a kernel pointer is inadvertently passed to user code.
However, CQual does not handle implicit flows and so can
only be used to find explicit information flows; extending
CQual to handle implicit flows may be difficult given that
type qualifiers are a property of a value, rather than the
program counter. In the event of an error, CQual can pro-
vide information as to the cause of a type error, which are
similar to our error traces. Johnson and Wagner [17] pro-
vide heuristics for sorting and pruning error traces before
displaying them to the user: we believe our error reporting
system could benefit from this technique.

8. CONCLUSION
In this paper, we presented a blame model for finding the

cause of information-flow errors in program code. The model
extends the Jif compiler by adding an explanation procedure
that returns a complete and minimal error set for a failing
constraint. The explanation procedure uses a blame depen-
dency graph that tracks relationships between constraints
during the run of a solver. This is a general utility for ex-
plaining errors generated by the Rehof-Mogensen solver and



can be extended to explain errors in other security-typed
languages that also use a similar constraint solver.
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