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Abstract

IoT systems are revolutionizing our life by providing ubiquitous computing,

inter-connectivity, and automated control. However, the increasing system com-

plexity poses huge challenges for security as IoT devices are distributed, highly

heterogeneous, and can directly interact with the physical environment. In

IoT systems, bugs in device firmware, defects in network protocols, and design

flaws in automation rules can lead to system breach or failure. The challenge

gets even more escalated as the possible attacks may be chained together in a

long sequence across multiple layers, rendering the existing vulnerability anal-

ysis frameworks inapplicable. In this paper, we present ForeSee, a model

checking-based framework to comprehensively evaluate IoT system security. It

builds a multi-layer IoT hypothesis graph by simultaneously modeling all of the

essential components in IoT systems, including the physical environment, de-

vices, communication protocols, and applications. The model checker can then

analyze the generated hypothesis graph to validate system security properties

or generate attack paths if there are any violations. An optimization algorithm

is further introduced to reduce the computational complexity of our analysis.

Our framework verifies hypothesis graphs with millions of nodes in less than

100 seconds. The illustrative case studies show that our framework can detect

more potential threats than the existing approaches.
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1. Introduction

Nowadays, Internet of Things (IoT) systems are deployed in a wide range of

applications: smart home, industrial manufacturing, healthcare, transportation,

and in many other sectors [1]. There are already 20 billion IoT devices connected

to the internet, and the number is expected to rise to 75 billion by the year5

2025 [2]. Rapid growth of IoT market has evolved IoT technologies. Various

communication protocols, applications, and platforms are designed for diverse

application scenarios. Popular IoT platforms, such as Samsung SmartThings

[3], Google Nest [4], and IFTTT [5], etc., attract more and more developers

to develop numerous applications to automate our life. For example, there are10

more than 5,000 active developers and 75 million Applets since the launch of

IFTTT platform [6].

With the wide deployment of IoT systems comes an increasing number of

IoT attacks. Existing IoT security research focuses on subsets of all of the

core components in IoT [7, 8, 9, 10]. However, the heterogeneity and interac-15

tion between different IoT components require a cross-layer framework which

considers IoT system in a holistic view. For example, researchers at Pen Test

Parterners have found that attackers can exploit communication protocol vul-

nerabilities to change the physical state of an IoT system, such as unlocking the

doorlock [11] and increasing the temperature of a hair straightener [12]. Making20

the matters worse, the physical state change can be sensed by sensors, further

triggering other actuator behavior. Even though recent IoT security analysis

frameworks [13, 14] claim to be cross-layer, they still focus on a subset of IoT

system components, such as communication protocol stack, failing to consider

other essential components such as users’ behavior, physical environment, and25

IoT applications. However, an increasing number of IoT attacks and threats

[15, 16, 17] shows that cyber attack can lead to physical breach, and vice versa.

To solve these challenges, we present ForeSee, a cross-layer security analy-

sis framework, to treat IoT system security from a holistic perspective. We first
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decouple and model an IoT system as a multi-layer graph, including physical en-30

vironment layer, device layer, communication layer and application layer. The

multi-layer graph models both intra-layer and inter-layer interaction between

different components. Furthermore, ForeSee decomposes real-world IoT at-

tacks into individual exploits and integrates them into the multi-layer graph,

generating attack traces to show how they interact with system components.35

The benefits of our approach are threefold. First, by considering all of the

core components simultaneously, we can discover more vulnerabilities than ex-

isting frameworks do. For example, suppose an incompetent user is surfing the

internet at home, and the indoor camera is running a vulnerable network ser-

vice. If the user clicks the phishing site created by the attacker, the camera will40

be exploited. The attacker can use the compromised camera to further spoof

a “intruder detected” event to trigger the alarm or other unwanted device be-

havior. Existing works fail to model user state or behavior and thus will not be

able to detect such an attack path.

Second, we identify and model various device interactions. For instance, if45

an air conditioner is plugged into a smart outlet and the outlet has a denial-of-

service (DoS) vulnerability, then the attacker can disable the air conditioner by

launching a DoS attack on the outlet. As a result, the AC will also be off, failing

to cool the room. This may even trigger other potential actions such as opening

the window, etc. Frameworks focusing solely on software applications cannot50

discover such vulnerabilities because they involve electrical dependence between

devices. Lastly, we can examine how seemingly unimportant vulnerabilities

escalate and cause disastrous results due to the interactive nature of the IoT

devices. This helps us better evaluate the vulnerabilities’ impact on system

security and prioritize the protection against them.55

We create a multi-layer graph by defining system states at different layers

using boolean variables and formulating state transitions within each layer and

between adjacent layers. After generating the multi-layer IoT system graph,

we explore all the existing and potential attacks and incorporate them into

the graph to form a final hypothesis graph. Then we apply model checking60
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technique to detect various vulnerabilities and attacks. To alleviate the size

explosion problem of the hypothesis graph, we design a state compression algo-

rithm to intelligently generate independent sub-graphs without compromising

the vulnerability detection ability.

In summary, we make the following contributions:65

• We formally represent IoT systems as multi-layer graphs to characterize

data flow and the interaction of different components.

• We design a risk assessment framework for IoT to capture potential attack

paths across multiple layers.

• We propose an optimization algorithm to reduce the state explosion prob-70

lem by constructing the hypothesis graph based only on the components

relevant to the correctness property specified.

• We investigate the effectiveness of our model using a case study which is

based on real-world IoT attacks.

• We evaluate the time and space complexity of our framework using the75

SPIN model checker [18], and the result shows that it only takes seconds

and around 100 MB memory to verify hypothesis graph with millions of

nodes when there is a violation of the specified correctness property.

2. Background

2.1. Threats to IoT Systems80

IoT systems connect physical world to the cyber space. Today’s typical IoT

systems have complex infrastructure including router(s), gateways (sometimes

called hubs, basestation, etc.), end devices, and a cloud backend. Usually there

is also a companion mobile app for remote control. The end devices can be

categorized as sensors and actuators to perceive and modify physical states of85

the system. However, numerous vulnerabilities have been found on IoT devices

[19, 16, 20, 17, 21, 22] and mobile apps [23, 24]. Another important feature of
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Table 1: Typical IoT attacks happening at different layers.

Attack Env Dev Com App

Mirai [7] X X

IoTMON [27] X X

Sniffing attack [10] [28] X

Rocking drones [19] X X

Soundcomber [29] X X

Vampire attack [30] X X

IoT is that users can install IoT applications for automatic control. These IoT

apps usually run in the cloud and use the trigger-action programming paradigm.

The trigger is some IoT event represented as device state change, for example,90

the thermostat senses an increase of environment temperature, or the door lock

is unlocked. The action represents some device behavior, such as turning on the

light or sounding the alarm. Even though IoT apps’ logic seems straightforward,

researchers have identified dozens of malicious IoT apps which may cause system

breach or other physical damage.95

In addition, there are some human users interacting with the IoT system.

For example, the user’s existence in a smart home will be sensed by a motion

sensor, and the user can take actions such as turning on the TV or opening the

window. However, existing works [25, 26] do not model the user’s real physical

state and only use sensors’ input as true user states. This may result in false100

negatives because the attacker can spoof sensor events [16]. Therefore, in order

to detect threats to users’ safety in IoT systems, we need to distinguish between

users’ true, physical state and sensors’ reported user state, and integrate both

into the model. Table 1 surveys typical attacks and layers at which they operate.

2.2. Model Checking105

Model checking is a formal verification technique used to automatically verify

whether a system satisfies the specified property by exhaustively searching all of

the reachable states of the system model [31]. Our project is based on explicit-
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state model checking, which represents a finite-state system as a state transition

graph, and uses temporal logic to specify properties to be verified. We choose110

explicit-state model checking because: (i) the state transition graph can be

easily extended to incorporate environment and user states which are essential

for IoT security analysis, (ii) temporal logic formulas are powerful for expressing

correctness properties, and (iii) the error trace returned by a model checker can

help us quickly identify the root cause of the problem.115

The state explosion problem has been the greatest challenge to model check-

ing, and due to the large number of devices and other attributes such as the

physical environment features, this issue is only getting more serious for IoT

systems. To mitigate this challenge, we design an algorithm to reduce the num-

ber of states in the system model without affecting the capability of the model120

checker for the given correctness property. Moreover, granularity is also impor-

tant when modeling the system. Some IoT features such as room temperature is

a continuous number, but to make the system state finite, we need to discretize

it or even make it boolean. There is a tradeoff between the number of potential

vulnerabilities we can detect and the time and memory usage.125

Due to its popularity and high efficiency, we choose SPIN model checker

[18] to verify our hypothesis graph. SPIN accepts PROMELA [32] as system

description language and linear temporal logic (LTL) formulas as correctness

properties to be verified.

3. Threat Model130

In this paper, we consider IoT system vulnerabilities (integrity violations)

caused by flawed or malicious apps, user’s behaviors, attacks, or their inter-

actions via common channels such as physical environment features or shared

devices. Due to the distributed and heterogeneous nature of the IoT systems,

such violations are difficult to predict. To analyze the attacks’ impact on system135

security, we first need to integrate them into the system transition graph. While

some real-world attacks to IoT systems happen at only one layer, many others

6



involve multiple steps at different layers. We follow [33] and name every single

step an atomic attack.

Furthermore, we consider both passive attacks and active attacks that hap-140

pen at all of the four layers of the IoT system. It is assumed that the attacker is

aware of the commercial IoT system architecture. Besides, the attacker knows

the communication between the gateway and the cloud; attacker also knows the

protocols used for inter-device communication as they are industry standards.

The attacker’s arsenal is all the vulnerabilities listed on Common Vulnerabili-145

ties and Exposures (CVE) [34] of all the devices installed and protocols used.

We assume that the remote cloud is trustworthy and do not attempt to model

attacks on the cloud.

4. System overview

Figure 1 depicts the structure of the framework. First of all, we gather all150

of the components of the target IoT system, including all the physical features

(Env), user states and behaviors (Usr), devices installed (Dev), communication

events (Com), and software applications installed (App). Then we construct

the multi-layer IoT system transition graph. Thereafter, we decompose real-

world IoT attacks into atomic attacks [33]. From the atomic attacks and the155

multi-layer system transition graph, we build the hypothesis graph and perform

vulnerability detection with respect to the specified correctness properties. Fi-

nally, if there is a violation of the specified property, an error trace is returned

to help us identify the cause. In Section 6, we present a state compression algo-

rithm that selects applications and user states relevant to the given correctness160

property. With the help of this approach, we can collect the relevant compo-

nents and atomic attacks and directly generate the subgraph of the hypothesis

graph for verification.

Before constructing the IoT hypothesis graph, we should determine the in-

put of the framework shown as gray boxes in Figure 1. For a given IoT system,165

App and Dev are already known. Then, we can determine Com and Env based
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Figure 1: System overview.

on App and Dev, since the communication events subscribed or issued by the

apps and the mapping between devices and physical features are known. The

Attacks are derived from the vulnerabilities, which are determined by searching

the Common Vulnerabilities and Exposures (CVE) [34] entries for each device170

and protocol of the system. Once we know the vulnerabilities, we can estab-

lish the set of potential attacks on the IoT system. Correctness properties are

system-specific. Soteria [35] proposed dozens of properties specific to smart

home applications and five general properties such as no conflicting control

commands or repeated commands in one code branch, etc. However, to the175

best of our knowledge, currently there is no work that automatically generates

correctness properties or comprehensively deals with user states and behaviors.

5. Multi-Layer State Transition Graph

5.1. Multi-Layer Graph Construction

The heterogeneous and dynamic nature of IoT systems brings huge chal-180

lenges for system security analysis. First of all, IoT systems directly interact
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Physical Environment layer

Device layer
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Figure 2: IoT hierarchy.

with the physical environment, and can potentially interact with an infinite num-

ber of user states and behavior. Second, devices may be added to or removed

from the IoT system frequently. Moreover, the framework should consider both

system security and user safety as they are an essential part for most of IoT sys-185

tems. To deal with the above challenges, we propose a novel formal framework

that abstracts a complicated IoT system into a clear, layered structure. Our

approach effectively decouples the processing logic of one layer from another

so that the vulnerabilities within one layer would not be mixed with others.

Moreover, multi-layer graph also enables us to detect violations which involve190

multiple layers, such as inconsistency between physical and device layer. Figure

2 gives an overview of the IoT hierarchy, which consists of four layers — physical

environment layer, device layer, communication layer, and application layer.

We abstract the internal behavior of each layer as a directed, unweighted

state transition graph L = (V,E). In the graph, the node v ∈ V represents a195

certain system state of the entire layer. A set of atomic propositions (AP) [31]

and their values constitute distinct system states. Each atomic proposition is

a boolean variable and describes the smallest unit of the system state that has
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the characteristic properties of an IoT element. By representing a system state

at one layer using a collection of atomic propositions, we make our multi-layer200

state transition graph amenable to model checking algorithms. Sensor measure-

ments of continuous values are discretized into boolean values and represented

by atomic propositions as well. For instance, an AP at the device layer describes

the value of one temperature sensor. The value of AP is True if the temperature

exceeds the threshold 80°F; otherwise, the value is False. We can use the set205

v = {bAP1
, ..., bAPi

, ..., bAPK
} to represent the nodes at a certain layer, where

K is the number of APs in a certain layer. The value of bAPi is either True

or False. For a layer that has K atomic propositions, there will be 2K nodes

at that layer, representing 2K system states. Then one edge e ∈ E describes

system state transition. The formal definition of multi-layer graph is as follows:210

Definition. (Multi-Layer IoT System Transition Graph) A multi-layer

IoT system transition graph is a tuple

G = (L(1), . . . , L(4),M),

where L(i) = (V (i), E(i)), i = 1, . . . , 4, denotes the system state transition

sub-graph at physical environment, device, communication or application layer.

M is the set of cross-layer edges which indicate the relationships between the

adjacent layers and is formally defined as:

M =
⋃

i∈{1,2,3}

(M (i,i+1) ∪M (i+1,i)),

where M (i,j) is the set of edges from layer i to layer j.

In the rest of this section, we give detailed definitions of system transition

for each layer, along with the node mappings (i.e., cross-layer edges).

Physical environment layer describes facts about physical surroundings

and the user states in the IoT system, such as room temperature, humidity, the215

user being asleep, etc. Here we put the user states in this layer because they also

describe the objective fact. The node v ∈ V (1) represents one specific state of
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the environment. The edges between nodes denote the system state transition,

which may be caused by environmental change or the user’s state change.

Suppose vi and vj are two nodes at physical environment layer. One atomic220

proposition APl at this layer describes the environmental temperature. If the

temperature is larger than threshold θ, the value of bAPl
is True, otherwise it

is False. If the value of APl in node vi is different from the one in node vj

while all of the other atomic propositions are of the same value, then there will

be an edge from vi to vj and an edge from vj to vi, implying environmental225

temperature change.

Let us re-consider the “user and TV” example mentioned in the Introduc-

tion section. That the user leaves home without turning off the TV can be

represented as an edge between a physical environment-layer node containing

env.user.watch TV and a device-layer node vs, where dev.TV.on, dev.presence.false230

and dev.door.closed hold true. Furthermore, the “open the door” voice from TV

causes the system state transition from vs (through communication layer and ap-

plication layer) to another device-layer node vt where dev.TV.on, dev.presence.false

and dev.door.open hold true. In vt, dev.presence.false and dev.door.open indi-

cate a violation which can be detected by our framework.235

Device layer focuses on IoT device status, which is determined by the vari-

able values in the embedded OS of the device. The set of atomic propositions

at this layer describes the measurements of environment features and actuator

configurations. Some devices can sense the environment, such as the pressure

sensor, while the other devices can be configured and operated directly by the240

user or controlled remotely by software applications, such as an air conditioner

or a light bulb. The node v ∈ V (2) conveys the status of all IoT devices, in

terms of atomic propositions and their values. Suppose an IoT device can de-

tect the window state “open or closed”, and the value of corresponding atomic

proposition APk reflects the window state. If two nodes vi and vj have distinct245

True and False values of atomic proposition APk, and the other atomic propo-

sitions in the two nodes have the same value, then there is an edge to connect

these two nodes, indicating a window state change event, such as “opening the
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window” or “closing the window”. If the IoT system functions normally, every

edge at application layer corresponds to an edge at device layer, because appli-250

cation commands are delivered to the devices and devices’ configuration change

are transmitted to the decision maker. The additional edges at device layer

indicate some device is compromised, and thus the device status is no longer

reported to the decision maker.

There exist cross-layer edges between physical environment layer and device255

layer, which reflect the route of state transmission. For instance, an edge from

physical environment layer to device layer reflects how devices perceive the

ground-truth physical state. The nodes vi ∈ V (1) and vj ∈ V (2) in the two

layers have edges if and only if for each atomic proposition APi ∈ vi, all of the

associated atomic propositions in vj have the same value as APi. There may260

be multiple edges connected to one node at physical environment layer, because

one environment feature can be measured by multiple devices. For example,

humidity can be measured by both thermostat and water leakage sensor. It

should be pointed out that environment measurement by IoT devices is not

necessarily equal to ground truth at physical environment layer, as devices could265

be malfunctioning or compromised.

Communication layer models the events transmitted between devices and

the decision makers. Since we consider the most common case in which decision

makers reside in the remote cloud which is proprietary and closed-source, we

do not model the communication between different decision makers. The events270

can be categorized into data transmitted from sensors to decision makers, and

commands from decision makers to executive devices. The set of the atomic

propositions in this layer indicates these events.

The change of information to be transmitted due to sensor measurement

is represented as edges in this layer. Suppose vi is a node where an atomic275

proposition humidity ≥ 80% holds true, and vj is a node where the atomic

proposition humidity < 80% holds true. Then the edge between vi and vj

represents the communication event of information change to be sent by the

humidity sensor, due to the humidity decrease.
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An upgoing edge from device layer to communication layer indicates that a280

sensor detects an environmental change and delivers the information to decision

makers via transmitting data packets, while a downgoing edge from communica-

tion layer to device layer implies a command is delivered to an actuator, causing

its configuration change. Due to communication protocol defects or attacks, the

communication event may be tampered, thus generating additional edges which285

lead to some system states that violate the correctness properties.

Application layer formalizes the state of decision makers, which is deter-

mined by the set of variable values of software proxies running on the decision

making infrastructure. These software proxies act as conduits for physical de-

vices. Hence, the set of atomic propositions in this layer characterizes decision290

maker’s knowledge about the IoT system.

Every node in this layer denotes one particular decision maker state, and

an edge represents decision maker state transition due to application rules, or

environmental change and actuator configuration change reflected in decision

maker’s states. Consider room temperature increase causes window open as an295

example. Suppose the atomic proposition app.win.closed holds true in vi, while

app.win.open hold true in vj . In particular, app.temp > 80°F holds true in both

vi and vj . Then the edge between the two nodes stands for the application rule

to open the window when room temperature is higher than 80°F.

The edge from communication to application layer signifies that the event300

packets sent by the sensor are faithfully delivered to the decision maker, trig-

gering the update of variable value in decision maker. Similarly, an edge from

application layer to communication layer indicates that the decision maker’ state

is updated due to the application rules, and it also generates command packets

to be sent to the actuator(s).305

Only verifying that a system does not satisfy the property is not sufficient;

we should also visit back to identify the root causes of attacks. In our frame-

work, the interconnection among the layers is explicitly captured by their node

mappings, which helps trace the influences from one layer to another and finally

identify the propagation path a venerability.310
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5.2. IoT App Description Analysis

Since IoT applications decide the functionality of an IoT system and they

are dependent on the users’ configuration, we need to design an approach to

automatically extract the app logic based on app description or the app source

code. Our method extracts apps’ semantic information from their descriptions315

using NLP techniques. A typical IoT app description is in trigger-action format

where the trigger is some IoT event and the action means some device behavior.

First of all, we use an NLP parser to construct the parse tree and split the

sentence into the conditional clause and the main clause by doing a breadth-first

search (BFS) on the parse tree to find the tree node with label SBAR, which is320

the root of the subtree for the conditional clause. Then the conditional clause

is obtained by concatenating the leaf nodes of this subtree. The main clause

is constructed by removing the conditional clause from the original description.

After that, we extract the noun and verb phrases from each clause using regular

expression chunker and match the noun and verb phrases with device name and325

device actions, respectively. The matching is based on Word2Vec embedding

[36]. Because the embedding is only for individual words, we split every phrase

into words and choose the highest word pair similarity as the match result.

As an example, the parse tree of an IoT app description is shown in Figure

3. The conditional and main clauses after splitting are “motion detected” and330

“turn on light for 10 minutes.” The regular expression patterns for chunking

is shown in Listing 1. The final extracted app logic can be represented as a

Python dictionary shown in Listing 2.

1 NP: {<DT >?<JJ >*<NN.*>+}

2 VP: {<VB.*><IN|RP >?}335

Listing 1: Regular expression patterns for chunking.

1 {‘conditional ’: ([‘motion sensor ’], [‘motion ’]), ‘main’: ([‘bulb’],

[‘on’])}

Listing 2: Internal representation of an IoT app logic.
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ROOT

S

SBAR , VP .

IN S , VB PRT NP .

If NP VP

NN VBN

motion detected

turn RP
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NP PP

NN

light

IN NP

CD NNS

10

for

minutes

Figure 3: The constituency parse tree of the app description “If motion detected, turn on

light for 10 minutes.”

Based on the extracted IoT app logic and IoT system configuration informa-

tion, we can get the state-transition graph for the application layer. Since the

mapping of atomic propositions from one layer to another are straightforward,340

we can decide the cross-layer edges and the set of atomic propositions to be

considered for the other three layers. Last, we need to decide the edges within

the device and physical layer. The physical environment change are consistent

in all of the IoT systems (For example, for all the IoT systems which consider

environment temperature, there is an edge labeled with temperature increase345

from the node which contains env.temperature.low to the one which contains

env.temperature.high) and thus can be pre-defined. The app logic will also be

used by the dynamic selection algorithm (explained in Section 6.4).

6. Hypothesis Graph

Due to the interactive nature of IoT components, attacks may trigger un-350

expected security issues. Thus, it is necessary to model the attacker’s behavior

and integrate it into the IoT system model to construct a novel, more realistic

state transition graph amenable to existing formal verification tools. We name
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our multi-layer IoT state transition graph with attacker behaviors as hypothesis

graph. The formal definition of hypothesis graph is given below.355

Definition. (IoT Hypothesis Graph) An IoT hypothesis graph is a multi-

layer graphG = (L(1), L(2), L(3), L(4),M), where L(l) = (V (l), E(l)), l ∈ {1, 2, 3, 4}

is state transition graph at layer l and M is the node mapping. Each node

v ∈ V (1) ∪ · · · ∪ V (4) denotes the system and the attacker’s state. Each edge

e ∈ E(1) ∪ · · · ∪E(4) ∪M denotes environmental change, user’s behavior, infor-360

mation flow, or attacker’s behavior.

Compared with the multi-layer IoT system transition graph, the hypothesis

graph contains extra atomic propositions for attacker’s states, which can appear

at all of the layers except the environment layer, and additional edges for at-

tacker’s behaviors, which are across the device and communication layer, across365

communication and application layer, or within the device layer or physical

environment layer.

6.1. Modeling Attacker Behavior

A real, complete attack may involve multiple atomic attacks. To model pas-

sive attacks (which do not change system configuration), we introduce atomic370

propositions associated with devices’ or events’ visibility to the attacker. To

model active attacks (which change the system configuration), we introduce

atomic propositions associated with the services running on a device and at-

tacker’s privilege on a device. We assume an attacker may have one of the

three privileges on a device: none, user, and root. To model attacks via the375

network, we add atomic propositions to represent malware or other packets

generated by the attacker such as username-password pair.

Here we use Mirai attack as an example and show how to decompose it

into atomic attacks and represent each atomic attack. In Mirai attack, the de-

vice’s infection mechanism can be decomposed into the following four steps —380

scanning the potential victim, brute-force login, malware dispatch, and mal-

ware execution. The first three steps happen at the communication layer, while
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Physical environment layer
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dev.dt.vis.false
dev.dt.prv.none
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dev.dt.mal.false

com.dt.probe
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dev.dt.ready.false
dev.dt.mal.false

com.dt.credential

dev.dt.vis.true
dev.dt.prv.user
dev.dt.ready.false
dev.dt.mal.false

dev.dt.vis.true
dev.dt.prv.user
dev.dt.ready.true
dev.dt.mal.false
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dev.dt.prv.user
dev.dt.ready.true
dev.dt.mal.true

com.dt.malware

vi1 vi2 vi3 vi4 vi5

vj1 vj2 vj3

…

…

…

Figure 4: The illustration of Mirai cross-layer attack.

the last one is at the device layer. Assuming the victim device is dt, Figure 4

illustrates the cross-layer attack. Node vi1∼vi5 are device-layer nodes represent-

ing system and attacker’s states before or after the atomic attack. vj1∼vj3 are385

communication-layer nodes representing probing packets, credential, or malware

image, respectively. For clarity, we only list AP s that are relevant to the Mirai

attack. The values of all the other AP s in vi1∼vi5 are the same.

Device scanning: In this step, the attacker sends TCP SYN probes to

pseudorandom IPv4 addresses on Telnet TCP ports. If the device dt responds,390

then the attacker knows the existence of dt, i.e., the device becomes visible to

the attacker. This is reflected as the AP value change from dev.dt.vis.false to

dev.dt.vis.true. The atomic attack is represented as two added edges (vi1 , vj1)

and (vj1 , vi2).

Brute-force login: The attacker attempts to log in to the device by trying395

10 different credentials. A successful login give the attacker user privilege,

which is reflected as AP value change in vi2 and vi3 . The attack behavior is

also represented as two added edges (vi2 , vj2) and (vj2 , vi3).

Malware dispatch: After logging in to the victim device, the attacker

checks the system environment, including OS version and CPU architecture,400

etc., and then download the malware binary image. Similar to the previous two

steps, we use two AP s to represent the system state before and after the attack.

More specifically, dev.dt.ready.false holds true in vi3 (meaning the device is
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not ready for the launch of the malware image), while dev.dt.ready.true holds

true in vi4 . Edge (vi3 , vj3) and (vj3 , vi4) model this atomic attack.405

Malware execution: This step is the loading and execution of malware

binary image. The AP dev.dt.mal.true in vi5 indicates the malware process is

running. The atomic attack is represented as the edge (vi4 , vi5). Once executed,

the malware performs a sequence of sabotage such as obfuscating its process

name, killing other processes, or privilege escalation, etc. All these malicious410

behaviors are represented as additional edges that follow node vi5 .

Many real-world IoT attacks can be decomposed as atomic attacks men-

tioned above. Our added atomic propositions make sure the correct sequence

of atomic attacks which should be followed by the attacker. For example, the

attacker should first sniff the existence of a device; only then can he launch the415

remote-to-user attack. To formally define an atomic attack, we need to identify

the system and attacker states before and after the attack. Then the attack

behavior is represented as the added edge between these two nodes.

6.2. Constructing Hypothesis Graph

As is shown in Section 6.1, for some attack, we need to introduce new atomic420

propositions (e.g., dev.dt.vis.false and dev.dt.prv.none, etc.) to represent the

attack. In this subsection, we define a basic operation named state expansion

to show how to accommodate the newly inserted atomic propositions. Then we

represent the attack behavior as edges and construct the final hypothesis graph.

State expansion. Suppose we are trying to insert an atomic proposition425

ap to a certain layer and the original graph of this layer has |V | nodes and |E|

edges. After state expansion, the new graph for this layer has
∣∣V ′
∣∣ nodes and∣∣E′

∣∣ edges. If ap is independent of all the existing atomic propositions, then

we have
∣∣V ′
∣∣ = 2 ×|V | and

∣∣E′
∣∣ = 2 ×|E|. Formally, when we try to insert an

atomic proposition ap to layer l, first duplicate the original graph of layer l (The430

cross-layer edges are also duplicated.), then make all of the nodes of one copy

have ap being True, while the other copy have ap being False.

After state expansion for all of the attacks which require additional atomic
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Hacked heater: start heating App logic: open window

Sniffing 
Sniffing 

Remote login

Figure 5: Example of smart home attack.

propositions, we can safely add edges to represent attack behaviors. The re-

sulting graph is an IoT hypothesis graph whose nodes depicts system states435

including the attacker’s state at certain layer and whose edges represent state

transition due to environmental change, user’s behavior, information flow, or

attacker’s behavior.

6.3. Vulnerability Detection

Our framework is built on top of model checking, which takes system graph440

and correctness properties as input, and outputs a counterexample if the system

does not satisfy a certain correctness property.

Specifying correctness property. Correctness properties for a system

can be classified as safety property (that something “bad” will never happen)

and liveness property (that something “good” will eventually happen), which445

are expressed as Linear Temporal Logic (LTL) formulas [31].

Model checking. Though there are many model checking algorithms, their

inputs all originate from Kripke structure [31]. Our multi-layer hypothesis graph

conforms to the definition of Kripke structure, and thus is applicable to existing

model checkers.450

6.4. State Space Compression

A major challenge of model checking is the state explosion problem. Though

introducing user and attack can make the system model more realistic, the num-

ber of nodes of the model gets 2k (k is the number of newly introduced atomic

propositions to represent user and attacker’s states) times bigger, thus worsening455
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the state explosion problem. Therefore, we propose a dynamic selection algo-

rithm that selects relevant applications and user states, given the correctness

property. Because the algorithm is executed before constructing the hypothesis

graph, it can be used regardless of the model checking algorithm chosen.

Our algorithm is based on the observation that every correctness property or

IoT application involves environment features and/or actuator configurations.

Moreover, each user state and associated behavior can also be seen as a virtual

application. Hence, formally any given application i can be represented as

App(i) = (E
(i)
in , A

(i)
in , E

(i)
out, A

(i)
out),

where E
(i)
in is the set of input environment features (including user states), A

(i)
in460

is the set of input actuator configuration, and E
(i)
out and A

(i)
out are the output

counterparts. For a virtual app of user state and behaviors, Ein is the set of the

current user state, Ain = ∅, Eout is the set of all of the possible next state from

current state, and Aout is the set of all the possible next actuator configuration

due to user’s behavior in current user state. Then we can determine whether465

any two given apps are related or not using the following rule: If one’s output

environment feature/actuator configuration is used by the other as input, or if

the two apps have common output environment feature/actuator configuration,

then they are related.

The algorithm is shown in Algorithm 1. Given the pool of applications and470

user data, along with the specified correctness property, the algorithm starts

from environment features and actuator configurations used by the property as

seeds, then iteratively marks applications (including virtual apps) until the set

of marked apps does not change. The subroutine is related(x, y) determines

whether app x and y are related by checking whether one’s output environment475

feature or actuator behavior is the other’s input. If one of the set intersection

is non-empty (meaning components interact with each other), there is a depen-

dency. In Line 3, it puts App(0) as the seed. After we put all the related apps
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into S, we can remove App(0) (Line 16).

Algorithm 1: Dynamic Selection Algorithm

Input: SApp = {App(1) . . . , App(n)}: the set of all the apps installed

and the virtual apps representing user states and behaviors.

p: the correctness property specified.

Output: S ⊆ SApp: the set of all the apps that should be considered

together for the specified correctness property.

1 Algorithm dynamic selection(SApp, p)

2 Construct the virtual app App(0) by determining the set

Ein, Eout, Ain, and Aout from the given correctness property p.

3 S = {App(0)}

/* Iteratively add related apps to S. */

4 old size = |S|

5 do

6 T = SApp\S

7 for x ∈ T do

8 for y ∈ S do

9 if is related(x, y) then

10 S = S ∪ {x}

11 end

12 end

13 end

14 new size = |S|

15 while new size 6= old size

16 S = S\{App(0)}

17 return S

1 Procedure is related(x, y)

/* Determine if app x and y are related. */

2 return x[Ein] ∩ y[Eout] 6= ∅ or x[Eout] ∩ y[Ein] 6= ∅ or

x[Eout] ∩ y[Eout] 6= ∅ or x[Ain] ∩ y[Aout] 6= ∅ or

x[Aout] ∩ y[Ain] 6= ∅or x[Aout] ∩ y[Aout] 6= ∅

480
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7. Case Study

We illustrate our framework’s wide applicability by designing hypothesis

graphs for two IoT systems: smart home and smart healthcare.

7.1. Smart Home

In this subsection, we present a proof-of-concept attack inspired by [7, 27,

10] and the corresponding IoT hypothesis graph. The attacks cross device,

communication, and application layer. The attacker’s goal is to break into a

smart house. The smart house is equipped with a heater and an automatic

window. Among the software applications installed, there is one particular app

— If the temperature is greater than the threshold, then turn on the heater. The

IoT setting and the attacker are illustrated in Figure 5. The safety properties

is expressed in LTL syntax as

G(dev.window.open→ ¬dev.user.state.u0).

Figure 6 shows the corresponding hypothesis graph for the scenario. For clar-485

ity, we only label each node with atomic propositions whose value get changed

from the preceding node. The final red node denotes the violation of the prop-

erty, i.e., the attacker’s goal is achieved, and the label for each edge shows the

cause of the state transition. Notice that there could be multiple paths connect-

ing the same starting and ending node and here we are only showing one path490

for illustration.

The atomic proposition in the bottom left initial state tells us that the

room temperature is less than the threshold. The increase of room tempera-

ture is sensed by the temperature sensor, and the sensor generates a wireless

event (represented by the communication layer node with the atomic proposi-495

tion c temp>80 ). This wireless event is sniffed by the attacker, whose sniffing

behavior is denoted as edge 1 . The decision maker receives the event and

updates the variable values in the software proxy. The App logic controls the

window to open by sending the window open command (denoted by the node la-

beled with c win open) to the window. This control signal is also sniffed by the500
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  Red nodes and edges: attack work flow

: initial state

: successful attack state

Atomic propositions: temperature > 80, heater on, window open, temperature >80 event sniff, open_window command sniff
App: If temperature is greater than 80, then open the window
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Temp inc

Temp dec

Map back
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Figure 6: The hypothesis graph for a smart home with attack trace.

attacker (labeled by 2 ), and thus cause the atomic proposition temp evnt snf

and open win cmd snf to hold true. Edge 3 ∼ 7 represent the brute-force lo-

gin, malware dispatch, and malware execution, as explained in Section 6.1. Edge

8 ∼ 14 denote the attacker’s exploitation of the system’s vulnerability to force

the window open.505

The model checking algorithm first determines that the node with a thick

red border is a state which violates the specified correctness property. Then it

traces back and marks all the preceding nodes until it reaches the initial node.

Since from the initial system state we can finally reach the violating state, the

hypothesis graph does not satisfy the specified correctness property, and the510

error trace is the red path in Figure 6.

7.2. Smart Healthcare

Our framework can be easily applied to other IoT scenarios, such as smart

healthcare, or smart factories. Here we show how to create IoT hypothesis

graphs for an automatic blood glucose control system, where the insulin pump
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Figure 7: The hypothesis graph for an automatic blood glucose control system. The red

shapes and lines illustrate the attack trace.

automatically injects insulin when the blood glucose gets higher the normal

range. The correctness property is represented as the following LTL formula

G(dev.pump.on→ dev.BGL.high).

The attacker’s goal is to make the pump inject insulin when the user’s glu-

cose level is within the normal range, which may cause severe medical issues.

Therefore, if we can validate the above correctness property, we will be able to515

decide whether the attacker can achieve his goal.

Different from smart home scenarios where the physical environment features

are physical quantities such as temperature, illuminance, smoke, etc., in smart

healthcare, the environment features are the patient’s biological features such as

blood glucose level, or blood oxygen saturation, etc. The devices are also medical520

sensors and actuators such as blood glucose sensor and insulin pump. The

communication and application layer are similar to those of the smart homes,
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representing communication events and decision maker states. The hypothesis

graph of the above smart healthcare example is shown in Figure 7.

To differentiate atomic propositions at different layers, we add prefixes ac-525

cording to the layers they belong to. The atomic propositions are prefixed with

e, d, c, a, from the lowest layer to the highest layer. Similar to Figure 6, to

reduce clutter, we label each node with only the atomic propositions which hold

true in that node.

The normal system transitions are represented in gray color, while the nodes530

and edges marked in red represent attack traces. Initially, the patient’s blood

glucose level (BGL) is within the normal range so the insulin pump is off. The

attacker launches attack by first spoofing a BGL high event (as denoted by edge

1 ). Then the spoofed packet is delivered to the decision maker ( 2 ), triggering

a command to turn on the pump ( 3 ). As a result, the pump is turned on535

even though the patient’s actual BGL is normal ( 4 , 5 ). Due to the initial

attack edge 1 , the resulting successful attack state can be reached from the

initial state. Hence, the model checker detects the violation to the specified

correctness property and returns the attack trace.

The above two examples show that since the four layers identified are essen-540

tial for different IoT systems, and IoT cyber attacks also have similar mecha-

nisms, our framework can be easily applied to different IoT scenarios.

8. Evaluation

8.1. Implementation

We implement ForeSee based on the Spin model checker [37]. Spin takes545

a system modeling language called Promela (Process Meta Language) [37] as

its input language, and accepts correctness properties specified as Linear Tem-

poral Logic (LTL) formulas. We use IoTSan to convert SmartApps to Promela

language, then modify the Promela code by inserting variables for physical en-

vironment, device, and communication layer, as well as atomic attacks. After550
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Figure 8: Number of states before and after compression and the compression ratio.

that, we perform verification by running the compiled program. If the sys-

tem does not satisfy the given correctness property, the verifier will return an

execution trace that caused the violation.

8.2. State Compression Ratio

To evaluate the effectiveness of our dynamic selection algorithm, we created 6555

smart home scenarios whose IoT apps are chosen from the Samsung SmartApps

[38]. On average, each scenario consists of 7.4 apps. We count the number of

states of the generated hypothesis graph before and after applying the dynamic

selection algorithm. Compression ratios are computed by dividing the number

of states of the hypothesis graph generated from the largest subsets of related560

apps by the one generated from the original app set. The results are shown in

Figure 8, where the state compression ratios are shown above the black dots in

the figure. We can see from the figure that the compression ratio ranges from

1.5% to 0.057%, and for the larger set of apps our algorithm tends to achieve

better ratio.565

8.3. Performance Analysis

For a given LTL property, we test the scalability of our framework under

two different settings: 1) when our system passes the verifier; 2) when there is a
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Figure 9: Impact of hypothesis graph size (measured by number of states) on verification time

and memory usage. 9 (a) and 9 (b) show the scenarios where the models pass the verifier; 9

(c) and 9 (d) show the scenarios where there are violations to the property.

violation of the property. The time and space complexity of hypothesis graphs

that pass the verifier are shown in Figure 9(a) and 9(b), while the ones of the570

hypothesis graph that fail to pass are shown in Figure 9(c) and 9(d). The x-axis

variable “# states” denotes the number of unique states of the hypothesis graph

traversed by Spin model checker. This is used as a measure of the size of the

hypothesis graph. The y-axis variable “Memory (MB)” in Figure 9 denotes the

sum of memory used to store all these states, hash table, depth-first search stack,575

and other overhead. Due to the server’s memory limit, the maximum number

of states we can run is around 1.4 × 106. Since Spin will immediately return

after detecting a violation (i.e., an acceptance cycle), the verification process
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takes much less time and space if there is a violation. The scalability of our

framework when there exists a violation is shown in Figure 9. From the figures,580

we can see the time and space cost scale linearly with the graph size, and it

takes much less time and memory when there is a violation of the property.

9. Related work

The research works on IoT security and privacy can be categorized by the

components they focus on.585

Device Layer. Costin et al. [39] conducted a static analysis of 32 thousand

embedded firmware images and discovered 38 previously unknown vulnerabili-

ties of embedded devices. Son et al. [19] presented real-world attacks to drones

by employing the resonant frequencies of Micro-Electro-Mechanical Systems gy-

roscopes. Ronen et al. [40] described an attack on Philips Hue smart lamps by590

exploiting a major bug in their implementation of the ZigBee protocol.

Communication Layer. Gu et al. [41] proposed a defense framework

against device spoofing attacks by fingerprinting and authenticating IoT de-

vices using features generated from Bluetooth low energy protocol stack. Jia

et al. [42] presented a graph-based mechanism to detect vulnerabilities in IoT595

communications by rating and sorting the correlated subgraphs extracted from

the directed graph generated from the traffic data. Li et al. [43] investigated the

side-channel information leakage of video surveillance cameras through stream-

ing traffic data analysis.

Application Layer. Ding et al. [27] presented a framework that discov-600

ers potential physical interactions across applications using natural language

processing (NLP) techniques and evaluated the risk score of each inter-app in-

teraction chain. Mohsin et al. [44] proposed a formal framework for IoT security

analysis based on satisfiability modulo theories (SMT). [35, 45] took advantage

of model checking to analyze application-level vulnerabilities in IoT systems.605

Mohsin et al. [46] presented a probabilistic model checking based framework to

analyze the risks quantitatively.
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10. Discussion

Our hypothesis graph uses model checking to detect IoT vulnerabilities. Re-

searchers have also proposed other graph-based approaches for network security610

analysis [47, 48, 49]. In this section, we compare these methods and discuss

benefits and limitations of our framework.

Cycles in the graph. Attack graphs created by [49, 47] utilize a key as-

sumption of monotonicity, meaning once the attacker has gained some privilege,

he will always have that privilege in the following attacks. However, this is not615

true for IoT systems because there could be some negative feedback loops due

to automatic control. For example, when the attacker compromises the heater

to increase room temperature, an IoT app will sense this physical event and au-

tomatically turn on the air conditioner to lower the temperature. Since attack

graphs based on monotonicity assumption cannot deal with cycles, they cannot620

model and detect such attacks. In comparison, we do not make this assump-

tion and our hypothesis graphs can uncover violations of correctness properties

involving cycles.

State explosion. All of the model checked-based analyses encounter the

state explosion issue. Even though our framework utilizes a dynamic selection625

algorithm, state explosion may still occur if the set of atomic propositions we

need to consider gets larger. This can happen due to new IoT apps installed

or devices enhanced with new capabilities, both of which introduce additional

device interaction, connecting previously independent app sets. To further mit-

igate this issue, we select the bit-state hashing option during the verification.630

Instead of using the original state vectors, this approximation technique [50] uses

the hash value of state vectors to index the state array, reducing memory usage

to 1 percent while achieving the approximation ratio close to 100 percent[18].

11. Conclusion

In this paper, we design and prototype ForeSee, a cross-layer vulnerability635

analysis framework for IoT systems. We propose a formal approach to construct
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the IoT hypothesis graph which includes all of the core components of IoT sys-

tems, including user states and behavior that are largely ignored in existing

works, and the potential attacks. We also present an approach to extract the

IoT application logic from app descriptions using NLP techniques, and show640

the experimental results. Besides, we design a state compression algorithm to

reduce the size of the generated hypothesis graph. The framework can detect

vulnerabilities and threats caused by any interaction between IoT core com-

ponents. Our evaluation shows that the prototype scales well and works for

hypothesis graphs with millions of nodes. The compression algorithm is able to645

reduce the number of states by three orders of magnitude.
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