
Assessing the Impact of Efficiently Protecting Ten Million
Stack Objects from Memory Errors Comprehensively

Kaiming Huang
Penn State University

kzh529@psu.edu

Jack Sampson
Penn State University

jms1257@psu.edu

Trent Jaeger
Penn State University

trj1@psu.edu

Abstract—Despite extensive research on defenses, exploitations
on stack memory errors remain a major concern. Previous
work has focused primarily on protecting code pointers (e.g.,
return addresses), but stack data may be compromised due
to spatial, type, and temporal memory errors. Recent work
on the DATAGUARD system proposes an efficient defense for
protecting a significant fraction of stack data from memory
errors comprehensively. In this paper, we present an evaluation
of DATAGUARD that encompasses several key aspects. Firstly, We
assess its applicability and scalability by deploying it on 1,245
packages in Ubuntu 20.04. Secondly, we examine DATAGUARD’s
effectiveness in identifying and protecting stack data on the
evaluation dataset - results show that DATAGUARD is able to
protect 12.5 million stack objects, which is around 86% of the
total stack objects in these packages. Thirdly, we examined the
security enhancements offered by DATAGUARD by evaluating the
fraction of protected control data, system calls, and function
parameters, as well as the mitigation of real-world CVE exploits.
Lastly, we compared the protection of DATAGUARD to CCured
and Safe Stack, which shows that DATAGUARD greatly increased
the number and fraction of safe stack objects on the analyzed
Linux packages. The overall evaluation of DATAGUARD demon-
strates the capability of achieving more comprehensive protection
with low cost from enforcing lightweight isolation, thus enabling
practical adoption to protect software against exploitations on
stack memory errors in production environments.

Index Terms—Computer security, Software Security, Program
Analysis, Memory Errors, Experimental Evaluation.

I. INTRODUCTION

Memory errors have been arguably the greatest cause of
vulnerabilities in software [1]. Programs written in languages
that are not memory safe, such as C and C++, may have
flaws that allow memory accesses that do not comply with
the semantics of the referent (i.e., object to which the pointer
was initially assigned), such as the size of its memory region,
its lifetime, and/or its data type. If adversaries can control such
illicit memory accesses, they can access unauthorized memory
regions, stale memory, and/or cause values to be misinterpreted
(e.g., use a data value as a pointer) to launch a variety of
exploits, such as buffer overflows, use-after-frees, and type
confusion. Recent surveys from Google and Microsoft indicate
that approximately 70% of flaws in production software occur
due to memory safety errors [2], [3].

Researchers have been aware of such flaws since the An-
derson report [4] and they have been exploited in-the-wild
since the Morris worm [5]. However, despite a tremendous
amount of research on defenses, very little program data is

currently protected from memory errors. Traditionally, only
return addresses stored on the stack are validated before
use [6], although recent hardware mechanisms [7] enforce a
shadow stack [8] and restrict the values of function point-
ers [9]. The remainder of program data, including all data
variables allocated on the stack, are left prone to exploitation
via memory errors, even if that data itself is only referenced
by memory-safe accesses.

Researchers have classified memory errors into three
classes: (1) spatial errors; (2) type errors; (3) temporal errors.
Despite research on defenses for these classes of memory
errors, defenses have not been adopted in practice to protect
stack data. In general, such defenses employ runtime checks
to enforce memory bounds [10], [11] (e.g., to limit accesses
to the referent’s memory region) or detect accesses outside
bounds [12], [13], [14], [15], validate use of expected types in
accessing memory regions [16], [17], [18], [15], and prevent
accesses to stale memory [19], [20], [21]. However, even after
removing unnecessary runtime checks [22], [23], overheads of
these techniques have been too high for adoption. Moreover,
these defenses do not prevent memory errors comprehensively,
and often only focus on one dimension.

How did we get to this situation? In the early 2000s, the
CCured system [24], [25], [26] found that approximately 90%
of pointers were not used in pointer arithmetic (i.e., must
be within memory bounds of the referent, spatially safe) and
approximately 99% of pointers were never used in type casts
(i.e., must only be interpreted as a single type, type safe).
As a result, one insight is that we only need to perform
runtime memory checks on a small fraction of pointers to
enforce spatial safety or type safety. However, the overheads
of the proposed defenses for spatial, type, and temporal safety
have been too high for adoption, indicating that these unsafe
pointers appear to be used in too many operations to enforce
memory safety efficiently over all pointers. As a result, stack
data is not protected from memory errors, even for the stack
data that can only be accessed by safe pointers.

This appears to be an instance of the aphorism that states,
“perfect is the enemy of good” [27]. Recent work has shown
that an alternative security goal can enforce the protection of
many stack objects from memory errors with low overhead.
The DataGuard system [28] shows that comprehensive memory
safety validation can be used to identify the memory objects
that must only be accessed in memory-safe operations and that

these objects can be protected by isolating them in a separate
memory region from objects that may be accessed unsafely.
DataGuard is designed to validate memory safety for stack
memory objects, isolating those validated to be safe using the
Safe Stack [29]. DataGuard introduces new safety validation
strategies to increase the number of objects that cannot be
accessed using an unsafe memory operation (i.e., assuming
the claimed soundness of alias analyses used), finding over
90% of stack objects are comprehensively memory safe. In
addition, DataGuard found that more stack objects could be
proven memory safe than for CCured [24], [25], [26] and Safe
Stack [29], even though the safety validation techniques used
in these systems are incomplete (i.e., some unsafe objects are
classified as safe). Finally, because such a high fraction of
stack objects could be proven safe, the overhead of the safe
stack defense was reduced from over 8% (for SafeStack) to
4.3% because of the reduced toggling between stacks.

In this paper, we evaluate our experience using the open-
source DataGuard system [30] to harden entire Linux distribu-
tions. Specifically, we apply DataGuard to the 1,623 packages
in the Ubuntu 20.04 distribution. The aim is to determine
the potential security and performance impact of applying
comprehensive memory safety validation to the stack objects
of an entire Linux distribution. First, we do not modify the
DataGuard system to assess its applicability for automated
hardening, finding that 1,245 packages that can be hardened
out of the box automatically and assessing the additional
features needed to automate the hardening of all packages.
Second, we apply DataGuard to compute the fraction of
comprehensively safe stack objects across all the packages to
which DataGuard applies. We find that 12.5M stack objects out
of a total of 14.6M stack objects can be validated as memory
safe comprehensively, enabling the protection of 85.4% of
stack objects in these packages without runtime checks. Third,
we analyze these programs to assess the security impact of
protecting these stack objects by collecting their subsequent
uses in a variety of security-sensitive operations in these
programs. For example, we compute that 413K out of a
total of 452K stack objects used in conditional statements
are safe from memory errors, which may impact control
flows. We also examine the fraction of safe stack objects that
are passed to a set of 13 unsafe system calls. Fourth, we
assess the performance impact of validating comprehensive
memory safety on protecting stack data. Past work found that
the performance overhead of the Safe Stack depends on the
number of functions in which all local variables are either
safe or unsafe. We find that 747K functions out of 1,153K
functions total have only safe local variables, which implies
that the overhead of the protection should be comparable to
the 4.3% measured in the DataGuard paper [28].

II. STACK MEMORY SAFETY BACKGROUND

There are three ways in which memory safety may be
violated in unsafe languages such as C and C++.

• Spatial Safety Errors: A memory operation may access
a location outside the memory region of the referent

to illicitly read (e.g., buffer over-read or disclosure) or
write (e.g., buffer overflow) an object other than the one
assigned as the referent.

• Type Safety Errors: A memory operation may access
a location using a different data type than that of the
referent (or referent’s field) assigned to pointer (e.g.,
enabling a data value to be referenced as a pointer).

• Temporal Safety Errors: A memory operation may use
a referent outside of the scope of its assignment, such
as prior to the referent’s assignment (e.g., use-before-
initialization) or after deallocation (e.g., use-after-free),
to access another object in that memory location.

Stack vulnerabilities of each class have been reported re-
cently (see examples in DataGuard paper [28]), including some
even more recent CVEs we identify in Section VI.

Preventing such errors has been a difficult challenge. Re-
searchers found that a large fraction of referents could never
violate spatial or type safety because they are not used in
pointer arithmetic or type casting operations, respectively [24],
[25], [26]. However, there still remained a significant number
of memory operations that may result in spatial and type safety
errors, and these works did not consider temporal safety errors.

Researchers proposed techniques to prevent or detect mem-
ory safety errors using runtime checks, but even optimized
runtime defenses are not yet practical for the scope of objects
protected. First, a variety of defenses have been proposed
for spatial safety errors [10], [11], [12], [15], [31], but even
after removing checks for objects that can be proven not to
exceed bounds [11], the runtime overhead remains significant.
Sanitizers are generally more efficient at detecting spatial
memory errors using invalid memory regions (i.e., red zones),
but these regions may be bypassed by attackers in some cases.
Second, researchers have also proposed techniques to prevent
type safety errors [16], [17], [32], [33], [18], [15], which can
be applied only when type casts may occur. Since type casts
are much less common than pointer arithmetic these defenses
have the better performance, but only address one dimension
of safety. Temporal safety defenses [19], [20], [21], [34]
often perform simple operations, such as zeroing pointers after
freeing them to avoid use-after-free exploits, but the number
of such operations still introduce significant overheads.

Alternatively, researchers have explored using memory iso-
lation to protect stack data from prevent memory errors. Mul-
tistacks have been proposed [35] to isolate stack objects with
different security requirements. The safe stack defense [29]
isolates stack objects that are referenced from the stack pointer
only (i.e., not used in address-taken operations) to protect code
pointers and return addresses. However, stack data objects are
largely left unprotected. With the emergence of data-oriented
attacks [36], [37], [38], there is an urgent need to protect stack
data, including data/code pointers, comprehensively.

III. COMPREHENSIVE MEMORY SAFETY VIA ISOLATION

DataGuard [28] was motivated by an observation made over
20 years ago in the CCured system [24], [25], [26] that a
preponderance of pointers in C programs never perform any

memory operations that could violate memory safety. First,
to cause a spatial error a pointer must be used in pointer
arithmetic operation, but approximately 90% of pointers are
never used in pointer arithmetic. Second, to cause a type
error, a pointer must be involved in a type cast operation, but
approximately 99% of pointers are never type cast. CCured
did not consider temporal safety, but one would expect that
assignments that would violate temporal safety for stack
pointers (e.g., assigning a stack pointer to the heap or returning
a stack pointer when its referent goes out of scope) should
be uncommon. Despite many stack pointers being safe from
memory errors, we still do not protect much stack data.

Motivated by the observations of the CCured system and
stack isolation defenses from multistacks [35], [29], Data-
Guard asks the following questions. What fraction of stack
objects are only aliased by pointers that must only perform
memory-safe operations? What are the security and perfor-
mance impacts of isolating those stack objects from accesses
that may violate memory safety on a separate safe stack? Ide-
ally, the goal is to maximize the number of stack objects that
can be validated as only having alias that performs memory-
safe operations for all classes of memory errors. By isolating
these objects from those whose memory accesses may violate
memory safety, e.g., using multistacks, the stack objects that
pass safety validation can be protected from memory errors
comprehensively. Since isolating stack objects does not require
runtime checks for memory accesses to the safe objects, the
performance overhead of their protection can be reduced.

To maximize the number of stack objects that can be proven
as having only aliases whose accesses are safe from memory
errors, DataGuard provides static memory safety validation
methods for spatial, type, and temporal safety for stack objects.
A challenge is that accurate static analysis can be complex and
expensive, so DataGuard performs this static analysis in three
steps for each memory error class.

First, DataGuard performs simple static analyses to identify
the pointers that may perform memory operations that may
violate memory safety (e.g., based on CCured [24], [26], [25]
and detecting which pointers may escape a single function),
and the objects whose aliases never perform such operations.
Promisingly, for the programs evaluated [28], 86% of stack
objects are only aliased by pointers that cannot violate spatial
memory safety and 88% of stack objects are only aliased by
pointers that cannot violate temporal memory safety.

Second, DataGuard performs sound1 static analyses to vali-
date spatial, type, and temporal safety. Specifically, DataGuard
employs value-range analysis [39] for spatial safety validation
and a liveness analysis [40] for temporal safety. DataGuard
only validates type safety for casts between integer types,
aiming to ensure that type casts cannot change integer values
for value-range analysis.

Third, DataGuard applies symbolic execution to validate
cases found unsafe in static analysis. In practice, overapproxi-

1DataGuard uses the definition of soundness common in the static analysis
community, where a sound analysis overapproximates the program’s possible
executions.

of Packages # of SLOC

Analyzed 1,245 (76.7%) 266,497,755 (77.8%)

Total 1,623 342,451,612

TABLE I: Statistics of Linux Packages

mation in static analysis yields false positives. However, since
stack objects have a limited lifetime, symbolic execution is
often capable of validating that objects cannot be accessed
unsafely by following the def-use chains.

The resulting stack objects found memory safe comprehen-
sively (91% in tested programs) are isolated using the Safe
Stack defense [29], where the safe stack is made inaccessible
from the regular stack via ASLR. Interestingly, since over
75% of functions tested had only safe stack objects, the
performance overhead of using the Safe Stack defense is
reduced greatly (i.e., from 11% to 4.3%) because there is less
togging between the safe and regular stacks.

IV. OUR INVESTIGATION GOALS

In this paper, we ask several questions about the potential se-
curity and performance impact of the DATAGUARD approach.

First, a question is whether the DataGuard approach is
broadly applicable to Linux systems. If the technique requires
manual effort or only applies for a small number of packages,
then its utility is limited. In this case, our goal is to evaluate the
entire set of packages of a Linux distribution, Ubuntu 20.04.

Second, a question is what fraction of stack objects can
be protected from memory errors automatically using the off-
the-shelf DataGuard system. The original paper found 91%
of stack objects could be protected in the tested program. We
wonder what fraction of stack objects can be protected for
packages in a Linux distribution and the total number of stack
objects protected in these programs.

Third, we assess the security impact by computing the uses
of the protected stack data to assess whether what fraction
of stack data may be used in security-sensitive operations
impacting control-flows (e.g., used in conditional tests) and
external resources (e.g., used as system call arguments).

Finally, we evaluate the potential overhead of the apply-
ing the DataGuard approach for each program. While it
is impractical to run all programs, we assess performance
overhead in terms of the fraction of functions with only safe
local variables and passed parameters. If all local variables
and passed parameters are safe, then only one (safe) stack
is needed for the function. As a result, the stack pointer
never needs to be changed (i.e., toggled) between the safe
and regular stacks for this function, which is the main cause
of performance overhead of the Safe Stack defense.

V. EXPERIMENTAL SETUP

Our experiments on DATAGUARD are conducted on Ubuntu
20.04 with Linux kernel version 5.8.0-44-generic on x86 64
architecture using LLVM 10.0, running on an Intel CPU i9-
9900K with 128 GB RAM. We used the original implemen-
tation of DATAGUARD that is open-sourced on Github [30],

0 0

39

267

515

374

50

164

245

418

282

114

22
00 0 0

25

271

582

367

0

50

100

150

200

250

300

350

400

450

500

550

600

650

30% - 40% 40% - 50% 50% - 60% 60% - 70% 70% - 80% 80% - 90% 90% - 100%

N
u
m

b
e
r

o
f

A
n
a
ly

ze
d
 P

a
c
k
a
g
e
s

Percentage Intervals of Safe Stack Objects

 CCured SafeStack DataGuard

Fig. 1: Distribution of Packages w.r.t. Fraction of Safe Stack Objects. The X-axis represents the interval of the fraction of safe stack objects that are
protected by corresponding approaches, 0%-30% is omitted since none of the 3 approaches protects less than 30% of any package. The Y-axis represents the
number of packages that falls into the corresponding fraction interval of safe stack objects.

Total DataGuard-Safe

Object 14,627,355 12,484,971 (85.4%)

Control Data 451,839 412,725 (91.3%)

Function 1,152,744 747,391 (64.8%)

Parameter 1,904,262 1,622,867 (85.2%)

TABLE II: Statistics of DATAGUARD Analysis on Linux Packages.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Percentage of Analyzed Linux Packages

C
u
m

u
la

ti
v
e
 P

e
rc

e
n
ta

g
e
 o

f
S

a
fe

 S
ta

c
k
 O

b
je

c
ts

Fig. 2: Cumulative Distribution of the Fraction of Protected Safe Stack
Objects for All Analyzed Linux Packages. The X-axis represents the
percentage of analyzed Linux packages (1,245 in total). The Y-axis represents
the percentage of safe stack objects found by DATAGUARD [28], CCured
implementation of Nescheck [41], and SafeStack [42]. The figure can be
understood as “(1 - X-axis)% of analyzed packages have at least Y-axis%
of safe stack objects,” as indicated by the corresponding three approaches.

including its prerequisite analyses such as PDG [43] and
SVF [44]. The list of pre-installed and commonly used pack-
ages of Ubuntu 20.04 is obtained from the official Ubuntu
Package list [45]. Our experiments utilized the uClibc library
as the C/C++ library since it is friendly to and originally used
by the DATAGUARD.

To compile the analyzed Linux packages into LLVM bitcode
for deploying DATAGUARD analyses and protection, we used
wllvm [46]. Wllvm is a tool that is commonly used for
building whole-program (or whole-library) LLVM bitcode
files from an unmodified C or C++ source package. For the

Linux Packages to be compatible with wllvm, they must use
a configuration file for the compilation process and accept
clang-10 as its compiler2. Such packages must also be either
written solely in C/C++ or support compiling C/C++ code
independently if they need to be cross-compiled from multiple
languages. Also, The packages must be compatible with the
prerequisite analyses toolchain used by DATAGUARD (e.g.,
PDG and SVF) for the deployment and evaluation.

VI. EXPERIMENT RESULTS

A. Protecting Linux Packages

Table I and II shows the overview summary of our experi-
mental results of DATAGUARD on Linux Packages. We eval-
uate DataGuard for the four investigation goals of Section IV.

First, we find that DataGuard successfully analyzed 1,245
packages (76.7%) of the 1,623 packages in total for the Linux
Ubuntu 20.04 distribution. This constitutes approximaately
266 million LOC (77.8%) of the 342 million LOC total (see
Table I). The remaining 378 packages are not analyzed due
to the incompatibility with the requirements mentioned in
Section V, including failure in LLVM bitcode generation, and
not supported by prerequisite analyses of DATAGUARD.

Second, among all the analyzed packages, DATAGUARD
protects 12,484,971 out of 14,627,355 million (85.4%) stack
objects by validating that these objects have only memory
accesses that satisfy spatial, type, and temporal memory safety.
The objects are protected from attacks on memory accesses to
other objects using the Safe Stack defense [29] by DataGuard.
We note that this is a reduction in the fraction of stack objects
validated as satisfying memory safety comprehensively in the
DataGuard paper (91%), but still a significant fraction of stack
data can be protected by construction.

Third, we evaluate the potential security impact of Data-
Guard from three perspectives: (1) control data, (2) function
parameters, and (3) arguments of sensitive system/library calls.
The data checked in any conditional branch (i.e., control data)

2Note that other approaches to generate bitcode can also be used such as
LLVM Gold linker, we use wllvm for simplicity and convenience automation.

can be exploited by attackers to alter control flows of the
program, so we evaluate the fraction of control data protected
by the DATAGUARD across all analyzed Linux packages. Of
the 451,839 stack objects used as control data total, 412,725
stack objects are classified as safe and isolated from memory
errors on other unsafe stack objects, which is approximately
91.3% of these objects. Thus, the attack surface created by
stack objects as control data is reduced by DATAGUARD by
an even greater fraction than in general.

We also quantified the security impact of DATAGUARD
on invoking functions in general and specifically for
security-sensitive system/library calls. DATAGUARD protected
1,622,867 of 1,904,262 of total function parameters on the
stack for all packages, which is a similar percentage (85.2%) to
the fraction of protected stack objects in general. We analyzed
13 system calls that commonly serve as the key/last step of the
attacker to hijack control flow or escalate privilege, as listed
in Table III. Approximately 90% of calls to these functions
take only safe stack objects as arguments. This means there
are only a small fraction of cases where attackers can corrupt
data on the unsafe stack to invoke sensitive system/library calls
with these corrupted arguments. Instead, nearly all the values
passed as arguments to these functions are stored on the safe
stack, isolated from tampering through memory errors.

Finally, as an indicator of performance, we counted the
number of functions that DataGuard validated as having only
safe stack objects (i.e., local variables and passed parameters),
which removes the overhead caused by switching between
stacks, as described above. We found that out of a total
1,152,744 functions, 747,391 of them (64.84%) only contain
safe stack objects. While lower than the 76% of safe functions
found in the DataGuard application set, this is still significantly
more safe functions than CCured (41%), which incurred an
8.6% overhead. Thus, we expect a performance overhead on
overage only slightly higher than the 4.3% measured.

B. Distribution of Linux Packages on Safe Stack Objects

Figure 1 shows the distribution of the Linux Packages
w.r.t., the fraction of safe stack objects in each package. We
compared DATAGUARD with CCured and SafeStack mecha-
nisms of which DATAGUARD is built on top and originally
compared with [28]. The CCured implementation is adopted
from Nescheck approach [41], The SafeStack defense is im-
plemented by Clang [47]. As we can see, the DATAGUARD
system outperforms the other two in identifying and protecting
safe stack objects through isolation. A majority of the Linux
packages have more than 80% of stack objects protected com-
prehensively from memory safety errors under the protection
of DATAGUARD, whereas CCured and SafeStack have peak
protection fractions in the intervals 70%-80% and 50%-60%,
respectively.

The cumulative distribution (Figure 2) also shows a similar
finding. The percentage of safe stack objects protected by
DATAGUARD is obviously more than CCured and SafeStack
approaches. Specifically, DATAGUARD protects more than
70% of the safe stack objects for 97% of the packages (i.e., 1-

Safe Total
exec 10,362 (91.82%) 11,285
execve 425 (89.85%) 473
system 2,933 (83.46%) 3,514
popen 587 (92.73%) 663
fopen 11,765 (94.00%) 12,516
dlopen 1,182 (86.84%) 1,361
link 17,764 (81.18%) 21,881
symlink 1,341 (92.85%) 1,445
read 134,095 (85.62%) 156,608
write 89,271 (94.01%) 94,957
strcpy 17,694 (82.23%) 21,519
strncpy 8,561 (92.56%) 9,249
memcpy 87,462 (85.39%) 102,424

AVERAGE 383,442 (87.56%) 437,895

TABLE III: Safety of Sensitive System or Library Calls

3% in the figure) and more than 80% of the safe stack objects
for 75% (i.e., 1-25%) of the packages.

C. Mitigating Real-world Exploits

Figure 3 shows a CVE caused by a stack-based buffer
overflow (i.e., spatial error). The vulnerability CVE-2023-
2837 [48] was discovered in May 2023 in a modular multime-
dia framework gpac prior to 2.2.2. Gpac is commonly used
to process, inspect, package, stream, playback, and interact
with media content, and it is officially supported by many
primary streaming services. Gpac can be installed on Ubuntu
as prebuilt binaries through package manager apt-get.

Function xml_sax_parse utilizes an index variable
current_pos at line 11 to traverse the data saved in
parser->buffer on the stack and copy the data into
the heap memory pointed by stack pointer orig_buf.
The parser->buffer has constant size, but the pro-
grammer falsely utilizes another variable (an element of
parser) line_size to perform the size check. Given
current_pos is increased by 1 along with the execution
of the loop each time. This can result in stack-based buffer
overflow of parser->buffer if line_size is corrupted.

DATAGUARD successfully mitigates the CVE by classi-
fying parser->buffer as unsafe, isolating its accesses
from objects on the safe stack. The reason for such a
classification is that, though parser->buffer is de-
clared with constant size, the access range of it depends
on a variable parser->line_size whose value can-
not be concretized statically, (i.e., the value range analy-
sis of DATAGUARD cannot validate the current_pos is
incremented to a constant limit). Thus, since the access
range of parser->buffer is not bounded by a con-
stant within the size of parser->buffer, DATAGUARD
classifies parser->buffer as unsafe. The isolation of
parser->buffer prevents the overflow from corrupting
other stack objects.

Figure 4 shows a recent CVE of stack-based integer over-
flow enabled by unsafe type cast (i.e., type error). The vul-
nerability CVE-2023-2610 [49] was discovered in May 2023
in vim prior to 9.0.1532. Vim is a highly configurable and
powerful text editor designed for efficient text editing. It stands
for ”Vi Improved” and is an enhanced version of the original
Vi editor. Vim is widely used among programmers, system

1 static GF_Err xml_sax_parse(GF_SAXParser *parser,
2 Bool force_parse){
3 u32 i = 0;
4 ...
5 while (parser->current_pos < parser->line_size) {
6 ...
7 char *orig_buf;
8 GF_Err e;
9 ...

10 //Unsafe pointer arithmetic
11 orig_buf = gf_strdup(parser->buffer +
12 parser->current_pos);
13 ...
14

15 e = gf_xml_sax_parse_intern(parser,
16 orig_buf);
17 gf_free(orig_buf);
18 parser->current_pos+=1+i; //no size check
19 }
20 }

Fig. 3: CVE-2023-2837. Attacker can overflow parser->buffer at line
11 due to wrong size check and offset increment at line 5 and line 18.

administrators, and other professionals who work with text
files. Vim can be installed on Ubuntu as prebuilt binaries
through package manager apt-get.

The function regtilde declared two integer variables
len and prevlen to track the offset of source and desti-
nation buffer of memory writes by mch_memove at line 19
and 20. However, two unsafe type casts occur at line 14 and
18. At line 14, the signedness of return value of STRLEN is
changed due to the cast from type size_t to int. Normally,
casting from an unsigned integer (i.e., size_t) to a signed
integer (i.e., int) will not cause problems. Unfortunately, in
this case, the variable prevlen is then used to calculate the
offset of the destination buffer tmpsub in the memory write
at line 25 by calling STRCPY. If prevlen is assigned to
a negative number resulting from the type cast by feeding a
really long reg_prev_sub, it can cause access (write) to
unauthorized memory and/or lead to unexpected crashes of
the program, since the offset is calculated by tmpsub+len.

Similarly, in line 18, the result of the pointer subtraction
of type char_u is cast into int. Though it is less likely to
cause a problem than the previous case, there is still a window
for attacker to corrupt the type cast that leaves len a negative
value. The variable len is then used to calculate the offset
of the destination buffer tmpsub in the memory write at line
20 by calling mch_memove, and line 25 by calling STRCPY,
resulting in the same corruption as above.

DATAGUARD’s value-range analysis successfully identifies
that the prevlen and len suffer from integer type casts that
change their signedness. Also, the value-range analysis finds
that the destination buffer tmpsub of the memory writes at
the line 20 and 25 involves in access range that based on the
value of a variable (i.e., access range is not constant and cannot
be concretized statically). Thus, the affected buffer tmpsub
is classified as unsafe and placed on the unsafe stack. Its
corruption due to this CVE will not affect other safe objects
isolated on the safe stack.

VII. CONCLUSIONS

There is an urgent need for comprehensive and lightweight
protection on stack memory that can be suitably deployed in

1 static char_u *reg_prev_sub = NULL;
2

3 char_u *regtilde(char_u *source, int magic){
4 char_u *newsub = source;
5 char_u *tmpsub;
6 char_u *p;
7 int len;
8 int prevlen;
9

10 for (p = newsub; *p; ++p){
11 ...
12 if (reg_prev_sub != NULL){
13 // length = len(newsub)-1+len(prev_sub)+1
14 prevlen = (int)STRLEN(reg_prev_sub);
15 tmpsub = alloc(STRLEN(newsub) + prevlen);
16 if (tmpsub != NULL){
17 // copy prefix
18 len = (int)(p - newsub);
19 mch_memmove(tmpsub, newsub, (size_t)len);
20 mch_memmove(tmpsub + len, reg_prev_sub,
21 (size_t)prevlen);
22 // copy postfix
23 if (!magic)
24 ++p; // back off backslash
25 STRCPY(tmpsub + len + prevlen, p + 1);
26 ...
27 newsub = tmpsub;
28 p = newsub + len + prevlen;
29 }
30 }
31 ...
32 }
33 ...
34 reg_prev_sub = vim_strsave(newsub);
35 return newsub;
36 }

Fig. 4: CVE-2023-2610. Attacker is able to access unauthorized memory
through memory writes at line 20 and 25, which is cased by integer type cast
that changed signedness at line 14 and 18.

production environments. To advance this goal, this paper pro-
vided an evaluation on DATAGUARD, which is a recently pro-
posed and open-source framework for identifying and isolating
safe stack objects from illicit accesses through exploitations
of stack memory errors. The evaluation process provided an
in-depth examination of DATAGUARD in several key aspects,
including practical implementations, effectiveness, scalability,
security enhancement, and performance overheads by deploy-
ing and testing it on 1,245 Linux packages for Ubuntu 20.04.
By critically assessing these factors, we found that DataGuard
is able to effectively protect around 85.6% of the stack objects
from being tampered with, thereby substantially mitigating the
potential exploitation of memory errors of all analyzed Linux
packages. Furthermore, we examined the possible security
impact of DATAGUARD on protecting critical and sensitive
data, and the ability to mitigate real-world exploits. Com-
pared with previous works such as CCured and Safe Stack,
DATAGUARD is a more comprehensive and efficient protection
framework against stack memory errors that offers protection
of an increased number of stack objects and scope that covers
all memory error classes, with the lightweight isolation and
the removal of runtime checks for safe stack objects. This
evaluation serves as a valuable foundation for future research,
enabling progress and innovation in the pursuit of optimal
solutions for protecting stack objects from memory errors
comprehensively and efficiently.

ACKNOWLEDGEMENTS

We would like to thank our anonymous reviewers for
the invaluable guidance on revision of this paper and their
insightful feedback. This research was sponsored by the U.S.
Army Combat Capabilities Development Command Army
Research Laboratory and was accomplished under Cooper-
ative Agreement Number W911NF-13-2- 0045 (ARL Cyber
Security CRA) and National Science Foundation grant CNS-
1801534. Any views, opinions, findings, and conclusions or
recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the NSF
and should not be interpreted as representing the official
policies, either expressed or implied, of the Combat Capa-
bilities Development Command Army Research Laboratory
of the U.S. government. The U.S. government is authorized
to reproduce and distribute reprints for government purposes
notwithstanding any copyright notation here on.

REFERENCES

[1] NSA-CSS, “Nsa releases guidance on how to protect against software
memory safety issues,” https://www.nsa.gov/Press-Room/News-
Highlights/Article/Article/3215760/nsa-releases-guidance-on-how-to-
protect-against-software-memory-safety-issues/, 2022.

[2] A. Taylor, A. Whalley, D. Jansens, and N. Oskov, “An update on memory
safety in chrome,” https://security.googleblog.com/2021/09/an-update-
on-memory-safety-in-chrome.html, 2021, accessed on May 28, 2023.

[3] Microsoft, “Trends, challenges, and strategic shifts in the software vul-
nerability mitigation landscape,” https://github.com/Microsoft/MSRC-
Security-Research/blob/master/presentations/2019 02 BlueHatIL/
2019 01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%
20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf,
2019, accessed on May 28, 2023.

[4] J. P. Anderson, “Computer Security Technology Planning Study, Volume
II,” Deputy for Command and Management Systems, HQ Electronics
Systems Division (AFSC), Tech. Rep. ESD-TR-73-51, October 1972.

[5] D. Seeley, “A Tour of the Worm,” https://www.cs.unc.edu/∼jeffay/
courses/nidsS05/attacks/seely-RTMworm-89.html.

[6] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang, “Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks,” in Proceedings of
the 7th Conference on USENIX Security Symposium - Volume 7, ser.
SSYM’98. USA: USENIX Association, 1998, p. 5.

[7] “Control-flow Enforcement Technology,” https://software.intel.com/
sites/default/files/managed/4d/2a/control-flow-enforcement-technology-
preview.pdf.

[8] wikipedia, “Shadow Stack,” https://en.wikipedia.org/wiki/Shadow\
stack, Last Edited 03-02-2023.

[9] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM Conference on Computer
and Communications Security, ser. CCS ’05. New York, NY, USA:
Association for Computing Machinery, 2005, p. 340–353. [Online].
Available: https://doi.org/10.1145/1102120.1102165

[10] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “Softbound:
Highly compatible and complete spatial memory safety for c,” in
Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’09. New York,
NY, USA: Association for Computing Machinery, 2009, p. 245–258.
[Online]. Available: https://doi.org/10.1145/1542476.1542504

[11] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy bounds checking:
An efficient and backwards-compatible defense against out-of-bounds
errors,” in Proceedings of the 18th Conference on USENIX Security
Symposium, ser. SSYM’09. USA: USENIX Association, 2009, p.
51–66.

[12] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker,” in Proceedings of the 2012
USENIX Conference on Annual Technical Conference, ser. USENIX
ATC’12. USA: USENIX Association, 2012, p. 28.

[13] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, “Sok: Sanitizing for security,” CoRR, vol. abs/1806.04355,
2018.

[14] E. Stepanov and K. Serebryany, “Memorysanitizer: fast detector of
uninitialized memory use in c++,” in CGO ’15, 2015.

[15] G. J. Duck and R. H. C. Yap, “Effectivesan: Type and memory
error detection using dynamically typed c/c++,” SIGPLAN Not.,
vol. 53, no. 4, p. 181–195, jun 2018. [Online]. Available: https:
//doi.org/10.1145/3296979.3192388

[16] B. Lee, C. Song, T. Kim, and W. Lee, “Type casting verification:
Stopping an emerging attack vector,” in Proceedings of the 24th USENIX
Conference on Security Symposium, ser. SEC’15. USA: USENIX
Association, 2015, p. 81–96.

[17] Y. Jeon, P. Biswas, S. Carr, B. Lee, and M. Payer, “Hextype:
Efficient detection of type confusion errors for c++,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 2373–2387. [Online]. Available:
https://doi.org/10.1145/3133956.3134062

[18] I. Haller, Y. Jeon, H. Peng, M. Payer, C. Giuffrida, H. Bos, and
E. van der Kouwe, “Typesan: Practical type confusion detection,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 517–528. [Online].
Available: https://doi.org/10.1145/2976749.2978405

[19] E. V. D. Kouwe, V. Nigade, and C. Giuffrida, “DangSan: Scalable Use-
after-free Detection,” Proceedings of the 12th European Conference on
Computer Systems, 2017.

[20] B. Lee, C. Song, Y. Jang, T. Wang, T. Kim, L. Lu, and W. Lee,
“Preventing Use-after-free with Dangling Pointers Nullification,” in
Proceedings of the 2015 Network and Distributed System Security
Symposium (NDSS). San Diego, CA, USA: The Internet Society, 2015.

[21] Y. Younan, “FreeSentry: Protecting Against Use-after-free Vulnerabili-
ties Due to Dangling Pointers,” in 22nd Annual Network and Distributed
System Security Symposium (NDSS). San Diego, CA, USA: Internet
Society, 2015.

[22] J. Zhang, S. Wang, M. Rigger, P. He, and Z. Su, “{SANRAZOR}:
Reducing redundant sanitizer checks in {C/C++} programs,” in 15th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 21), 2021, pp. 479–494.

[23] Y. Zhang, C. Pang, G. Portokalidis, N. Triandopoulos, and J. Xu,
“Debloating address sanitizer,” in Usenix Security Symposium, 2022.

[24] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer,
“Ccured: Type-safe retrofitting of legacy software,” ACM Trans.
Program. Lang. Syst., vol. 27, no. 3, p. 477–526, may 2005. [Online].
Available: https://doi.org/10.1145/1065887.1065892

[25] G. C. Necula, S. McPeak, and W. Weimer, “Ccured: Type-safe
retrofitting of legacy code,” SIGPLAN Not., vol. 37, no. 1, p. 128–139,
jan 2002. [Online]. Available: https://doi.org/10.1145/565816.503286

[26] J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Weimer,
“Ccured in the real world,” SIGPLAN Not., vol. 38, no. 5, p. 232–244,
may 2003. [Online]. Available: https://doi.org/10.1145/780822.781157

[27] Voltaire, “Questions sur l’encyclopédie, par des amateur,” https://
archive.org/details/questionssurlenc02volt/page/250/mode/2up, 1770.

[28] K. Huang, Y. Huang, M. Payer, Z. Qian, J. Sampson, G. Tan, and
T. Jaeger, “The taming of the stack: Isolating stack data from memory
errors,” in Network and Distributed System Security Symposium (NDSS).
San Diego, CA, USA: The Internet Society, 2022.

[29] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in Proceedings of the 11th USENIX Conference
on Operating Systems Design and Implementation, ser. OSDI’14. USA:
USENIX Association, 2014, p. 147–163.

[30] K. Huang, “Dataguard opensource on github,” https://github.com/
Lightninghkm/DataGuard, 2022, accessed on 2023.

[31] Duck, Yap, and Cavallaro, “Stack Bounds Protection with Low Fat
Pointers,” in Proceedings of the 2017 Network and Distributed System
Security Symposium (NDSS), 2017.

[32] C. Zhang, S. A. Carr, T. Li, Y. Ding, C. Song, M. Payer, and D. Song,
“Vtrust: Regaining trust on virtual calls,” in Symposium on Network
and Distributed System Security (NDSS). San Diego, CA, USA: The
Internet Society, 2016.

[33] LLVM, “Clang undefined behavior sanitizer,” http://clang.llvm.org/docs/
UsersManual.html, 2023, accessed: 2023-05-02.

[34] A. Milburn, H. Bos, and C. Giuffrida, “Safelnit: Comprehensive and
practical mitigation of uninitialized read vulnerabilities,” in Network and
Distributed System Security Symposium, 2017.

[35] Y. Younan, D. Pozza, F. Piessens, and W. Joosen, “Extended Protection
against Stack Smashing Attacks without Performance Loss,” in 2006
22nd Annual Computer Security Applications Conference (ACSAC),
2006.

[36] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-Oriented Programming: On the Expressiveness of Non-control
Data Attacks,” in Proceedings of the 37th IEEE Symposium on Security
and Privacy (S&P), 2016.

[37] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block Oriented
Programming: Automating Data-Only Attacks,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2018.

[38] L. Cheng, S. Ahmed, H. Liljestrand, T. Nyman, H. Cai, T. Jaeger,
N. Asokan, and D. D. Yao, “Exploitation techniques for data-
oriented attacks with existing and potential defense approaches,” ACM
Trans. Priv. Secur., vol. 24, no. 4, sep 2021. [Online]. Available:
https://doi.org/10.1145/3462699

[39] A. Simon, “Value-range analysis of c programs: Towards proving the
absence of buffer overflow vulnerabilities,” 2008.

[40] Z. Budimlic, K. D. Cooper, T. J. Harvey, K. Kennedy, T. S. Oberg,
and S. Reeves, “Fast Copy Coalescing and Live-range Identification,” in
Proceedings of the ACM SIGPLAN 2002 conference on Programming
language design and implementation. (PLDI), 2002.

[41] D. Midi, M. Payer, and E. Bertino, “Memory safety for embedded
devices with nescheck,” in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, ser. ASIA
CCS ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 127–139. [Online]. Available: https://doi.org/
10.1145/3052973.3053014

[42] “Safe Stack - Clang 12 documentation,” https://clang.llvm.org/docs/
SafeStack.html.

[43] S. Liu, G. Tan, and T. Jaeger, “Ptrsplit: Supporting general
pointers in automatic program partitioning,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’17. New York, NY, USA: Association for
Computing Machinery, 2017, p. 2359–2371. [Online]. Available:
https://doi.org/10.1145/3133956.3134066

[44] Y. Sui and J. Xue, “Svf: Interprocedural static value-flow analysis in
llvm,” in Proceedings of the 25th International Conference on Compiler
Construction, ser. CC 2016. New York, NY, USA: Association
for Computing Machinery, 2016, p. 265–266. [Online]. Available:
https://doi.org/10.1145/2892208.2892235

[45] Ubuntu, “Ubuntu packages search,” https://packages.ubuntu.com/, ac-
cessed on 2023.

[46] I. A. Mason, “Whole program llvm,” https://github.com/travitch/whole-
program-llvm, accessed on 2023.

[47] “Clang Documentation - SafeStack,” Clang document at https://
clang.llvm.org/docs/SafeStack.html, 2020.

[48] “Cve-2023-2837,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2023-2837, accessed on 2023.

[49] “Cve-2023-2610,” https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2023-2610, accessed on 2023.

