Network-based Root of Trust for Installation

Joshua Schiffman, Thomas Moyer, Trent Jaeger and Patrickalviel

Systems and Internet Infrastructure Security Laboratory
Computer Science and Engineering Department, Pennsyl@aaia University

Administrators of large data centers often require network installation mischgnsuch as disk cloning
over the network, to manage the integrity of their machines. However, rietvesed installation is vul-
nerable to a variety of attacks, including compromised machines respondinsfatiation requests with
malware. To enable verification that running machines were installedotiyrreve propose a network-
based Root of Trust for Installation (netROTI), an installer that bindssthte of a system to its installer
and disk image. Our evaluation demonstrates that a netROTI installation aolgs8beconds overhead
plus 3% of image download time to a standard network install and thwarts mamnlattacks against the
installation process.

1 Introduction

Data centers and large enterprises often use network installation and nmgnitomanage the integrity of
their deployed systems. This enables administrators to focus on hardemiag dystems that are cloned
over the network to a multitude of machines. Once installed, remote monitoring tublseavices can be
used to automate the process of detecting anomalies in system behaviogmstrasd illicit modifications
to the filesystem. These mechanisms aim to protrigited distributiorwhere by an administrator can verify
a system was installed as intended and that nothing has secretly modifiedttra sjnce installation [10].
Without trusted distribution, it is difficult to ensure the ongoing correctoésssystem at runtime.

Unfortunately, network-based installation introduces new challenges wirrsdy difficult process of
verifying system installation. The most common method of initializing a network installés to load
a bootstrap program over the network, thus eliminating the need for instaltatolia like optical disks.
However, the addition of network access opens the possibility for maliciadiEgp to compromise installer
code or corrupt the disk image in flight. Even after installation, malicious motiditecan compromise
security-critical files, which may be difficult to detect in specialized files likefiguration scripts that lack
a well known correct state. In the presence of such subversiveadihard to verify data, monitoring tools
may be tricked into reporting that nothing wrong has happened. Ultimately, athistheed for proving to
an administrator that a system has been securely installed and not beerdsidife that installation.

To achieve this goal, we propose a network-based Root of Trush$tallation (netROTI), an instal-
lation method that links a filesystem to its installer and the disk image used prior figu@tion. If an
administrator trusts their installer and disk image, then they can trust systemesl thicon filesystems de-
rived from such an installation. Using the netROTI approach, adminissrator configure their hardened
images, and run the netROTI to install all of their machines automatically. Theyhea receive a proof
from each machine, showing if it was booted from a compromised filesystemimplementation of the
netROTI for a Eucalyptus [14] cloud environment adds only an 8 sefined overhead plus 3% of image
download time to the network installation process, and verification can be aeibfoa the administrator.
The result is that secure network installation, even over an untrustednketvan be automated.

DHCP Boot Image
Server Server Server

=

(PN |
s

v J: Jz_
Cluster Servers

v

Figure 1: A network install bootstrapped via PXE Boot. The client systemriua lmads the PXE Boot
firmware, which (1) initiates a DHCP request on the local subnet to setsip batworking and locate a
Boot Server. After obtaining this address, (2) the client requests addetBoot Program (NBP) from
the Boot Server and executes it. The bootloader may request additiesdtdim the Boot Server such as
modules and an initial ramdisk to setup the installer client environment. Finallh€3hstaller connects to
the Image Server and begins transferring the disk image to the target sybtEneh’disk. After configuring
the image, the system reboots.

2 Network Boot Installation

In this section, we first describe the process of network installation. Mextliscuss the possible attacks
on this procedure and security guarantees required for a trusted itictalla

2.1 Current Network Installation

Companies and universities with large system deployments install and maintaisytbieims differently
from the typical desktop user. While individual systems are typically instai$#oly optical disk or a USB
drive, the long installation process, need for physical media, and spea#tomizations for that environ-
ment make it impractical to use the same approach for hundreds of madhistead, network-based instal-
lation techniques using customized automated installer images or disk cloningedrouapidly upgrade
out-of- date systems or restore compromised servers to their proper state.

From speaking with administrators in several large companies and our riwersity, which supplies
computing resources for over 40,000 students, we found the most comskori@hing tools to be Syman-
tec’s Norton Ghost [2], Acronis True Image [6], or custom designedstthat use a variety of free and
open source utilities. Other services automate installation tasks like Microgbftdows Deployment Ser-
vices [13] and Rocks [5]. These tools function by loading a client at i@ over the network that connect
to a management server download files like a pre-configured disk imagstaltén programs. This reduces
deployment time and allows administrators to harden a single installation and replieanong systems
that perform similar tasks like VMMs in a cloud or employee workstations.

While there are several methods of bootstrapping an installer client, one ofdet common methods
is the Preboot Execution Environment (PXE) [3]. Figure 1 briefly illusgaenetwork install using the
PXE protocol. First, the system to be imaged (we call the client) boots into thefiXiware (usually
loaded by the BIOS from the NIC’s firmware). Next, the client starts théopm by (1) broadcasting a

DHCPDISCOVER request on port 67 with additional PXEClient extensign £aDHCP or ProxyDHCP
server responds with a DHCPOFFER on port 68 providing an IP asldres a list of Boot Servers. The
client then (2) sends a DHCPREQUEST to a Boot Server and gets a DEIKCRfessage with the file name
of a Network Boot Program (NBP) it retrieves from the Boot ServerMEa P. The client then executes the
NBP, which may request additional files such as a kernel or moduleseddar the client’s hardware.

The installer client is setup by the NBP either using files download from thé B&wer or by retrieving
them using protocols like NFS or HTTP. Finally, the client (3) contacts the énSsmgver and requests a disk
image. After the image has been written to the hard drive, the client perfatditiomal configuration steps
like setting the hostname and networking. Finally, the machine reboots into tiginaged OS.

2.2 Attacks on Network Installation

Ensuring the correct operation of systems within large installations like a datarcrequires the adminis-
trators to be able to prove their systems have been installed and configthrénilgh integrity code and data.
While the techniques mentioned above automate installation, they do not do edatiféstrators to verify
whether the system has booted from a properly installed filesystem. Potttdicks on the installation
procedure or modification of systems later could corrupt a server adddesmhost of attacks from within
the data center. We now consider some of these attacks and then disausartirgees that must be satisfied
to ensure the a server has booted from a high integrity installation.

The first place a server can be corrupted is during installation. In treegsalescribed in Figure 1, the
client system could potentially load a malicious PXE firmware from the NIC installethg a previously
compromised state. Other attacks have been demonstrated [4] that allow egtackers to compromise
NIC firmware over the network. In either case, such firmware could le@iréat attacks on the system’s
memory. Another vector for attack exists when the PXE client searchéisd@oot Server. Since the PXE
client relies on information from local DHCP or Proxy DHCP servers, mmmmised server acting as a
rogue DHCP server on the local subnet could trick the client into dowiigaadmalicious NBP and install
a rootkit. At the network level, an attacker could modify data sent on the witeetolient if unencrypted or
perform an man-in-the-middle attack to tamper with the installation. Even aftelatista, a system may
be vulnerable. Numerous attacks exist that place rootkits or make maliciangehto the filesystem that
persist even after a system reboots.

2.3 Securing Network Boot Installation

To secure network installation, it is necessary to show the installed systeenived from the expected
origins, installer, and disk image. While not everyone may trust the installdiskrimage, those that do
would be willing to work with such a system if it could be verified. In this case anvision that large data
center administrators would be able to leverage such trust because ¢lody #pe installer and disk images
that can be loaded.

In order to verify a system’s installation, a method is needed for accurateunegaent and reporting.
Recent work in trusted computing has examined the challenge of buildingitrgstmmodity systems.
Trusted hardware such as the Trusted Platform Module (TPM) andstatenadded to Intel and AMD
processors offer various trust primitives. Using this hardware stpp@stems can generadéestationof
a platform’s critical code and data, which remote parties can verify. Rerals survey [15] examines the
broad range of applications to which researchers have applied thesprimitives.

Verifying installation is not very useful by itself, however, as the machiiledoe immediately rebooted
after installation and may be rebooted multiple times before any subsequimstaiation. Thus, any
network installation must enable verification that a system was booted fraxpacted installation. Thus,
our method enables an administrator to verify that the filesystem at boot time ésl linkthe installation

origins, the installer and disk image. We note that this does not prevent skensyrom coming under
runtime attacks, such as buffer overflows, but these attacks will betddti€they modify the filesystem on
the next reboot.

Any secure network installation must be practical. A key question is whetkenstalled filesystem
is sufficiently stable to enable such a verification. In an initial experimenty@]found that only three
files of privileged VM system configuration were modified dynamically duiisg@xecution. Also, manual
updates to systems are prohibited in our approach, as they are ad hadnkpistrators, a clean, automated
install is preferable to manual modifications anyway. An administrator mayspestific updates to all their
systems automatically, but these cannot be linked to the installer. We envisigottvzare on the installed
system can extend the install-time proofs, if authorized.

3 The netROTI Method

We now introduce netROTI, a network-based installation method that linke#udting system verifiably
to a particular source. We first define our trust and threat models tdisbktti®e scope of our solution and
then detail how the netROTI augments the installation process. Finally, waklie#ue protocol used to
verify the filesystem'’s origin.

3.1 Trust and Threats for Designing a netROTI

For our design, we assume a trust model where the physical hardvsarfe fsom attack and is implemented
correctly. We also trust there exists an administrator or software prowittethe authority to deem partic-
ular code and data (e.g., the installer and disk image) as trustworthy. While keemoassumptions that
such trust is placed correctly, our goal is to prove that a system is linkagésticular origin certified by
one or more authorities. Thus, a verifier can determine their trust in a sstesd on its trust in the ability
of authorities to certify their systems. We also trust the data center administastdhence not addressing
insider attacks. Finally, we do not consider attacks on the cryptogralgfiditams used nor attacks on the
PKI or authentication procedures like direct anonymous attestation [8tdblish identities.

For our threat model, we consider an attacker that can modify or injecodatae network, is able to
impersonate various services, and compromise other hosts on the netlmede attacks could lead to the
client loading a malicious installer, installing a vulnerable or malicious disk imagmmpromise of device
firmware. The attacker can change the contents of the client’s disk aftallatisn and perform attacks on
the running system. Reporting attacks on the system’s runtime state is outsidefghe§this work, but the
netROTI does provide a root of trust for detecting these security violbgrgiving a proof of the systems
initial integrity at boot time.

3.2 The netROTI Overview

The netROTI approach is a network-based system installation method yp&bgnaphically links the in-
stalled filesystem with the installer and source used in the installation. Figure t2ailesseach phase of
the installation procedure. Thereinstall phasénighlighted in green is a trusted, manual step requiring the
administrator to configure the client to boot from the network and to preparelient's Root of Trust for
Measurement (RTM) used to record and report critical code and 8atee the tasks in this phase are per-
formed manually, we trust them axiomatically. Next, the client gathers the seayefiles to install from

the network in thegather phasgwhich is shown in red because it need not be run by trusted code and is
unmeasured. Once collected, the system enters the subsequent ldes, pitsich contribute to building a
ROTI prooflinking the installer and image to the client’s filesystem. Dbetstrap phaseitializes a secure
execution environment for the installer after the RTM measures it. The instiaienloads and measures

Preinstall Gather Bootstrap Download Configure Proof
Phase Phase Phase Phase Phase Phase
- - Generate
: Initialize
Configure Gather ! Download Customize ROTI
boot options ' : installer O disk image ot
installer client EVTET TR disk image roo
Initialize Measure Measure Measure
RTM installer disk image filesystem

Figure 2: Timeline of the installation process. The administrator configurediéme in the preinstall phase.
The client then downloads the installer and bootstraps a secure envirpnvhéh measures the installer.
Next, the client downloads, measures, and configures a disk image tooplabe local disk. Finally, the
resulting filesystem is measured and a proof of the system’s Root of forulststallation (ROTI proof) is
generated.

the image to be installed in thiownload phaseNext, it configures and measures the resulting filesystem
in the configure phaseln the finalproof phasethe RTM generates a ROTI proof later used by the system
at runtime to produce attestations, which a verifier can use to identify the instatledisk image used to
configure the filesystem from which that client booted.

3.3 The netROTI Installation Phases Detailed
Each of the netROTI installation phases has a specific goal and tasksdeeatttat goal.

Preinstall Phase The preinstall phase is a manual process carried out by the system dcdatonito
prepare the the client system for installation. This phase is needed towenfigmponents that enable
generation of ROTI proofs. To prepare the system, the administratogooedi the BIOS to boot from the
network and installs the RTM with the keys necessary for it to identify this cliaitfuely.

Gather Phase The goal of this phase is to retrieve the installation image and installer. We m¢ed n
measure this phase as we will start the install from a known state using osby ithguts starting the next
phase. First, the client machine loads the network boot firmware to obtaimnrkeaecess and locate the
Boot Server. It then retrieves an NBP that downloads the additionallerstites, the installer kernel, a
ramdisk containing the installer code, and a bootstrap program that setsaqui@ environment for the
installer.

Bootstrap Phase Since the previous install phase performed unmeasured operatiomsisthgyossibility
that malicious code may have been loaded into memory. Therefore, we nhaisistsa clean starting
point for measuring subsequent operations in the installation procegsbddistrap phase achieves this
through a CPU-supported technique callatt launchthat takes a piece of code, records it in the RTM,
and effectively reboots the system before executing the code in a regiwatected memory. This memory
protection prevents attacks from potentially malicious resident code loagfedekihe installer and from
external devices that have direct access to memory. Once the instatet lelaunched, it measures the

installer’s ramdisk, unpacks it into memory, and begins the next phaseoMfetisis phase blue to indicate
the installer code and data are measured before being executed.

Download Phase After the installer has been initialized, it enters the download phase. THesgma
retrieve and measure the disk image before installing it. First, the local sydbasis networking and
partition table are prepared to enable a disk image to be retrieved and writtelesmalisk. The disk image
is also measured into the RTM so that a verifier can later identify the trustwesthof the downloaded disk
image. This helps detect attacks on the disk image while in transit and from conised or rogue image
servers.

Configure Phase In the configure phase, the downloaded disk image is specialized to theggstEm.
This includes setting up networking, filesystem tables, devices, seculityesp SSH host keys, etc. The
installer also generates signing keys used by the RTM for generating tttestand the ROTI proof. We
describe this in more detail in Section 4.2. Next, the system’s startup scriptsaglied to measure the
root filesystem at boot time. This filesystem manifest is included in attestatiche serifier can inspect
how the filesystem has been modified.

Proof Phase In the final, proof phase, the installer generateRQ@I| proofthat ties the final installed
filesystem to the installer and disk image for verification at runtime that the cliatdriged from such
inputs. The ROTI proof is a signed tuple= Sign(F, D, I) -, whereK ~ is a private key that identifies the
physical machine and is endorsed by its RTM. This tuple acts as a progirghthat a machine possessing
K~ was specifically configured bl using disk imageD to produce filesystenk'. A verifier can inspect
the ROTI proof to determine if it believes the combination/aind D results in a trustworthy installation
(i.e., F). Upon completion of the ROTI proof, the system reboots into its newly instélexystem. In the
next subsection, we describe how the ROTI proof is used by a verifidrdok the integrity of the client at
runtime.

3.4 \Verification

Once the installation procedure is complete, the system is ready for verificaticuccessful validation
proves to a verifier the particular installer and disk image that was used tb theteurrent filesystem. The
verifier can then make a trust decision whether the combination of installediskdmage came from a
source they trust.

Figure 3 illustrates the validation procedure. During boot, the initial ramdiskd)nis loaded and
measures the root filesystem to generate a manifest of hashes foleallefi, the system starts a network
facing attestation daemomo handle attestation requests. When a remote verifier wishes to inspect the
proving system, it sends a nonce to the attestation daemon that builds an attestdtieturns it to the
verifier. The attestation is a signed statemént Sign(R, F’, N) -, whereR is the ROTI proof,F’ is
the current filesystem manifesy, is the nonce, and{~ is the private key of the system endorsed by its
RTM. The verifier checks that the signatures on bothAh&nd R are from keys endorsed by the RTM of
the proving system. Verifying the identities of keys is outside the scope of #fsrpbut we assume a
PKI is maintained by the administrator deploying the systems. Once it has estdtlighidentities of the
signing keys, the verifier assesses whether it trusts the installer and dgi imfa to produce a trustworthy
installation. If it does, it then comparéd and F' in R to see how they differ. If no security critical files
have changed, the verifier can assume the current system booted Isgystéim that was produced by an
installer and disk image the verifier trusts.

Measure Request Generate Verify
Fileystem Attestation Attestation Attestation

e | | = al

& o Create

fil Send nonce Generate Verify signatures
ARyl to prover attestation and filesystem
manifest
Verifying @
System
. Assess installer
> - Measure Sign and disk image
manifest attestation trustworthiness

Figure 3: Timeline of the validation process. The filesystem on the provingtdfieneasured to generate
an attestation of the installed and current filesystems, which can be checkeel verifying system.

4 Implementing the netROTI

We now describe our proof of concept netROTI implementation. We firstdotre some background on
the trusted computing components we use and then we give an overviewimdtélation process and then
detail the key components.

4.1 Trusted Computing Primitives

Two key mechanisms we employ in the netROTI are TPM attestations and the namidyroot of trust.
The TPM is a secure coprocessor attached to the motherboard thatgsreeiceral features. These includes
NVRAM for storing cryptographic secrets and a septitform configuration register@CRs) that stores
arbitrary data measurements. The TPM also contains a public key pair calEddlersement Key (EK) that
uniquely identifies the TPM device and associated client. Using the EK, theCHPNjenerate and certify
other keys. The main runtime mechanisms of the TPM ar@PN Extendwhich adds a measurement to a
PCR by hashing the measurement value with the current PCR value to fashalmain and Z)PM Quote
where the TPM produces a signed statement over a specified set ofdr@Rsnonce from a second party.
This quote allows a remote verifier to examine the state of the system (ref@ebgrthe measurements in
the PCRs) at the time the nonce is generated. The TPM uses a signing keytlcallsttestation Identity
Key (AIK) derived from the EK to sign the quote, which effectively idemetsfithe quote as coming from the
platform containing the TPM. A quote combined with the list of measurementsiatsd with the PCRs’
current state is called aattestation To verify an attestation, a remote verifier validates that the measure-
ments correspond to acceptable operation (e.g., a trusted installer loatipatite series of measurements
results in the provided PCR values.

Producing meaningful attestations requires establishirgpof trustguaranteeing measurements are
taken by a trustworthy entity on the system. A computer boots into what is cakatia root of trust
for measurementSRTM) because the normal boot process is largely fixed. Normally, [0S Bakes a
measurement of its firmware and option ROM chips before passing conttbetbootloader, which is
expected to continue the measurement chain by measuring itself, the kednsb @n. This chain rooted
in the normal boot procedure gives a verifier a view of how the systestedo However, there are several
known attacks on the SRTM, such as TPM reset attacks that enable dreattaceset a PCR and insert
false measurements.

To address these issues, new secure virtualization architectures likésAB&oure Virtual Machine

Initial
Ramdisk

Linux Kernel

Munich

Pamplona

Secure

Loader
Step 7: +
Measure Step 6:
installer files Execute loader
Step 3: Proxy
Download - DHCP
NBP Binaries Service

Step 5: Step 4: Call
Measure SKINIT to launch
loader Secure Loader Boot
L Step 2: Get Server
Bootstrap
osLo Program
PXELinux.0
DHCP
PXE Client S Service
Step 1: Get
BIOS Boot Server DHCP
Information Server
> TPM
>

Figure 4. After the client follows the PXE protocol and contacts the Boote3git downloads the@sl| o
bootloader’s three binaries, the installer kernel, and initial ramdisk.o performs the AMD DRTM oper-
ation, SKINIT, which causes the CPU to clear the DRTM registers, ext&IF7 with a hash of the Secure
Loader Block (SLB), and begins executing the SLB, which measurestief the downloaded files and
extends it to PCR 19anpl ona undoes the DRTM memory protection amdni ch launches the kernel
to being installation.

(SVM) [7] and Intel's Trusted Execution Technology enable a machinenm fadynamic root of trust for
measuremenfDRTM) by effectively rebooting the system and executing a piece oé aailed a secure
loader in a memory protected region safe from code loaded before ther lwad executed. The CPU first
sets a special group of DRTM PCRs to a specific value that only the CPWetaand then measures the
loader before it is started. This prevents malicious code from imitating the DBddess by inserting
secure loader’'s code measurement in to the PCR. The DRTM is usefob&dstrapping security critical
code like a VMM kernel when the security of the system is difficult to asaebkeot time.

4.2 Installation

We created our netROTI as a series of scripts that automates the installatesppacked into an 11 MB
ext2 ramdisk downloaded along with a modified Linux 2.6.18 kernel and theédJ$1] bootloader. OSLO
is a specialized bootloader that implements the DRTM functionality in AMD pracedbat we use to
launch the installer kernel in a secure environment. Before installationfdbgmadministrator configures
the BIOS to boot from the PXE firmware. The TPM must also be clearedypeesvious administrative
passwords and keys, so the installer can create its own. This cordssjodhe preinstall phase in our design.
In the gather phase, the begins the PXE protocol to obtain the location obthteSBrver. The client then
downloads theoxel i nux. 0 NBP via TFTP, which automatically retrieves the OSLO bootloader, Linux
kernel, and installer ramdisk.

The system then enters the bootstrap phase illustrated by Figure 4. FitdBEheonstructs a multiboot
header indicating the address where the the installer files are located in mantbexecutes the OSLO

bootloader. OSLO consists of three ELF binaries that perform sepstejes of the DRTM process. The
first binary prepares the system for the DRTM process by shutting @tivaut the primary CPU core and
loads the second stage binary into the secure loader block (SLB). TH2 BRITM instruction, SKINIT,

is invoked with the entry point address of the SLB as its only argument. ThétGén sets the DRTM
PCRs in the TPM to -1, sets the device exclusion vector (DEV) to enable megimatgction for the SLB,
and sends a measurement of the SLB to the TPM. Finally, the CPUs jumps totthe@eint in the SLB
that measures the installer Linux kernel, ramdisk, and boot parametersnuttieoot header, restarts the
other CPU cores, and disables the DEV protection. Finally, it launchesitbesthge binary that imitates a
normal GRUB bootloader and launches the Linux kernel.

Once the installer has been bootstrapped, the ramdisk is unpacked into nagmding installation script
is executed. This sets up basic support for devices like console andrikitgvand starts the download
phase by running g@art i mage client. This contacts a preconfigureér t i maged server, verifies its
SSL certificate against the CA certificate in the ramdisk, establishes an $8eatmn, and downloads the
disk image. The image is measured and then written to the hard disk.

In the configure phase, the installer scripts configures machine spel@fiarfcluding updating the
UDEYV rules for new hardware, networking configurations, firewalésu fstab entries, creating a swap
partition, regenerating SSH host keys, and so on. The TPM is then situpew administrative credentials
and a fresh AIK is generated. The TPM also endorses the AIK by coeatoertificate that signs the AlK’s
public key with the TPM’s EK. The installer also installs a simple network-facithgn service we wrote
that acts as the attestation daemon, which services requests for attesfhitiensitial ramdisk on disk is
then modified to generate a manifest of the filesystem every time it boots. Thifestawntains a hash of
every file and is used to create attestations.

In the proof phase, the installer measures the files on disk that haveethantyeen added since the
disk image was written. A list of SHA1 hashes for each file is stored on the @is& final step generates
the ROTI proof by producing a TPM quote with PCRs containing every mnieasent taken during the
installation process. This quote is signed with the newly created AIK fromdhé&gure phase. We use a
hash of the system’s hostname as the nonce since we are not concémttevreshness of the quote, as
we only care that the ROTI proof correctly identifies the installer and diskéfagthis system. We tar and
gzip the quote with the file manifest and list of measurements taken during instaliataveate the final
ROTI proof file.

4.3 \Verification

We now describe the verification protocol between a system installed byetR©I (the proving system)
and a remote verifier. Before the protocol begins, the proving systets lato its initial ramdisk. It
then executes the measurement script inserted during installation. Thisgamgrates a manifest of the
entire filesystem with corresponding hashes for each file. The systsmes the boot process and starts
the attestation daemon. When a verifier sends a nonce to the daemon, the daleesca SHAL hash of
the nonce and requests a TPM quote signed by the TPM’s AIK. The gue@Rs contains a hash of the
filesystem manifest taken at boot time and the nonce. The quote is thereretorthe verifier with the
ROTI proof file (corresponding t& in the attestatiom from Section 3.4), the filesystem manifests taken at
boot (£’) and during installationi(), and the AIK’s certificate (the verifier has the non€elready).

Upon receipt of the attestation, the verifier first validates the signatutége gfuote and ROTI proof. It
then checks that the AIK'’s certificate is sighed by the expected TPM'sNeit, the verifier assesses the
trustworthiness of the installer and disk image by extracting them from the R@®f and matching them
against a list of acceptable measurements. If these are found to be tthgiwite filesystem manifests are
compared to see if any files have changed since installation. If no seciititgldiles are modified, then
verifier accepts the proving system as having booted into a filesystem idsigléetrusted installer and disk

Type Operation Time (seconds)
Install Download and Write Disk Imagge 64.000
Install Configuration 18.644
Sub-total 82.644
netROTI | netROTI Configuration 6.740
netROTI | Measure Image 1.900
netROTI | Generate TPM Quote 0.890
netROTI | Measure Modified Files 0.390
Sub-total 9.920
Optional | TPM Setup 45.400
Optional | Generate AIK 11.220
Sub-total 56.620
Total Install 149.184

Table 1: Breakdown of the installation time averaged over ten installations uwé¢ayptus cloud node.

image.

5 Evaluation

We constructed a proof of concept netROTI installer to assess thdlamgract it has on network installa-
tion and how it address attacks on the installation process.

5.1 Performance

To evaluate the overhead our netROTI installer imposes on the installatioedomes we performed ten
installations of a Eucalyptus cloud node’s disk image across ten systemse&tedan image to be installed
by manually configuring an Ubuntu server cloud in our Eucalyptus on afslerEdge M605 blade with
8-core 2.3GHz Opteron CPUs and 16GB of RAM on a quiescent gigatvionle. We then created a 387
MB gzipped disk image of the 1.3 GB filesystem. Table 1 shows the times for gechtmn performed
during installation. Normal installation took 82.644 seconds or 55.34% of thealthtime. The disk image
related operations (e.g., downloading, writing, and measuring the imaga)anetion of the disk image’s
size, which can be improved through more efficient compression algorithmgarticular, we found our
hardware could perform SHAL hashes at 132 MB/s, which resulted.@setond disk image measurement
time.

TPM related operations are inherently slow due to the speed of the TPMI'€3BuMHZz) and its low
power design. While netROTI specific operations added additional time to ¢haljrtwo operations,
namely generating a new AIK and TPM setup, account for 37.95% of tethead. We note that the
function of these steps are to create keys that could be reused acritipgenmstallations as long as the
encrypted public portions of the AIK and SRK (created in the TPM setupadip@) are retained during
reinstallation. Thus, an administrator could copy those encrypted filesdistribute them in the installer
or have the installer copy them from the local disk before overwriting it. Ultityatee find the overhead
due to the netROTI to be a fixed cost of about 8 seconds plus about ag¥%ead for measuring the image
when the optional TPM setup and AIK creation steps are reused froropseinstallations.

10

Attack Type OSLO | Tripwire | Bitlocker | netROTI
Rootkits before install Yes No No Yes
Malicious installer code Yes No No Yes
Malicious disk image No No No Yes
Modified data after install No Yes Partial Yes
Runtime attacks No No No No

Table 2: A comparison of several mechanisms’ ability to detect or preeseta classes of attack on an
installation.

5.2 Security Evaluation

Table 2 lists a comparison of several security mechanisms and their abilitydtetearange of attacks on the
network installation process. In addition to our netROTI design, we congideDSLO bootloader alone,
the filesystem auditing tool Tripwire [12], and the Windows Bitlocker file gption scheme [1]. OSLO
uses the DRTM process to both measure malicious installer code and aefigsrthe system might boot
into before installation, but it is unable to address attacks beyond that. ifigifsvan auditing tool that
creates a digitally signed log of the installed filesystem that administrators eapntguletect changes. This
prevents attacks that change the disk contents after installation, butt@ararantee anything about the
filesystem during installation. Bitlocker encrypts the filesystem and optionadlg the TPM to verify that
the early boot phase has not been modified before decrypting the disike iMs prevents offline attacks,
modifications to the disk after decryption are not prevented. The netR&EIQSLO for protection against
rootkits and to record malicious installers. It also measures disk imagesheftallation and uses the
ROTI proof combined with boot-time filesystem measurements to detect chadgegver, none of these
approaches directly address attacks on the installed system at runtime.

The key advantage of the netROTI over these other approaches is its abjlitpvide an attestation
of not only the filesystem, but the installation environment that produced itlevitie other solutions in
our comparison prevent attacks at various stages of the installatiorsprowme of them can speak for the
trustworthiness of the installer that produced them. By using secure asrdavmeasure before using each
critical component during installation, a verifiable proof can be creatéuedilesystem’s origin.

6 Conclusion

In this article, we introduced the netROTI, a method for performing netwatkilation so that the resulting
filesystem can be traced back to the exact installer and disk image thatpdiduThe netROTI leverages
the protection of trusted computing features in modern CPUs to bootstrapaanatynoot of trust in an
installer downloaded over the network and record all steps of the installatimedure to produce a ROTI
proof. Using this proof, a verifier can inspect whether the guarardeé&sisted distribution have been
achieved. Our evaluation demonstrated the netROTI protects againgty edattacks on the installation
process and introduces only minimal overhead when optimizations are takexcaount.

7 Acknowledgements

This work was supported by NSF grants CNS-0931914 and CNS-662 A& would also like to thanks
Luke St. Clair for his efforts in designing Root of Trust Installer, Eriki§itr and Mark Tamminga for their
insights into network installation, and Bernhard Kauer for his design obasigtance using OSLO.

11

References

[1] BitLocker Drive Encryption: Technical Overviewt t p: / / t echnet . mi cr osof t . conif en- us/ wi ndowsvi st
[2] Norton Ghost.htt p: //ww. symant ec. com nort on/ ghost .

[3] Preboot Execution Environment (PXE) Specificatibht p: / / www. i nt el . com desi gn/ ar chi ves/ wf n1 do
[4] The JediPacket Trick takes over the Deathgtat.p: / / www. al chem st owl . org/ arri go/ Papers/ Arri go
[5] Rocks Clustershtt p: // www. r ockscl ust ers. or g/ wor dpr ess/ , August 2010.

[6] Acronis. True Imageht t p: / / www. acr oni s. conf honeconput i ng/ product s/ truei mage/ i ndex. htr
[7] Processor-based virtualization, amd64 stiiet p: / / devel oper . and. conf docunent ati on/ arti cl es/ p:

[8] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestatidrith Conference on Computer
and Communications Securjtyages 132—-145, New York, NY, USA, 2004. ACM.

[9] L. S. Clair, J. Schiffman, T. Jaeger, and P. McDaniel. Establishimd)sustaining system integrity
via root of trust installation. IrProceedings of the 2007 Annual Computer Security Applications
Conferencepages 19-29, Dec. 2007.

[10] R. P. Gallagher. A Guide to Understanding Trusted Distribution in tédisSystems.
http://ww. fas.org/irp/nsal/rai nbow t g008. ht m 1988.

[11] B. Kauer. Oslo: improving the security of trusted computing1&th USENIX Security Symposium
pages 1-9, Berkeley, CA, USA, 2007. USENIX Association.

[12] G. H. Kim and E. H. Spafford. The design and implementation of tripwirdile system integrity
checker. InConference on Computer and Communications Sec¢ysdages 18-29, New York, NY,
USA, 1994. ACM.

[13] Microsoft. Windows Deployment Servicdst t p: / / nsdn. mi cr osoft. com en-us/ | i brary/ aa967394. a

[14] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. ¥effi, and D. Zagorodnov. The eu-
calyptus open-source cloud-computing systen@tininternational Symposium on Cluster Computing
and the Grid pages 124-131, Washington, DC, USA, 2009. IEEE Computer Society.

[15] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping trust mmmmdity computers. IProceedings
of the IEEE Symposium on Security and Privadgpy 2010.

12

http://technet.microsoft.com/en-us/windowsvista/aa906017.aspx
http://www.symantec.com/norton/ghost
http://www.intel.com/design/archives/wfm/downloads/pxespec.htm
http://www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-CANSEC10-Project-Maux-III.pdf
http://www.rocksclusters.org/wordpress/
http://www.acronis.com/homecomputing/products/trueimage/index.html
http://developer.amd.com/documentation/articles/pages/630200615.aspx
http://www.fas.org/irp/nsa/rainbow/tg008.htm
http://msdn.microsoft.com/en-us/library/aa967394.aspx

	Introduction
	Network Boot Installation
	Current Network Installation
	Attacks on Network Installation
	Securing Network Boot Installation

	The netROTI Method
	Trust and Threats for Designing a netROTI
	The netROTI Overview
	The netROTI Installation Phases Detailed
	Verification

	Implementing the netROTI
	Trusted Computing Primitives
	Installation
	Verification

	Evaluation
	Performance
	Security Evaluation

	Conclusion
	Acknowledgements

