
Network-based Root of Trust for Installation

Joshua Schiffman, Thomas Moyer, Trent Jaeger and Patrick McDaniel

Systems and Internet Infrastructure Security Laboratory
Computer Science and Engineering Department, PennsylvaniaState University

Administrators of large data centers often require network installation mechanisms, such as disk cloning
over the network, to manage the integrity of their machines. However, network-based installation is vul-
nerable to a variety of attacks, including compromised machines responding toinstallation requests with
malware. To enable verification that running machines were installed correctly, we propose a network-
based Root of Trust for Installation (netROTI), an installer that binds thestate of a system to its installer
and disk image. Our evaluation demonstrates that a netROTI installation adds about 8 seconds overhead
plus 3% of image download time to a standard network install and thwarts many known attacks against the
installation process.

1 Introduction

Data centers and large enterprises often use network installation and monitoring to manage the integrity of
their deployed systems. This enables administrators to focus on hardening fewer systems that are cloned
over the network to a multitude of machines. Once installed, remote monitoring tools and services can be
used to automate the process of detecting anomalies in system behavior, intrusions, and illicit modifications
to the filesystem. These mechanisms aim to providetrusted distributionwhere by an administrator can verify
a system was installed as intended and that nothing has secretly modified the system since installation [10].
Without trusted distribution, it is difficult to ensure the ongoing correctnessof a system at runtime.

Unfortunately, network-based installation introduces new challenges to thealready difficult process of
verifying system installation. The most common method of initializing a network installation is to load
a bootstrap program over the network, thus eliminating the need for installationmedia like optical disks.
However, the addition of network access opens the possibility for malicious parties to compromise installer
code or corrupt the disk image in flight. Even after installation, malicious modifications can compromise
security-critical files, which may be difficult to detect in specialized files like configuration scripts that lack
a well known correct state. In the presence of such subversive code and hard to verify data, monitoring tools
may be tricked into reporting that nothing wrong has happened. Ultimately, a method is need for proving to
an administrator that a system has been securely installed and not been modified since that installation.

To achieve this goal, we propose a network-based Root of Trust for Installation (netROTI), an instal-
lation method that links a filesystem to its installer and the disk image used prior to configuration. If an
administrator trusts their installer and disk image, then they can trust systems booted from filesystems de-
rived from such an installation. Using the netROTI approach, administrators can configure their hardened
images, and run the netROTI to install all of their machines automatically. They can then receive a proof
from each machine, showing if it was booted from a compromised filesystem. An implementation of the
netROTI for a Eucalyptus [14] cloud environment adds only an 8 secondfixed overhead plus 3% of image
download time to the network installation process, and verification can be automated for the administrator.
The result is that secure network installation, even over an untrusted network, can be automated.

1



Image

Server

DHCP

Server

(1)

Boot

Server

(2) (3)

Cluster Servers

Figure 1: A network install bootstrapped via PXE Boot. The client system in blue loads the PXE Boot
firmware, which (1) initiates a DHCP request on the local subnet to setup basic networking and locate a
Boot Server. After obtaining this address, (2) the client requests a Network Boot Program (NBP) from
the Boot Server and executes it. The bootloader may request additional files from the Boot Server such as
modules and an initial ramdisk to setup the installer client environment. Finally, (3)the installer connects to
the Image Server and begins transferring the disk image to the target system’s hard disk. After configuring
the image, the system reboots.

2 Network Boot Installation

In this section, we first describe the process of network installation. Next,we discuss the possible attacks
on this procedure and security guarantees required for a trusted installation.

2.1 Current Network Installation

Companies and universities with large system deployments install and maintain theirsystems differently
from the typical desktop user. While individual systems are typically installedusing optical disk or a USB
drive, the long installation process, need for physical media, and specific customizations for that environ-
ment make it impractical to use the same approach for hundreds of machines.Instead, network-based instal-
lation techniques using customized automated installer images or disk cloning are used to rapidly upgrade
out-of- date systems or restore compromised servers to their proper state.

From speaking with administrators in several large companies and our own university, which supplies
computing resources for over 40,000 students, we found the most common disk cloning tools to be Syman-
tec’s Norton Ghost [2], Acronis True Image [6], or custom designed tools that use a variety of free and
open source utilities. Other services automate installation tasks like Microsoft’sWindows Deployment Ser-
vices [13] and Rocks [5]. These tools function by loading a client at boot time over the network that connect
to a management server download files like a pre-configured disk image or installer programs. This reduces
deployment time and allows administrators to harden a single installation and replicate it among systems
that perform similar tasks like VMMs in a cloud or employee workstations.

While there are several methods of bootstrapping an installer client, one of the most common methods
is the Preboot Execution Environment (PXE) [3]. Figure 1 briefly illustrates a network install using the
PXE protocol. First, the system to be imaged (we call the client) boots into the PXEfirmware (usually
loaded by the BIOS from the NIC’s firmware). Next, the client starts the protocol by (1) broadcasting a

2



DHCPDISCOVER request on port 67 with additional PXEClient extension tag. A DHCP or ProxyDHCP
server responds with a DHCPOFFER on port 68 providing an IP address and a list of Boot Servers. The
client then (2) sends a DHCPREQUEST to a Boot Server and gets a DHCPACK message with the file name
of a Network Boot Program (NBP) it retrieves from the Boot Server viaTFTP. The client then executes the
NBP, which may request additional files such as a kernel or modules required for the client’s hardware.

The installer client is setup by the NBP either using files download from the Boot Server or by retrieving
them using protocols like NFS or HTTP. Finally, the client (3) contacts the Image Server and requests a disk
image. After the image has been written to the hard drive, the client performs additional configuration steps
like setting the hostname and networking. Finally, the machine reboots into the newly imaged OS.

2.2 Attacks on Network Installation

Ensuring the correct operation of systems within large installations like a data center, requires the adminis-
trators to be able to prove their systems have been installed and configured with high integrity code and data.
While the techniques mentioned above automate installation, they do not do enableadministrators to verify
whether the system has booted from a properly installed filesystem. Potentialattacks on the installation
procedure or modification of systems later could corrupt a server and lead to a host of attacks from within
the data center. We now consider some of these attacks and then discuss theguarantees that must be satisfied
to ensure the a server has booted from a high integrity installation.

The first place a server can be corrupted is during installation. In the process described in Figure 1, the
client system could potentially load a malicious PXE firmware from the NIC installedduring a previously
compromised state. Other attacks have been demonstrated [4] that allow remoteattackers to compromise
NIC firmware over the network. In either case, such firmware could lead todirect attacks on the system’s
memory. Another vector for attack exists when the PXE client searches forthe Boot Server. Since the PXE
client relies on information from local DHCP or Proxy DHCP servers, a compromised server acting as a
rogue DHCP server on the local subnet could trick the client into downloading a malicious NBP and install
a rootkit. At the network level, an attacker could modify data sent on the wire tothe client if unencrypted or
perform an man-in-the-middle attack to tamper with the installation. Even after installation, a system may
be vulnerable. Numerous attacks exist that place rootkits or make malicious changes to the filesystem that
persist even after a system reboots.

2.3 Securing Network Boot Installation

To secure network installation, it is necessary to show the installed system is derived from the expected
origins, installer, and disk image. While not everyone may trust the installer ordisk image, those that do
would be willing to work with such a system if it could be verified. In this case, we envision that large data
center administrators would be able to leverage such trust because they specify the installer and disk images
that can be loaded.

In order to verify a system’s installation, a method is needed for accurate measurement and reporting.
Recent work in trusted computing has examined the challenge of building trustin commodity systems.
Trusted hardware such as the Trusted Platform Module (TPM) and extensions added to Intel and AMD
processors offer various trust primitives. Using this hardware support, systems can generateattestationsof
a platform’s critical code and data, which remote parties can verify. Parnoet al’s survey [15] examines the
broad range of applications to which researchers have applied these trust primitives.

Verifying installation is not very useful by itself, however, as the machine will be immediately rebooted
after installation and may be rebooted multiple times before any subsequent re-installation. Thus, any
network installation must enable verification that a system was booted from anexpected installation. Thus,
our method enables an administrator to verify that the filesystem at boot time is linked to the installation

3



origins, the installer and disk image. We note that this does not prevent the system from coming under
runtime attacks, such as buffer overflows, but these attacks will be detected if they modify the filesystem on
the next reboot.

Any secure network installation must be practical. A key question is whether the installed filesystem
is sufficiently stable to enable such a verification. In an initial experiment [9], we found that only three
files of privileged VM system configuration were modified dynamically duringits execution. Also, manual
updates to systems are prohibited in our approach, as they are ad hoc. For administrators, a clean, automated
install is preferable to manual modifications anyway. An administrator may pushspecific updates to all their
systems automatically, but these cannot be linked to the installer. We envision that software on the installed
system can extend the install-time proofs, if authorized.

3 The netROTI Method

We now introduce netROTI, a network-based installation method that links the resulting system verifiably
to a particular source. We first define our trust and threat models to establish the scope of our solution and
then detail how the netROTI augments the installation process. Finally, we describe the protocol used to
verify the filesystem’s origin.

3.1 Trust and Threats for Designing a netROTI

For our design, we assume a trust model where the physical hardware issafe from attack and is implemented
correctly. We also trust there exists an administrator or software providerwith the authority to deem partic-
ular code and data (e.g., the installer and disk image) as trustworthy. While we make no assumptions that
such trust is placed correctly, our goal is to prove that a system is linked toa particular origin certified by
one or more authorities. Thus, a verifier can determine their trust in a systembased on its trust in the ability
of authorities to certify their systems. We also trust the data center administrators and hence not addressing
insider attacks. Finally, we do not consider attacks on the cryptographic algorithms used nor attacks on the
PKI or authentication procedures like direct anonymous attestation [8] to establish identities.

For our threat model, we consider an attacker that can modify or inject dataon the network, is able to
impersonate various services, and compromise other hosts on the network.These attacks could lead to the
client loading a malicious installer, installing a vulnerable or malicious disk image, orcompromise of device
firmware. The attacker can change the contents of the client’s disk after installation and perform attacks on
the running system. Reporting attacks on the system’s runtime state is outside the scope of this work, but the
netROTI does provide a root of trust for detecting these security violations by giving a proof of the systems
initial integrity at boot time.

3.2 The netROTI Overview

The netROTI approach is a network-based system installation method that cryptographically links the in-
stalled filesystem with the installer and source used in the installation. Figure 2 illustrates each phase of
the installation procedure. Thepreinstall phasehighlighted in green is a trusted, manual step requiring the
administrator to configure the client to boot from the network and to preparethe client’s Root of Trust for
Measurement (RTM) used to record and report critical code and data.Since the tasks in this phase are per-
formed manually, we trust them axiomatically. Next, the client gathers the necessary files to install from
the network in thegather phase, which is shown in red because it need not be run by trusted code and is
unmeasured. Once collected, the system enters the subsequent blue phases, which contribute to building a
ROTI prooflinking the installer and image to the client’s filesystem. Thebootstrap phaseinitializes a secure
execution environment for the installer after the RTM measures it. The installerdownloads and measures

4



Preinstall 

Phase

Configure
boot options

Initialize
RTM

Gather

Phase

Gather 
installer client

Initialize
installer

environment

Measure
installer

Download
disk image

Measure
disk image

Bootstrap

Phase

Download

Phase

Configure

Phase

Customize
disk image

Measure
filesystem

Proof

Phase

Generate
ROTI
Proof

Figure 2: Timeline of the installation process. The administrator configures theclient in the preinstall phase.
The client then downloads the installer and bootstraps a secure environment, which measures the installer.
Next, the client downloads, measures, and configures a disk image to placeon the local disk. Finally, the
resulting filesystem is measured and a proof of the system’s Root of Trustfor Installation (ROTI proof) is
generated.

the image to be installed in thedownload phase. Next, it configures and measures the resulting filesystem
in theconfigure phase. In the finalproof phase, the RTM generates a ROTI proof later used by the system
at runtime to produce attestations, which a verifier can use to identify the installer and disk image used to
configure the filesystem from which that client booted.

3.3 The netROTI Installation Phases Detailed

Each of the netROTI installation phases has a specific goal and tasks to achieve that goal.

Preinstall Phase The preinstall phase is a manual process carried out by the system administrator to
prepare the the client system for installation. This phase is needed to configure components that enable
generation of ROTI proofs. To prepare the system, the administrator configures the BIOS to boot from the
network and installs the RTM with the keys necessary for it to identify this clientuniquely.

Gather Phase The goal of this phase is to retrieve the installation image and installer. We need not
measure this phase as we will start the install from a known state using only these inputs starting the next
phase. First, the client machine loads the network boot firmware to obtain network access and locate the
Boot Server. It then retrieves an NBP that downloads the additional installer files, the installer kernel, a
ramdisk containing the installer code, and a bootstrap program that sets up asecure environment for the
installer.

Bootstrap Phase Since the previous install phase performed unmeasured operations, there is a possibility
that malicious code may have been loaded into memory. Therefore, we must establish a clean starting
point for measuring subsequent operations in the installation process. The bootstrap phase achieves this
through a CPU-supported technique calledlate launchthat takes a piece of code, records it in the RTM,
and effectively reboots the system before executing the code in a regionof protected memory. This memory
protection prevents attacks from potentially malicious resident code loaded before the installer and from
external devices that have direct access to memory. Once the installer kernel is launched, it measures the

5



installer’s ramdisk, unpacks it into memory, and begins the next phase. We color this phase blue to indicate
the installer code and data are measured before being executed.

Download Phase After the installer has been initialized, it enters the download phase. The goal is to
retrieve and measure the disk image before installing it. First, the local system’sbasic networking and
partition table are prepared to enable a disk image to be retrieved and written to aclean disk. The disk image
is also measured into the RTM so that a verifier can later identify the trustworthiness of the downloaded disk
image. This helps detect attacks on the disk image while in transit and from compromised or rogue image
servers.

Configure Phase In the configure phase, the downloaded disk image is specialized to the target system.
This includes setting up networking, filesystem tables, devices, security policies, SSH host keys, etc. The
installer also generates signing keys used by the RTM for generating attestations and the ROTI proof. We
describe this in more detail in Section 4.2. Next, the system’s startup scripts aremodified to measure the
root filesystem at boot time. This filesystem manifest is included in attestations sothe verifier can inspect
how the filesystem has been modified.

Proof Phase In the final, proof phase, the installer generates aROTI proof that ties the final installed
filesystem to the installer and disk image for verification at runtime that the client isderived from such
inputs. The ROTI proof is a signed tupleR = Sign(F,D, I)K− , whereK− is a private key that identifies the
physical machine and is endorsed by its RTM. This tuple acts as a proof showing that a machine possessing
K− was specifically configured byI using disk imageD to produce filesystemF . A verifier can inspect
the ROTI proof to determine if it believes the combination ofI andD results in a trustworthy installation
(i.e.,F ). Upon completion of the ROTI proof, the system reboots into its newly installedfilesystem. In the
next subsection, we describe how the ROTI proof is used by a verifier tocheck the integrity of the client at
runtime.

3.4 Verification

Once the installation procedure is complete, the system is ready for verification. A successful validation
proves to a verifier the particular installer and disk image that was used to install the current filesystem. The
verifier can then make a trust decision whether the combination of installer anddisk image came from a
source they trust.

Figure 3 illustrates the validation procedure. During boot, the initial ramdisk (initrd) is loaded and
measures the root filesystem to generate a manifest of hashes for each file. Next, the system starts a network
facing attestation daemonto handle attestation requests. When a remote verifier wishes to inspect the
proving system, it sends a nonce to the attestation daemon that builds an attestation and returns it to the
verifier. The attestation is a signed statementA = Sign(R,F ′, N)K− , whereR is the ROTI proof,F ′ is
the current filesystem manifest,N is the nonce, andK− is the private key of the system endorsed by its
RTM. The verifier checks that the signatures on both theA andR are from keys endorsed by the RTM of
the proving system. Verifying the identities of keys is outside the scope of this paper, but we assume a
PKI is maintained by the administrator deploying the systems. Once it has established the identities of the
signing keys, the verifier assesses whether it trusts the installer and disk image inR to produce a trustworthy
installation. If it does, it then comparesF ′ andF in R to see how they differ. If no security critical files
have changed, the verifier can assume the current system booted into a filesystem that was produced by an
installer and disk image the verifier trusts.

6



Measure

Fileystem
Request

Attestation

Verify

Attestation

Generate

Attestation

Create
filesystem
manifest

Measure
manifest

Send nonce
to prover

Sign 
attestation

Generate
attestation

Verify signatures
and filesystem

Assess installer
and disk image
trustworthiness

Proving

Client

Verifying

System

Figure 3: Timeline of the validation process. The filesystem on the proving client is measured to generate
an attestation of the installed and current filesystems, which can be checkedby the verifying system.

4 Implementing the netROTI

We now describe our proof of concept netROTI implementation. We first introduce some background on
the trusted computing components we use and then we give an overview of theinstallation process and then
detail the key components.

4.1 Trusted Computing Primitives

Two key mechanisms we employ in the netROTI are TPM attestations and the new dynamic root of trust.
The TPM is a secure coprocessor attached to the motherboard that provides several features. These includes
NVRAM for storing cryptographic secrets and a set ofplatform configuration registers(PCRs) that stores
arbitrary data measurements. The TPM also contains a public key pair called the Endorsement Key (EK) that
uniquely identifies the TPM device and associated client. Using the EK, the TPMcan generate and certify
other keys. The main runtime mechanisms of the TPM are: 1)TPM Extend, which adds a measurement to a
PCR by hashing the measurement value with the current PCR value to form a hash chain and 2)TPM Quote,
where the TPM produces a signed statement over a specified set of PCRsand a nonce from a second party.
This quote allows a remote verifier to examine the state of the system (represented by the measurements in
the PCRs) at the time the nonce is generated. The TPM uses a signing key called the Attestation Identity
Key (AIK) derived from the EK to sign the quote, which effectively identifies the quote as coming from the
platform containing the TPM. A quote combined with the list of measurements associated with the PCRs’
current state is called anattestation. To verify an attestation, a remote verifier validates that the measure-
ments correspond to acceptable operation (e.g., a trusted installer load) andthat the series of measurements
results in the provided PCR values.

Producing meaningful attestations requires establishing aroot of trustguaranteeing measurements are
taken by a trustworthy entity on the system. A computer boots into what is called astatic root of trust
for measurement(SRTM) because the normal boot process is largely fixed. Normally, the BIOS takes a
measurement of its firmware and option ROM chips before passing control tothe bootloader, which is
expected to continue the measurement chain by measuring itself, the kernel and so on. This chain rooted
in the normal boot procedure gives a verifier a view of how the system booted. However, there are several
known attacks on the SRTM, such as TPM reset attacks that enable an attacker to reset a PCR and insert
false measurements.

To address these issues, new secure virtualization architectures like AMD’s Secure Virtual Machine

7



PXELinux.0

OSLO

BIOS

TPM

Boot
Server

Proxy

DHCP

Service

DHCP 
Server

DHCP

Service

TFTP

Service

PXE Client

Linux Kernel

Initial 
Ramdisk

Pamplona

Secure 
Loader

Munich

Step 1: Get

Boot Server

Information 

Step 2: Get 

Bootstrap

Program

Step 3: 

Download

NBP Binaries

Step 4: Call 

SKINIT to launch

Secure Loader

Step 5: 

Measure 

loader 

Step 7: 

Measure 

installer files

Step 6: 

Execute loader

Figure 4: After the client follows the PXE protocol and contacts the Boot Server, it downloads theoslo
bootloader’s three binaries, the installer kernel, and initial ramdisk.oslo performs the AMD DRTM oper-
ation, SKINIT, which causes the CPU to clear the DRTM registers, extend PCR 17 with a hash of the Secure
Loader Block (SLB), and begins executing the SLB, which measures the rest of the downloaded files and
extends it to PCR 19.pamplona undoes the DRTM memory protection andmunich launches the kernel
to being installation.

(SVM) [7] and Intel’s Trusted Execution Technology enable a machine to form adynamic root of trust for
measurement(DRTM) by effectively rebooting the system and executing a piece of code called a secure
loader in a memory protected region safe from code loaded before the loader was executed. The CPU first
sets a special group of DRTM PCRs to a specific value that only the CPU canset and then measures the
loader before it is started. This prevents malicious code from imitating the DRTMprocess by inserting
secure loader’s code measurement in to the PCR. The DRTM is useful forbootstrapping security critical
code like a VMM kernel when the security of the system is difficult to assessat boot time.

4.2 Installation

We created our netROTI as a series of scripts that automates the installation process packed into an 11 MB
ext2 ramdisk downloaded along with a modified Linux 2.6.18 kernel and the OSLO [11] bootloader. OSLO
is a specialized bootloader that implements the DRTM functionality in AMD processors that we use to
launch the installer kernel in a secure environment. Before installation begins, the administrator configures
the BIOS to boot from the PXE firmware. The TPM must also be cleared of any previous administrative
passwords and keys, so the installer can create its own. This corresponds to the preinstall phase in our design.
In the gather phase, the begins the PXE protocol to obtain the location of the Boot Server. The client then
downloads thepxelinux.0 NBP via TFTP, which automatically retrieves the OSLO bootloader, Linux
kernel, and installer ramdisk.

The system then enters the bootstrap phase illustrated by Figure 4. First, theNBP constructs a multiboot
header indicating the address where the the installer files are located in memoryand executes the OSLO

8



bootloader. OSLO consists of three ELF binaries that perform separatestages of the DRTM process. The
first binary prepares the system for the DRTM process by shutting downall but the primary CPU core and
loads the second stage binary into the secure loader block (SLB). The AMD DRTM instruction, SKINIT,
is invoked with the entry point address of the SLB as its only argument. The CPU then sets the DRTM
PCRs in the TPM to -1, sets the device exclusion vector (DEV) to enable memoryprotection for the SLB,
and sends a measurement of the SLB to the TPM. Finally, the CPUs jumps to the entry point in the SLB
that measures the installer Linux kernel, ramdisk, and boot parameters in themultiboot header, restarts the
other CPU cores, and disables the DEV protection. Finally, it launches the third stage binary that imitates a
normal GRUB bootloader and launches the Linux kernel.

Once the installer has been bootstrapped, the ramdisk is unpacked into memoryand the installation script
is executed. This sets up basic support for devices like console and networking and starts the download
phase by running apartimage client. This contacts a preconfiguredpartimaged server, verifies its
SSL certificate against the CA certificate in the ramdisk, establishes an SSL connection, and downloads the
disk image. The image is measured and then written to the hard disk.

In the configure phase, the installer scripts configures machine specific files including updating the
UDEV rules for new hardware, networking configurations, firewall rules, fstab entries, creating a swap
partition, regenerating SSH host keys, and so on. The TPM is then setup with new administrative credentials
and a fresh AIK is generated. The TPM also endorses the AIK by creating a certificate that signs the AIK’s
public key with the TPM’s EK. The installer also installs a simple network-facing python service we wrote
that acts as the attestation daemon, which services requests for attestations.The initial ramdisk on disk is
then modified to generate a manifest of the filesystem every time it boots. This manifest contains a hash of
every file and is used to create attestations.

In the proof phase, the installer measures the files on disk that have changed or been added since the
disk image was written. A list of SHA1 hashes for each file is stored on the disk. The final step generates
the ROTI proof by producing a TPM quote with PCRs containing every measurement taken during the
installation process. This quote is signed with the newly created AIK from the configure phase. We use a
hash of the system’s hostname as the nonce since we are not concerned with the freshness of the quote, as
we only care that the ROTI proof correctly identifies the installer and disk image for this system. We tar and
gzip the quote with the file manifest and list of measurements taken during installation to create the final
ROTI proof file.

4.3 Verification

We now describe the verification protocol between a system installed by the netROTI (the proving system)
and a remote verifier. Before the protocol begins, the proving system boots into its initial ramdisk. It
then executes the measurement script inserted during installation. This script generates a manifest of the
entire filesystem with corresponding hashes for each file. The system resumes the boot process and starts
the attestation daemon. When a verifier sends a nonce to the daemon, the daemon takes a SHA1 hash of
the nonce and requests a TPM quote signed by the TPM’s AIK. The quote’s PCRs contains a hash of the
filesystem manifest taken at boot time and the nonce. The quote is then returned to the verifier with the
ROTI proof file (corresponding toR in the attestationA from Section 3.4), the filesystem manifests taken at
boot (F ′) and during installation (F ), and the AIK’s certificate (the verifier has the nonceN already).

Upon receipt of the attestation, the verifier first validates the signatures ofthe quote and ROTI proof. It
then checks that the AIK’s certificate is signed by the expected TPM’s EK.Next, the verifier assesses the
trustworthiness of the installer and disk image by extracting them from the ROTIproof and matching them
against a list of acceptable measurements. If these are found to be trustworthy, the filesystem manifests are
compared to see if any files have changed since installation. If no security critical files are modified, then
verifier accepts the proving system as having booted into a filesystem installed by a trusted installer and disk

9



Type Operation Time (seconds)
Install Download and Write Disk Image 64.000
Install Configuration 18.644

Sub-total 82.644
netROTI netROTI Configuration 6.740
netROTI Measure Image 1.900
netROTI Generate TPM Quote 0.890
netROTI Measure Modified Files 0.390

Sub-total 9.920
Optional TPM Setup 45.400
Optional Generate AIK 11.220

Sub-total 56.620
Total Install 149.184

Table 1: Breakdown of the installation time averaged over ten installations of a Eucalyptus cloud node.

image.

5 Evaluation

We constructed a proof of concept netROTI installer to assess the overall impact it has on network installa-
tion and how it address attacks on the installation process.

5.1 Performance

To evaluate the overhead our netROTI installer imposes on the installation procedure, we performed ten
installations of a Eucalyptus cloud node’s disk image across ten systems. We created an image to be installed
by manually configuring an Ubuntu server cloud in our Eucalyptus on a DellPowerEdge M605 blade with
8-core 2.3GHz Opteron CPUs and 16GB of RAM on a quiescent gigabit network. We then created a 387
MB gzipped disk image of the 1.3 GB filesystem. Table 1 shows the times for each operation performed
during installation. Normal installation took 82.644 seconds or 55.34% of the overall time. The disk image
related operations (e.g., downloading, writing, and measuring the image) area function of the disk image’s
size, which can be improved through more efficient compression algorithms.In particular, we found our
hardware could perform SHA1 hashes at 132 MB/s, which resulted in a 1.9 second disk image measurement
time.

TPM related operations are inherently slow due to the speed of the TPM’s bus (33 MHz) and its low
power design. While netROTI specific operations added additional time to the install, two operations,
namely generating a new AIK and TPM setup, account for 37.95% of that overhead. We note that the
function of these steps are to create keys that could be reused across multiple installations as long as the
encrypted public portions of the AIK and SRK (created in the TPM setup operation) are retained during
reinstallation. Thus, an administrator could copy those encrypted files and redistribute them in the installer
or have the installer copy them from the local disk before overwriting it. Ultimately, we find the overhead
due to the netROTI to be a fixed cost of about 8 seconds plus about a 3% overhead for measuring the image
when the optional TPM setup and AIK creation steps are reused from previous installations.

10



Attack Type OSLO Tripwire Bitlocker netROTI
Rootkits before install Yes No No Yes
Malicious installer code Yes No No Yes
Malicious disk image No No No Yes
Modified data after install No Yes Partial Yes
Runtime attacks No No No No

Table 2: A comparison of several mechanisms’ ability to detect or prevent several classes of attack on an
installation.

5.2 Security Evaluation

Table 2 lists a comparison of several security mechanisms and their ability to handle a range of attacks on the
network installation process. In addition to our netROTI design, we consider the OSLO bootloader alone,
the filesystem auditing tool Tripwire [12], and the Windows Bitlocker file encryption scheme [1]. OSLO
uses the DRTM process to both measure malicious installer code and defeat rootkits the system might boot
into before installation, but it is unable to address attacks beyond that. Tripwire is an auditing tool that
creates a digitally signed log of the installed filesystem that administrators can query to detect changes. This
prevents attacks that change the disk contents after installation, but cannot guarantee anything about the
filesystem during installation. Bitlocker encrypts the filesystem and optionally uses the TPM to verify that
the early boot phase has not been modified before decrypting the disk. While this prevents offline attacks,
modifications to the disk after decryption are not prevented. The netROTI uses OSLO for protection against
rootkits and to record malicious installers. It also measures disk images before installation and uses the
ROTI proof combined with boot-time filesystem measurements to detect changes. However, none of these
approaches directly address attacks on the installed system at runtime.

The key advantage of the netROTI over these other approaches is its abilityto provide an attestation
of not only the filesystem, but the installation environment that produced it. While the other solutions in
our comparison prevent attacks at various stages of the installation process, none of them can speak for the
trustworthiness of the installer that produced them. By using secure hardware to measure before using each
critical component during installation, a verifiable proof can be created ofthe filesystem’s origin.

6 Conclusion

In this article, we introduced the netROTI, a method for performing network installation so that the resulting
filesystem can be traced back to the exact installer and disk image that produced it. The netROTI leverages
the protection of trusted computing features in modern CPUs to bootstrap a dynamic root of trust in an
installer downloaded over the network and record all steps of the installationprocedure to produce a ROTI
proof. Using this proof, a verifier can inspect whether the guaranteesof trusted distribution have been
achieved. Our evaluation demonstrated the netROTI protects against a variety of attacks on the installation
process and introduces only minimal overhead when optimizations are taken into account.

7 Acknowledgements

This work was supported by NSF grants CNS-0931914 and CNS-0627551. We would also like to thanks
Luke St. Clair for his efforts in designing Root of Trust Installer, Erik Steigler and Mark Tamminga for their
insights into network installation, and Bernhard Kauer for his design of andassistance using OSLO.

11



References

[1] BitLocker Drive Encryption: Technical Overview.http://technet.microsoft.com/en-us/windowsvista/aa906017.aspx

[2] Norton Ghost.http://www.symantec.com/norton/ghost.

[3] Preboot Execution Environment (PXE) Specification.http://www.intel.com/design/archives/wfm/downloads/pxespec.htm

[4] The Jedi Packet Trick takes over the Deathstar.http://www.alchemistowl.org/arrigo/Papers/Arrigo-

[5] Rocks Clusters.http://www.rocksclusters.org/wordpress/, August 2010.

[6] Acronis. True Image.http://www.acronis.com/homecomputing/products/trueimage/index.html

[7] Processor-based virtualization, amd64 style.http://developer.amd.com/documentation/articles/pages/630200615.asp

[8] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation.In 11th Conference on Computer
and Communications Security, pages 132–145, New York, NY, USA, 2004. ACM.

[9] L. S. Clair, J. Schiffman, T. Jaeger, and P. McDaniel. Establishing and sustaining system integrity
via root of trust installation. InProceedings of the 2007 Annual Computer Security Applications
Conference, pages 19–29, Dec. 2007.

[10] R. P. Gallagher. A Guide to Understanding Trusted Distribution in Trusted Systems.
http://www.fas.org/irp/nsa/rainbow/tg008.htm, 1988.

[11] B. Kauer. Oslo: improving the security of trusted computing. In16th USENIX Security Symposium,
pages 1–9, Berkeley, CA, USA, 2007. USENIX Association.

[12] G. H. Kim and E. H. Spafford. The design and implementation of tripwire: a file system integrity
checker. InConference on Computer and Communications Security, pages 18–29, New York, NY,
USA, 1994. ACM.

[13] Microsoft. Windows Deployment Services.http://msdn.microsoft.com/en-us/library/aa967394.aspx

[14] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorodnov. The eu-
calyptus open-source cloud-computing system. In9th International Symposium on Cluster Computing
and the Grid, pages 124–131, Washington, DC, USA, 2009. IEEE Computer Society.

[15] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping trust in commodity computers. InProceedings
of the IEEE Symposium on Security and Privacy, May 2010.

12

http://technet.microsoft.com/en-us/windowsvista/aa906017.aspx
http://www.symantec.com/norton/ghost
http://www.intel.com/design/archives/wfm/downloads/pxespec.htm
http://www.alchemistowl.org/arrigo/Papers/Arrigo-Triulzi-CANSEC10-Project-Maux-III.pdf
http://www.rocksclusters.org/wordpress/
http://www.acronis.com/homecomputing/products/trueimage/index.html
http://developer.amd.com/documentation/articles/pages/630200615.aspx
http://www.fas.org/irp/nsa/rainbow/tg008.htm
http://msdn.microsoft.com/en-us/library/aa967394.aspx

	Introduction
	Network Boot Installation
	Current Network Installation
	Attacks on Network Installation
	Securing Network Boot Installation

	The netROTI Method
	Trust and Threats for Designing a netROTI
	The netROTI Overview
	The netROTI Installation Phases Detailed
	Verification

	Implementing the netROTI
	Trusted Computing Primitives
	Installation
	Verification

	Evaluation
	Performance
	Security Evaluation

	Conclusion
	Acknowledgements

