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ABSTRACT

Leaking a program’s instruction address (PC) pattern, completely
and precisely, has long been a sought-after capability for micro-
architectural side-channel attackers. Case in point, such a primitive
would be sufficient to construct powerful control-flow leakage at-
tacks (inferring program secrets impacting control flow) that defeat
existing control-flow leakage mitigations, or even reverse-engineer
private binaries through PC-trace granular fingerprinting. How-
ever, current side-channel attack techniques only capture PCs at a
coarse granularity or for only specific instruction types.

In this paper, we propose the first micro-architectural side-
channel attack that is capable of directly observing the exact PCs
of arbitrary victim dynamic instructions—i.e., even the PCs of non-
control-transfer instructions and even if the program code is private.
Our attack exploits several previously overlooked characteristics in
modern Intel Branch Target Buffers (BTBs). The core observation
is perhaps counter-intuitive: despite being a structure related to
control-flow prediction, the BTB incurs observable state changes
after the execution of potentially any instruction, not just control-
transfer instructions.

Through reverse-engineering and analyzing said BTB vulner-
abilities, we design and implement an attack framework named
NightVision. We demonstrate how NightVision is capable of
efficiently and accurately identifying a subset, or the entirety, of a
victim program’s dynamic PC trace (depending on the attacker’s
capabilities). We show how NightVision enables a new control-
flow attack that bypasses prior defenses. Additionally, we show that
when combined with code fingerprinting techniques, NightVision
enables reverse-engineering of private programs.
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1 INTRODUCTION

Micro-architectural side-channel attacks have emerged as a critical
security threat. By co-locating to the same processor, these attacks
enable attackers to deduce program characteristics (e.g., control-
flow decisions, the set of addresses touched in data memory) by
observing the micro-architectural effects stemming from a victim
program’s execution (e.g., through the cache, branch predictors and
more [4, 5, 7, 18, 26, 44, 58, 65]).

One such program characteristic of fundamental interest to side-
channel attackers is the victim’s dynamic PC trace. That is, the se-
quence of PCs corresponding to the victim’s dynamic instructions
over the course of its execution. If attackers are able to directly learn
the victim program’s PC trace, they would be able to beat state-
of-the-art defenses for current attacks, and even effectuate new
types of attacks. For example, consider control-flow leakage attacks
whereby an attacker tries to learn secret-dependent branch deci-
sions in otherwise public programs (e.g., RSA) [18, 26, 39, 42, 46, 55].
There has been significant work to mitigate these attacks, e.g.,
through branch balancing [42, 46] and control-flow randomiza-
tion [25], while keeping the secret-dependent control flow intact
for performance reasons (i.e., not converting to data-oblivious
code [11, 67]). Yet, all of these defenses immediately fail if the
attacker is able to directly learn the victim program’s PC trace.
Going beyond control-flow leakage attacks, knowing the victim
program’s PC trace enables new attacks on private programs. For
example, extracting a significant portion of the victim’s dynamic
PC trace enables code fingerprinting on otherwise private code.

Yet, no existing side channel can precisely and directly ex-
tract any given instruction’s PC, or for that matter the program’s
PC trace. For example, controlled-channel attacks and their vari-
ants [23, 56, 60, 64] learn the PC trace at a page or cache-level
granularity. This is too coarse to be useful against basic defenses,
which impose simple restrictions to confine control flow within
the minimal observation granularity (e.g., a single cache line) [50].
Several other attacks are capable of extracting PCs of particular
instruction types (e.g., loads/stores [14, 19], jumps [17, 39]) or for
specific code patterns (e.g., Frontal [46]). But this is not sufficiently
general to infer arbitrary secret-dependent control flow, let alone
recover the entire PC trace for attacks such as code fingerprinting.
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This Work. We demonstrate the first micro-architectural side-
channel attack capable of leaking the byte-granular PC of any victim
dynamic instruction. Our attack is enabled by new findings related
to how Branch Target Buffers (BTBs) are implemented in modern
Intel processors. In a nutshell: It’s well known that control-transfer
instructions update the BTB, as a function of their PC and predicted
target. Indeed, this behavior underpins current attacks [17, 35, 39,
69]. Our key observation is that modern BTBs, i.e., implemented
with pipelined superscalar cores in mind, are also updated based on
the execution of non-control-transfer instructions. We show how this
enables the BTB to leak the exact PCs of even non-control-transfer
instructions, e.g., of the instructions in the shadow of a branch or
even the instructions in straight-line code.

The above might seem counter-intuitive. The BTB only maps
branch/jump PCs to predicted target PCs, which is seemingly ir-
relevant to non-control-transfer instructions. However, in modern
pipelined processors, the BTB is accessed without knowledge of
the fetched instruction except for its PC. Additionally, modern
BTB tag checks usually leave out the highest-order bits to save on
area [39, 69]. Hence, it is possible for a BTB tag check to ‘succeed’
but to provide a prediction corresponding to a different instruction,
even when the instruction corresponds to a non-control-transfer
instruction.

Such false hits overwhelmingly result in pipeline squashes. To
counteract this potential performance loss, we find that modern
Intel processors deallocate the involved BTB entry upon detecting
a false hit—as soon as instruction decoding finishes and even if the
instruction causing the false hit doesn’t retire. Since BTB entries
correspond to branches, a BTB hit on a PC that decodes to a non-
control-transfer instruction is necessarily a false hit. Thus, non-
control-transfer instructions that alias with existing entries in the BTB
create observable BTB state changes.

We find that the above effects are further amplified by how the
BTB is implemented to handle superscalar fetch. Since modern
superscalar processors fetch instructions in bundles, BTB lookups
in fetch have range query-like semantics. That is, the BTB com-
pares the fetch PC with all BTB entries whose PCs are greater than
but nearby the fetch PC. Effectively, this means that BTB dealloca-
tions can be an indicator of not only whether a fetched instruction
matches a certain PC value, but also whether it falls within a BTB
entry-defined address range.

Based on the above, we propose an attack framework
called NightVision. The core of NightVision is a novel BTB
Prime+Probe-like primitive which captures updates made by a
co-located victim’s execution, using attacker-allocated BTB en-
tries. Using the false hit-induced deallocation effect, we show how
NightVision can determine the PCs of (in the best case) individual
victim dynamic instructions. By further exploiting BTB range query
semantics, we show how the attacker can efficiently binary search
through larger address ranges to recover said PCs.

We demonstrate how to use NightVision to attack victim pro-
grams in user-/supervisor-level attacker settings, where we con-
struct control-flow leakage attacks for leaking secret data influenc-
ing program control flow. Our attacks circumvent defenses that
mitigate prior control-flow leakage attacks [17, 25, 39, 42, 46]. When
equipped with supervisor-level capabilities, such as managing sys-
tem resources like virtual memory and interrupts, we showcase how

NightVision can deduce the exact PC of every victim dynamic in-
struction. With the extracted PC trace, we show how NightVision
can be used to reverse-engineer private programs with function
fingerprinting techniques, in settings where TEEs (e.g., we evaluate
on SGX) would otherwise provide code confidentiality protection.

We evaluateNightVision using two existing cryptographic func-
tions with secret-dependent control flow: big number comparison
in Intel’s IPP Cryptographic library [31] and the Greatest Common
Divisor in MbedTLS [2], both evaluated by a recent work [46]. We
show that several prior software defense mechanisms, like branch
balancing [42], basic block alignment [46] and control-flow random-
ization [25], and hardware mitigations (IBRS/IBPB) are ineffective
at mitigating our attack. We further demonstrate howNightVision
with supervisor privileges manages to identify both of the above
functions from a corpus of 175K other functions by applying its
function fingerprinting on the recovered dynamic PC traces, when
code privacy is enforced by Intel SGX.

To summarize, we make the following contributions:

• We show how modern BTB design enables learning the PCs
of arbitrary victim dynamic instructions.

• We implement an attack framework, named NightVision,
and demonstrate howNightVision can observe select victim
instructions’ PCs, or the victim’s entire dynamic PC trace,
depending on the attacker’s capability.

• We show how variants of NightVision can be used to leak
secret data influencing program control flows even with
prior software/hardware mitigations enabled, and reverse-
engineer private binaries using function fingerprinting.

We responsibly disclosed to Intel who acknowledged our find-
ings.

2 BTB MECHANISM

2.1 Existing BTB Reverse-Engineering

Takeaways

Branch prediction is an essential performance optimization in mod-
ern processors to reduce the delay caused by control-transfer in-
structions. The core of branch prediction is a Branch Target Buffer
(BTB), which is a lookup table mapping branch/jump addresses
(PCs) to their target PCs [24]. Since the BTB is shared by all
software running on the same core, prior work has attempted
to reverse-engineer the BTB and use it to mount side-channel
attacks [17, 35, 39, 69]. Next, we highlight the BTB mechanism
disclosed by prior work.

In a nutshell, the BTB mechanism comprises two key actions: ac-
cess and update. At the instruction fetch stage, the BTB is accessed to
select an entry for predicting the target of the fetched branch/jump,
which becomes the next instruction to fetch. If no BTB entry is
selected or the selected BTB entry contains an incorrect target, the
BTB is later updated with the correct target of the branch/jump,
e.g., by allocating a new BTB entry or replacing an existing entry.

The BTB’s organization on modern processors resembles a set-
associative cache. Every BTB access uses tag, set index, and offset
fields computed from the current instruction pointer. The set index
field determines the BTB set, and the tag and the offset are used for
selecting the matched BTB entry in the set. The offset field is usually
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5 bits [33, 69], meaning branches within the same 32-byte-aligned
block are mapped to the same set. Unlike the processor cache which
uses all higher-order address bits as the tag, BTB tags tend to be
truncated to reduce the BTB size1, since the BTB is a predictor
and needs not to guarantee correctness. This causes branches with
the same lower-order bits to collide on the same BTB entry: the
first branch’s execution allocates a BTB entry, which is later used
to predict for a different instruction with the same lower-order
address bits.

Previous BTB side-channel attacks focus on BTB collisions be-
tween an attacker branch and a victim branch in two different ways.
First, by executing after the victim branch, an attacker branch may
access the BTB entry allocated by the victim branch. This enables
the attacker to learn, through timing channels, the victim branch de-
cision [17, 18]. Second, the attacker can execute branches first so as
to corrupt the BTB and influence the prediction of the victim branch
that executes after, thereby facilitating transient execution attacks
(e.g., Spectre V2) [12, 35, 69]. While attacks such as Spectre V2 are
mitigated with recent hardware defenses (e.g., Intel IBRS/IBPB) by
preventing the collisions between indirect jumps, as we will elabo-
rate in §4.1, collisions remain achievable in general and these lead
to more fundamental attacks like NightVision.

2.2 Overview of Unexplored BTB Behaviors

Existing BTB side-channel attacks focus on the BTB behavior in
response to only branches. This view of the BTB, however, oversim-
plifies the BTB mechanism and misses critical details about BTBs
in modern processors. In this section, we conduct experiments to
reveal two previously unexplored BTB behaviors.

Firstly and counter-intuitively, we learn that not only control-
transfer instructions, but also non-control-transfer instructions can
update the BTB. Since modern processors are deeply pipelined,
instructions are unrecognized until they are decoded, which hap-
pens several cycles after instruction fetch. When the instruction
pointer points to a non-control-transfer instruction, with no in-
formation about the instruction except its PC, the BTB must be
accessed as usual. However, because the BTB lookup disregards
higher-order PC bits, a false hit may occur, making a control trans-
fer for the non-control-transfer instruction, eventually causing a
pipeline squash after the instruction is decoded. This is where a
non-control-transfer instruction can affect the BTB state—we find
that the chosen BTB entry gets deallocated to prevent misprediction
on the next encounter of the same non-control-transfer instruction.
We demonstrate this behavior in §2.3.

Our second investigation examines the impact of superscalar
pipelines on BTB accesses. Modern Intel CPUs fetch several con-
secutive instructions within a 32-byte aligned fetch block every
cycle [33, 34, 69]. This bundle of fetched instructions, known as a
prediction window or PW [34, 36], consists of either non-control-
transfer instructions with a trailing taken branch/jump, or purely
non-control-transfer instructions that end at the 32-byte boundary.
Since the instructions within the bundle are not known until the
decode stage, the BTB access logic must operate at PW granularity

1The actual number of lower-order PC bits used for BTB lookup depends on the
processor generation. Based on our reverse engineering, BTBs in Intel SkyLake/Kaby-
Lake/CoffeeLake/CascadeLake CPUs ignore address bits 33 and above, while IceLake
BTB ignores address bits 34 and above.

1 F1: jmp L1; // address range: [F1, F1+1]
2 ...
3 L1: ret;
4 ...
5 < 4/8 GB padding >
6 ...
7 F2: nop; nop; ... nop; // address range: [F2, L2-1]
8 L2: ret;
9
10 /* Experiment1 */
11 for (i = 1 ... 1000) {
12 flushBTB();
13 F1(); // allocate a BTB entry
14 F2(); // may update the allocated BTB entry
15 F1(); // observe the BTB prediction outcome
16 }

Figure 1: BTB experiment in §2.3 for showing how non-

control-transfer instructions update (deallocate) BTB entries.

rather than instruction granularity. Specifically, the BTB access
logic must first predict the location of the next branch/jump after
the current PC (end of the current PW), and then the target of that
branch/jump (beginning of the next PW). To achieve this, as we
will show in §2.4, the BTB access hits an entry if that BTB entry
has the same tag and the set index, and the same or larger offset
compared to the current PC offset. When multiple BTB hits are
present, the one with the smallest offset, yet no smaller than the
current PC offset is selected.

2.3 BTB Updates with Non-branches

We use the code in Figure 1 to observe the BTB update made by
non-control-transfer instructions. In each loop iteration, we first
flush the BTB (line 12) using the BTB cleanup routine from [18]. The
code then calls F1 to allocate a BTB entry representing the jump
in F1 (line 1). The returns on line 3 and 8 are used for returning to
the caller and are not the focus of the experiment. F2 contains a
series of nops that may affect the allocated BTB entry state. In the
second call to F1 on line 15, we measure the prediction outcome of
jmp L1 to identify whether a BTB entry update occurs.

Given that the BTB uses the lower 32 (or 33, based on the CPU
version) address bits for indexing, we place F1 and F2 in different
4 GB (or 8 GB) regions in memory, allowing instructions belonging
to F1 and F2 to possibly create BTB collisions, i.e. some nop in F2
may have identical lower 32 address bits as jmp L1. For simplicity,
we only specify the lower-order bits for all addresses and ignore
the higher-order bits. To ensure the BTB entry allocated by jmp L1
is only affected by nops in F2, when exploring different L1 and L2
values in this experiment, we always maintain F1 ≤ L2-2 (note that
jmp L1 is 2-bytes long) hence jmp L1 can only collide with nops.

Experimental Methodology. We perform the experiment on a se-
ries of Intel CPU architectures, including SkyLake (Xeon 8124),
KabyLake (Core 7700), CoffeeLake (Core 9700/9900), CascadeLake
(Xeon 8252/8259), and IceLake (Xeon 8375). To capture BTB updates,
we use Last Branch Record (LBR)2, a feature available in all modern
mainstream Intel processors that logs runtime information of all
retired control-transfer instructions, including the branch PC, the
2Here, LBR could be replaced with a traditional timestamp counter (rdtsc)-based
measurement or Intel Process Trace (PT). We opted to use LBR since it is orders-of-
magnitude less noisy, as pointed out by [39].
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Figure 2: The averaged elapsed cycles between the retire of

jmp L1 (line 1 in Figure 1) and the subsequent return (line 3)

as we change the value of F2. The orange line is the reported
cycle count by Experiment 1 in Figure 1, whereas the blue

line is the cycle count if we remove the call to F2 on line 14.

The gap between the two lines when F2 < F1 +2 indicates that
when jmp L1 collides with the nops in F2, its BTB entry is

updated (deallocated) thus leading to a misprediction.

predicted direction (only valid for conditional branches), and the
elapsed cycles between the retire of the last recorded branch to the
retire of the current branch. To measure the prediction outcome
of jmp L1 during the second call of F1 on line 15, we retrieve the
elapsed cycles reported for the subsequent return (line 3), which
represents the duration between retiring jmp L1 and the subse-
quent ret. When jmp L1 is predicted correctly, jmp L1 and the
following ret should fetch/execute/commit back-to-back, therefore
this duration is expected to be smaller compared to when jmp L1
is mispredicted.

Result and Takeaway. The yellow line in Figure 2 shows the
elapsed cycles between the retire of jmp L1 and the subsequent
ret when varying F2, the starting address of the nops. When F2
starts at an address prior to F1+2, i.e. when jmp L1 collides with a
nop in F2, we see a larger cycle count compared to when jmp L1
does not collide with any nop. For reference, we plot the elapsed
cycles in Figure 2 when removing the call to F2 on line 14 in Figure 1
as the blue line. The difference between the two lines illustrates
how the execution of F2 influences the BTB entry allocated by jmp
L1. The same pattern remains when varying F1 and L2, or replacing
nops with other non-branches such as adds. Also, the observation
is consistent across all tested Intel CPUs. Thus we conclude that:

Takeaway 1: The BTB update (deallocation) can occur when
only non-control-transfer instructions collide with the branch
recorded by the BTB entry.

2.4 BTB Accesses with PWs

We use Figure 3 to study the BTB access logic of modern super-
scalar processors. Similar to the previous experiment, we start each
test by flushing the BTB (line 14). The code executes two different
jumps (jmp L1 on line 2 and jmp L2 on line 8) by calling J1 and
F2 back-to-back on line 15 and 16. Importantly, we fix the address
range of jmp L1 at [0x1e, 0x1f] and limit the starting address of
jmp L2, F2, to an arbitrary value within [0, 0x1c] (notice both direct
jumps are 2-bytes long, and they share the same set index bits and
tag bits, but not offset bits and bits higher than bit 33), so the two
jumps do not collide but allocate entries within the same BTB set.
Then, on line 17 we jump to a series of nops before jmp L1, and

1 F1: nop; ... nop; // F1 ∈ [0, 0x1e]; # of nops = 0x1e - F1
2 J1: jmp L1; // address range [0x1e, 0x1f]
3 ...
4 L1: ret;
5 ...
6 < 4 / 8 GB padding >
7 ...
8 F2: jmp L2; // address range [F2, F2+1] (F2 ∈ [0, 0x1c])
9 ...
10 L2: ret;
11
12 /* Experiment2 */
13 for (i = 1 ... 1000) {
14 flushBTB();
15 J1(); // allocate a BTB entry
16 F2(); // allocate another BTB entry
17 F1(); // observe the BTB prediction outcome
18 }

Figure 3: The BTB experiment used in §2.4 for studying the

BTB access behavior.

Figure 4: The average elapsed cycles between the retire of

the call to F1 (line 17 in Figure 3) and the subsequent return

after jmp L1 (line 4) as we change F1 between [0, 0x1e].
The orange line is the reported cycle count by Experiment

2 in Figure 3, whereas the blue is the reported cycle count

when we remove the call to F2 (line 16). The gap between

the two lines when F1 < F2 +2 indicates that the BTB entry

allocated by jmp L2 is used when fetching nops at F1, leading
to misprediction.

execute a longer PW code (from the first nop at F1 to jmp L1). In
this experiment, we observe any misprediction when processing this
PW as we vary F1 and F2 without violating the above constraints.

Experimental Methodology. We test this experiment on the same
Intel machines as the previous experiment, and use LBR to measure
the prediction outcome. Different from the previous experiment
which measures the prediction of a single jump, this experiment
requires inferring the prediction decision during the execution of
the entire PW (line 1 to 2). Therefore, we use LBR to extract the total
elapsed cycles between the call to F1 (line 17) and the return after
jmp L1 (line 4). This cycle count reflects the prediction decision
made for any preceding nops as well as jmp L1.

Result and Takeaway. As before, we plot two lines in Figure 4.
The yellow line plots the elapsed cycles between the retire of line 17
and line 4 as we change the value of F1. The blue line reports the
samemeasurement with the call to F2 (on line 16) skipped, reflecting
the execution of the prediction window from F1 to jmp L1 without
any misprediction. The blue line gradually decreases as F1 increases
due to fewer executed instructions (nops). By comparing the two
lines, we observe that when the PW base address F1 has an offset
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larger than that of jmp L2, the execution of the PW behaves as
if the call to F2 does not exist. This implies that calling F2 has no
impact on the BTB entry allocated for jmp L1 during the call to
J1. In contrast, when the PW starts at an address with an offset
equal to or less than jmp L2, misprediction occurs, leading to a
constant increase in the elapsed cycle, as shown in Figure 4. Given
the above observation that the execution of jmp L2 should not
affect the BTB entry allocated for jmp L1, the misprediction can
only be attributed to the use of the BTB entry allocated for jmp L2.
Specifically, in this case, when predicting the next fetch target with
the current instruction pointer pointing towards F1, the BTB entry
representing jmp L2, rather than the entry representing jmp L1,
is selected. Similar to the previous experiment, this observation is
also consistent among the tested machines. From this result, we
can deduce the following takeaway:

Takeaway 2: Due to superscalar fetch, a BTB hit requires an
identical tag/set index. The offset of the selected entry must be
equal to/greater than the current PC offset. If multiple BTB hits
are present, the one with the smallest offset is selected.

Lastly, we note that the above two takeaways are consistent
with an earlier Intel Patent [52] that specifies the implementation
details of a set-associative BTB structure (Takeaways 1 and 2 are
mentioned in columns 20 and 12, respectively).

2.5 Differences from Prior BTB

Reverse-Engineering Efforts

Our reverse-engineering approach differs from prior BTB at-
tacks [12, 17, 35, 39, 69] in two respects. First, while prior efforts
limit the scope to branches, our insight is that superscalar proces-
sors fetch PWs every cycle, therefore the BTB access must exhibit
range semantics instead of simply PC matches. Second, while prior
efforts mostly focus on how one branch allocates BTB entry which
affects the future branch predictions, we additionally investigate
how allocated BTB entries can be deallocated, displaying the role
of non-control-transfer instructions in the BTB mechanism.

3 ATTACK MODELS AND NIGHTVISION

OVERVIEW

In this work, we consider two common attacker models adopted by
existing side-channel research:

• User-level: the attacker controls one or several user-space
processes, which can co-locate with the victim process on the
same CPU core via context switches (SMT is not mandatory),
hence sharing the same BTB.

• Supervisor-level: the attacker has full control over the OS
kernel, and can arbitrarily interrupt the victim program’s
(e.g., an SGX enclave’s) execution at a fine temporal granu-
larity, i.e., per instruction, and monitor/manipulate system
resources, such as page tables.

We now overview the NightVision attack. NightVision ex-
tracts the dynamic PCs visited by the victim program. For either of
the above attacker models, the attacker can extract the PCs of both
control-transfer and non-control-transfer instructions at byte gran-
ularity. That said, depending on the attacker model, the attacker
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Figure 5: Different ways that the victim’s PW overlaps with

the attacker’s PW. In those cases, the second execution of the

attacker’s PW in NV-Core incurs observable mispredictions.

may be able to extract the full trace (i.e., every PC belonging to
every dynamic instruction) or only a subset of it (i.e., depending on
the temporal granularity at which the victim program is context
switched).

The core of NightVision is a BTB Prime+Probe style primitive
that is built on top of Takeaways 1 and 2 from §2. This primitive,
dubbed NightVision-Core or NV-Core in short, determines if a
fragment (i.e., the instructions executed during one context switch)
of the victim program’s execution contains instruction bytes over-
lapping with a specified virtual address range. We construct two
NightVision variants from NV-Core, depending on the attacker
model, namely NightVision-User (or NV-U) for the user-level at-
tacker and NightVision-Supervisor (or NV-S) for the supervisor-
level attacker. Both variants repeatedly apply NV-Core to every
fragment of the victim’s execution. As described above, NV-U is
(practically) capable of recovering a subset of elements in the PC
trace, whereas NV-S can achieve much finer-grain measurement,
ideally recovering the PC of every victim dynamic instruction. §4
explains the design details of NV-Core and both variants.

We later demonstrate two attack applications using the two
NightVision variants. §5 will explain how NV-U can serve as a
control-flow leakage attack that aims at leaking secret data influ-
encing program control-flow, even when the program is protected
against prior control-flow leakage attacks. §6 further highlights
howNV-S enables binary fingerprinting to reverse-engineer private
enclave binaries, using full PC-trace extraction.

4 NIGHTVISION ATTACK DESIGN

4.1 NightVision-Core (NV-Core)

Inspired by the two takeaways from §2, we first introduce NV-
Core, which is a BTB Prime+Probe style primitive to determine
if instructions executed by the victim overlap with an attacker-
specified prediction window. The attacker starts by creating a PW
code snippet, with a sequence of nops followed by a direct jump.
Based on the definition of PW, the address range of this code snippet
is restricted to within a 32-byte aligned block. The attacker first
executes the PW code to allocate a BTB entry, then allows the victim
program to run for a certain period of time, and finally executes
the same PW code again and measures the predictions during this
second execution of the PW code, similar to the technique in §2.4.

Our key insight is that, as the victim’s execution also fetches
PWs, when the attacker PW address range overlaps with a victim
PW’s address range, i.e., some instruction bytes from the attacker
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1 // p is a fragment of victim’s execution
2 bool NV-Core(PW, p):
3 Prime BTB with PW
4 execute p
5 match = Probe BTB with PW
6 return match
7
8 // optimized NV-Core, by priming/probing multiple PWs
9 bool[] NV-Core(PWs[], p)
10
11 // P is the victim program
12 bool[][] NV-U(PWs[], P):
13 match = []
14 while (P is not finished) {
15 p = next fragment of P to execute
16 match.append(NV-Core(PWs, p))
17 }
18 return match
19
20 bool[][] NV-S(PWs[], P):
21 match = []
22 while (P is not finished) {
23 i = next instruction of P to execute
24 match.append(NV-Core(PWs, i))
25 }
26 return match

Figure 6: The basic workflow of NV-Core, NV-U, and NV-S.

NV-Umeasures a time slice of the victim’s execution, whereas

NV-S leverages supervisor privilege to measure every dy-

namic instruction. Both NV-U and NV-S can benefit from

optimized NV-Core to monitor multiple PWs at a time.
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Figure 7: Comparison between a single PW and two chained

PWs.

PW share the same lower-order (lowest 32 or 33) address bits as
some instruction bytes from the victim PW, the second execution
of the attacker’s PW will incur an observable misprediction.

To illustrate this point, Figure 5 shows all four scenarios when
the attacker PW and the victim PW overlap. In (1) and (2), the victim
PW ends at an address aligned with the middle of the attacker’s
PW range. In these cases, the victim PW must end with a taken
branch/jump otherwise the PW will extend to (and be truncated at)
the 32-byte boundary. Since the victim PW includes a branch/jump
before the attacker’s jump, the execution of the attacker’s PW must
suffer from a misprediction caused by the victim’s branch/jump,
in the same ways as we showed in §2.4. In the other two cases (3)
and (4), the attacker PW ends at an address aligned with the middle
of the victim PW range. Since the overlapping part of the victim
PW is non-control-transfer instructions, fetching those instructions
necessarily deallocates the BTB entry allocated at the prime step,
resembling the experiment in §2.3.

We can optimize NV-Core by priming and probing multiple con-
tiguous, non-overlapping PW ranges at once. Figure 7 compares the
basic NV-Core monitoring one PW with an optimized NV-Core
which monitors two PW ranges. In the optimized one, both the
prime and the probe execute the chained PW snippets, and the
prediction outcomes of all direct jumps are measured during the
probe. This optimization not only allows NV-Core to simultane-
ously monitor multiple address ranges, but also expands the overall
coverage.

Intel’s Recent BTB Mitigations. Intel recently introduced Indirect
Branch Restricted Speculation (IBRS) [28] and Indirect Branch Pre-
dictor Barrier (IBPB) [27] to mitigate Spectre V2 [35]. Although
conventional wisdom might suggest that these schemes simply
flush the BTB (which, if true, naturally defeats NV-Core), we tested
NV-Core with both schemes enabled and still observe an update
made by the victim’s execution to the BTB entry state established by
the attacker-controlled PW code. Our finding reveals that IBRS and
IBPB only change state for part of the BTB, i.e., entries correspond-
ing to indirect branches, rather than flushing the entire BTB. This
is in line with the official security claims of IBRS and IBPB, which
state that both schemes only apply to indirect branches [27, 28],
and consistent with its goal to mitigate Spectre attacks: as direct
jump targets are resolved early in decode, they cannot result in a
large enough speculation window to enable Spectre attacks.

4.2 NightVision-User (NV-U)

As shown in Figure 6, NV-U invokes NV-Core for each victim exe-
cution “fragment”, i.e., each time the victim is context switched on-
to/off of the core hosting the attacker-controlled BTB. This enables
the attacker to learn dynamic PC information at scheduling-epoch
granularity.

Since the BTB’s size is limited, each context switch should run
as few instructions as possible to minimize the chance that attacker
BTB entries are evicted. NV-U leverages existing user-space pre-
emptive scheduling attacks [3, 8, 18, 20–22, 49, 53, 59] to drastically
reduce this victim time slice duration to on-order hundreds of cy-
cles. In a nutshell, these preemptive scheduling attacks exploit
the process scheduling mechanism adopted by modern Operating
Systems (like Linux) by mounting a denial-of-service attack with
hundreds of attacker-spawned child processes3. The attacker can
(roughly) control the victim time slice by carefully controlling when
the attacker processes unblock and yield to each other. We show
in §5 how NV-U leaks victim control flow for programs hardened
to withstand prior control-flow side-channel attacks.

4.3 NightVision-Supervisor (NV-S)

Same as NV-U, NV-S continuously invokes NV-Core across the
entire victim’s execution. Other than relying on the coarse-grained
user-level scheduling technique, as a supervisor attacker, NV-S can
leverage interrupts or signals (such as [42] and [13]) to single-step
the victim’s execution. In other words, every fragment is exactly one
victim dynamic instruction, as indicated by Figure 6. This allows

3The implementation of the preemptive scheduling attack is orthogonal to our work
and has been demonstrated by prior work (e.g., [22]). It is a common ingredient in
side-channel attacks (including NightVision) for acquiring fine-grained side-channel
measurements.We discuss its use and potential impact toNightVision in §6.3 and §8.1.
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NV-S to determine if each victim dynamic instruction resides within
specified PW(s) range(s). Although this information trivially enables
the control-flow attack we describe in §5, it uniquely enables a new
attack on private code fingerprinting that we will describe in §6.

5 USE CASE 1: CONTROL-FLOW LEAKAGE

ATTACKS

5.1 Motivation and Threat Model

We assume a user-level attacker described in §3 who wishes to
extract the victim’s secret data. The secret must affect the victim
program’s control flow, e.g., as a branch predicate. The victim code
is assumed to be public, but can use software mitigations such as
branch balancing or control-flow randomization (CFR) [25]—see
below—to block existing control-flow attacks. The victim could also
use SGX to provide an extra layer of data protection.

The Control-flow Leakage Arms Race. Prior control-flow leakage
attacks [17, 18, 23, 26, 39, 42, 46, 56, 60, 64] share the same attacker
goal and have similar assumptions. However, the side channels that
they exploit can be mitigated by incremental defenses that block
various tell-tales of control-transfer instructions. For example, ex-
isting attacks on the BTB and the directional predictor [18, 26, 39]
infer conditional branch outcomes by observing branch predictions.
Correspondingly, CFR [25] mitigates those attacks by replacing
observable secret branches with randomized jumps allocated at
runtime, and indirect jumps are not exploitable with Intel’s mit-
igation in place (§4.1). Several attacks [42, 46, 55] in turn lever-
age observed features in the code executed in the shadow of the
branch, e.g., instruction count [42], type [55] or alignment [46], to
leak control-flow decisions. Yet these attacks fail against branch
balancing-style defenses, e.g., padding both sides of the branch to
the same instruction count, type, or alignment [46].

All of the above defenses fail against NightVision, due to its
ability to extract victim PCs directly. For example: CFR fails be-
cause it tries to protect the branch decision, but NightVision does
not rely on the branch decision. Balancing fails because it tries to
make the execution of both sides of the branch look the same, but
NightVision directly extracts the PCs of instructions shadowing
the branch.

5.2 Control-flow Leakage Attack Procedure

Using NV-U

For a control-flow leakage attack, with the knowledge of the vic-
tim’s program, the attacker first selects one or several consecutive
victim instructions that control-depend on the secret, i.e. instruc-
tions that execute if and only if the branch swings in a particular
direction. The attacker then creates a PW code snippet, and ensures
the PW range is within the virtual address range of the chosen
victim instructions. Finally, the attacker employs NV-U along with
the victim’s execution to determine whether and roughly when
(within which time slices) the victim executes the chosen instruc-
tions during its execution, and deduces the secret value based on
that information.

NightVision achieves a byte-granularity observation since the
PW can start at any byte address. Given the shortest PW snippet
contains a 2-byte direct jump, any instruction longer than one byte

     Ta = (secret) ? L1 : L2;
     Tb = (secret) ? L4 : L3; 
     jmp La 
L1:  x = add x, 0
     x = mul x, y     
L2:  jmp Lb 
L3:  x = add x, 1     
     x = mul x, 1
L4:

// La is random
La: jmp Ta

 

   

// Lb is random
Lb: jmp Tb
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    cmp secret, 0
    je L3
L1: 
    x = mul x, y    
L2: jmp L4
L3: x = add x, 1

L4:

(a) (b)

Figure 8: (a) The original leaky code (b) The hardened code

with branch balancing and control-flow randomization [25].

NV-U defeats both defenses by observing which side of the

branch (L1 or L3) is executed with a PW that is either a sub-

interval of the address range of L1 (PW option 1) or L3 (PW

option 2).

(almost all x86 instructions except ret and nop4) or any number of
consecutive instructions can be measured with a PW. For example,
one may use NV-U to observe whether a basic block executes, by
making the PW a sub-range of the address range of that basic block.

Figure 8 demonstrates the control-flow leakage attack when the
victim program is using branch balancing and CFR to protect the
secret branch condition. Given the secret-dependent control flow,
i.e., either the then side (L1) or the else side (L3) will be executed,
NV-U can create a PW code snippet, and ensure that the PW range
is either within the address range of L1 or L3. By observing whether
L1 or L3 is executed, NV-U can deduce the value of the secret.

Note that the attacker often needs to measure the decisions of
multiple dynamic instances of the same branch inside a loop. As
mentioned in §4.2, NightVision relies on a preemptive scheduling
attack, a technique applied by many existing attacks for achieving
fine-grain temporal resolution side-channel measurements (e.g., per
loop iteration) [14, 20, 21, 45, 57, 59]. This technique does have a
limitation: it does not provide synchronization between the attacker
and victim, since it does not ensure the preemption of the victim
exactly once per loop iteration. To help overcome this limitation,
we note that NV-U provides additional opportunities to deduce
the victim’s execution progress. For example, in Figure 8, if the
attacker monitors both L1 and L3 with both PW options 1 and 2, it
is possible to detect excessive preemptions occurring within one
loop iteration—NV-U performed in those excessive preemptions
will show that neither L1 nor L3 is executed.

6 USE CASE 2: FINGERPRINTING PRIVATE

CODE

6.1 Intel SGX

Intel SGX [6, 41] is a hardware-based trusted execution environ-
ment solution that is widely deployed by major cloud vendors today.
It protects the integrity and confidentiality of (a part of) a user-level
application from a powerful attacker who controls the entire soft-
ware stack (including the OS, hypervisor, and BIOS), with a new
CPU mode called enclave. Enclaves leverage hardware-managed
memory isolation to guarantee that the enclave state can only be
accessed by its owner enclave. However, SGX enclaves still rely
on an untrusted OS for managing resources, such as page tables
4And some rarely used instructions, such as halt (hlt), complement carry flag (cmc).
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and interrupts, enabling a privileged attacker to interrupt enclave
execution, as shown by controlled-channel attacks [64], microar-
chitectural replay attacks [51], SGXStep [54], etc. Aside from the
typical data protection, Intel SGX also provides code confidential-
ity via Protected Code Loader (SGX PCL) [30], or similar mecha-
nisms [9, 37, 47, 66], by keeping the enclave binary encrypted until
it is loaded into the enclave. SGX also serves as a design paradigm
for future TEE solutions, such as Intel TDX [32].

6.2 Threat Model and Motivation

We assume an untrusted, privileged attacker whose goal is to ob-
tain the victim’s code. Given this strong attacker model, we make a
realistic assumption that the victim relies on a TEE mechanism, in
this work Intel SGX. SGX provides data confidentiality such that
the victim’s program state is inaccessible to the attacker, and pro-
cessor features such as LBR, Intel Processor Trace, and performance
counters are disabled in enclave mode. SGX also provides code con-
fidentiality (using PCL [30] or similar mechanisms [9, 37, 47, 66]),
therefore the attacker has no knowledge of the victim enclave code.

Different from §5 which leaks data in a public program setting,
this section demonstrates how NV-S enables reverse-engineering
of private programs. Existing side-channel attacks mostly consider
programs as public and available for offline analysis. However, an
attacker without knowledge of the code, for instance, cannot locate
Spectre gadgets [12], deduce that certain types of side-channel
vulnerabilities exist [16, 61], nor determine how to monitor the side-
channel [63]. Although this may imply that keeping the program
private could be a holistic defense strategy by breaking an essential
requirement for side-channel attacks, this “security by obscurity”
fails with NV-S, which extracts every element in the dynamic PC
trace with high accuracy. Although instruction addresses cannot
directly reflect the binary content, a sufficiently long sequence of
PCs may contain enough entropy to identify a specific function.
Using this insight, we design a function fingerprinting approach
that identifies functions of interest from the extracted PC trace.
NightVision thus complements existing side-channel attacks by
satisfying their assumption about victim programs being public,
even when the victim enclave program is unreadable+unwritable
and only executable.

6.3 Dynamic PC Trace Extraction Using NV-S

NV-S infers the complete byte-granularity control-flow information
of an enclave program’s execution, in the form of a sequence of PCs
of every retired dynamic enclave instruction. No existing control-
flow leakage attack achieves this goal: they either only recover
coarse spatial-granularity control-flow information [56, 60, 64] or
only leak the addresses of specific instruction types/patterns [14,
19, 39, 46].

Figure 9 illustrates the entire attack flow. In the following, we
focus on how to deduce a victim instructions’ page offset bits, since
the victim instruction virtual page numbers can be leaked through
complementary work on controlled-channel attacks [56, 60, 64]
(line 2-4 in Figure 9) that induce page faults to learn page-level
information. The attack repeatedly invokes NV-S (line 1), and every
invocation of NV-S continuously applies the optimized NV-Core
to measure every dynamic instruction against multiple PW ranges

Insts[i]

code page

 5 for ( ; ; i += 1)

 6   NV-Core(PWs for Insts[i], Insts[i])

 7 function NV-Core (PWs, Insts[i]):

 8   create PW code snippet 

 9   Prime BTB w/ PWs 

10   /* victim executes Insts[i] */  

11   matched = Probe BTB w/ PWs

12   for (n = 0 ... len(PWs)-1)

13     if (matched[n])

14       add PWs[n] to Insts[i].matched_pws

15   Insts[i].page_num = page_num

16   return

 2 last code page -> non-executable

 3 next code page -> executable

 4 page_num = page number of the next page

. . .
. . .

18 for inst in Insts:

19   compute inst.PC based on inst.matched_pws 

     and inst.page_num

Exit Enclave

Enclave - victim Host - attacker

17 if (PC of every inst in Insts can be 

       uniquely determined)

YES
NO

 1 launch NV-S with i = 0 (enter enclave)

. . . . . .
. . .

Timer 
interrupt

Restore

Figure 9: How NV-S infers the address of every dynamic

enclave instruction. Definitions of symbols: Insts: the se-

quence of dynamic enclave instructions; Insts[i].pc: the PC
of Insts[i]; Insts[i].matched_pws: set of PWs which collide

with Insts[i]; Insts[i].page_num: page number of the code

page containing Insts[i].

(line 5-6). To execute exactly one enclave instruction during each
call of NV-Core, we use SGXStep [54] to single-step the enclave,
by choosing a proper timer interrupt interval such that the enclave
execution is interrupted precisely after each dynamic instruction is
retired. Once an instruction retires, the timer interrupt delivers the
control to NV-Core inside the interrupt handler. By probing the
BTB with the PW code snippet (line 11), NV-Core determines if
the instruction overlaps with the tested PW ranges (line 12-14), and
then launches NV-Core for the next instruction by choosing and
creating the PW code snippet for the next instruction and starting
the prime step before resuming the enclave execution (line 8-9).
How NV-S chooses the PWs is described in the next paragraph.
When the enclave execution finishes, for each dynamic instruction,
NightVision collects the PWs that overlap with the instruction. If
for any dynamic instruction, its matched PWs so far are insufficient
for determining its PC, NightVision performs another round of
NV-S (line 17).

PW Traversal. We now explain how to choose a proper set of
PW ranges for NV-Core to measure each instruction during every
NV-S call. We leverage the range semantics of PWs to perform a
binary search through progressively-smaller PWs for each victim
instruction. Searching for the instruction PC is divided into multiple
passes. Each pass splits the matched PW range in the previous pass,
and measures which sub-PW range contains the base address of
the instruction. As shown in Figure 10, the measurement of every



All Your PC Are Belong to Us: Exploiting Non-control-Transfer Instruction BTB Updates for Dynamic PC Extraction ISCA ’23, June 17–21, 2023, Orlando, FL, USA.

… ...Page 
offset

PWs[0]

0x30 0x38 0x400x0 0x8 0x10 0x18 0x20 0x28 0x1000

PWs[1]
… ...

…
 ...

PWs[0] PWs[1]

PWs[0] PWs[1]PWs[0] PWs[1]

instruction

1st NV-S run

65th NV-S run

66th NV-S run

Pass #1:
32B PWs

Pass #2:
16B PWs

Pass #3:
8B PWs

Figure 10: The PW traversal approach is explained in §6.3.

NightVision first generates 128 mutually-disjoint 32-byte

PWs. The matched PW is further converted to smaller PWs

recursively. We assume N = 2, therefore each NV-Core tests

the current instruction with two PWs.

dynamic instruction starts by dividing the 4 KB page size range
into 128 mutually disjoint 32-byte PW ranges. Suppose every call
to NV-Core tests N PW ranges. The first pass takes 128/N enclave
executions (NV-S calls), after whichNightVision determines inside
which 32-byte PW each dynamic enclave instruction starts. Next,
this 32-byte PW is split into N sub-PWs, and with one more NV-
S call, NightVision can determine which sub-PW each dynamic
instruction starts. This process is repeated until it determines the
base address of the target instruction.

Impact of Speculative Execution. The enclave single-stepping re-
tires exactly one instruction per interrupt. However, succeeding
instructions may speculatively execute, and update the BTB state
before the current instruction retires. So instead of measuring only
the address range of the single-stepped instruction, NightVision
may measure the address ranges of all executed instructions, includ-
ing the succeeding speculatively-executed ones. When speculation
does not involve control transfer instructions, the base of the (ex-
tended) measured range still corresponds to the PC of the target
instruction. However, when speculation involves control transfers,
NV-S may produce multiple candidate PCs: one being the PC of
the target instruction, and the others being the target PCs of the
succeeding control-transfer instructions which execute specula-
tively. The correct one can be deduced after the next single step,
when NV-S again generates a set of candidate PCs for the next
instruction, including the false PCs corresponding to the control-
transfer targets. The actual PCs belonging to the two single-stepped
instructions are captured by comparing the two PC sets and ruling
out the repeated candidates.

6.4 Function Fingerprinting for Private Code

Although NightVision only collects PC traces, which have no in-
formation about the actual instruction bytes, PC traces of sufficient
length can be used to fingerprint known PC sequences correspond-
ing to functions in existing code bases. This technique is called
function fingerprinting [43] and is employed by NightVision for
deducing whether the enclave execution contains functions from a
known binary file (these functions are called reference functions).
In general, it is impractical to assume the attacker owns a set of

0x400140
0x400410
0x400411
0x400414
0x40041b
0x400420
0x400421
0x400142

call

ret

// assembly code of 
// reference function 1
F():
0x40: pop rax
0x41: pop rbx
0x42: add rax,rbx
0x45: and rbx,rax
0x48: ret

0x0
0x1
0x4
0xb
0x10
0x11

0x0
0x1
0x2
0x5
0x8

Similarity = 2/6

Similarity = 5/6

// assembly code of
// reference function 2
G():
0x10: push rsi
0x11: test rax,rax
0x14: jne  0x1c
0x16: sub  rax,0x1
0x1a: jmp  0x20
0x1c: add  rax,0x1
0x20: pop  rdx
0x21: ret

0x0
0x1
0x4
0x6
0xa
0xc
0x10
0x11

Victim Function 
PC trace

. . .
. . .

Figure 11: NightVision function fingerprinting computes

the similarity between the victim function and two reference

functions F and G. Red PC value represents an incorrect mea-

surement.

binaries that will always include enclave code. However, we deem
this reasonable for at least cryptographic code since most enclave
programs use several popular off-the-shelf, open-source crypto-
graphic libraries, several of which contain vulnerable functions
that have been exploited by existing side-channel attacks. With the
function fingerprinting, such use of vulnerable functions can be
identified in private programs.

The attack proceeds in two steps, as shown in Figure 11. First, we
collect the victim PC trace through NV-S and pre-process the trace.
Second, we compare the similarity of victim functions included in
the PC trace to reference functions.

Step 1: Victim PC trace preprocessing. NightVision uses the com-
plete attack flow described in §6.3 to obtain a victim PC trace. As
illustrated by Figure 11, it partitions the whole PC trace at function
call boundaries into per-function traces. Each function-level trace
is normalized to be position-independent by subtracting the PC of
the function start from all PCs in the trace, thus each function-level
trace starts with zero. Every function-level trace represents an invo-
cation of an unknown victim function, and will then be considered
separately during function similarity matching (Step 2).

Function-level traces are sliced by locating call/ret pairs in the
original trace, using the following approach to identify PCs corre-
sponding to calls and rets. First, we capture jumps between PCs
that are greater than 16 bytes, which indicates a control-transfer
instruction. Second, unlike other control-transfer instructions,
call/ret also access data memory. Thus, we additionally mon-
itor whether a suspected call/ret accesses a data page (through
a controlled-channel attack [64]). Note for this work, we assume
functions are only entered/exited via calls/rets.

Step 2: PC trace similarity test. Next, we compare the function-
level PC traces collected during Step 1 that represent unknown
victim functions with sets of PCs corresponding to reference func-
tions. Importantly, the PC traces collected during Step 1 are dynamic
instruction sequences. To avoid having to build a large (potentially
exponential) number of dynamic PC traces for reference functions,
we simply analyze the PCs corresponding to static instructions
within each reference function. Testing similarity between victim
and reference functions then proceeds as follows, as illustrated
by Figure 11.
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(1) (One time, offline) For each reference function f*, collect
the static PCs in that function (relative to the entry PC, to
maintain position independence) into a set called S*.

(2) For each victim function-level PC trace t (from Step 1), con-
vert t to a set called S and compute similarity = (|S∩S*|)/|S|)
for each reference PC set S*.

The percentage of PCs that survive the intersection indicates the
similarity between the victim function and the reference function.
We note that this heuristic makes use of x86’s variable-length in-
struction encoding in an essential way: due to the nature of variable-
length instruction encoding, the instruction length is directly influ-
enced by the instruction semantics. For example, x86 uses different
byte lengths for different opcodes and addressing modes. Addition-
ally, variable instruction lengths add extra entropy to the PC trace,
which serves as the fingerprint in our case. Also, notice that the sim-
ilarity based on set intersection sacrifices information such as the
ordering of PCs for simplicity. §8.3 discusses a more sophisticated
approach that considers instruction ordering.

7 EVALUATION

7.1 Experimental Methodology

We perform the evaluation on Intel 9700 and 9900(K) CPUs, all
running Ubuntu 18.04 kernel version 4.15.0, with Hyper-threading
disabled. All tested cryptographic programs are compiled with gcc
7.5.0 (more compiler versions are used when evaluating function
fingerprinting in §7.3). When evaluating control-flow leakage at-
tack in §7.2, the attacker and the victim run separated userspace
processes. For the fingerprinting experiment in §7.3, the victim
programs are written with Intel SGX SDK [15] and run inside the
enclave.

7.2 Evaluating Control-flow Leakage Attack

(Use Case 1)

We first evaluate whether NightVision can leak secret data in
common cryptographic code through vulnerable functions with
secret-dependent control flow. Specifically, we focus on leaking the
secret key during the RSA key generation procedure inmbedTLS [2]
version 3.0 by inferring the secret-dependent control-flow behavior
in Great Common Divisor (GCD) function. GCD contains a loop, in
which a perfectly-balanced branch repeatedly evaluates the secret
key values. Recovering the secret key requires determining the
direction of the balanced branch at each loop iteration. The recent
Frontal attack [46] has already exploited this vulnerable function.
On the other hand, Frontal can be mitigated by aligning two sides
of the branch to the same base address modulo the instruction fetch
window size (16-byte in Intel CPUs) using a simple compiler flag
-falign-jumps=16. This flag is applied in our experiment.

We implement a proof-of-concept control-flow leakage attack by
simulating the preemptive scheduling attack, following the same
methodology as prior work [14, 18, 20, 21, 45, 59]. Specifically, we
make the victim call sched_yield() system call after the branch
body to yield to the attacker process. The attacker process executes
the NV-U routine to deduce the secret control-flow decision of
the current victim loop iteration, followed by a sched_yield() to
transfer the control back to the victim for the next loop iteration.

Figure 12: The top-100 highest similarity of the measured

victim functions with respect to GCD (left) and bn_cmp (right).

When matching against GCD as the reference function, the

highest similarity is 75.8% when the victim function is also

GCD. The highest similarity to bn_cmp is 88.2% (when the vic-

tim function is bn_cmp).

We notice that the per-victim-loop-iteration time is over 300 cy-
cles, which is greater than the minimal time slice achievable by
the preemptive scheduling attack [8, 22, 49]. Therefore, although
our proof-of-concept attack simulates the attack preemption with
sched_yield(), per-loop-iteration measurement is possible for
GCD in practice.

We apply the strategy described in §5.2 to infer the direction
of the balanced branch. Because the instructions on the then path
occupy address range [0x5940, 0x597c], and the instructions on
the else path occupy address range [0x5980, 0x59bc], we simply
apply NV-U oracle with a PW range [0x5980, 0x598f] that only
overlaps with the first several instructions on the else path. When
the attacker observes a misprediction in the probe step of NV-
U, its BTB entry is updated (deallocated), meaning that the else
path should be taken. We repeat the attack on 100 different victim
process executions. Each run calls the RSA key generation function
for generating a new key, and on average loops over the vulnerable
branch 30 times in GCD. NightVision achieves 99.3% accuracy in
measuring the direction of the vulnerable branch.

We additionally use NightVision to infer the secret predicate of
a similarly balanced branch in the big number comparison (bn_cmp)
function in Intel’s IPP-Crypto [31] v2020. Frontal also evaluates this
function. Similar to GCD above, Frontal cannot succeed when the
basic block alignment flag is enabled. NightVision again is able to
achieve 100% accuracy in inferring the branch direction across 100
different runs.

7.3 Evaluating Function Fingerprinting (Use

Case 2)

We now evaluate the effectiveness of NightVision’s function fin-
gerprinting in the private program setting. Since the goal of function
fingerprinting is to reveal the use of vulnerable functions in the
private victim binary, here we show that it is possible to use the
proposed function fingerprinting mechanism to detect the use of
GCD and bn_cmp evaluated in §7.2.

An effective fingerprinting should only match an unknown vic-
tim function to a reference function when the victim function is
indeed the reference function. To validate that NightVision ful-
fills this requirement, we generate victim PC traces for GCD and
bn_cmp as well as other 175,168 additional functions from many
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Figure 13: (Left) The similarities of GCD in eight different

MbedTLS versions (2.5-3.1) to GCD in the same/different ver-

sions computed byNightVision’s fingerprintingmechanism.

(Right) The similarity of GCD compiled with three different

optimization levels to GCD with the same/different optimiza-

tion levels.

open-source SGX projects listed in [1]. Then we compute the simi-
larity of all tested victim functions to the two reference functions
GCD and bn_cmp. Figure 12 demonstrates that for both GCD and
bn_cmp, we can observe the highest similarity when the victim
function is indeed GCD or bn_cmp, whereas all other functions that
are not the reference function exhibit lower similarity. This shows
that NightVision can identify the two vulnerable functions in a
large group of unknown, executed victim functions.

We notice that the similarities of GCD and bn_cmp with them-
selves are not even 100%. We compare PC traces, with their originat-
ing assembly code, and notice that nearly all incorrectly measured
instructions correspond to macro-fusion structures [29, 62]. Since
macro-fusion combines adjacent instructions (usually arithmetic-
branch or load-arithmetic-branch) into a single, executable macro-
op, one single step actually executes and retires all instructions in
a macro-fusion structure. Therefore, NightVision only manages
to measure the leading instruction in a macro-op structure. The
impact of macro-fusion on enclave single-stepping attacks has also
been observed and studied by prior work, e.g., CopyCat [42].

NightVision’s fingerprinting only handles functions in binary
form, meaning that the version of the library to which the function
belongs, and the compiler configuration, can both influence finger-
printing results. To evaluate how robust our fingerprinting is to
these effects, we compile GCD by tuning three different parameters:

(1) MbedTLS library version: 8 different versions as shown
in Figure 13 (left)

(2) GCC version: 7.5, 8.4, 9.4, 10.3
(3) Compiler optimization flag: -O0, -O2, -O3
We then run each compiled GCD with NightVision and compute

the similarity of each specific GCDwith all compiled versions of GCD.
We draw the following conclusions. First, the impact of the library
versions on fingerprinting depends on whether the source code is
changed across the library versions. We found that, for example,
the GCD function source code does not change across MbedTLS
versions 2.5-2.15, but version 2.16 has a different implementation
than previous versions. This is reflected by Figure 13 (left): the
similarity amongst versions 2.5-2.15 is much higher than the sim-
ilarity between a version before 2.16 and one after 2.16. Second,
the compiler version alone usually does not affect the function
binary. Third, as demonstrated by Figure 13 (right), compiler flags

can significantly impact the fingerprinting result. The similarity
between the victim function and the target function may not be
high enough when the victim function and the target function are
compiled with largely-different compilation options. In summary,
to successfully identify the use of a specific target function in an
unknown binary, the attacker should compile the function from
different library versions, and with different compilation options.

8 DISCUSSION

8.1 Limitations

Affected CPUs. In this work, we examined a limited set of In-
tel desktop/server CPUs listed in §2.3. However, any CPU that
facilitates BTB updates by non-control instructions is potentially
vulnerable to the same attack. Since deep processor pipelining
and superscalar design are the underlying causes factors motivat-
ing this behavior, NightVision can also likely affect other existing
high-performance CPUs. We leave the analysis of CPUs from other
vendors as future work.

Limitations of Control-flow Leakage. As explained in §5.2, NV-U
relies on the preemptive scheduling attack to achieve fine-grained
measurement of the victim’s execution, similar to many existing
side-channel attacks [3, 8, 14, 18, 20–22, 45, 49, 53, 59]. This tech-
nique is infeasible in restricted environments such as browsers,
which limit the attacker’s capability of arbitrarily spawning threads.
Additionally, the preemptive scheduling attack does not provide
perfect synchronization between the NV-U attacker and the victim,
thus the attacker needs complementary techniques (such as the
example in §5.2) to deduce the victim’s execution progress.

Limitations of Binary Fingerprinting. Our fingerprinting attack
is based on several assumptions mentioned in §6. First, the attack
is useful primarily in the context of variable-length ISAs (like x86),
as the variety in the instruction length amplifies the entropy in
the PC sequence, resulting in fewer false positives/negatives in
fingerprinting. Second, the fingerprinted function itself must have
a sufficiently long PC trace to produce enough entropy to differen-
tiate it from incorrect candidates. Third, the attacker must possess
knowledge of the target function in assembly form, which may
require non-trivial effort from the attacker to prepare different
possible assembly forms for the target function, similar to §7.3.

8.2 Mitigations

Data-Oblivious Programming. The only reliable software mitiga-
tion for NightVision is to ensure the program control flow never
depends on secret information, using data-oblivious programming.
Achieving data-obliviousness for normal programs requires en-
gineering effort to port existing applications [11, 40, 48, 68] and
suffers from significant performance overhead [67].

We have seen existing cryptographic libraries gradually adopt
data-oblivious programming for eliminating secret-dependent
control-flows [31] and design efficient data-oblivious implementa-
tions for critical cryptographic operations [10]. That said, non-data-
oblivious cryptographic libraries used by legacy binaries are still
susceptible to NightVision. In addition, NightVision’s function
fingerprinting capability is unaffected by data-oblivious program-
ming.
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BTB Hardening. NightVision can be mitigated by constantly
flushing BTB state [39], or enforcing strict isolation between secu-
rity domains [38, 70]. However, neither approach has been adopted
by current processors, due to the performance cost and implemen-
tation complexity. The only effort in this direction is IBRS [28]
and IBPB [27] which only prevent indirect branches belonging to
different security domains from influencing each other, as stated
in §4.1. Future processor generations could extend those defense
proposals to block attacks like NightVision.

8.3 Improving Function Fingerprinting

NightVision’s fingerprinting technique constructs function finger-
prints by compressing sequences of dynamic PCs into sets of static
PCs. This simplifies the fingerprint-matching problem to perform-
ing set intersections, but sacrifices information about the original
PC sequences such as the instruction order (e.g., loops). An alter-
native fingerprinting mechanism could directly use the dynamic
PC trace as the function fingerprint. In this case, matching the
PC sequence to reference functions becomes a more-complicated
pattern-matching problem: the PC sequence must obey the control
flow of the original function, modulo the measurement error. We
note that this process is similar to genomic (DNA) sequence match-
ing, which pattern-matches a DNA sequence against several sample
DNA sequences, and at the same time, circumvents the interfer-
ence from mutated genes. We leave applying related approaches to
improve NightVision’s fingerprinting as future work.

9 RELATEDWORK

Existing Side Channels Extracting PC-related Information. Prior
side-channel attacks leak partial information about victim’s dy-
namic PCs. First, controlled-channel attacks manipulate page per-
missions and attributes (access/dirty bits) to observe the page-
granularity PC trace [56, 60, 64]. Succeeding attacks leverage the
instruction cache to obtain cache-granularity PC information [23].
These attacks potentially leak information of all dynamic PCs, but
at a coarse spatial granularity. Correspondingly, several mitigations
have been proposed to confine secret-dependent control flow, e.g.,
inside a single page or cache line [23, 50]. The more recent Frontal
attack [46] exploits instruction decoding timing for deducing in-
formation about basic block alignment, i.e., code address offsets
relative to 16 B blocks. However, the timing channel discovered
by the Frontal attack is not sufficiently precise for determining
byte-granularity PC information (use case 2 in our case); rather,
it uses differential analysis to differentiate branch directions (use
case 1 in our case, which can be mitigated as described in §7.2).
Additionally, Frontal requires memory writes to be present inside
the basic block.

Several other attacks achieve more fine-grained PC measure-
ments for specific PC types. For instance, prior attacks targeting
the BTB [17, 39] leverage collisions between control-transfer in-
structions to deduce if a branch/jump at a specific PC executes at
runtime. Although these side-channel approaches have proved to
successfully achieve different attack goals (e.g., control-flow leak-
age attacks, breaking ASLR, crafting Spectre attacks), control-flow
randomization [25] converts conditional branches into randomized
indirect jumps to thwart attacks targeting conditional branches, and

recent hardwaremitigations such as IBRS further provide protection
for indirect jumps. Note that a prior attack BranchShadowing [39]
is similar to NV-S in that both leverage SGX single-stepping and
BTB Prime+Probe. However, NV-S’s BTB Prime+Probe mechanism
is inherently different from BranchShadowing (§2.5), hence NV-
S can infer the PC of every dynamic enclave instructions while
BranchShadowing is limited to behaviors of branches with known
PCs. Other hardware structures, e.g., the hardware prefetcher [14],
TLB [19, 60], reflect the PC information of memory loads and stores.
NightVision is the first side-channel capable of leaking the precise
byte-granular PC for all instructions types, and in the ideal case,
for every single victim dynamic instruction.

Other Control-flow Leakage Attacks. Many control-flow leakage
attacks also do not rely on extracting dynamic PCs directly. At-
tacks which exploit directional branch predictors [18, 26] are well-
known for leaking secret branch conditions. Similarly, such attacks
can be mitigated with software defenses protecting conditional
branches [25]. Recent attacks, such as CopyCat [42] and Neme-
sis [55], assume a privileged attacker who can single-step the vic-
tim’s execution, which is the same as the supervisor-level attacker
model in this work. They show how to acquire secret-dependent
control flow by counting instructions or deducing the executed
instructions’ types. However, such observations (instruction count-
ing/types) are insufficient for control-flow leakage attacks if the
victim deploys defenses such as branch balancing, and contain
much less entropy for binary fingerprinting when compared to
NightVision.

10 CONCLUSION

NightVision is the first micro-architectural side-channel attack
that extracts dynamic, byte-granular PCs from the victim program’s
execution—in the best case, for every victim instruction. NightVi-
sion reveals victim dynamic PCs directly, thereby bypassing prior
defenses that attempt to block channels leaking partial/indirect in-
formation about the PC sequence (such as the length of subsequent
basic blocks). NightVision also showcases its ability to identify
unknown programs, challenging the notion of “security through ob-
scurity” while complementing existing side-channel attacks which
by default require public code.
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