
Assurance for Defense in Depth via Retrofitting

Vinod Ganapathy
Rutgers University

vinodg@cs.rutgers.edu

Trent Jaeger
The Pennsylvania State

University
tjaeger@cse.psu.edu

Christian Skalka
University of Vermont

skalka@cems.uvm.edu

Gang Tan
Lehigh University

gtan@cse.lehigh.edu

ABSTRACT
The computer security community has long advocated defense in
depth, the concept of building multiple layers of defense to pro-
tect a system. Unfortunately, it has been difficult to realize this vi-
sion in practice, and software often ships with inadequate defenses,
typically developed in an ad hoc fashion. Currently, programmers
reason about security manually and lack tools to validate assur-
ance that security controls provide satisfactory defenses. In this
position paper, we propose STRATA—a holistic framework for de-
fense in depth. We examine application of STRATA in the context
of adding security controls to legacy code for authorization, con-
tainment, and auditing. The STRATA framework aims to support
a combination of: (1) interactive techniques to develop retrofitting
policies that describe the connection between program constructs
and security policy and (2) automated techniques to produce opti-
mal security controls that satisfy retrofitting policies. We show that
by reasoning about defense in depth a variety of advantages can
be obtained, including optimization, continuous improvement, and
assurance across multiple security controls.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection

General Terms
Design, Experimentation, Management, Security

Keywords
Automated Retrofitting, Defense in Depth, Authorization, Contain-
ment, Auditing, Assurance

1. INTRODUCTION
The security community has long encouraged programmers to

strive to implement defense in depth, where multiple layers of se-
curity controls are employed to protect security-sensitive opera-
tions. However, programmers almost always focus on functional

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

and economic issues initially, often delaying the introduction of
needed security controls until after initial deployment. As a result,
programmers often find themselves in the so-called penetrate-and-
patch mode, removing vulnerabilities as they are identified by ad-
versaries.

Even when programmers decide to add the security controls nec-
essary to implement defense in depth, they face many practical
challenges. First, retrofitting software with a security control re-
quires a comprehensive understanding of the program code and se-
curity requirements to integrate the security controls correctly. For
this reason, past projects that retrofit software manually for attack
containment [?, ?, ?], authorization [?, ?, ?, ?, ?, ?, ?, ?, ?], or
auditing [?, ?] often span multiple years. Gaining consensus over
whether the implementation of a security control is satisfactory is
ad hoc [?, ?, ?], and mistakes have been made [?, ?], some of which
were not discovered until years later [?]. Second, retrofitting soft-
ware with security controls must account for several other factors
beyond security. Naive containment implementations can cause
tremendous performance overheads and naive authorization mech-
anisms can result in spurious policy management. As a result, many
attack containment projects, particularly for performance-critical
software such as operating systems, have been abandoned and some
authorization mechanisms have been refined several times after in-
troduction [?]. Third, security controls may interact, making other
controls unnecessary or impacting their placement. For example, if
authorization prevents data leakage provably (noninterference [?]),
then there is no need to audit for data leaks. However, programmers
lack tools to reason about such interactions, resulting in unneces-
sary or misplaced security controls.

Researchers have recognized that programmers need assistance
in retrofitting their programs with security controls, but the pro-
posed automated methods still require too much programmer ef-
fort, fail to account for factors other than security, and do not reason
about multiple security controls. First, researchers have proposed
automated methods to detect missing or misplaced authorization
controls [?, ?, ?, ?, ?, ?, ?] or even retrofit programs for autho-
rization [?, ?, ?, ?], but these methods require detailed program
knowledge, such as security-sensitive data types, variables, and/or
statements, or require a partial authorization implementation. Sec-
ond, methods to retrofit for authorization and attack containment [?,
?] have been naive about the impact of security controls on other
factors, such as the performance and management overheads, pre-
venting wide adoption. Third, we are not aware of any prior work
that reasons about retrofitting for auditing or for multiple security
controls and their interactions.

Our insight is that advances in retrofitting software for security
enable the development of a holistic framework for the assurance
of security controls for defense in depth. While retrofitting pro-

grams for security is a challenging problem for any security con-
trol, recent advances in methods for retrofitting programs for se-
curity demonstrate what can be automated and how, distinguishing
what can be computed from what intelligence programmers need to
supply. The proposed approach takes a comprehensive view of the
problem, with an emphasis on automated and interactive tools that
developers can use to identify site-level security goals, explore the
design space of security mechanisms, and retrofit legacy code to
enforce security policies in a manner that can be machine-verified
for assurance.

In this position paper, we examine the unification of three com-
mon security mechanisms — containment, authorization, and au-
diting — to assess how reasoning about defense in depth encom-
passing these three mechanisms may improve security assurance.
First, we find that placing security controls for these mechanisms
involves solving a set of common problems, so designing methods
to solve those problems and to verify the effectiveness of the so-
lutions may be reused. Second, we find that we can compose the
validation of defense in depth for this combination of security con-
trols, enabling assurance for defense in depth. Third, we find that
runtime auditing can be leveraged for continuous improvement of
the placement of security controls for defense in depth, ensuring
that the controls can be optimized for the desired policies. We re-
fer to completed research results where available, but a goal of this
paper is to motivate reuse of common ideas across controls and in-
tegration of controls for improved security.

The remainder of the paper is structured as follows. In Section 2,
we examine the problem of designing programs to control access
to program and system resources using multiple security controls.
In Section 3, we provide an overview of how to use automated
retrofitting of programs to produce validated security controls for
defense in depth. In Sections 4 to 6, we explore the challenges
in retrofitting programs for containment, authorization, and audit-
ing independently. In Section 7, we outline the problem of unifying
retrofitting methods for defense in depth and examine opportunities
for assurance of defense in depth, including continuous improve-
ment. In Section 8, we conclude the paper.

2. BACKGROUND

2.1 What Should Retrofitting for Defense in
Depth Do?

When program vulnerabilities become too numerous, program-
mers may be motivated to make fundamental changes to their pro-
grams to add security controls. For Sendmail and OpenSSH, pro-
grammers found that the typical penetrate-and-patch approach to
security was not keeping them ahead of adversaries, leading to
complex retrofitting [?] or complete reimplementations [?, ?]. For
programs that process resources belonging to multiple clients, such
as servers and middleware, programmers often found that simple
isolation approaches (e.g., sandboxes) were insufficient to protect
data security and provide necessary functionality [?, ?]. We use the
simple program below to demonstrate the problems.

request_loop (client_data, private_data) {
read(client_passwd, client_req);
if (necessary ||

compare_client(client_passwd,
private_data))

access_object(client_req, client_data);
}

The client request loop above is representative of many
programs that require retrofitting. This program processes
requests from multiple, mutually-untrusting clients (obtained

by read) by: (1) comparing a client-supplied password
(client_passwd) to the program’s password database
(private_data) in compare_client and (2) processing
a client request (client_req) to access data managed by
the program (client_data) in access_object. In this
discussion, we assume that the program code is benign, but may
have flaws that allow client input read by the program to permit
unauthorized access. The first operation may cause vulnerabilities
if the program allows client input to affect the program’s passwords
or if some password data is leaked as a result of the comparison.
The second operation may cause vulnerabilities if it allows any
client unauthorized access to the client data of another client.
Many programs perform these two types of operations, including
operating systems, middleware, server programs, and even some
user applications. For example, operating systems process many
client requests (e.g., system calls) and process private operating
system data that must not be manipulated by clients. On the
other hand, browser applications also run programs from multiple
sources (i.e., the browser’s clients), so they must control access
to browser resources available to those programs and protect their
private resources from leakage and unauthorized modification.

In this discussion, we will focus on retrofitting programs to con-
trol client access to security-sensitive operations, such as those in
the program above that use the program’s private data and client
data.

We examine three kinds of security controls that are commonly
used to achieve this goal. First, programmers may use contain-
ment to place protection boundaries that limit the ways that clients
may access security-sensitive data. For example, the program
above may be privilege-separated [?] into two modules running
in separate processes: (1) one that receives client requests and pro-
vides access to client data using access_object and (2) an-
other that runs compare_client that has access to the private
data. Clients can only communicate directly with the first module,
limiting the program flows that may reach or leak the private data.

Second, programmers use authorization to control access to pro-
gram data. For example, the program above may be retrofitted with
a reference validation mechanism that satisfies the reference moni-
tor concept [?] to ensure correct enforcement of an access control
policy governing which clients may access which client data and
preventing leakage and unauthorized modification of private data,
regardless of the complexity of the code in the compare_client
and access_object functions. Reference validation mecha-
nisms must be designed to enforce the data access policies expected
by the programmer, whose goals may include least privilege [?],
lattice policies [?], noninterference [?].

Third, programmers use auditing to collect information to aid in-
trusion detection retroactively for authorized operations. For exam-
ple, clients authorized to run compare_client may still cause
the private data to be leaked through some program flaw, so audit-
ing could record the values of the authorized operation and the data
returned to the client to enable later detection of whether leakage
occurred. As can be seen, these security controls form three layers
of defense, where containment limits client access at the bound-
aries, authorization within the program, and auditing follows au-
thorized operations.

2.2 State-of-the-Art in Retrofitting Programs
for Defense in Depth

Programmers retrofit programs with containment [?, ?, ?], autho-
rization [?, ?, ?, ?, ?], and auditing controls [?, ?] manually, which
presents a variety of challenges. First, programmers must identify
security-sensitive operations from low-level program constructs,

such as variables, data types, and statements. While the program
above may be simple, real programs have hundreds of user-defined
types and thousands of program statements. Despite the availability
of several prototype reference monitor implementations, the Linux
Security Modules framework [?] still contained several errors [?,
?], even some that were not discovered until years later [?]. Second,
programmers must determine where to apply controls to protect
those security-sensitive operations, but they must be careful not to
introduce high performance and management overheads. Program-
mers currently balance such functional and security requirements
in an ad hoc way. If the variable necessary in the request_loop is
usually true, then separating compare_client may be satisfac-
tory, but otherwise large overheads may be incurred. As a result,
retrofitting projects take several years, face delays that bring their
purpose into question [?], and may reduce the scope of security
controls to only known attacks [?]. Because of these challenges,
only a few programs have been retrofit with all three security con-
trols we investigate in this project.

Researchers have recognized the challenges facing program-
mers, but to date fail to address the most fundamental of those chal-
lenges. First, proposed methods to retrofit code still require pro-
grammers to identify security-sensitive operations from low-level
code constructs, such as code patterns, data types, and variables
that correspond to such operations [?, ?, ?, ?]. For example, to
automate placement for information flow control, all the relevant
variables must be identified and assigned an accurate security label.
Second, most current research only addresses functional concerns
implicitly if at all. For example, some prior work aims to produce
a “minimal” number of security controls [?, ?], but these methods
still introduce far more controls than added manually. Recent re-
search has proposed a retrofitting method that uses functional and
security constraints as input [?, ?]. However, such constraints are
written as traces in terms of program locations, still requiring sig-
nificant program knowledge to get right (e.g., context sensitivity).
Finally, none of the prior methods retrofit software with multiple
security controls, possibly introducing spurious security code.

2.3 Goals for Retrofitting Programs for De-
fense in Depth

The goal is to develop a method that programmers can use to
retrofit their programs with security controls for containment, au-
thorization, and auditing that satisfy explicit security goals (e.g.,
policies to enforce) and are globally optimal relative to functional
costs. Thus, we have two broad challenges: (1) develop the the-
ory and techniques to retrofit multiple security controls optimally
from program code, security goals, and functional concerns and
their costs; and (2) reduce programmers effort for producing secu-
rity goals and the costs of functional concerns sufficient to achieve
desirable security in practice. Based on the limitations of prior
research, we highlight the essential questions presented by these
challenges:
• Can we design methods for identifying security-sensitive oper-

ations and security goals for programs that do not require de-
tailed, manual analysis of program code?
• Can we design methods to retrofit programs with containment,

authorization, and auditing security controls that enable verifi-
cation that each type of security control enforces a program’s
security goal with respect to that program’s security-sensitive
operations?
• Can we design methods to optimize the functional cost of sat-

isfying a security goal across containment, authorization, and
auditing simultaneously?

Thus, an ideal retrofitting method would extract security-
sensitive operations from request_loop and relate those opera-
tions to security goals, with detailed, manual code inspection or an-
notation by programmers. Using the security-sensitive operations
and security goals, this ideal method should produce a retrofitted
program that consumes minimal functional cost and verifiably sat-
isfies those security goals for the security-sensitive operations.

3. APPROACH OVERVIEW
The goal is to retrofit a program to add a series of defensive se-

curity controls to protect program data from unauthorized access,
specifically containment, authorization, and auditing. While there
are many differences among these security controls, we find that
retrofitting these security controls into programs requires solving
four common problems:
• Finding security-sensitive operations. Each security control

aims to mediate access to security-sensitive operations for dif-
ferent purposes (e.g., defining protection boundaries or logging
such operations). While security-sensitive operations may dif-
fer for individual controls, we find that such operations share
the ability to direct execution among unsafe choices. We pro-
pose a method based on finding the program statements where
control and data “choices” are made using input from untrusted
sources [?].
• Relating security-sensitive operations to security goals using

retrofitting policy. We have found that simply mediating ev-
ery security-sensitive operation creates unnecessary overhead
for performance and policy management. Instead, programmers
need a way to relate security goals to security-sensitive opera-
tions that does not require detailed, manual analysis of program
code. We propose a method that programmers use interactively
to find relationships between security-sensitive operations based
on their impact on satisfying security goals [?], which we call a
retrofitting policy.
• Place controls for security goals. Given a retrofitting policy,

the goal is to transform the program to satisfy that policy while
minimizing cost. While different transformations are applied
for different types of security controls, choosing where to place
security controls requires complete mediation of relevant pro-
gram flows in all cases. We propose to explore use of program
dependence graphs [?] (PDGs) for reasoning about control and
data flows uniformly for all security controls.
• Verifying correct transformations. Despite the use of different

methods for placing transformation and distinct transformation
primitives, each method transforms code to mediate security-
sensitive operations for a security goal. We explore how to
leverage formal methods, so that high assurance is obtained
from our retrofitting framework. We plan to verify the correct-
ness of the transformation methods proposed by building proofs
of correctness inside Coq [?].

Figure 1 presents an overview of our proposed STRATA frame-
work, which aims to implement the methods described above. The
STRATA framework enables programmers to retrofit their programs
with containment, authorization, and auditing security controls in
two steps. In the first step, programmers interactively develop
retrofitting policies for each of these security controls, leveraging
methods to find security-sensitive operations and relate those oper-
ations to security goals for retrofitting policy. In the second step,
automated methods transform programs with security controls to
satisfy a composition of those retrofitting policies while minimiz-
ing cost and verify the correctness of such retrofitting across all

STRATA Framework

Task 1:
Generate Retrofitting

Policy for Authorization

Section 7
Unified Retrofitting for

Defense-in-Depth
Authorization

Retrofitting Policy

Section 5
Generate Retrofitting

Policy for Containment

Section 6
Generate Retrofitting

Policy for Auditing

Program Code

Programmer
Input

Containment
Retrofitting Policy

Auditing
Retrofitting Policy

Programs Retrofitted
for Defense-in-Depth

For Authorization:
Transformation and

Verification for Authorization

For Containment:
Transformation and

Verification for Containment

For Auditing:
Transformation and

Verification for Auditing

Feedback

STEP ONE STEP TWO

Section 4
Generate Retrofitting

Policy for Authorization

Figure 1: STRATA framework for assurance of security controls for defense in depth

three security controls.

4. RETROFIT FOR AUTHORIZATION
Historically, there are two kinds of related, but distinct, security

models for authorizing operations on data. First, access control
mediates access to a program operation based on who requests the
access (subject) and what the data is (object), as well as the oper-
ation itself. In the request_loop, access control limits which
clients can perform which requests (operations) on which objects
in access_object. Access-control policies can be represented
by access-control lists or capabilities of access-control matrices [?],
which are intuitive to understand and easy to enforce. As a result,
they are widely adopted in programs such as servers and operating
systems. The reference monitor concept [?] defines the require-
ments for enforcing an access control policy correctly: complete
mediation, tamperproofing, and verifiability. For example, com-
plete mediation requires the placement of authorization hooks in
programs that mediate all security-sensitive operations [?, ?, ?, ?,
?, ?, ?, ?]. However, even complete mediation has been difficult
to ensure because programmers do not identify security-sensitive
operations explicitly.

Second, information flow tracks the propagation and release of
data through the program. Rather than being focused on program
operations, information flow is concerned with how data associated
with particular security properties may influence other data values,
causing security-critical data to be modified by untrusted data or
leaked to untrusted subjects. In the request_loop, informa-
tion flow control limits how private data (e.g., password database)
may be used to prevent its leakage when comparing it to client
input (e.g., input password) in compare_client. These influ-
ences are either through explicit data flows or implicit flows [?], in
which data is leaked via control structures of programs. For secu-
rity, hooks must mediate all unauthorized information flows using
declassifiers (for secrecy) and endorsers (for integrity) that remove
offending data from those flows.

We aim to retrofit software for both access and information flow
control. Manual placement of authorization hooks and media-
tion for information flow control is laborious [?, ?, ?] and error-
prone [?, ?, ?], so we propose to develop semi-automated methods
for this purpose.

The substantial limitations of previous systems are that they of-
fer little help to programmers for identifying security-sensitive op-
erations or the relationships between security-sensitive operations
and security requirements, which we call a retrofitting policy; pre-
vious systems often assume the retrofitting policy to be a manual
input [?, ?, ?]. The reality, however, is that very often programmers

have only a rough idea about the security implications of individ-
ual program statements and are unwilling to spend time to identify
such information manually. We believe that techniques that help
programmers discover retrofitting policies are needed.

Approach Overview. We define a retrofitting policy to be a set
of connections relating basic constructs. For access control, basic
constructs are the program statements that correspond to security-
sensitive operations; an example connection is the operation sub-
sumption between two operations, meaning that authorization of
the first operation always implies the authorization of the second.
In an information-flow policy, the basic constructs are also security-
sensitive operations, which are those program statements that oper-
ate on sensitive information at data sinks. Subsumption is also an
example of a connection between sinks meaning that the declassifi-
cation (sanitization) of the first sink always implies declassification
(sanitization) of the second.

In our recent work [?], we proposed a technique that infers
security-sensitive operations for access control from the least
amount of programmer input of any known method. A similar
method has since been proposed for Android analysis [?]. Our
method requires only the identification of language-specific look-
up functions and the sources of untrusted input. Its inference tech-
nique is based on a key observation: security-sensitive operations
correspond to the deliberate choices the program makes using client
input for retrieving data from data collections and for selecting
the conditional code paths for processing that data. Therefore, the
technique tracks the “choices” made by client requests to automati-
cally infer security-sensitive data and operations. Experiments per-
formed on programs such as X server and postgres demon-
strate this technique is effective at identifying almost all security-
sensitive operations. We compared our results with manual hook
placements by experts.

However, identifying security-sensitive operations alone is not
enough for efficient hook placements. Human experts often re-
move unnecessary hooks using domain knowledge. As a result,
the only way to reduce the number of hooks is to make the do-
main knowledge explicit. In an ongoing work [?], we make the
domain knowledge explicit through the definition of retrofitting
policies as connections between security-sensitive operations. We
have identified two kinds of connections: operation subsumption
and operation equivalence. We have discussed operation subsump-
tion before. Operation equivalence means that two operations are
always authorized for the same set of subjects. For multilevel se-
curity [?] (MLS), two operations that read the same object are
equivalent because the same set of subjects will also be autho-
rized. These connections are utilized for removing unnecessary

hook placements. For instance, if operation one subsumes oper-
ation two and if operation one dominates operation two in control
flow, then the authorization hook for operation two is unnecessary
(assuming an authorization hook for operation one is already there).
Preliminary experiments on a variety of software, including the X
server, databases, and the Linux kernel, demonstrate our methodol-
ogy can reduce programmers’ effort for discovering their intended
policies and can already reduce the number of access control hooks
by 30% [?].

To further improve the reduction, more automatic methods are
needed to discover retrofitting policies. To help programmers find
relevant connections, STRATA must provide security and perfor-
mance constraints and analyses that find pairs of security-sensitive
operations that satisfy those constraints to suggest connections au-
tomatically (e.g., must enforce MLS policies, described above). If
programmers agree with the high-level constraint, then they can se-
lect the resultant connections as a group, rather than one at a time.
To date, we have proposed two constraints, one for security and one
for performance. Given this experience, we feel it is necessary to
investigate the effectiveness of other constraints and other methods
for using those constraints. For example, roles [?] define groups
of permissions that are authorized for the same subjects, enabling
the computation of equivalence relations. Sun et al. require role
specifications as input [?], but probably role mining [?, ?] will be
useful for this problem.

We also feel that this approach applies to the setting of informa-
tion flow. However, mediators for information flow perform dif-
ferent tasks than access control hooks, so the semantics of their
connections will differ. For example, declassifiers allow subjects
to receive a subset of the flow’s data. Further study is needed to
investigate techniques to suggest possible types of declassifiers to
programmers, based on types of sources and sinks and types of
data that flow between them. One example suggestion is to say that
flows between source s1 and sink d1 and between source s2 and
sink d1 should use the same declassifier. Given these suggestions,
programmers then decide what declassifier to apply and provide
the actual declassification code (for example, the code for sanitiz-
ing SQL strings).

In addition, Strata needs multiple program analysis and trans-
formation techniques to place authorization hooks automatically in
programs. Given a retrofitting policy, the next step is to compute
a minimal cost placement for authorization code that satisfies that
policy. Previous work on access control hook placement relies on
control dependence, whereas previous work on mediator placement
relies on data dependence. However, information flow control often
leads to fine-grained, non-intuitive mediation requirements, partic-
ularly for implicit flows [?]. In general, we believe considering both
control and data dependence will be synergistic, but how exactly
they interact for better hook placement will be a research question
(especially in the case of implicit flows).

We feel that a uniform program representation, called program
dependence graphs (PDGs [?]), will help this problem. A pro-
gram’s PDG represents both the control dependence and data de-
pendence of the program and can be extracted using efficient pro-
gram analysis. We believe the benefit of PDGs is that it will en-
able a unified framework to compute better hook placements for a
variety of security goals, from access control to explicit informa-
tion flows to implicit information flows. For access control, the
framework uses mostly the control dependence to reduce the num-
ber of hooks, but data dependence can be used to satisfy complete
mediation without blocking authorized operations. For controlling
explicit flows, the framework considers data-dependence edges to
insert code that tracks data flows and taint checks or declassifiers

at appropriate places. Implicit flows can be taken into account by
considering both control and data dependence [?].

5. RETROFIT FOR CONTAINMENT
Experience shows that despite our best efforts at improving soft-

ware security, adversaries may bypass defenses to achieve mali-
cious goals. This is because software is often retrofit for security
manually, using ad hoc techniques. These techniques are error-
prone, and may leave avenues that adversaries can later exploit [?,
?, ?]. Vulnerabilities may remain despite our best efforts to retrofit
software for security, especially if the requirements used during
the retrofitting process evolve over time [?, ?]. Robust software
assurance must therefore include a layer of defenses that confine
adversaries, even if the system is compromised.

Much of today’s software is not written with the goal of con-
fining adversaries. Most server applications as well as systems
software are written as monolithic artifacts. Vulnerabilities in such
systems have been exploited by adversaries to gain control over the
entire server [?]. Until about five years ago, web browsers were
also designed as monolithic systems. In such designs, the browser
kernel, script parsers, renderers, and third-party plugins ran within
the same protection domain. This design lead to many security at-
tacks, wherein a vulnerability in a plugin often gave an adversary
complete control over the browser [?, ?, ?, ?]. Motivated by such
attacks, the browser industry has shifted its focus to compartmen-
talized or modular designs, in which browser subsystems execute
within different protection domains. For example, Google Chrome
uses different OS processes to sandbox web content on each tab,
and also creates new OS processes to execute plugins and other
third-party browser content.

Strata also follows this approach, and aims to automatically
modularize software to enable attacker containment. Our overall
goal is to retrofit a monolithic software system to adhere to two ba-
sic security principles: (1) Privilege Separation, which posits that
resources that require different access rights must execute within
different protection domains, and (2) Least Privilege, which posits
that each module, running within its own protection domain, must
only receive the privileges that it needs to accomplish its task. To-
gether, these two principles ensure that the attack surface of the
modularized software system is minimized, limiting the damage
that an adversary can inflict if he were to obtain access to the sys-
tem.

Strata will develop a number of techniques to retrofit software
for attacker containment. First, it will provide a rich interface
to specify resources that must be protected. Each of the speci-
fied resources will be contained within their own protection do-
main. Second, Strata will investigate efficient techniques to mod-
ularize software. The main performance cost of modularization is
that method invocation, which is inexpensive in a monolithic soft-
ware system, involves crossing protection domains. Strata rectifies
this by optimizing for performance within the restrictions of the
retrofitting policies. Third, in contrast to prior techniques that pri-
marily used OS processes to define protection domains, Strata will
consider a number of alternatives, including language-based pro-
tection, lightweight virtual machines, as well as enhanced OS APIs
as protection domains, and will develop transformation techniques
tailored to these domains. Strata will also include verification tech-
niques that provide assurance on the correctness of the modularized
code.

Approach Overview. In a retrofitting policy for software modular-
ization, we identify connections between security-sensitive opera-
tions (as done for authorization). However, in this case the concept

of a connection has a negative connotation—A connection between
two security-sensitive resources requires the two operations to be
isolated in individual protection domains. Using the web browser
as an example, a developer may identify a connection between the
browsing history and network operations because browsing history
should not be leaked over the network. The developer can then use
the control and data dependencies from the PDG to iteratively iden-
tify statements in the software system that are connected and must
therefore appear in separate protection domains.

In Strata, a developer additionally provides a performance cost
model as part of the retrofitting policy. This model will allow devel-
opers to identify code paths that are frequently executed, e.g., using
information gathered from runtime profiles, as well as the cost of
crossing protection domains. The performance cost model iden-
tifies resources that could potentially be placed in the same pro-
tection domain to provide good performance in the modularized
software system. The connections and cost model together provide
a candidate retrofitting policy that is refined iteratively using code
analysis. Such performance cost model can potentially be obtained
automatically from profile information gathered at runtime.

Strata uses the candidate retrofitting policy identified above, to-
gether with static code analysis to identify possible module bound-
aries in the monolithic software system. This analysis has two
goals. First, the modules identified by the analysis must satisfy
all the connections, i.e., all program constructs manipulating con-
nected resources must be isolated in separate modules. A pro-
gram construct may be involved in accessing a pair of connected
resources; in such cases, it may have to be replicated, with each
replica serving one resource. Second, the overall performance cost
of the modularization should be small. Program constructs manipu-
lating unconnected resources can be co-located in the same protec-
tion domain, provided that the resulting costs of domain crossings
is not excessive.

Strata casts the problem of identifying module boundaries as an
optimization problem on the inter-procedural control-flow graph
(CFG) of the monolithic software system. The edges of the CFG
are annotated with weights from the performance cost model. The
goal of the optimization then is to partition the graph into subgraphs
so that: (a) nodes labeled with connected resources appear in sep-
arate subgraphs, and (b) the sum total of the edge weights cross-
ing subgraphs is minimized. Nodes labeled with unconnected re-
sources can appear in the same subgraph, and because there may be
several such pairs of unconnected resources, the analysis has some
flexibility in identifying module boundaries. Strata formulates this
problem as one of finding a min-cost multicut in the directed graph
denoted by the CFG [?].

Strata presents a ranked list of such boundaries, together with the
estimated cost of the associated modularization, to the developers.
The developers may interactively explore this design space before
settling upon a retrofitting policy. Once the retrofitting policy has
been identified, the developers must also supply a security policy,
which specifies the permitted message interactions between mod-
ules separating a pair of connected resources. Such a policy could
be developed interactively. The developers provide a candidate se-
curity policy, which will imply a set of security-sensitive operations
and connections, resulting in a candidate retrofitting policy. The de-
veloper then iteratively refines the policy by observing the runtime
behavior of the retrofitted system.

Once the developer has identified module boundaries, Strata
transforms the code to enforce those boundaries. The main chal-
lenge in this step is to map software artifacts to the specific isola-
tion primitives used, and to generate code to enable communica-
tion across protection domains. For example, if OS processes are

used to modularize the system, Strata have to generate marshal-
ing and de-marshaling code in each module, together with calls to
the OS’s IPC primitives to enable communication. Strata will in-
clude a variety of isolation primitives, including OS processes (as in
PrivTrans), Capsicum sandboxes [?], lightweight VMs and transac-
tions [?], and language-level primitives, such as JavaScript’s Har-
mony modules [?]. Strata’s transformation component also gener-
ates code to enforce the security policy specified by the developer
at module boundaries.

In preliminary work, we have developed a prototype of the above
approach for web browser extensions. Such extensions are avail-
able aplenty for Mozilla Firefox and Google Chrome and allow
end-users to enrich their web browsing experience. Extensions con-
tain code (both JavaScript and native code) that not only interacts
with untrusted content on web pages, but also with code that ac-
cesses system resources, such as the file system and the network.
It is critical to provide adversary containment for such extensions,
e.g., to ensure that an adversary that hijacks an extension via a ma-
licious script on a web page is unable to access system resources.

These problems have motivated much work from browser ven-
dors in developing new frameworks for extension development [?,
?] that encourage extension developers to modularize their code.
However, few guidelines exist for developers to understand how
best to modularlize their code, and the process of creating modules
is usually ad hoc. Moreover, browsers such as Firefox, which has
only recently adopted modular extension development [?, ?], have
legacy extensions that do not benefit from modularization.

We have applied modularization to legacy browser extensions,
focusing first on Mozilla Firefox [?]. In this study, we trans-
formed legacy extensions to benefit from the JetPack framework.
We plan to extend this tool to also allow such extensions to operate
atop Google Chrome, which uses different modularization primi-
tives [?]. We also plan to apply our approach to traditional server
software systems, such as the X server, OpenSSH, and the Apache
web server.

6. RETROFIT FOR AUDITING
Retroactive security is the enforcement of security, or detection

of security violations, after the execution of a process. By contrast,
security mechanisms such as access control and information flow
control enforce security either before or during execution. Years of
experience with securing cyber systems has shown that retroactive
security is necessary, in addition to protection-based mechanisms,
since not all vulnerabilities can be predicted a priori or managed
with prevention alone. Also, retroactive security can be used to
hold entities accountable for their actions [?, ?, ?].

Auditing underlies retroactive security frameworks, and has be-
come increasingly important to the theory and practice of cyberse-
curity and is essential for any defense in depth. However, audit-
ing is error-prone, and difficult to get correct, in at least two ways.
First, an audit log produced during execution must be an accurate
record of all security-relevant events. Similar to missed access-
control checks, it is easy for a programmer to accidentally omit the
recording of all relevant events– for example, it has been shown
that major health service informatics systems do not log sufficient
information in light of guidelines for HIPAA policies [?]. Second,
audit logs must be analyzed to detect security violations– a concern
is often overlooked during development, resulting in “write only”
logs that are never used for security enforcement.

Formal methods have been successful in addressing the second
problem, and have been used to establish reliable foundations for
analysis of audit logs [?, ?]. However, little attention has been paid
to the first problem: assuring correctness of the audit log. Such

assurances are essential for assuring any sort of security analysis
based on auditing. Our goals here then are (1) to obtain a semantics
of audit logging so that assurances can be meaningfully and rigor-
ously obtained for auditing policies, and (2) to define policy-driven
retrofitting tools for audit log generation, that provably respect the
semantics of input logging policies.

An Illustrative Example. Consider a medical records system at a
hospital. Some patients’ records are marked as sensitive. To ensure
that medical staff has timely access to patient information (e.g., ac-
cessing a patient’s record when they are admitted to the emergency
room), the system allows access to any record by medical staff.
The system does not enforce access control restrictions, and allows
medical staff to read from medical records, and send the record to
others. To ensure that staff do not violate this trust and only use
their access appropriately, the system should record in a log when
a user reads and subsequently sends a sensitive medical record.

The medical records system must be instrumented to generate
the appropriate logs. However, if instrumentation strategies are in-
formal, then the intended policy may not be implemented. For ex-
ample, developers may just “eyeball” the code to identify where
a medical record may be sent and insert code to record this event
in the audit log. But this strategy might record false positives if it
is not statically known that a secure file is read, prior to the send.
It can also lose information, since it may be difficult to statically
predict sequences of function calls, especially in the presence of
features such as dynamic dispatch.

Observe that the problem is not with the manner in which the
audit log is queried, but rather with the way the audit log itself is
generated. In particular, the instrumentation of the program does
not properly realize the intended logging policy. Here is a more
precise textual specification of what should be recorded in the log,
which we call LPH :

LPH : Record in the log information associated with
a remote send by a medical staff member, if a sensitive
file was read by that staff member prior to the send.

Subsequently, if system administrators discover that sensitive in-
formation is being leaked to some remote location, they may desire
to ask the following audit query, which we call AQH :

AQH : Retrieve all destination addresses of remote
sends by medical staff in the log file.

However, note that while administrators expect that the answer to
AQH will return e.g. every relevant potential recipient of sensitive
information, this is the case only if LPH has been instrumented
correctly. If logging is incomplete, for example, then some po-
tential recipients may be missed. If logging is overzealous, some
legitimate recipients of sensitive information may be erroneously
flagged. In other words, the connection between audit queries and
log-generating processes is the manner in which programs are in-
strumented to generate logs, and correctness of logging instrumen-
tation is vital for auditing assurances. By “instrumented”, we mean
the functionality that is added to code specifically to generate logs.

Approach Overview. We advocate for retrofitting approaches to
auditing, since such tools can assure correct audit log generation
even for untrusted code. That is, if retrofitting tools can be shown
to correctly instrument any input program to support some class of
logging policies, correctness of generated audit logs is automati-
cally ensured. Clearly, a formal semantics of audit logging is nec-
essary to establish correctness of retrofitting strategies.

We regard an audit log as a piece of information that is a refine-
ment of the information contained in a process. Thus, the proper

meaning of an auditing policy is as a kind of operation over in-
formation structures. With this view, it is natural to pursue a se-
mantics of auditing based on information algebra [?, ?], which is a
generalized framework for information systems. Information alge-
bra has been shown to capture systems such as relational algebra,
predicate logic, and linear systems. Aside from the philosophical
appeal of realizing an auditing semantics in this general theory, an
information algebra formulation has a number of technical advan-
tages. For example, relations between distinct information algebras
have been established, so the FOL-centric results in this paper can
be ported to other systems, e.g. relational databases. Significantly,
audit algebras enjoy a partial information ordering, denoted ≤ that
allows comparison of information pieces wrt their information con-
tent. This ordering is crucial in relating audit logs with logging
policy semantics, and establishing notions of soundness and com-
pleteness of retrofitting. Although the former is concrete, whereas
the latter is abstract, they can be related by the information they
contain.

In more detail, we argue that the semantics of a particular log-
ging policy LP , which is specified in some formal language, be
defined as an operation in a complete program trace. That is, for
any program p, the semantics of a logging policy are a refinement
of p’s complete execution trace, denoted traceof (p). This refine-
ment can be specified as an information algebraic operation we call
genlog that takes as input traceof (p) and LP , so that:

genlog(traceof (p),LP)

denotes the intended semantics of a logging policy LP for a given
program p.

Given this semantic definition, as well as notions of informa-
tion ordering available in information algebras, we can meaning-
fully define correctness of retrofitting strategies. Let retro be
some retrofitting strategy, that takes as input programs p and a log-
ging policy LP , where we assume that LP is selected from some
nonempty set of logging policies P that the strategy supports. We
write:

retro(p,LP) ; L

to denote that the log L is generated by executing the program p′

that results from instrumenting the program p to support the log-
ging policy LP . We say that retro is sound iff L represents a
subset of information in genlog(traceof (p),LP), and retro is
complete iff genlog(traceof (p),LP)’s information content is con-
tained in L’s. More precisely, we have:

DEFINITION 1. A retrofitting strategy retro is sound for P iff
for all p ∈ L and LP ∈ P , we have that L ≤ genlog(p,LP),
where retro(p,LP) ; L.

DEFINITION 2. A retrofitting strategy retro is complete for P
iff for all p ∈ L and LP ∈ P , we have genlog(p,LP) ≤ L, where
retro(p,LP) ; L.

In work so far, we have defined a language of logging policies
based on first order logic (FOL), and have formalized a notion of
program traces expressed as sets of temporally ordered FOL formu-
lae. These definitions, along with additional constructions, obtain
an information algebraic framework in which audit logging can be
endowed with a semantics defined in terms of algebraic operations.
We have also defined a retrofitting strategy for a core functional
calculus that supports an interesting class of logging policies, the
so-called surveillance policies. This strategy has been verified to be
sound and complete, in the information algebraic sense described
above, using the Coq framework.

In ongoing work, our immediate research targets include devel-
oping retrofitting strategies for realistic programming languages
with correctness assurances, as well as type-directed optimiza-
tions. These optimizations will be based on our previous work on
temporally-sensitive typing analyses [?].

7. VALIDATING DEFENSE IN DEPTH
Building on methods to validate security controls for authoriza-

tion, containment, and auditing, we identify three advantages to
reasoning about all three in unison. The first advantage is that
we may be able to optimize the use of security controls by elim-
inating redundant controls. For example, authorization may reli-
ably control all adversary flows from one module to another, which
may eliminate the need to separate those modules. The second ad-
vantage is that the actual runtime use of the program may moti-
vate changes in security controls that improve security. For ex-
ample, logging downgraded data could show that the downgrading
task is more common and more complex than envisioned, moti-
vating changes in the retrofitting policies to enact more authoriza-
tion and/or containment. Finally, the third advantage is that assur-
ance can encompass all three controls, providing a comprehensive
validation of enforcement. We plan to develop formal verification
techniques to certify the correctness of retrofitting, similar to Com-
pCert [?] and Vellvm [?, ?].

Thus, we propose a unified framework for retrofitting programs
for defense in depth spanning all three security controls. Figure 1
shows the expected high-level design of the STRATA framework. In
this task, we will explore methods for step two, unified retrofitting.
This step receives retrofitting policies for each of the three secu-
rity controls, plus the program code and optional feedback from
deployed security controls. The output from this step is the pro-
gram code retrofitted for authorization, containment, and auditing
that satisfies the retrofitting policies and is optimal with respect to
the costs of the controls.

Unified policy representation. A distinct benefit of designing a
multi-layered security framework from the ground up is the oppor-
tunity to unify and synthesize policies across layers. For example,
authorization and auditing policies can be synthesized to ensure
auditing, and thus retroactive accountability, if certain authoriza-
tion conditions are not met by actors. Such a policy was already
suggested in Section 6. A unified policy representation, capturing
properties at each layer, can be used to specify this.

Key to enabling unified retrofitting is a uniform denotation of
retrofitting policies across STRATA levels. Authorization, contain-
ment, and auditing all refer to subjects (to be controlled), objects
(that may be accessible to subjects or may have security require-
ments), program flows (control, data, and traces), and security poli-
cies. We argue that it would be beneficial to apply a single lan-
guage to express retrofitting policies at each layer. One option is
to express security controls in terms of automata. For example, I/O
automata are labeled transition models for asynchronous concur-
rent systems [?]; they are typically used to describe the behavior of
a system interacting with its environment. In I/O-automata-based
models of monitoring, the system (node) to be monitored and the
monitor are represented as I/O automata, with the input and output
actions of each automaton representing their interaction with the
environment and each other. Security policies are defined in terms
of allowed or disallowed executions (traces). Using I/O automata,
we can capture requirements on input (e.g., control of various sub-
jects to that input), output (e.g., the impact of the operation on the
security of the object), and trace effects (e.g., logging in particular
states). Further, extensions to I/O automata have been proposed to

represent probabilistic policies [?] and model cost [?], so this ap-
proach could capture a variety of whole-system enforcement sce-
narios. A remaining challenge is to ensure that I/O automata are
at least translatable to resident policy languages at each STRATA
layer.

Optimization via synthesized transformations. Policies specify
the semantics of security mechanisms, but uniform policies will
also enable the implementation of policies via program constructs
that leverage connections between layers. As a retrofitting policy
is defined to be a set of connections among a set of program con-
structs, the goal of this task is two-fold: (1) produce a single set
of program constructs from the three control-specific sets and (2)
produce a single set of connections among them from three control-
specific sets. While the naive approach to union the three construct
and connection sets to form a multi-control retrofitting policies can
yield a solution if one exists, it may miss opportunities to find bet-
ter solutions. For example, if the same constructs are identified
for containment and authorization, then a sub-optimal solution that
employs containment to isolate the constructs when authorization
effectively blocks illegal data can be eliminated. We will explore
automated analyses to identify such opportunities. For example, we
will explore methods to identify such dominance relations across
controls. Recall that programmers produce retrofitting policies in-
teractively with STRATA, so such analyses must be meaningful to
programmers. Ultimately, we would like programmers to “pro-
gram” the retrofitting policy interactively with STRATA.

The problem of transformation takes a program, a retrofitting
policy, and a cost function and produces a retrofitted program that
satisfies the retrofitting policy for the minimal cost. For individual
controls, the cost function focuses on only one dimension at a time,
but since different controls apply different cost metrics we must
consider transformation as a multi-dimensional optimization where
the retrofitting policy implies a set of constraints.

Improving retrofitting policies continuously. The goal of contin-
uous improvement is to use knowledge of how programs are actu-
ally run to reduce the risks taken by the trade-off of security with
functional concerns proactively. To address this problem, we will
leverage the unification of security controls to collect information
for guiding improvements to the security controls themselves. The
problem is analogous to auditing, except that rather than looking
for intrusions we will try to estimate the risks introduced by secu-
rity controls quantitatively to identify those most in need of revi-
sion. This is sometimes called feedback in the systems literature.
For the auditing example on downgrading, we may estimate risk by
the percentage of data to redact or number of decisions necessary
to identify the data to redact. Using these quantitative metrics we
may identify more (fewer) program constructs in need of control or
eliminate (add) connections that are violated (satisfied) in practice,
resulting in more (fewer) security controls. In addition, we will
explore methods to make retrofitting changes based on such find-
ings automatically, leading to agile retrofitting of programs as they
execute.

Verifying transformations. Having retrofitted software for de-
fense in depth, how can we show that the retrofitted system preserve
the functionality of the original software system? In fact, we are in-
terested in demonstrating that the behavior of the retrofitted system
is a subset of the monolithic original, with omitted behaviors being
those excluded by a security policy.

In general, proving correctness of program transformations is a
difficult challenge, one that has remained open for several decades,
cf., the quest to produce provably correct compilers and program
optimizers. However, over the last few years, there have been im-

pressive developments in this domain, thanks to advances in inter-
active theorem proving systems and SMT solvers.

We plan to build upon this line of research to build a verified
retrofitting pipeline. One approach that we plan to explore is the
use of Coq [?] to achieve the goal of verified transformations. Coq
is an interactive proof assistant that allows co-development of pro-
gram transformations, themselves expressed in Coq, together with
their proofs of correctness. Transformations can be developed iter-
atively with their proofs, using the Coq system to debug the trans-
formations or their proofs as errors are discovered. Thus, when
the transformation has been fully specified, it is also accompanied
with a machine-checkable proof of correctness. This approach was
recently used in Vellvm [?, ?] to prove the correctness of several
optimizations within LLVM. As has been noted in Section 6, we
have already used Coq to verify a retrofitting strategy for auditing
in preliminary work.

8. CONCLUSIONS
Even when programmers decide to add the security controls nec-

essary to implement defense in depth, they face many practical
challenges. First, Defenses are often added manually, using an ad
hoc process. Second, each security control typically uses its own
policies and mechanisms, so the manual process has to be repeated
for each control. Third, it is difficult to prove that a manual deploy-
ment of security controls provides an advertised level of assurance.
Recent work on methods to retrofit legacy code with security con-
trols has begun to address some of these issues, but these methods
still require significant manual effort, do not explicitly map secu-
rity goals to program code, and they do not reason about multiple
security controls. In this paper, we propose the STRATA frame-
work for retrofitting legacy code for authorization, containment,
and auditing security controls. The STRATA framework imple-
ments a comprehensive view of assurance, with an emphasis on
automated and interactive tools that developers can use to iden-
tify site-level security goals, in terms of a retrofitting policy, and
retrofit legacy code to enforce security policies in a manner that can
be machine-verified for assurance. We show how security controls
can be retrofit individually by STRATA and how STRATA enables
optimization, continuous improvement, and assurance across mul-
tiple security controls. We show that by reasoning about defense
in depth a variety of advantages can be obtained, including opti-
mization, continuous improvement, and assurance across multiple
security controls.

Acknowledgements
We acknowledge the anonymous reviewers of this paper. This ma-
terial is based upon work supported by the National Science Foun-
dation Grants No. CNS-1408880, CNS-1408801, CNS-1408803,
and CNS-1408826.

9. REFERENCES
[1] Ecmascript Harmony modules.

http://wiki.ecmascript.org/doku.php?id=harmony:modules.
[2] The mozilla jetpack extension development framework.

https://wiki.mozilla.org/Jetpack.
[3] Apache security controls and auditing.

http://www.isaca.org/Journal/Past-Issues/2003/Volume-
5/Pages/Apache-Security-Controls-and-Auditing.aspx,
2013.

[4] F.38. sepgsql. http://www.postgresql.org/docs/9.1/static/sepgsql.html,
2013.

[5] Linux audit-subsystem design documentation for kernel 2.6, version 0.1.
http://www.uniforum.chi.il.us/slides/HardeningLinux/LAuS-Design.pdf,
2013.

[6] qmail home page. http://qmail.omnis.ch/top.html, 2013.

[7] J. P. Anderson. Computer security technology planning study, volume II.
Technical Report ESD-TR-73-51, HQ Electronics Systems Division (AFSC),
October 1972.

[8] A. Barth, A. P. Felt, P. Saxena, and A. Boodman. Protecting browsers from
extension vulnerabilities. In Proceedings of the Network and Distributed System
Security Symposium, NDSS 2010, San Diego, California, USA. The Internet
Society, 2010.

[9] D. E. Bell and L. J. LaPadula. Secure computer system: Unified exposition and
Multics interpretation. Technical Report ESD-TR-75-306, HQ Electronic
Systems Division (AFSC), March 1976.

[10] D. Brumley and D. Song. PrivTrans: Automatically partitioning programs for
privilege separation. In Proceedings of the USENIX Security Symposium,
August 2004.

[11] R. Canetti, L. Cheung, D. Kaynar, M. Liskov, N. Lynch, O. Pereira, and
R. Segala. Task-structured probabilistic I/O automata. In Proceedings of 8th
International Workshop on Discrete Event Systems, pages 207–214, 2006.

[12] J. Carter. Using GConf as an Example of How to Create an Userspace Object
Manager. 2007 SELinux Symposium, 2007.

[13] The COMPCERT project. http://compcert.inria.fr/.
[14] The Coq proof assistant. http://coq.inria.fr/, 2008. Version 8.1.
[15] A. Datta, J. Blocki, N. Christin, H. DeYoung, D. Garg, L. Jia, D. K. Kaynar, and

A. Sinha. Understanding and protecting privacy: Formal semantics and
principled audit mechanisms. In 7th International Conference on Information
Systems Security, pages 1–27, 2011.

[16] D. Dean, E. W. Felten, and D. S. Wallach. Java security: From hotjava to
netscape and beyond. In In Proceedings of the 1996 IEEE Symposium on
Security and Privacy, pages 190–200, 1996.

[17] D. Denning. A lattice model of secure information flow. Communications of the
ACM, 19(5):236–242, 1976.

[18] M. Dhawan, C. Shan, and V. Ganapathy. Enhancing JavaScript with
transactions. In Proceedings of ECOOP’12, the 26th European Conference on
Object-Oriented Programming, volume 7313 of Lecture Notes in Computer
Science (LNCS), pages 383–408, Beijing, China, June 2012. Springer.

[19] P. Drábik, F. Martinelli, and C. Morisset. Cost-aware runtime enforcement of
security policies. In Proceedings of the 8th International Workshop on Security
and Trust Management (STM 2012), pages 1–16, 2013.

[20] D.Walsh. Selinux/apache. http://fedoraproject.org/wiki/SELinux/apache.
[21] A. Edwards, T. Jaeger, and X. Zhang. Runtime verification of authorization

hook placement for the Linux security modules framework. In Proceedings of
the 9th ACM Conference on Computer and Communications Security, pages
225–234, 2002.

[22] J. Epstein and J. Picciotto. Trusting X: Issues in building Trusted X window
systems -or- what’s not trusted about X? In Proceedings of the 14th Annual
National Computer Security Conference, Oct. 1991. A survey of the issues
involved in building trusted X systems, especially of the multi-level secure
variety.

[23] D. Ferraiolo and R. Kuhn. Role-based access control. In In Proceedings of the
15th NIST-NCSC National Computer Security Conference, pages 554–563,
1992.

[24] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph
and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349,
July 1987.

[25] M. Frank, J. M. Buhmann, and D. Basin. On the definition of role mining. In
Proceedings of the 15th ACM Symposium on Access Control Models and
Technologies, SACMAT ’10, pages 35–44. ACM, 2010.

[26] V. Ganapathy, T. Jaeger, and S. Jha. Automatic placement of authorization
hooks in the Linux Security Modules framework. In Proceedings of the 12th
ACM Conference on Computer and Communications Security, pages 330–339,
Nov. 2005.

[27] J. A. Goguen and J. Meseguer. Security policies and security models. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 11–20,
Apr. 1982.

[28] C. Grier, S. Tang, and S. King. Secure web browsing with the op web browser.
In IEEE Symposium on Security and Privacy, 2008.

[29] C. Grier, S. Tang, and S. T. King. Secure web browsing with the op web
browser. In Proceedings of the 2008 IEEE Symposium on Security and Privacy,
pages 402–416. IEEE Computer Society, 2008.

[30] W. R. Harris, S. Jha, and T. W. Reps. DIFC programs by automatic
instrumentation. In ACM Conference on Computer and Communications
Security (CCS), pages 284–296, 2010.

[31] W. R. Harris, S. Jha, T. W. Reps, J. Anderson, and R. N. M. Watson.
Declarative, temporal, and practical programming with capabilities. In IEEE
Symposium on Security and Privacy, pages 18–32, 2013.

[32] B. Hicks, K. Ahmadizadeh, and P. McDaniel. Understanding practical
application development in security-typed languages. In 22st Annual Computer
Security Applications Conference (ACSAC), December 2006.

[33] JDBC: Java Database Connectors. http://java.sun.com/products/jdbc.
[34] P. A. Karger and R. R. Schell. MULTICS security evaluation: Vulnerability

analysis. Technical Report ESD-TR-74-193, Deputy for Command and
Management Systems, Electronics Systems Division (ASFC), June 1974.

[35] R. Karim, M. Dhawan, and V. Ganapathy. Refactoring legacy browser
extensions to modern extension frameworks. In Proceedings of ECOOP’14, the

28th European Conference on Object-Oriented Programming, volume 8586 of
Lecture Notes in Computer Science (LNCS), pages 463–488, Uppasala,
Sweden, July/August 2014. Springer.

[36] R. Karim, M. Dhawan, V. Ganapathy, and C. Shan. An analysis of the Mozilla
Jetpack extension framework. In Proceedings of ECOOP’12, the 26th

European Conference on Object-Oriented Programming, volume 7313 of
Lecture Notes in Computer Science (LNCS), pages 333–355, Beijing, China,
June 2012. Springer.

[37] D. Kilpatrick. Privman: A library for partitioning applications. In Proceedings
of the 2003 USENIX Annual Technical Conference—FREENIX Track, June
2003.

[38] D. H. King, B. Hicks, M. Hicks, and T. Jaeger. Implicit Flows: Can’t live with
’em, can’t live without ’em. In Proceedings of Fourth International Conference
on Information Systems Security, Dec. 2008.

[39] D. H. King, S. Jha, D. Muthukumaran, T. Jaeger, S. Jha, and S. Seshia.
Automating security mediation placement. In Proceedings of the 19th European
Symposium on Programming (ESOP ’10), pages 327–344, 2010.

[40] J. T. King, B. Smith, and L. Williams. Modifying without a trace: General audit
guidelines are inadequate for open-source electronic health record audit
mechanisms. In Proceedings of the 2nd ACM SIGHIT International Health
Informatics Symposium, IHI ’12, pages 305–314, New York, NY, USA, 2012.
ACM.

[41] J. Kohlas. Information Algebras: Generic Structures For Inference. Discrete
mathematics and theoretical computer science. Springer, 2003.

[42] J. Kohlas and J. Schmid. An algebraic theory of information: An introduction
and survey. Information, 5(2):219–254, 2014.

[43] A. Kurmus, R. Tartler, D. Dorneau, B. Heinloth, V. Rothberg, A. Ruprecht,
W. Schoeder-Preikschat, D. Lohman, and R. Kapitza. Attack surface metrics
and automated compile-time os kernel tailoring. In NDSS, 2013.

[44] B. W. Lampson. Protection. In 5th Princeton Conference on Information
Sciences and Systems, 1971.

[45] B. W. Lampson. Computer security in the real world. IEEE Computer,
37(6):37–46, 2004.

[46] B. Livshits and S. Chong. Towards fully automatic placement of security
sanitizers and declassifiers. In POPL, pages 385–398, 2013.

[47] B. Livshits and J. Jung. Automatic mediation of privacy-sensitive resource
access in smartphone applications. In Proceedings of the 22nd USENIX
Security Symposium, Berkeley, CA, USA, 2013. USENIX Association.

[48] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed
algorithms. In Proceedings ACM Symposium on Principles of Distributed
Computing, 1987.

[49] I. Molloy, N. Li, T. Li, Z. Mao, Q. Wang, and J. Lobo. Evaluating role mining
algorithms. In Proceedings of the 14th ACM Symposium on Access Control
Models and Technologies, SACMAT ’09, pages 95–104. ACM, 2009.

[50] D. Muthukumaran, T. Jaeger, and V. Ganapathy. Leveraging ’choice’ in
authorization hook placement. In 19th ACM Conference on Computer and
Commumications Security. ACM, 2012.

[51] D. Muthukumaran, T. Jaeger, and G. Tan. Producing hook placements to enforce
expected authorization policies. Technical Report NSRC Technical Report
NAS-TR-169-2013, The Pennsylvania State University, September 2013.

[52] D. Muthukumaran, J. Schiffman, M. Hassan, A. Sawani, V. Rao, and T. Jaeger.
Protecting the integrity of trusted applications on mobile phone systems.
Security and Communication Networks, 4(6), 2011.

[53] J. G. Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi. Adsafety:
type-based verification of javascript sandboxing. In Proceedings of the 20th
USENIX conference on Security, SEC’11, pages 12–12. USENIX Association,
2011.

[54] The Postfix mail program. http://www.postfix.org.
[55] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege escalation. In

Proceedings of the 12th USENIX Security Symposium, Berkeley, CA, USA,
2003. USENIX Association.

[56] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and N. Modadugu. The
ghost in the browser analysis of web-based malware. In HotBots, 2007.

[57] C. Reis, A. Barth, and C. Pizano. Browser security: Lessons from Google
Chrome. Communications of the ACM, 52(8):45–49, Aug. 2009.

[58] R. Sailer, T. Jaeger, E. Valdez, R. Caceres, R. nald Perez, S. Berger, J. L.
Griffin, and L. van Doorn. Building a MAC-based security architecture for the
xen open-source hyperviso r. In Proceedings of the 2005 Annual Computer
Security Applications Conference, pages 276–285, Dec. 2005.

[59] J. H. Saltzer and M. D. Schroeder. The protection of information in computer
systems. Proceedings of the IEEE, 63(9):1278–1308, September 1975.

[60] Re: Adding support for SE-Linux security.
http://archives.postgresql.org/pgsql-hackers/2009-12/msg00735.php,
2009.

[61] SE-PostgreSQL? http://archives.postgresql.org/message-
id/20090718160600.GE5172@fetter.org,
2009.

[62] C. Skalka, S. Smith, and D. V. Horn. Types and trace effects of higher order
programs. Journal of Functional Programming, 18(2):179–249, 2008.

[63] S. Son, K. S. McKinley, and V. Shmatikov. Rolecast: finding missing security
checks when you do not know what checks are. In Proceedings of the 2011
ACM international conference on Object oriented programming systems

languages and applications, OOPSLA ’11, pages 1069–1084. ACM, 2011.
[64] S. Son, K. S. McKinley, and V. Shmatikov. Fix Me Up: Repairing

Access-Control Bugs in Web Applications. In ISOC Network and Distributed
System Security Symposium (NDSS), 2013.

[65] V. Srivastava, M. D. Bond, K. S. McKinley, and V. Shmatikov. A security policy
oracle: detecting security holes using multiple api implementations. In
Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, pages 343–354. ACM, 2011.

[66] F. Sun, L. Xu, and Z. Su. Static detection of access control vulnerabilities in
web applications. In Proceedings of the 20th USENIX conference on Security,
SEC’11, pages 11–11. USENIX Association, 2011.

[67] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou. AutoISES: automatically
inferring security specifications and detecting violations. In Proceedings of the
17th conference on Security symposium, pages 379–394. USENIX Association,
2008.

[68] D. Turner. Symantec internet security threat report: Trends for january-june 07.
Technical report, Symantec Inc., 2007.

[69] J. A. Vaughan, L. Jia, K. Mazurak, and S. Zdancewic. Evidence-based audit. In
In Proc. of the IEEE Computer Security Foundations Symposium, 2008.

[70] E. Walsh. Integrating x.org with security-enhanced linux. In Proceedings of the
2007 Security-Enhanced Linux Workshop, Mar. 2007.

[71] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and
S. King. Automated web patrol with strider honeymonkeys: Finding web sites
that exploit browser vulnerabilities. In Proceedings of the 2006 Network and
Distributed System Security Symposium (NDSS), February 2006.

[72] R. N. M. Watson. TrustedBSD: Adding trusted operating system features to
FreeBSD. In Proceedings of the FREENIX Track: 2001 USENIX Annual
Technical Conference, pages 15–28. USENIX Association, 2001.

[73] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway. Capsicum:
Practical capabilities for UNIX. In USENIX Security, 2010.

[74] D. J. Weitzner. Beyond secrecy: New privacy protection strategies for open
information spaces. IEEE Internet Computing, 11(5):94–96, 2007.

[75] D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum, J. A. Hendler, and
G. J. Sussman. Information accountability. Communications of the ACM,
51(6):82–87, 2008.

[76] C. Wright, C. Cowan, and J. Morris. Linux Security Modules: General security
support for the Linux kernel. In In Proceedings of the 11th USENIX Security
Symposium, pages 17–31, 2002.

[77] Implement keyboard and event security in X using XACE.
https://dev.laptop.org/ticket/260, 2006.

[78] X. Zhang, A. Edwards, and T. Jaeger. Using CQUAL for static analysis of
authorization hook placement. In Proceedings of the 11th USENIX Security
Symposium, pages 33–48, August 2002.

[79] J. Zhao, S. Nagarakatte, M. Martin, and S. Zdancewic. Formalizing the LLVM
intermediate representation for verified program transformations. In ACM
Principles of Programming Languages (POPL), 2012.

[80] J. Zhao, S. Nagarakatte, M. Martin, and S. Zdancewic. Formal verification of
SSA optimizations. In ACM Conference on Programming Language Design
and Implementation (PLDI), 2013.

	Introduction
	Background
	What Should Retrofitting for Defense in Depth Do?
	State-of-the-Art in Retrofitting Programs for Defense in Depth
	Goals for Retrofitting Programs for Defense in Depth

	Approach Overview
	Retrofit for Authorization
	Retrofit for Containment
	Retrofit for Auditing
	Validating Defense in Depth
	Conclusions

