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Abstract—Mobile computing systems, such as Android, face
additional risks because their business models allow the deploy-
ment of untrusted, third-party apps. Unlike remote adversaries,
these apps may exploit filesystem resources shared with more
privileged apps and services to escalate privilege. Despite ad-
vancements in Android access control enforcement, adversaries
continue to discover new vulnerabilities that exploit filesystem re-
sources. A challenge is to prioritize the many privileged apps and
services in an Android system for proactive vulnerability analysis
against such attacks. To solve this problem, we propose a method
to triage Android systems by transforming Android access control
policies into Bayesian attack graphs automatically. Using the
Bayesian attack graphs, we propose to prioritize programs based
on their exploit probabilities (i.e., likelihood that this program
may be exploited) and node centrality (i.e., importance of this
program in propagating attacks). We perform a first feasibility
and efficacy analysis of our approach by generating Bayesian
attack graphs for Android 12 systems consisting of hundreds
of applications, finding one new vulnerability and correlating
recently discovered vulnerabilities. Our preliminary results show
that this method offers a promising systematic approach for
defenders to assess Android systems and identify the most crucial
programs to test for vulnerabilities.

Index Terms—Attack graphs; Access control policy analysis;
Graph centrality

I. INTRODUCTION

The business model of mobile computing systems like
Android [6] allows the use of many third-party applications
from untrusted sources. These untrusted apps perform many
functions to extend the usability of these mobile devices. To
implement these functions, the untrusted apps often share
access to filesystem resources with some privileged apps
and services, which enables more effective collaboration to
implement desired functionality.

However, sharing access to filesystem resources provides
an attack surface that malicious apps may aim to exploit.
Android and its OEMs have reported several CVEs that allow
untrusted apps to exploit privileged apps and services to mod-
ify privileged system resources, putting the Android platform
at risk. Some vulnerabilities (e.g., CVE-2023-20943 [7] and
CVE-2023-21093 [8]) permit an untrusted app to modify
privileged files by using a vulnerable privileged app as a
confused deputy [35]. Several privileged apps may modify
files used by even more privileged Android services and,
in some cases, the Android kernel, potentially leading to
system compromise. Other vulnerabilities (e.g., CVE-2022-

22292 [4] and CVE-2023-21093 [8] again) enable untrusted
apps to cause the execution of code of their choice to modify
privileged resources even more flexibly.

To counter such threats, Android systems employ a combi-
nation of access control mechanisms [51], including manda-
tory access control (MAC) enforcement in the form of
SELinux in Android [5], in addition to traditional UNIX access
control. However, even with SELinux in Android, the zero-
day exploits highlighted above have been found. As a result,
Android systems have recently added a new defense called
Scoped Storage [31], [47] to reduce attack vectors in the use
of external storage (i.e., one particular filesystem partition).
However, Scoped Storage is not yet applied by all apps and
services [46] and does not prevent exploits on other parts of the
filesystem. Thus, vulnerabilities that compromise privileged
processes could still remain.

Researchers have recognized that the complexity of access
control policies, in particular MAC policies, may contribute
to the challenge of predicting and preventing host attacks.
To address this challenge, researchers have proposed access
control policy analysis [2], [39], [41]. Fundamentally, access
control policy analysis methods compute the data flows among
subjects and objects authorized by MAC policies. However, the
number of data flows authorized by MAC policies remains
large, over 100,000 for recent Android MAC policies [48].
While researchers have proposed access control policy analysis
techniques to identify those data flows that may be leveraged
in attacks [40], [21] or that could be implicated in data
leaks [20], [83], [84], even for combinations of MAC and
DAC policies [20], [36], [48], the large number of data flows
limits the ability of defenders to prevent attacks.

A challenge is to prioritize the many privileged apps and
services in an Android system for proactive vulnerability
analysis against any attacks that may be allowed given the
combination of access control policies. To achieve this goal,
we leverage the insight that attack graphs [68], [25], [61]
describe how attack goals may be achieved to triage hosts (i.e.,
Android devices). Twenty-plus years of research on the theory
and practice of attack graphs has produced methods to reason
about the exploit probabilities [64] to assess the ability to
achieve attack goals in systems to compute risk measures [59],
[82], [37], place defenses [61], [60], [58], [57], and perform



deceptive maneuvers [53], [29], [28], [55].
While such works have advanced knowledge significantly,

they have been applied primarily to generate and analyze
attack graphs for known vulnerabilities in network systems.
Recently, researchers have conjectured that attack graphs can
be produced for hosts (e.g., Android devices) to assess attacks
on zero-day vulnerabilities using access control policies [18],
but we are not aware any prior methods to compute or analyze
host attack graphs.

In this paper, we propose the first method to generate
Bayesian attack graphs [64] automatically to triage hosts for
filesystem vulnerabilities. Bayesian attack graphs represent
the paths of attack operations that an attacker may exploit
to achieve a given attack objective. In this paper, attack
operations represent the ability of a less privileged program
(e.g., in terms of the Google privilege levels [32]) to modify a
filesystem resource accessible to a more privileged program.
Exploit probabilities are estimated to express the likelihood
that an attack operation may succeed.

We solve three key challenges to build such a method.
First, we need to determine how the permissions authorized
by access control policies may lead to attacks on a host.
Fortunately, recent access control policy analysis work [48] for
Android systems identifies the permissions that may be used
in attacks on filesystem resources. We use this information
to construct an attack graph structure (i.e., nodes and edges)
that describes the attack paths available to adversaries given
a combination of Android access control policies. Second, a
challenge is to determine the likelihood that an attack will
be successful in a sufficiently accurate manner. Researchers
have previously found that attacks from filesystem accesses are
caused by a lack of filtering [79], [14]. Thus, we investigate
how the presence of filtering code may be used to estimate
exploit probabilities, proposing a preliminary approach and
suggesting future extensions. We leverage this knowledge
together with the first method to generate Bayesian attack
graphs [64] for hosts automatically. Third, to determine which
programs have the greatest impact on achieving attack goals,
we leverage methods that compute node centrality [75], which
identifies the nodes that are most important for propagating
communication in a graph. In Android systems, centrality
shows which nodes are most important for connecting third-
party apps (i.e., adversaries) to privileged Android processes.

To evaluate our proposed method, we construct the SHEP-
HERD attack graph analysis system, which converts access
control policies and program’s filesystem operations into at-
tack graphs for host security analysis. The SHEPHERD system
uses Android access control policies to generate the possible
attack operations in an Android system. Then, the SHEPHERD
system performs automated program analysis to estimate ex-
ploit probabilities to produce Bayesian attack graphs for hosts.
SHEPHERD then computes node centrality over an attack graph
to triage hosts by prioritizing the programs whose security
is most important to the host at large. We use the results
of the SHEPHERD system analysis (e.g., exploit probabilities
and node centralities) to identify the programs upon which to

perform vulnerability assessment. We have found that both the
centrality and exploit probability provide valuable guidance in
focusing vulnerability assessment efforts.

Our analysis demonstrates that the results of access control
policy analysis can be translated into attack graphs comprising
176-453 nodes (representing programs) and 3,295 to 24,314
weighted edges (with weights based on exploit probabilities).
Through our investigation, we identified the distribution of
edges relative to Android privilege levels and discovered that
Pixel3a phones exhibit a comparatively lower attack surface
when it comes to untrusted apps, as compared to other OEM
phones. The ranking of exploit probability further assisted in
triaging which apps to test, resulting in the discovery of a
zero-day vulnerability in one of the highly ranked apps. This
discovery underscores the effectiveness of exploit probability
as a metric. On the other hand, we also found that one of
the highly ranked programs, based on node centrality, has
a recently found vulnerability. This finding indicates that an
adversary could easily propagate attacks to higher privileged
programs, potentially leading to more severe damage without
such analysis. To mitigate such scenarios, we recommend pri-
oritizing the testing of programs with high exploit probabilities
and centrality values to identify and block the propagation of
potential attacks proactively.

We made the following contributions in this paper:
• We propose a method for converting access control policy

analysis results into a Bayesian attack graph for filesys-
tem attacks.

• We propose a preliminary method for using program
analysis to estimate the exploit probabilities for Bayesian
attack graphs.

• We compute exploit probabilities and node centrality
values to generate Bayesian attack graphs for three An-
droid 12 systems, discovering a zero-day vulnerability
and highlighting the importance of blocking a recent zero-
day vulnerability.

This study serves as a preliminary investigation on the
generation and use of Bayesian attack graphs for Android
systems. Importantly, our technique generates attack graphs
from the attack operations allowed by access control, rather
than from known vulnerabilities. While we believe that the
method for computing attack operations from access control
policies is complete for filesystem resources, our method for
estimating exploit probabilities is preliminary and can be
greatly improved, as we discuss in Section VIII. As the exploit
probability is used to prioritize programs for vulnerability
analysis directly and indirectly (i.e., via node centrality), we
hope to motivate future research on this topic. Nonetheless,
even with our preliminary method, we collected information
sufficient to expose a zero-day vulnerability.

II. MOTIVATION

In this section, we motivate the goals of our work. We first
present an example that demonstrates how unprivileged apps
in Android systems may exploit authorized access to exploit
privileged processes in Section II-A. Next, we describe how



TABLE I: Google’s Process Privilege Levels [32]

Process Level1 Level Membership Requirements

Root Process (T5) Process running with UID root
System Process (T4) Process running with UID system
Service Process (T3) AOSP core service providers

Trusted Application Process (T2) AOSP default and vendor apps
Untrusted Application Process (T1) Third-party applications

Isolated Process (T0) Processes assumed to be under adversary control
1 Google’s process privilege levels from high to low with root processes being most privileged (T5) and isolated
processes being the least privileged (T0).

the adversary performs such attacks by circumventing Android
permissions in Section II-B. Finally, we examine why access
control policy analysis alone is not capable of detecting multi-
stage attacks.

A. An Example Attack
A recent vulnerability (CVE-2023-21093) has been identi-

fied in the MediaProvider Android service [8], which poses a
significant risk by granting unauthorized access to the many
privileged files accessible to this service. The MediaProvider
service retrieves files on behalf of untrusted apps, and through
a vulnerable code path that allows the use of ”../”, these
untrusted apps can gain access to certain privileged files. For
example, an untrusted app can use this vulnerability to replace
the APK (i.e., code) files of another app. This attack enables
an unprivileged app at privilege level T1 to get arbitrary
execution at privilege level T3 (see Table I, described in
the next section), which has broad access to resources of
even more privileged processes (i.e., at T4 and T5) whose
exploitation may compromise the Android system.

Such attacks are possible because higher privileged pro-
cesses (e.g., pre-installed apps, system services) may utilize
filesystem resources that are under the control of untrusted
apps. Researchers have enumerated four types of attack oper-
ations that attackers may apply [48]. First, if a program uses
an adversary-controlled symbolic link, it may be redirected
to access files to which the adversary is not authorized,
which is a symlink attack, a type of confused deputy at-
tack [35]. Programs also may be prone to similar attacks that
use adversary-controlled bind mounts or hard links as well.
Second, a program may be lured into a link traversal attack by
using adversary-controlled input to build the pathname, called
a luring attack. Third, if a program uses a file created by
an adversary, the adversary can control inputs used by that
program to trigger vulnerabilities in input processing, which
we call a file attack in this paper. Fourth, when a program
expects to create a file, but an adversary creates the file first,
this is called a squatting attack.

B. Propagating Attacks in Android
One way that Android systems aim to limit the ability

of untrusted third-party apps to attack Android systems is
by creating a layered defense, based on Android privilege
levels [32] shown in Table I. Android systems are configured
with six privilege levels, where the access control policy is
designed to limit the ability for subjects at one privilege level
from accessing resources controlled by subjects of a lower
privilege level.

While the use of privilege levels reduces the ability of
subjects at higher privilege levels from using resources con-
trolled by subjects at lower privilege levels, it cannot eliminate
such interactions. In some cases, privileged subjects provide
services to untrusted apps implemented using filesystem re-
sources, requiring that the privileged subjects are authorized
to access resources controlled by untrusted apps, breaking
isolation between privilege levels. A risk is that an adversary
may be able to exploit a subject at a higher privilege level to
propagate an attack to a subject at a yet higher privilege level,
as in the example.

C. Limitations of Access Policy Analysis
Currently, researchers apply access control policy analy-

sis [39], [42], [2] to triage systems to detect cases where
such attacks are possible, but do not identify how attacks
may be propagated systematically. First, some access control
policy analyses compute the authorized data flows that result
from a system’s access control policy [2], [36], [20]. However,
the fine-grained access control policies deployed in Android
systems result in hundreds of thousands of data flows, so it
is unclear which data flows are more relevant for attacks.
Those access control analyses have been designed specifically
for assessing Android systems [83], [20], [84] aim to detect
malicious data leakage. While this is a real problem to
consider, these analyses do not consider host compromise.

Some access control analyses have focused on identifying
the specific permissions that allow attack operations [40], [21],
[48]. These analyses aim to evaluate access control policies
against Biba integrity [15] to detect the authorized data flows
that may allow an information flow from a lower integrity
subject (i.e., adversary) to a higher integrity subject (i.e.,
victim), which are called integrity violations. While only a
small fraction of the authorized data flows may cause integrity
violations, the number of integrity violations is still more
than can be assessed manually. Recent work [48] found that
nine Android systems authorized between 297 and 3,736
integrity violations — each may have multiple of the four
attack operations defined in Section II-A — still too many to
determine how an untrusted app may propagate an attack to a
system process. Thus, it remains unclear how a defender may
use such information to make choices about where to focus
resources to improve defenses.

III. THREAT MODEL

We adopt a threat model that is typical of access control
analyses that compute integrity violations. We assume that any
subject may modify any part of the filesystem to which they
are authorized in any manner authorized. Thus, a subject with
access to write a directory may add files and other filesystem
objects allowed by its permissions and the filesystem parti-
tion’s configuration. For example, some Android filesystem
partitions prohibit the use of symbolic links. In addition, if
a subject has write permission to a file, we assume that the
subject may modify that file. We assume that a subject that is
assigned a lower privilege level in the Google privilege levels,
see Section II-B and Table I, may modify filesystem resources



Fig. 1: System goal: leverage the authorized permissions from
available access control policies that can be attacked (attack
operations on integrity violations in Section VI-A) to identify
the programs whose exploitation would have the greatest
impact for adversaries to reach attack goals
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to which they are authorized to launch attack operations (i.e.,
attack operations listed in Section II-A) against subjects at a
higher privilege level.

We assume that only subjects at level T1 and level T2 of
the Google privilege levels may initiate an attack. Subjects
at level T1 include untrusted third-party applications that we
assume may initiate attacks. Subjects at level T2 may include
OEM-specific applications, but these may be untrusted as
well. A recent study [30] indicates that many pre-installed
OEM applications lack end-to-end quality control and reuse
untrusted third-party libraries. As a result, such applications
may also initiate attacks. Attack paths once initiated may be
propagated through subjects through confused deputy style
attacks, compromising even higher privilege level processes.

We trust the Android Linux-based operating system to
enforce filesystem permissions and to protect itself from
compromise from apps at level T4 and below. Specifically,
we trust the Android Linux-based operating system to satisfy
the reference monitor concept [11].

In this paper, we do not consider whether processes at the
same Google privilege level attack each other at present. Such
lateral movement within privilege levels could provide other
paths to achieve attack goals, but would not increase the cross-
level attack operations. We discuss these implications further
in Section VIII. We assume that all the initial attack targets
are above privilege level T1 since its trivial to obtain level T1
permission, and therefore not valuable as target.

IV. OVERVIEW

The goal of this work is leverage available access control
policies to identify the program(s) whose hardening would
have the greatest impact towards preventing adversaries from
reaching attack goals in Android systems. We approach this
problem in three steps shown in Figure 1. First, we utilize the
output of existing access control policy analysis that generates
attack operations [48] (see Section VI-A). Using these attack
operations, we define a method to construct the attack graph
structure (i.e., nodes and edges) to show the attack paths in a
system, described in Section V-B. Second, we define a static
analysis approach for Android programs to estimate the exploit
probability presented by these attack operations to construct
Bayesian attack graphs [64] for hosts in Section V-C. Third,
we utilize a recent centrality technique to compute the impact
that each node in the attack graph has on enabling adversaries
to reach attack goals in Section V-D. Specifically, we apply a

measure based on X-non-backtracking (X-NB) centrality [75],
which has been proposed for node immunization in networks
to prevent the spreading of communications. In the context of
this paper, we use X-NB centrality to estimate the importance
of a program to enabling adversaries to propagate attacks.

There are two main challenges faced in this work. First, we
aim to convert the results of access control policy analysis
into the form of a Bayesian attack graph [64]. As far as
we are aware, this is the first method to generate Bayesian
attack graphs for hosts. While access control policy analysis
techniques now produce valuable inputs for generating attack
graphs, such as attack operations, past attack graphs techniques
do not leverage access control policies nor predict the exploit
probabilities used in Bayesian attack graphs. Prior work on
network attack graphs leverages a third-party assessment of
known program vulnerabilities, often from CVSS scores [71].
However, there are not yet broadly accepted metrics for un-
known (i.e., zero-day) vulnerabilities. In this work, we propose
to combine access control policy analysis results, which show
which programs face which kind of attack operations, with
the static analysis of programs to estimate exploit probabilities
automatically. In this paper, we propose a preliminary method
to estimate exploit probabilities by identifying the inputs
that may be enable attacks (sources), program operations
that attacked (sinks), and filtering that may prevent attacks
(constraints on source-sink flows).

The second challenge is determine how to estimate the
impact of a program on host compromise. Intuitively, one
approach is to identify the nodes necessary to completely
mediate all flows [11] from adversaries to attack goals by solv-
ing the min-cut problem. Unfortunately, this oversimplifies the
problem. In general, because we cannot guarantee one program
removes all the threats for downstream subjects by its own san-
itization, the problem is more accurately modeled as a directed
multicut problem [33] or set cover problem [57], which are NP-
complete problems, rather than min-cut. Instead, we propose
to apply graph centrality as the key measure [23] to estimate
the impact of a program with respect to host compromise.
Intuitively, the centrality of a node in a graph identifies the
impact the removal of the node has on limiting the propagation
of a communication (e.g., an infection or attack) in the graph.
Such techniques are applied to a broad range of networks,
including social networks and communication networks. In
this case, we apply centrality to directed graphs representing
Bayesian attack graphs for hosts where edges represent flows
from adversaries to attack goals. A variety of methods have
been proposed to compute the centrality of nodes and edges in
graphs [54], [50], [65], but recent work in computing a form
of centrality called X-non-backtracking (X-NB) centrality [75]
predicts the effect of removing a node on the propagation of
communications more accurately. We apply X-NB centrality
for our Bayesian attack graphs along with our methods to
estimate exploit probabilities to identify programs to assess
for vulnerabilities in Android systems.



V. BAYESIAN ATTACK GRAPH ANALYSIS

A. Attack Graph Model

In this paper, we adopt the attack graph model of Miehling
et al. [53].

A Bayesian attack graph [64], G, is defined as the (fixed)
tuple G = (N , θ, E ,P) where

• N = 1, . . . , N is the set of nodes, termed attributes.
• θ is the set of the node types. We assume that each

non-leaf1 attribute (node), can be one of two types,
θi ∈ {∧(AND),∨(OR)}. We denote the respective sets
of nodes by N∧ and N∨

• E is the set of directed edges, termed exploits.
• P is the set of exploit probabilities associated with edges.

Each exploit (directed edge), e = (i, j) ∈ E , has an
associated probability P(e) = αij ∈ [0, 1].

In this work, we only generate directed, acyclic attack
graphs, as in prior work [64] by relying on a monotonicity
assumption that attackers will not give up capabilities that they
attain [10]. This assumption is consistent with the expectation
of attacks in Android systems, where each exploit (i.e., edges
represent attack operations) must always target an attribute
(i.e., the successor node of the edge, which is a victim
program) that has a higher privilege level than the attacking
attribute (predecessor node of the edge).

An attack graph contains leaf nodes, NL ⊆ N , nodes
without predecessors. We assume that leaf nodes at Google
privilege level 1 and 2 are the adversary-controlled nodes that
may initiate attacks. On the other hand, an attack graph also
contains root nodes, NR ⊆ N , nodes lacking successors. Such
root nodes may or may not occur at the highest privilege level.
As a result, some subjects that may be exploited may not
enable complete host exploitation. However, such nodes may
still provide worthwhile targets for the adversary. Thus, we
consider all root nodes to be attack goals in the attack graph
regardless of their privilege level. Miehling et al. state that
a subset of the root nodes may be classified as the critical
nodes, NC ⊆ NR. In this paper, we assume NC = NR, and
also refer to these nodes as goal nodes.

The attack graph model also considers node types in θ. Node
types ∧ (AND) or ∨ (OR) dictate whether all or only one of
the predecessor nodes must be controlled by an adversary,
respectively, before the node comes under adversary control.
For filesystem attacks studied in this paper, all the nodes are ∨
(OR) nodes. We discuss why this is the case in Section V-B. In
addition, edges are associated with exploit probabilities, P(e)
for edge e. In this paper, we estimate exploit probabilities
for each program based on the attack operations available to
adversaries given the access control policy and file system
configuration using the attack surface [38] of the program
relative to the attack operation as we describe in Section. In
general, such probabilities should also consider the impact of
the program, such as the attack surface of the program [38],
as we discuss in Section V-C.

1Non-leaf nodes are defined as nodes with at least one predecessor.

B. Generate Attack Graph Structure

The first challenge is to develop a method to transform
the results from an access control policy analysis (e.g., at-
tack operations) into an attack graph model in the form on
Definition V-A. In this section, we describe the creation of
the basic structure of the attack graph, its nodes and edges.

As described in Section VI-A, an integrity violation in an
access control policy authorizes an information flow from a
low-integrity subject to a high-integrity subject through an
object [48]. In Android systems, specifically, an integrity
violation occurs when one subject (i.e., an adversary) that
is authorized to modify (e.g., write) an object has a lower
privilege level [32] than another subject (i.e., a victim) that
is authorized to use (e.g., read or execute) that object. Each
integrity violation identifies a situation in which adversaries
may attempt attack operations on victims.

To transform these integrity violations to an attack graph, we
must convert them into nodes and edges per Definition V-A for
the filesystem attacks found in Android systems. In general,
attack graph nodes represent the capabilities available to ad-
versaries to attempt attacks. These are the subjects (programs)
in the system that adversaries may use to attack other subjects.
Integrity violations specifically identify that the subject with
a lower privilege level has the permissions to attempt an
attack on a subject with a higher privilege level. As a result,
nodes are used to represent subjects, both the lower-privilege
level subjects (i.e., adversaries) and the higher-privilege level
subjects (i.e., victims).

The attack graph model associates nodes with types, either
∧ (AND) or ∨ (OR). Node types describe the conditions
in which an attack will be successful on this node (i.e., a
subject) as a function of the attack operations that may be
performed by its immediate predecessors (i.e., lower-privilege
level subjects or adversaries). Either all (AND) of the attacks
by the predecessors must succeed or any (OR) attack by
a predecessor must succeed for the (successor) node to be
exploited. For filesystem attacks, each adversary acts alone,
leveraging its own authorized permissions to attack a victim.
Regardless of the specific types of attack operations that
adversaries may try to exploit an integrity violation, only one
such attack operation needs to succeed for an attack to be
successful. As a result, all the nodes in the attack graph are
assigned the ∨ (OR) node type.

Edges in the attack graph represent the ability of one
subject (i.e., the lower-privileged adversary) to launch attack
operations against another subject (i.e., the higher-privileged
victim). Access control policy analysis computes integrity
violations, which identify the objects that the adversary can
modify that the victim can access. Note that a particular
adversary-victim pair may appear in multiple integrity viola-
tions, as an adversary may be able to exploit multiple objects
used by the same victim. We describe four different types
of attack operations in Section II-A. If any of those attack
operations are possible using any of the integrity violations
between a adversary-victim pair, an attack graph edge is added
from the adversary to the victim.



C. Estimate Exploit Probabilities
A significant challenge is to estimate the exploit proba-

bilities for the Bayesian attack graph. Traditionally, attack
graphs are generated from known CVEs, which are associated
with severity scores. Thus, exploit probabilities are estimated
from those severity scores. However, when attack graphs are
generated from integrity violations, we have no prior basis for
estimating exploit probabilities. In this section, we investigate
the problem of generating exploit probabilities and propose a
preliminary approach. We discuss the need for further research
on this problem in Section‘VIII.

One approach could be to estimate exploit probabilities
based on which of the four types of attack operations (see
Section II-A) may be possible between two subjects (i.e.,
each adversary and victim pair). However, knowing that an
adversary can perform an attack operation does not tell us
anything about whether this attack operation has any chance
of success on a particular program. For example, a program
may never use adversary input in code that builds pathnames,
so luring traversal attack operations can be ruled out against
that program. However, to make such judgements we need to
examine the program code.

Thus, we propose to compute exploit probabilities based
on the program code and how it may be prone to attack
operations. The challenge is to devise a program attack model
that reflects how attacks may be perpetrated. For filesystem
attacks, a program may be threatened because it may cre-
ate a pathname that may be used in a filesystem operation
(e.g., open) that can be attacked (i.e., access an adversary-
controlled file or use an adversary-controlled link or directory
in name resolution). In our proof-of-concept system, we model
the entry points that may provide inputs to build pathnames
as sources and the filesystem operations that use pathnames
as sinks, where one or more sources may flow to one or more
sinks. Using program analysis, we can capture control and/or
data flows between sources and sinks. While the preliminary
implementation (see Section VI) only uses control flows, we
aim to define an approach for estimating exploit probability
that can be useful for either form of source-to-sink flows.

In general, the exploit probability for an attack on a filesys-
tem operation (sink) depends on: (1) whether inputs may
specify a vulnerable pathname at a source and (2) whether
(control and data) program flows can propagate those inputs
to a sink. If an adversary can provide input (e.g., via an intent)
or the program generates a vulnerable pathname itself (e.g.,
corresponds to a resource in an integrity violation), then the
probability of exploit is higher. To estimate (1), we define a
source factor to represent the likelihood that an input at a
source can correspond to a vulnerable pathname. Second, a
program needs a flow to propagate a vulnerable input from a
source to a sink, but the program may have operations that
change the value and/or conditionals that may filter flows
and/or values that can reach the sink. To estimate (2), we define
a flow factor, which represents the likelihood that a flow may
filter [14], [79] a vulnerable pathname input before reaching
a sink. Values for both the source factors and flow factors

may range from 0 (i.e., no evidence) to ∞ (i.e., definitive
evidence). See Section VI for how we estimate the source and
flow factors in the preliminary implementation.

As a result, we propose the following exploit probability
equation: P = (1 + s)/(1 + s + f), where s is the source
factor and f is the flow factor. Note that the exploit probability
value increases as the flow factor decreases and as the source
factor increases. If there is no filtering (i.e., the flow factor is
0), then the exploit probability is 1. If there is no evidence
of an exploitable value at a source, we exclude the flow from
consideration (i.e., P = 0). If there is lots of evidence of an
exploitable value at the source for one source-to-sink flow,
then the exploit probability will approach 1.

We compute the exploit probability for each source-to-
sink control flow found in the program (i.e., for all sources
and sinks identified) and assign each program an exploit
probability based on the maximum exploit probability for any
of its source-to-sink flows. If there are no source-to-sink flows
in a program, its exploit probability is 0. We use this approach
because we assume that adversaries will focus on source-to-
sink flows that are the easiest to exploit. Thus, even though
there may be many flows, the flows that matter to adversaries
are the ones with the best combination of source values and
few defenses (i.e., filtering).

D. Triaging Attack Graphs Using Centrality
The goal of this work is to identify the program(s) that

have the greatest impact on the propagation of filesystem
attacks on a host. To do this, we want to estimate this impact
for each attack graph node (i.e., program). As described in
Section IV, a variety of methods have been proposed to
determine where defenses should be added to thwart attacks
using attack graphs. However, these approaches do not account
for attack propagation [57] or depend on information that is
not available for assessing the impact of zero-day attacks on
hosts [53], [29], [28], [55].

Instead, we propose to identify the program most in need
of defense in a host based on the host attack graph using
its centrality relative to epidemic thresholds [50]. In general,
centrality is a measure of the ”influence” of a node on a
system of interconnected components derived from its con-
nectivity, although the impact of such influence depends on
the semantics of the interconnections. For example, in network
epidemiology, the epidemic threshold is the number or density
of nodes that is required for an epidemic to occur. Infected
nodes with a greater centrality have a greater connectivity,
and thus have a greater impact on the spread of the infection
to epidemic levels. Thus, an aim is to remove nodes that
would increase the epidemic threshold of a network to reduce
the likelihood of epidemic occurring. By computing each
node’s centrality to a system, we can identify the key parties
who we want to prevent becoming infected to lower the risk
of an epidemic. In this paper, the claim is that increasing
the ”epidemic threshold” of an Android system the most
reduces the risk of catastrophic host compromise the most by
preventing the attack options from reaching epidemic scope in
the system.



Researchers have found that computing the non-
backtracking (i.e., no edge is traversed twice in succession)
centrality [50], [65] is a useful measure for identifying the
node that increases the epidemic threshold by the greatest
amount. Researchers claim that the recent X-NB centrality
measure ”approximates the true effect of a node’s removal
in the epidemic threshold” [75]. In our attack graphs, this
measure estimates the impact of each program to enable
other attacks to become possible (i.e., based on each’s exploit
probabilities) in the system.

VI. IMPLEMENTATION

We have built the SHEPHERD attack graph system to
implement the steps shown in Figure 1. SHEPHERD stores
attack graphs according to the model of Definition V-A. First,
SHEPHERD uses the integrity violations and attack operations
generated by the open-source PolyScope access control anal-
ysis system2 [48] to generate host attack graphs. Second,
SHEPHERD employs Java static analysis tools to estimate
exploit probabilities. Third, SHEPHERD leverages an open-
source implementation [49] of the approximate X-NB central-
ity procedure [75] to estimate centrality for attack graph nodes.
SHEPHERD stores attack graphs in a Neo4j graph database [1].
SHEPHERD also provides an event-based method to modify
attack graphs incrementally based on system changes, such
as the addition of new programs, new permissions, and new
attack surfaces (i.e., leaf nodes from which attacks may be
initiated), but those features are beyond the scope of this paper.

First, SHEPHERD computes the attack graph structure as
described in Section V-B. We use PolyScope to compute the
authorized integrity violations and their attack operations for
Android systems from a combination of Android access con-
trol policies, including SELinux in Android mandatory access
control, UNIX discretionary access control, and specialized
policies (e.g., Android permissions and Android Scoped Stor-
age [47]). We format this information to enable the NetworkX
library [34] to create graphs satisfying the attack graph model
of Definition V-A encoded in graphML.

Second, SHEPHERD employs a methodology outlined in
Section V-C to compute exploit probability for Android APK
programs. To achieve this, we design a static analysis using a
combination of Soot [78], Flowdroid [12], [13], and TIRO [85]
to identify sources, sinks and filtering operations. Initially,
SHEPHERD utilizes Soot to lift code within the APK file
into Jimple intermediate representation (IR), which Flowdroid
operates on. Subsequently, we leverage Flowdroid to handle
lifecycle-related control flow transfers and construct an ac-
curate control flow graph (CFG) for the Android program.
By using Flowdroid’s entrypoint analysis, we identify two
types of sources: inter-app sources and intra-app sources.
Inter-app sources refer to application entry points that can
be invoked by Android IPCs, which may carry adversarial
input from external apps that could potentially be used to
construct pathnames, as in luring attacks (see Section II-A).
Intra-app sources encompass Android lifecycle components

2PolyScope is available at https://github.com/yxl74/PolyScope.

Fig. 2: Exploit Probability Implementation

(e.g., onCreate(), onClick()) that are integral to the normal
execution of the application. Exploitation of intra-app sources
requires the victim app to use pathnames corresponding to
integrity violation resources, as in CVE-2020-13833 [3]. Intra-
app sources may be exploited in symlink attacks, squatting
attacks, and file attacks (see Section II-A).

The outline of our implementation is shown in Figure 2.
We designate Java file open method signatures as sinks and
identify source-to-sink control flows. We included methods
from java.io and java.nio, consisting of 24 methods related
to file opening, 12 methods related to file reading, and 15
methods related to file writing. We did not include third-party
libraries file operations at present. Then, we leverage TIRO’s
call graph traversal component to perform a depth-first search
on the application call graph to locate all control flow paths
from the identified sources to the designated sinks.

Given these targeted flows from sources to sinks, SHEP-
HERD provides a proof-of-concept approach to estimate the
source and flow factors s and f , respectively (see the ex-
ploit probability equation in Section V-C). First, we assign
a non-zero source factor when a source is assigned a hard-
coded string value that is a substring of a pathname of an
integrity violation object. In such cases, we assume there
is some probability that the program intends to create an
unsafe pathname. SHEPHERD gathers all strings defined along
a source-to-sink flow that contain the ”/” character. Then, we
use string matching to identify all hard-coded strings that are
a substring of a pathname of an integrity violation object as
shown in Figure 2. The source factor is assigned to the number
of characters in the maximal matching substring on a flow
(i.e., typically, there is only one string assigned on a flow),
not including ”/” characters. Second, since filtering is often
implemented using conditional checks, we currently estimate
the flow factor as the number of conditional checks along a
source-to-sink flow (e.g., IfStmt in Soot).

Third, SHEPHERD utilizes an open source implementa-
tion [49] of the approximate X-NB centrality procedure [75] to
estimate the impact of each attack graph node (i.e., programs)
on achieving attack goals as described in Section V-D. We
compute the X-NB centrality of the attack graph by leveraging
the auxiliary non-backtracking matrix for the attack graph
as described in recent work [74]. Additionally, we use the

https://github.com/yxl74/PolyScope


TABLE II: Computed Attack Graph Sizes (Nodes and Edges)

Pixel 3a 12.0 OnePlus 8T 12.0 Galaxy S20 12.0

Nodes 176 440 453
Adversary 68 86 50

Goal 36 133 101
Edges 3,295 17,033 24,314

Python based SciPy library [81] to perform the underlying
mathematical computations, such as computing the largest
eigenvalue.

A. Limitations
We posit that our proof-of-concept methodology captures

the essence of estimating the likelihood of successful exploita-
tion. We acknowledge that both the flow and source factors in
our approach can be further refined.

In terms of flow factor, there are techniques other than
conditional checks that can be used to defend against malicious
inputs. We envision the future use of symbolic execution
techniques for Android programs to generate path constraints
to assess program filtering. Angr [69] recently added the capa-
bility to execute Android applications symbolically. However,
it requires users to patch the behavior of inter-procedural
methods manually.

Regarding the source factor, our future work will explore
how to apply techniques in string analysis [], which is a static
analysis technique to determine the possible values a string
object may take at particular program points. Currently, we
use intents and hard-coded strings as sources, but these may
be modified by the program, essentially creating new sources
to consider.

VII. EVALUATION

For the evaluation, we use attack graphs constructed
from three different Android devices, including Pixel3a from
Google, Galaxy S20 from Samsung, and 8T from Oneplus.
We evaluate Android 12 versions for each of these devices. We
run the PolyScope tool [48] to generate integrity violations and
attack operations for fresh firmware images of each device and
use SHEPHERD to construct attack graphs in graphML format.

A. Host Attack Graph Flows
Table II summarizes information about the computed attack

graph flows. The first three rows list the counts related to the
number of nodes in the attack graphs for each of the three
systems evaluated. The row Nodes lists the total number of
nodes in each attack graph. The Adversary and Goal nodes
list the number of adversary-controlled nodes from which
attacks may originate in the attack graph and the number
of attack goal nodes that are the ultimate targets of attacks,
respectively. In this case, these counts equal the number of leaf
and root nodes3, respectively, in the attack graph as defined
in Section V-A. The fourth row shows the number of Edges
total in the attack graphs for the three systems.

An important consideration is how many options are avail-
able to an adversary to escalate their privilege from one

3Recall that only leaf nodes at level 1 and 2 may be adversary-controlled
initially.

TABLE III: Distribution of Cross-Privilege Level Edges (Num-
ber of Edges)

Pixel 3a 12.0 Oneplus8T 12.0 Galaxy S20 12.0

T1 → T21 1,068 7,555 8,003
T1 → T3 273 731 623
T1 → T4 142 1,653 1,615
T1 → T5 108 164 71
T2 → T3 600 1,528 3,981
T2 → T4 305 2,825 7,415
T2 → T5 246 484 1,082
T3 → T4 84 340 634
T3 → T5 117 105 114
T4 → T5 352 1,648 776

TABLE IV: Exploit Probability Stats

Pixel 3a 12.0 OnePlus 8T 12.0 Galaxy S20 12.0

Programs1 50 144 245
Level 2 43 92 177
Level 3 4 7 1
Level 4 3 45 67
Level 1 21 79 44

C-Programs 107 209 144
Time-Out 19 18 20

1 Total programs analyzed
We do not analyze Level 1 apps, as they are leaf nodes.
We leave analyzing C programs as future work
Level 1 programs are leaf nodes

privilege level to another. Table III shows the distribution of
the number of edges among each pair of privilege levels in
the attack graphs for each of the three systems. An edge is
included in a count for a pair of privilege levels (x, y), where
x is the lower privilege level and y is the higher privilege
level, when the adversary’s level is x and victim’s level is y.

Figure 3 shows three attack graph visualizations by group-
ing the nodes from the same privilege level together. Across all
three systems, we can see that the Pixel3a Android 12 systems
do not have as many cross-level edges in Figure 3(a). This
suggests that the Pixel3a Android 12 system is better protected
compared to Samsung Android 12 and OnePlus Android 12
systems in Figure 3(b) and Figure 3(c), respectively. For
example, the connectivity between level 2 nodes to level 3/4
nodes are much less on the pixel3a system. Recall that level
2 nodes may also initiate attacks as described in the threat
model in Section III.

B. Exploit Probability
We perform analysis on 439 Java programs collected from

three phones, distributed among the systems and privilege
levels as shown in Table IV. Given that we are conducting
static analysis on a substantial volume of programs, we have
established a timeout duration of 300 seconds for each static
analysis. The number of programs that exceeded this timeout
is indicated in the bottom row of Table IV. Upon analysis,
it becomes evident the that majority of Java programs are
level 2 programs. These programs, being pre-installed apps
implemented by the OEMs, normally have privileges that
third-party applications (i.e., Level 1 programs) cannot obtain
directly (e.g., signature-level Android permission). Therefore,
it is important to evaluate their exploit probability and assess
their ability to prevent exploitation.

Figure 4 shows the exploit probability distribution for
programs from all three systems tested. The data reveals that



Fig. 3: Attack Graph Visualization

(a) Pixel3a Android 12 (b) Oneplus8T Android 12 (c) Galaxy S20 Android 12

Red: Level 1; Orange: Level 2; Green: Level 3; Blue: Level 4; Black: Level 5

Google phones generally exhibit lower probabilities compared
to other OEM phones, indicating a potential correlation with
the effective utilization of Android file APIs. However, it is
important to note that our static analysis did not consider
file access through providers and the Android storage access
framework [9] as a sink. These APIs either require user con-
sent or is protected by Android’s FileProvider class which has
mechanisms to prevent path traversal attacks. Consequently,
applications that employ these mechanisms for file access are
likely to yield lower probabilities of exploits. For the two OEM
phones, notable spikes in probability occur at approximately
0.2, 0.4, and 0.7. This observation supports our hypothesis
that the functionality of apps influences their file usage. There
will be apps with minimal file usage, apps with mild file
usage and apps with heavy file usage. Apps with heavy file
usage are more likely to have control flow paths that leads to
file operations without many control flow transfers (i.e., app
components directly operate on file pathnames).

We show the programs with highest exploit probabilities in
Table V. The program com.sec.android.app.servicemodeapp,
ranked #19 out of 214 programs with probability of 0.73, has
a previously reported symlink vulnerability [48]. In addition
to the aforementioned vulnerability, we found and reported
a zero-day vulnerability on com.oneplus.findmyphone app,
ranked #20 out of 144 programs with probability of 0.46,
which we will discuss in detail in later section. The identifica-
tion of these vulnerabilities highlights how exploit probability
can help with prioritizing testing efforts and provide mean-
ingful edge weights for centrality calculation. To enhance the
robustness of our preliminary study, further investigation is
needed into the applications that our model ranks as highly
vulnerable. This would validate whether they are indeed sus-
ceptible to exploits. Moreover, cross-referencing our findings
with existing CVE data could provide valuable insights into the
effectiveness of our static analysis-based exploit probability
metric in identifying apps with severe vulnerabilities.

C. Triaging with Centrality

We examine the impact of the centrality approach on the
generated attack graphs. Table VI shows the programs asso-
ciated with the top-5 nodes found computing the approximate
X-NB centrality procedure [75] of the attack graph for each
system.

Fig. 4: Exploit Probability Distribution Across Programs

On the Oneplus 8T phone, we found that the #16 ranked
centrality program com.nearme.play has a recently reported
vulnerability [46]. This program is running as privileged app
and stores game related executable files in legacy external stor-
age location where adversary could modify. This vulnerability
poses a significant risk as a malicious code execution exploit
in a centralized node can cause severe damage due to its strong
connections with privileged programs. This finding highlights
the critical importance to test highly centralized programs for
potential vulnerabilities.

As shown in Section VII-B, exploit probability offers valu-
able insight on security of individual program. In addition,
graph centrality offers insight into the severity of an exploit
when a program is compromised. We performed triaging by
combining graph centrality and exploit probability to prioritize
testing efforts. We first identify programs with an exploit prob-
ability above a statistical threshold (i.e., one standard deviation
above the mean exploit probability), then begin penetration
testing starting from programs with highest centrality rankings.
Although rather straightforward, the problematic programs we
highlighted shows the potential of such a hybrid approach.

D. Vulnerability Discussion
We discuss the vulnerabilities mentioned in Section VII-B,

which is a new vulnerability in the findmyphone application
running as privileged app on Oneplus8T Android 12 devices.
We give priority to testing due to its higher probability ranking
and the utilization of files located in well-known problematic
legacy locations, as indicated by the results of our static
analysis. In one of the app components com.baidu.location, the
application reads files from the /sdcard/backup/.SystemConfig
directcory, which is located in legacy location of external stor-



TABLE V: Top-5 Ranked Subjects Based on Exploit Probability

Pixel 3a 12.0 Oneplus8T 12.0 Galaxy S20 12.0
1 L2: com.android.managedprovisioning L2: com.oneplus.mms L2: com.samsung.android.messaging
2 L2: com.google.android.apps.tips L2: com.android.packageinstaller L4: com.samsung.android.vtcamerasettings
3 L2: com.google.android.packageinstaller L4: com.oneplus.coreservice L2: com.sec.android.app.camera
4 L2: com.google.android.markup L2: com.google.android.providers.media.module L2: com.sec.android.gallery3d
5 L2: om.google.android.permissioncontroller L2: net.oneplus.launcher L2: com.samsung.android.scloud

TABLE VI: Top-5 Ranked Subjects Using X-NB Centrality for All Test Options

Pixel 3a 12.0 Oneplus 8T 12.0 Galaxy S20 12.0
1 L2: com.google.android.apps.gcs L2: com.android.packageinstaller L2: com.android.shell
2 L2: com.google.android.projection.gearhead:projection L4: com.oneplus.coreservice L2: com.samsung.android.scs
3 L2: com.google.android.apps.pixelmigrate L4: com.oneplus.filemanager L1: com.google.android.youtube
4 L2: com.google.android.apps.wearables.maestro.companion L2: net.oneplus.launcher L4: android.hardware.sensors@2.0-service.multihal
5 L2: com.google.android.apps.nbu.files L2: com.oneplus.opbugreportlite L2: com.samsung.android.app.notes

age (e.g., not protected by the Scoped Storage defense [31]).
Untrusted applications with the legacy storage flag or the
”manage external storage” permission can squat the .cuid
file in the vulnerable directory and provide malicious input
file to the application. We suspect that the cuid file contains
user identification number for the Baidu location database. By
providing incorrect UID, attacker could perform a denial-of-
service attack to the security sensitive phone finding applica-
tion. We have reported this vulnerability to Oneplus through
their vulnerability reporting portal.

VIII. DISCUSSION

The evaluation shows that Android access control policies
can be converted into an attack graph format that enables
identification of the Android subjects (programs) that may
be prone to exploitation (i.e., have high exploit probabilities)
and/or be central to adversaries attack goals (i.e., propagate
communications impacting privileged processes). That several
new and/or recent vulnerabilities were found in highly ranked
programs indicates that the examining programs from these
perspectives can be helpful in focusing efforts to detect latent
vulnerabilities. Without such techniques, there is no real basis
for vetting any programs, so latent vulnerabilities may not be
discovered.

The methods proposed here for exploit probability estima-
tion are admittedly preliminary, proof-of-concept approaches.
We find the source factor estimate based on the detection
hard-coded strings that match substrings in integrity violations
was useful in identifying real problems. The method for
estimating the filtering factor using conditionals (i.e., control-
flow decisions) has potential for improvement. In the future,
we envision exploring both operations that impact data flows,
such as operations that compute values used in file system
operations. In addition, we will explore the use of path con-
straints associated with the data used in filesystem operations
collected from symbolic execution. We also plan to expand the
breadth of our analysis by including C programs using static
analysis tool like LLVM [45].

Further, we plan to explore automated testing techniques
for these classes of vulnerabilities, akin to fuzz testing for
filesystem vulnerabilities. Prior work has explored methods
for the filesystem to generate filesystem attacks automati-

cally [80], but such methods cannot induce progrms to perform
vulnerable file system operations. Fuzz testing [52] is capable
of driving the program to the unsafe filesystem operations and
solving sets of constraints to generate inputs that may imply
attacks. We will explore automating the testing of programs
identified via triaging in the future.

We also want to further examine how to combining exploit
probability and centrality together to produce better triaging.
Some of the top exploit probability nodes have only a modest
impact on propagating attacks (i.e., not be very highly ranked
for centrality). From Figure 3, we can see that Samsung S20
and OnePlus 8T have a wide set of attack edges between
privilege levels. Thus, even for the most vulnerable nodes,
they may only have a modest impact on the propagation of
attacks. Perhaps we can introduce some weighted mechanisms
to better fuse the two metrics.

IX. RELATED WORK

Filesystem Security Researchers have long known about
filesystem attacks, but have found it difficult to prevent
programs from falling victim to such attacks. A variety of
defenses have been proposed as program or library exten-
sions [24], [27], [76] or kernel extensions [73], [19], [77].
Researchers have found that defenses from either perspective
(i.e., program/library or kernel) are limited because they have
an incomplete view of the other perspective [17]. As a result,
the main defense for preventing filesystem vulnerabilities is
access control. Researchers have proposed MAC enforcement
for Android systems [86], [16], leading to the deployment of
SEAndroid [72] and subsequent defenses [47]. However, the
attack operations we consider in this paper abuse available
MAC and DAC permissions.

Access Control Risk. Researchers have proposed access
control models that leverage risk in the access control decision
process [63], [43], [22], [62], [67], [56], [66]. Chen and
Crampton [22] propose to estimate the risk regarding subject
trustworthiness and the appropriateness of permission assign-
ments and utilize such estimates in authorizing operations.
Bijon et al. [43] examine which relationships in an RBAC
policy may be made risk-aware and examine how to apply
metrics and constraints to express risk. Petracca et al. [63] pro-
vide methods for estimating risk in access control enforcement



as it is accumulated at runtime. However, producing metrics,
constraints, and estimates for risk involves a significant amount
of subjectivity.

Attack Graphs. A wide variety of research in attack
graphs has been undertaken since early papers from the mid-
1990s [25], [26]. Early work on utilizing attack graphs to
configure defenses leveraged graph mediation problems, such
as min-cut and set cover [57]. While providing mediation
is a start, cuts do not account for how mediation may be
incomplete, allowing some threats to be propagated. More re-
cent work focuses on enabling defenders to compete in attack
graph games through the placement of sensors dynamically
based on tracking adversary strategies [53], [29], [28], [55],
[44]. Determining adversary strategies for exploiting zero-day
vulnerabilities is more difficult to determine. In this paper, we
leverage the relative attack capabilities of the attack operations
available, but in general, more information about the victim
is desirable. In addition, the focus of prior work has been
network attack graphs or reachability games in general, rather
than host attack graphs.

Centrality and Immunization. Researchers have proposed
several definitions of centrality based on the NB-matrix [54],
[50], [65], [75]. Such work has been applied to problems
of identifying the nodes with the most influence [54] and
immunizing the graph against influence [75]. Researchers have
also proposed other techniques for immunizing graphs [23].
We leverage a technique that reduces the epidemic thresh-
old [70], [75] to reduce the breadth of attacks available to
adversaries. These techniques focus on decreasing the largest
NB-eigenvalue instead since that approach can provide a
tighter bound to the true epidemic threshold in certain cases.

X. CONCLUSIONS

Despite the widespread utilization of access control mech-
anisms in modern Android systems, multi-stage attacks still
persist and pose challenges for effective defense. In this
paper, we propose a triaging method that accurately identifies
programs with significant security impact on the host system.
Our method stands out by constructing comprehensive attack
graphs combining policy analysis, program static analysis, and
graph analysis techniques, which compute a prioritization of
vulnerable testing efforts. We applied our method to three dif-
ferent devices running the most widely used Android version
and observed that some programs highlighted by our technique
exhibited recent vulnerabilities as well as the discovery of a
new zero-day vulnerability. Although the presented implemen-
tation is preliminary, it highlights that our proposed technique
can provide valuable insight on identifying the most impactful
programs for vulnerability testing.
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