
An Architecture for Enforcing End-to-End Access Control
Over Web Applications

Boniface Hicks, Sandra Rueda,
Dave King, Thomas Moyer, Joshua Schiffman, Yogesh Sreenivasan,

Patrick McDaniel, Trent Jaeger
Systems and Internet Infrastructure Security Laboratory

Department of Computer Science and Engineering
The Pennsylvania State University

boniface.hicks@email.stvincent.edu,
{ruedarod, dhking, tmmoyer, jschiffm, sreeniva, mcdaniel, tjaeger}@cse.psu.edu

ABSTRACT
The web is now being used as a general platform for hosting dis-
tributed applications like wikis, bulletin board messaging sys-
tems and collaborative editing environments. Data from multi-
ple applications originating at multiple sources all intermix in a
single web browser, making sensitive data stored in the browser
subject to a broad milieu of attacks (cross-site scripting, cross-
site request forgery and others). The fundamental problem is
that existing web infrastructure provides no means for enforcing
end-to-end security on data. To solve this we design an architec-
ture using mandatory access control (MAC) enforcement. We
overcome the limitations of traditional MAC systems, imple-
mented solely at the operating system layer, by unifying MAC
enforcement across virtual machine, operating system, network-
ing and application layers. We implement our architecture us-
ing Xen virtual machine management, SELinux at the oper-
ating system layer, labeled IPsec for networking and our own
label-enforcing web browser, called FlowwolF. We tested our
implementation and find that it performs well, supporting data
intermixing while still providing end-to-end security guarantees.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Sys-
tems]: Security and protection; D.4.6 [Operating Systems]:
Security and Protection—access controls

General Terms
Security, Virtual Machines

Keywords
Access Control, Xen Security Modules, Policy Compliance

1. INTRODUCTION
The web has evolved into a general purpose distributed com-

puting platform. Wikis, bulletin board systems, collaborative

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’10, June 9–11, 2010, Pittsburgh, Pennsylvania, USA.
Copyright 2010 ACM 978-1-4503-0049-0/10/06 ...$10.00.

editing environments, search engines, calendars, and many other
web applications handle data that is obtained from and shared
with large bodies of loosely associated hosts. In a wiki, for
example, data originating from one user may be stored on a
web server and then mixed with another user’s data within that
user’s web browser. This rich intermixing of data from many
sources allows users to create new, innovative models of data
sharing, e.g., mashups.

A cost of this intermixing of data is client and server vul-
nerability to a broad milieu of attacks. For instance, XSS at-
tacks that execute malicious scripts on an unsuspecting user’s
browser. Scripts that corrupt or leak sensitive data (passwords,
credit cards, etc.) Such a vulnerability is a consequence of a
fundamental limitation of the existing web infrastructure: ex-
isting environments provide no means for enforcing end-to-end
security. As in the XSS attack, the lack of coordination be-
tween elements of the system allows the adversary to abuse the
system—the fact that the malicious script originated from a po-
tentially dangerous input is not known by the user, i.e., it is
delivered in the same “security context” as the legitimate con-
tent.

Efforts to secure web applications have historically focused
on client-side solutions. These can be divided into two cate-
gories: inter-browser separation and intra-browser separation.
On the inter-browser side are systems, such as Tahoma [?] or
NetTop [?], that use separate virtual machines to separate data
with different security requirements. On the intra-browser side
are various systems such as OP’s process-based separation of
plugins [?] and Chrome’s process-based separation of tabs, as
well as more fine-grained approaches like the same-origin pol-
icy. While these solutions provide additional security and pro-
tect against some attacks on the browser side, none are able
to coordinate the management of data that is necessarily in-
termixed within the same browsing context. What is needed
is a way to integrate the security enforcement at each layer of
the system—thereby ensuring that mixing is consistent with the
security policies of all elements of the system.

Our solution is to use mandatory access controls (MAC) to en-
force an end-to-end security policy on web application data. It is
insufficient to follow the traditional approach to MAC, however,
which focuses on implementing MAC only at the operating sys-
tem layer. This approach is too restrictive, preventing the rich
intermixture of data from various sources that must take place
in the web browser. Rather, we find that by unifying MAC
enforcement across the virtual machine, operating system, net-

working, and application layers we can achieve more effective
and more flexible enforcement than the operating system alone.

In this paper, we provide an architecture that implements a
multi-layer, mandatory access control system for enforcing end-
to-end security goals on web applications. Data originating on
the server side is labeled by the web application administrator
and data originating on the client side is labeled by the user.
The system is configured such that it propagates labels with
data across each layer of the system—from the server to the
Virtual Machine (VM) to the Virtual Machine Manager (VMM)
to the network layer to the client and back again. Each layer
is configured such that it consistently enforces policy on labeled
data with respect to the other layers.

We implement our architecture using a Xen VMM, SELinux
VMs, labeled IPsec and our own instrumented label-enforcing
browser called FlowwolF, along with some other custom-built
components for supporting policy distribution and distributed
label mapping. The major challenges we had to overcome in
the implementation were augmenting a web browser to enforce
mandatory policies, defining comprehensive policies for web ap-
plications covering each layer, automatically distributing poli-
cies across layers to appropriate enforcement points and caching
policies appropriately to achieve performance levels that would
not diminish the user experience expected of web applications.

This paper makes the following contributions:
• We develop the first architecture for a multi-layer, manda-

tory access control web application system;

• We provide a working implementation of the system using
commodity as well as custom components;

• We implement a label-enforcing web browser that gives
and receives labels from the system;

• We instrument an open source bulletin-board messaging
system such that it enforces end-to-end security goals when
used in our system.

The rest of the paper is organized as follows. In Section 2 we
present the problems we must solve when developing an end-
to-end secure web browsing system. In Section 3 we give some
background on mandatory access control systems with the re-
quirements a system must fulfill to get the security guarantees
these systems provide. We follow that in Section ?? by propos-
ing an architecture using a mandatory access control system
that solves these problems. In Section ?? we describe our im-
plementation of the architecture. In Section ??, we evaluate the
architecture. To do so, we instrumented a commodity bulletin
board application. Finally we conclude in Section ??.

2. WEB APPLICATION SECURITY
To deliver rich, dynamic content, today’s Web 2.0 applications

combine data from sources with varying security requirements
and render them in a single browser tab. Many popular appli-
cations such as Mashups and social networking sites allow other
applications to read and write data or act as the user. If the
applications trusted to perform these actions are malicious, they
could leak or destroy sensitive data.

To illustrate, consider our instrumented Bulletin Board appli-
cation running in a multi-level secrecy (MLS) environment 1. In
this case, the posted messages have security requirements that
originate at the client side (in the browser). A user in the MLS
environment is gicen a set of security labels when she logs into
her OS (her clearance). These labels must be checked by the

1Our approach is not specific to MLS, but it will require a
mandatory access control policy, see Section 3.

browser before allowing her to open a secret browser tab to read
and write secret data. Before she can post, the browser must en-
sure she is posting from a secret tab and the content of her mes-
sage was entered only from secret input fields (not replying to a
top-secret message, for example). Furthermore, the system must
ensure that the remote server she is posting to is secret, such
that she can open a secret socket that is connected to a secret
web server application running on a remote OS that protects its
applications’ secrecy. This opens up various attack vectors. We
divide these attack vectors into three categories—network-layer
attacks, OS-layer attacks and browser-layer attacks.

Network-layer attacks focus on the interception of secret data
and hijacking connections to impersonate trusted authorities.
One example, a man-in-the-middle attack (MITM), allows an
attacker to act like a proxy for the browser, intercepting web
requests and providing the browser with the content returned
from the server. The attacker can then modify the message con-
tent or steal secret messages. More simply, if a network channel
is not encrypted, it is subject to modification by injection or
leakage by eavesdropping.

At the OS layer, secret posts stored on the Bulletin Board
server or stored persistently in the web browser’s system are
vulnerable to attacks by any malware running on the system.
Malware could modify the web browser and server application
by modifying runtime libraries, leaking secure message data or
causing other mischief that undermines the message security
requirements enforced by web browser and server.

At the browser layer, there are myriad attacks that involve
compromising the browser or confusing it (or the user) to be-
have incorrectly. If public and secret messages are loaded into
the same browser tab, malicious scripts in public messages might
leak secret messages to an attacker’s site (i.e., cross-site script-
ing, or XSS). Other attacks like cross-site request forgery (CSRF),
can trigger a request on behalf of the user without their knowl-
edge. This script then uses the user’s authenticated credentials
to access secrets for the attacker. OWASP listed these as the
most common browser vulnerabilities [?]. Another prevalent
danger is phishing : innocent-looking public messages can solicit
viewers to click on links that would send secret data as parame-
ters to malicious sites or request that a user fill out a form that
will post secret information to malicious sites. Next we describe
the various models developed that employ isolation techniques
to prevent data leakage and compromise.
VM-layer or inter-browser separation Approaches such as
NetTop [?] and Tahoma [?] separate data sources of different
security levels into individual virtual machines (VMs). It has
the advantage of providing strong separation and preventing
many of the attacks we have described. Browser level attacks
like XSS and CSRF attacks are prevented because access to un-
trusted domains are prohibited. However, this approach reduces
efficiency and violates our usability requirements. In our bul-
letin board example, a user with secret clearance would have
to view different messages in different VMs rather than view-
ing multi-level messages in the same browser or even the same
tab. Furthermore, a flexible use model would allow a single
browser to access multiple trusted web applications without to-
tal separation such that they could modify each others’ data in
controlled, policy- driven ways. Finally, these approaches alone
fail to protect against attacks at the network layer (like MITM)
or the OS-layer attacks, like those from malware.
Intra-browser separation In order to maintain the usabil-
ity advantage of displaying data from various origins in a single
page, recent research attempts to separate data of different secu-

Layer Protection State Labeling State Transition State Enforcement
Application DLM restrictions Data Low to high secrecy Control data leakage
VM SELinux policy Processes Within VM label range Prohibit loading illegal security level browsers
VMM XSM policy VMs Spawning VMs VM ranges limited to policy
Network IPsec policy Sockets Single level Prevents connection with insecure remote machine

Table 1: Elements of the mandatory protection system needed at multiple layers for end-to-end secure web systems.

rity levels using isolation policies within the browser. For exam-
ple, the same origin policy prevents Javascript from one origin
from modifying Javascript data originating elsewhere. Other in-
novative approaches refine this policy to prevent some attacks
by requiring some mutual authentication [?], by marking up
DOM content with accents [?], instrumenting the Javascript in-
terpreter mediation points [?, ?], or performing client or server
filtering to remove malicious code [?]. These approaches have
the advantage of minimal modifications to the system, modifi-
cations to the client-side alone, and incremental deployment. A
more robust approach to intra- browser separation introduces
process separation to protect the browser from malicious plug-
ins [?]. None of these approaches, however, provides protection
against phishing, network-layer or VM-layer attacks and only
provides partial protection against browser attacks.

Most of these intra-browser approaches suffer from not know-
ing precisely or confidently the security properties of web data.
They impose a heuristic policy, presuming for example, that
data from the same origin should have the same security prop-
erties. This assumption would be false like in our bulletin board
example, which serves up both public and secret data on the
same site.

None of the above approaches alone is adequate for systems
that seek to enforce strong, end-to-end security goals while still
combining data of mixed security in a single browser window.
What is needed is a web application system that combines the
previous two approaches, using inter-browser security techniques
for protection against OS-layer and network-layer attacks as well
as intra-browser protections for improved usability and protec-
tion against XSS, CSRF, and drive-by download attacks. To
maintain security policies on data between server and browser,
protection is needed at each layer: the application (intra-browser)
layer, VM layer, VMM layer and network layer. Intra-browser
separation can be improved by having authenticated security
policies on secret, trustworthy data, and network-layer and OS-
layer attacks can be prevented by enforcing mandatory policies
on web application data and programs.

Designing such a web system introduces a host of challenges.
One challenge is properly configuring the system to statically
and dynamically label web content while propagating those la-
bels faithfully. Another is carefully dividing up the label en-
forcement between layers while ensure security requirements are
maintained end to end. Furthermore, this must be done effi-
ciently.

3. END-TO-END ENFORCEMENT
We claim that a system provides secure end-to-end enforce-

ment for an application if a mandatory access control (MAC)
policy is enforced consistently across all software layers. Ander-
son defined the reference monitor concept [?], which states the
guarantees that must be satisfied to enforce a MAC policy cor-
rectly. We propose the construction of a multi-layer reference
monitor for end-to-end enforcement. Table 1 shows the system
layers (in rows), the MAC policy concepts (in columns), and

the requirement assignment of MAC policy to layers (in each
cell). Our task is to define a multi-layer reference monitor that
enforces a coherent system-wide MAC policy and demonstrate
what is necessary to build it correctly (Section 3.1). We also
define a mandatory protection system, which motivates why a
MAC policy is necessary for our multi-layer reference monitor
and identifies the MAC policy concepts that must be enforced
(Section ??).

3.1 Multi-Layer Reference Monitor
Table 1 shows four layers needed to enforce a MAC policy:

(1) the application layer controls access to application objects
(e.g., browser tabs and URLs); (2) the VM layer consists of
the operating system that controls process (including the ap-
plication) access to VM system objects (e.g., files and sockets);
(3) the VMM layer (e.g., for Xen, its hypervisor and privileged
host VM) controls inter-VM interactions (e.g., shared memory
and communications); and (4) the network layer that authorizes
communication and dictates how secure communication is per-
formed (e.g., chooses cryptographic protocols). We state that
there may be multiple components at each layer that are required
to enforce a MAC policy, such as multiple application processes
or multiple VMs. Each of the components that we depend upon
to enforce a MAC policy must be part of the multi-layered ref-
erence monitor for that application.

A true reference monitor must satisfy [?]: (1) complete me-
diation—all security-sensitive operations must be mediated by
the reference monitor; (2) tamperproofing—the reference moni-
tor must be protected from illicit modification; and (3) simple
enough to verify—the reference monitor mechanisms and poli-
cies must be verified to enforce site security goals correctly. A
multi-layer reference monitor must ensure that the composition
of layers satisfies these requirements. Below, we examine these
requirements and the tasks that must be performed to satisfy
them in a layered environment.

We leverage existing mediation in OSs (e.g., SELinux [?]) and
VMMs (e.g., Xen sHype [?]), but we also require mediation for
other layers and an approach for inter-layer communication of
security information. For the application layer, we extend the
browser application with mediation mechanisms that leverage
OS labels. We use labeled IPsec [?] to authorize access at
the network layer using system labels that specifies secure com-
munication requirements. Additionally, we use the same set of
system labels for all layers for consistence across layers.

Tamperproofing each layer is generally done by the layer be-
low. For example, an SELinux policy must protect the browser
process from tampering by other processes if it is to enforce its
policy correctly. In prior work, we evaluated SELinux policies to
ensure that reference monitoring processes cannot be tampered
with by untrusted processes [?]. As the browser application is
just another instance of a reference monitoring application, the
same technique can be used, so we do not discuss this further.
Ensuring that a VMM policy protects a VM from tamperproof-
ing can be performed similarly.

