
On Risk in Access Control Enforcement
Giuseppe Petracca

�e Pennsylvania State University
School of Electrical Engineering and Computer Science

gxp18@cse.psu.edu

Frank Capobianco
�e Pennsylvania State University

School of Electrical Engineering and Computer Science
fnc110@cse.psu.edu

Christian Skalka
�e University of Vermont

College of Engineering and Mathematical Sciences
skalka@cs.uvm.edu

Trent Jaeger
�e Pennsylvania State University

School of Electrical Engineering and Computer Science
tjaeger@cse.psu.edu

ABSTRACT
While we have long had principles describing how access control
enforcement should be implemented, such as the reference moni-
tor concept, imprecision in access control mechanisms and access
control policies leads to risks that may enable exploitation. In prac-
tice, least privilege access control policies o�en allow information
�ows that may enable exploits. In addition, the implementation
of access control mechanisms o�en tries to balance security with
ease of use implicitly (e.g., with respect to determining where to
place authorization hooks) and approaches to tighten access control,
such as accounting for program context, are ad hoc. In this paper,
we de�ne four types of risks in access control enforcement and
explore possible approaches and challenges in tracking those types
of risks. In principle, we advocate runtime tracking to produce
risk estimates for each of these types of risk. To be�er understand
the potential of risk estimation for authorization, we propose risk
estimate functions for each of the four types of risk, �nding that
benign program deployments accumulate risks in each of the four
areas for ten Android programs examined. As a result, we �nd
that tracking of relative risk may be useful for guiding changes to
security choices, such as authorized unsafe operations or placement
of authorization checks, when risk di�ers from that expected.

CCS CONCEPTS
•Security and privacy→ Operating systems security; Access con-
trol; So�ware security engineering;

KEYWORDS
Risk, Access Control Enforcement

ACM Reference format:
Giuseppe Petracca, Frank Capobianco, Christian Skalka, and Trent Jaeger.
2017. On Risk in Access Control Enforcement. In Proceedings of SACMAT’17,
June 21–23, 2017, Indianapolis, IN, USA, , 12 pages.
DOI: h�p://dx.doi.org/10.1145/3078861.3078872

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA
© 2017 ACM. ACM ISBN 978-1-4503-4702-0/17/06. . . $15.00.
DOI: h�p://dx.doi.org/10.1145/3078861.3078872

1 INTRODUCTION
Access control restricts the subjects (e.g., users and programs) that
may perform operations (e.g., read and write) over objects (e.g., �les
and records). It has long been recommended that the so�ware that
implements access control should separate the access control mech-
anism from the access control policy. Access control mechanisms
should satisfy the requirements speci�ed by the reference monitor
concept [6], such as complete mediation, to enforce access control
policies correctly. Access control policies should express the access
control requirements to be enforced.

In practice, the design and implementation of both access control
mechanisms and policies is a manual process, which leads to risks
that adversaries may circumvent the access control goals. First, ac-
cess control policies may allow unsafe operations. While multilevel
security (MLS) policies, such as Bell-La Padula [7] and Biba [8],
block risky information �ows, MLS policies o�en result in many
trusted subjects (i.e., trusted readers and writers) that are outside
the policy [27]. In addition, least privilege policies [43], which favor
functionality over blocking risky operations, are more popular to-
day. Also, authorized subjects may be compromised by adversaries,
introducing risk even for accesses that would have been safe for
the uncompromised subject. Second, errors in implementing access
control mechanisms may produce risks. For example, programmers
may misplace the access control policy checks, which are o�en
called authorization hooks, in their programs. To reduce the number
of authorization hooks needed, programmers may allow subjects to
access more objects or perform more operations, possibly including
risky operations with authorized operations. For example, one hook
may allow two objects to be read, one of which may be used to
create an information �ow from other subjects. At present, there
are no methods to track risks in overly coarse authorization hook
placements.

Current research does not track the risk created by manual ac-
cess control system design and implementation. Risk has generally
been explored in two ways: (1) to identify undesirable permissions
in access control policies statically and (2) to produce access con-
trol models that integrate risk estimates into the authorization
decisions. First, researchers have proposed static analysis tools
for mandatory access control policies to identify permission as-
signments that may impact the secrecy and integrity of the sys-
tem [3, 10, 18, 28]. For example, Jaeger et al. identify permission
assignments that violate Biba integrity as unsafe [28]. �e point of
such work to motivate changes in the policy design, but sometimes
unsafe permissions are deemed necessary for functional reasons.

SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA G. Petracca et al.

More recent work focuses on how applications may misuse the
permissions assigned to them [20, 21, 30], such as when a mobile
phone app leaks data [19]. Second, researchers have proposed
access control models that integrate risk into the access control
decision process [9, 11, 13, 31, 37, 42]. Bijon et al. [9] examine
which relationships in the RBAC model may be made risk-aware
and examine constraint-based and metric-based expressions of risk.
Chen and Crampton [11] propose to leverage an estimate of the
risk that a subject is not trustworthy or a permission assignment is
not appropriate in authorizing an operation. However, estimating
risk values or de�ning risks constraints on such concepts involves
a signi�cant amount of subjectivity regarding trustworthiness and
appropriateness.

In this paper, we explore the problem of tracking the accumula-
tion of risk in access control enforcement. Toward this goal, we are
motivated by three types of e�orts. First, researchers have demon-
strated methods to compute trusted and untrusted resources for
each subject [49]. By identifying trusted resources for each subject,
we can identify operations that risk integrity for each subject. We
will have to develop analogous principles for identifying resources
that are secret to a subject. Second, researchers have demonstrated
the value of auditing to enforce retrospective policies [50]. Access
control cannot produce false positives, which implies that some
risky operations may be allowed, but auditing may be leveraged
to enforce such operations retrospectively to reduce risk. We ex-
plore auditing the risk of authorized, unsafe operations. �ird,
researchers have shown that risk may accumulate systematically
for unsafe operations, as for di�erential privacy [16]. For each
query to a di�erentially private database, an estimate on the pri-
vacy loss incurred by that query operation increments a risk that
an adversary may infer the presence of a particular record in the
database. In this work, we explore ways to estimate accumulated
risk in the context of access control decisions. However, relating
accumulated risk to security properties remains future work, as we
explore di�erent types of risks that may accumulate due to access
control.

Based on these insights, we identify four di�erent types of risks
taken in access control: (1) risk due to authorizing unsafe opera-
tions; (2) risk due to abuse of authorized permissions; (3) risk due
to lack of program context; and (4) risk due to the granularity of
authorization hooks. We explore how to identify such risks, ways
we may associate risk estimate values with such risks, and issues in
computing such risk estimates in practice. We would then envision
that access control mechanisms would record risk estimates as they
accumulate using auditing both within the programs (to collect in-
puts for computing risk) and within the access control mechanism
(to collect risks regarding enforcement) to enable risk computation.
Ideally, accumulated risk may either lead to a denial or at least some
change in access control enforcement, such as changes in policies
or authorization hook placements, along the lines of preventing
violations in di�erential privacy. Formalizing properties related
to risk in access control enforcement in a manner analogous to
di�erential privacy remains future work.

We evaluate our proposed approach to risk estimation in Android
systems. First, we use the Android Compatibility Test Suite (CTS)
to study risks due to unsafe operations and permission abuse in an
Android 6.0.1 system protected by its SEAndroid policy. We �nd that

high integrity Android system processes take only a modest number
of risky operations to access data modi�ed by untrusted apps, but
each high integrity process accesses some risky objects. Also, we
found that no program uses more than 12% of its permissions in
CTS operation, indicating that detecting permission abuse may be
practical. Second, we computed the risk estimates for ten Android
system processes on the same Android system based on events
generated by the Android UI/Application Exerciser Monkey. We
found that all these processes accumulate a modest amount of
risk along each risk dimension (less that 0.1 for our equations),
indicating that risk estimates may be useful for comparing relative
risks.

In summary, this paper makes the following contributions:
• We identify four risk areas in access control enforcement

related to weaknesses in access control policies and weak-
nesses in how access control is enforced.

• We outline an approach for computing risk estimates and
logging such estimates as security-sensitive operations
occur that aims for monotonicity of risk over time for each
subject and proportionality with respect to impact.

• We evaluate the four risk areas on programs in Android
systems, �nding that programs generally run with a small,
but tangible, risk, which may be used to compare relative
risks of programs.

�e remainder of the paper is structured as follows. Section 2
describes the four types of risk we identify in access control en-
forcement. Section 3 speci�es the security model we assume when
assessing risk. Section 4 outlines our objectives for tracking risk.
Section 5 examines runtime risk estimation, proposing techniques
for risk estimation and identify challenges in gathering information
necessary for risk estimation. Section 6 examines risk estimation
in Android systems. Section 7 discusses some issues found in risk
estimation. Section 8 concludes the paper.

2 RISKS IN ACCESS CONTROL
�e fundamental problem is that choices in both access control
enforcement mechanisms and access control policies introduce risk,
and that at present we neither track nor react to such risk. As
a result, adversaries may be allowed to perform operations that
exploit such risks with impunity. �us, if an adversary can �nd
an exploit for the risks taken in a system deployment, then they
may be able to abuse such an exploit persistently, as a so-called
Advanced Persistent �reat (APT), possibly across many hosts.

We examine four classes of risks in this paper: (1) risk due to
the authorization of unsafe operations; (2) risk due to the possible
compromise of subjects; (3) risk due to enforcement context; and
(4) risk due to the granularity of mediation. While these classes of
risk are not entirely independent (e.g., allowing unsafe operations
may be a result of the reference monitor design), we examine each
class separately in this paper.

2.1 Access Control Enforcement
Before delving into the risks, we review the relevant principles of
access control enforcement. Traditionally, access control restricts
which subjects (e.g., users and processes) can perform which opera-
tions (e.g., read and write) on which objects (e.g., �les and database

On Risk in Access Control Enforcement SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA

Figure 1: Illegal information �ows for integrity and secrecy

records). Programs (e.g., operation system or database) are said to
enforce access control using a reference validation mechanism. A
reference validation mechanism consists of three components: (1)
authorization hooks, which mediate security-sensitive operations
in the program and produce authorization queries identifying the
subject, object, and operation to be authorized; (2) authorization
mechanism, which compares authorization queries to the access
control policy to determine the authorization result; and (3) access
control policies, which de�ne the granted authorization queries.

�e reference monitor concept [6] proposes three requirements
for correct reference validation mechanisms. First, a reference vali-
dation mechanism must be non-bypassable. �at is, the authoriza-
tion hooks must mediate access to all security-sensitive operations,
which is also called complete mediation. Second, the authorization
mechanism must be veri�able. �at is, it must be possible to test
that the reference validation mechanism enforces the expected se-
curity policy. �ird, the reference validation mechanism and access
control policy must be tamperproof to prevent a�acks on access
control itself. Finally, although not explicitly stated by the reference
monitor concept, the access control policy must correctly de�ne
the expected security requirements.

One challenge is to identify security-sensitive operations in pro-
grams. Researchers have proposed identifying security-sensitive
operations via program data �ows [15, 36] and control �ows [22,
23, 34, 35, 44]. Using data �ows, security-sensitive operations occur
when a program data �ow violates the program’s information �ow
policy. For example, an assignment of a variable with secret data to
a variable sent to the public network would be a security-sensitive
operation because that data �ow would violate an information �ow
requirement that secret data not bemade available to public subjects.
Using control �ows, researchers have proposed using both syntactic
and semantic features of programs to identify security-sensitive op-
erations. One semantic approach [34] identi�es security-sensitive
operations by data-�ow and control-�ow “choices” that programs
make with untrusted input. For example, if a program uses un-
trusted input in a conditional, the program makes a control-�ow
choice based on such untrusted input that should be mediated. Nei-
ther approach is perfect, as we would like to proactively mediate
operations before information-�ow violations (for data �ow), but
heuristics are currently necessary to identify security-sensitive
operations before such violations occur (for control �ow).

2.2 Risks of Authorizing Unsafe Operations
While an aim of computer security has long been to prevent the
execution of unsafe operations by restricting information �ows [15]
for secrecy [7] and integrity [8] as shown in Figure 1. However, in
practice, systems deployments take risks with respect to informa-
tion �ows. When information �ow policies are employed, risks are
taken in the ad hoc design of declassi�ers and endorsers [36] or
choice of trusted readers and writers. Most commercial systems
employ least privilege [43], where the permissions available to each
subject are determined by the functionality required of the subject.
Researchers have shown that even mandatory access control poli-
cies based on least privilege produce integrity risks [28], even for
highly privileged processes [10]. We will refer to a permission that
violates an information �ow constraint as a unsafe permission.

Unfortunately, static analysis of access control policies to high-
light possible risks has not had a tangible impact on the design
of access control policies. We have found that the stock Android
policy for the Android 6.0.1 (kernel 3.4.0) version system allows all
the high integrity subjects (i.e., those started directly or indirectly
by Android kernel subjects) to read, and in some cases even execute,
objects that can be modi�ed by low integrity subjects, according
to the default SE Android policy. For 57 high integrity subjects
identi�ed, they can read or execute 57 object labels that may be
wri�en by low integrity subjects in this policy and have over 22,000
permissions that are not available to low integrity subjects. �us,
to prevent unauthorized access by low integrity subjects, we must
ensure that high integrity subjects are not compromised when uti-
lizing an object assigned one of these 57 labels controlled by low
integrity subjects. However, no systematic approach is taken either
to protect the high integrity subjects that use such objects or track
the risk created by their use.

In addition, vendors extend the stock Android policy for their
own devices. In one vendor’s system1, the number of low integrity
object labels accessible to high integrity subjects increases to 240
from 57, and over 100,000 permissions are available to high integrity
subjects only. �us, simply shaming policy designers regarding vi-
olations of information �ow appears to be an insu�cient approach.

More recently, researchers have developed risk models based
on a variety of properties of applications, such as application rat-
ings [12, 14] and descriptions [38], in addition to static permission
assignments [18, 30, 39]. Such techniques tend to focus on di�er-
ences between individual applications and average applications,
sometimes limited to a speci�c class of applications. While some
malicious applications may be identi�ed as outliers, applications’
normal least privilege policies o�en include permissions that enable
a variety of a�acks, as described above. �us, closer tracking of
applications’ use of their permissions is necessary to detect malice.
However, �ne-grained tracking, such as dynamic taint tracking [19],
incurs an overhead that prevents wide deployment.

2.3 Risks of Permission Abuse
Another problem is that processes may be compromised, and adver-
saries may utilize the compromised process’s permissions freely. In
addition, insiders may misuse their authorized permissions to leak
information or embed malice in a system. Researchers identi�ed
1We anonymize the vendor system.

SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA G. Petracca et al.

this problem in de�ning role-based access control (RBAC) models
that reason about risk [9, 11]. For example, Chen and Crampton
integrate risk thresholds into access control decisions, enabling
administrators to utilize knowledge of the trustworthiness of users,
competence of users in roles, and the appropriateness of a permis-
sion for a role. However, a challenge is to quantify risk for these
cases objectively.

An interesting analogue for this problem is the problem of di�er-
ential privacy. Di�erential privacy is a method for limiting the risk
associated with allowing authorized subjects access to sensitive
data [16]. In this case, the sensitive data is a database of individ-
uals’ anonymized records, and the intuitive goal is to make the
database indistinguishable from another database missing any one
individual’s records. Functionally, systems that enforce di�erential
privacy [25, 33, 41] limit the queries that may be executed to a total
privacy budget. Interestingly, researchers have proven the “cost” of
a set of queries in terms of information leaked is bounded by the
sum of the costs for each query.

While preventing information leakage is a common goal for both
di�erentially private databases and access control enforcement, our
ability to measure when the requests to an access control system
have exceed a bound has not yet been formalized. However, meth-
ods have been proposed to estimate data leakage. McCammant and
Ernst [32] de�ne a method for estimating the amount of informa-
tion leakage in a program statically, although one must identify
which leakages are important.

2.4 Risks in Authorization Context
One challenge in access control enforcement is to restrict subjects
to appropriate permissions for the individual requests they make.
Typically, access control treats each subject uniformly for all re-
quests. For example, the operating system grants each subject the
same set of permissions for any request made.

Such a “black box” approach can lead to two kinds of problems.
First, an adversary may try to a�ack the system using their avail-
able permissions, and we may want to limit the adversary to a
subset of their permissions based on some contextual knowledge
related to the request. For example, ContexIoT [29] aims to limit
the permissions available to processes on IoT devices based on the
control �ow and data �ow that led to the request being submit-
ted. In this case, the authors instrument untrusted programs to
gather control and data �ows that are used in access control en-
forcement. Second, victims may be protected from compromise if
access control enforcement limits the permissions they may use
when processing their requests. For example, Jigsaw [47] limits the
permissions available to a process when it opens a �le to prevent
confused deputy a�acks [26, 40]. If a victim uses input from an
adversary to build a �le name, the victim is restricted to only access
objects available to untrusted parties. Again, knowledge of data
�ows (e.g., to constructing �le names) are used to restrict access.

We �nd that risk occurs because subjects may have too many
permissions available for a particular context. Risk of authorization
context occurs because we do not know enough about the program
context to reduce the subject’s permissions. For example, without
program context, we cannot identify the two cases above, where
subjects may maliciously or accidentally misuse their permissions.

Figure 2: Risks in placing authorization hooks that do not
mediate every security-sensitive operation

2.5 Risks in Mediation Granularity
Finally, the assumption that the authorization system mediates all
the security-sensitive operations correctly may be �awed, leading
to additional risks. A major concern is that an authorization system
does not satisfy the complete mediation property of the reference
monitor concept [6]. When one considers failures in complete me-
diation, one normally thinks of a security-sensitive operation that
may not be mediated by any authorization hook in some execution
trace. Such errors have occurred in the deployment of authorization
systems [17, 46], but some operations may not require mediation
and even mediated operations may be incorrect.

In particular, we �nd that risks occur because programmers may
understand whether operations may allow unauthorized access.
Even when an operation is mediated by an authorization hook, this
problem may occur for two reasons. First, programmers aim to
minimize the number of authorization hooks (e.g., for performance
or to keep the policy simpler), so they may only mediate the �rst
security-sensitive operation and assume subsequent operations are
protected. Figure 2 shows an example. Suppose that an authoriza-
tion hook checks whether subjects can read an object A. However,
subsequent statements may write to that object or may operate on
di�erent objects, such as object B extracted from a �eld of object
A. In general, no subsequent authorization hook is necessary as
long as all the subjects authorized for the mediated operation (e.g.,
read of the object in the example) are also authorized to perform all
security-sensitive operations that may directly dominated by that
hook [35]. In the example, should some of the authorized subjects
for reading object A not be allowed to write object A or not be
allowed to access all the objects that may be assigned to object B,
then other authorization hooks would be necessary to block those
unauthorized accesses while allowing the read operation.

Second, mediation may only be intended to allow limited access
to an object. Consider a database where some �elds contain secret
data. We may authorize a subject to access a record, and even allow
updates to a secret �eld based on such accesses. However, we would
want to prevent the values in that secret �eld from being released
publicly (e.g., sent over the network) [4]. Typically, programmers
add authorization hooks and sanitizers independently, meaning that
theremay be a risk of amissing sanitizer even a�er authorization. In

On Risk in Access Control Enforcement SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA

addition, for integrity, Amir-Mohammadian and Skalka [5] prevent
victims from using adversary-controlled data without sanitization
to augment access control.

3 SECURITY MODEL
In this work, we assume that programmers and system adminis-
trators are benign. �ey may make mistakes in the con�guration
of access control policies (administrators) or in the enforcement
of access control policies (programmers), but they are not active
adversaries in the system. We further assume that the systems upon
which programs enforcing access control run are able to prevent
compromise.

On the other hand, all the processes that make access control
requests may be compromised. Some processes may aim to escalate
their current privileges by trying to compromise another process
with greater access. Others may simply want to exploit permissions
already assigned to them (e.g., insiders).

4 RISK MODEL OBJECTIVES
In this paper, we explore the requirement for a system that reasons
about the risk incurred during access control enforcement, which
covers the four sources of risk described in the problem section: (1)
risk due to authorizing unsafe operations; (2) risk due to abuse of
authorized permissions; (3) risk due to lack of context; and (4) risk
due to the granularity of authorization hooks. To do so, we have
to overcome several challenges. First, we aim to capture real risks.
Static analysis shows possible risks, but does not tell us whether
risks actually appear. Second, we aim for risk to be monotonic [39].
�at is, we aim to identify risks in access control enforcement
that add a�ack options for adversaries, such that the risk value
computed must be greater if the risk was taken than if it was not
taken. �ird, we envision that risky behaviors must be proportional
to its impact. For example, an action that does not enable any
privilege escalation must create a lower risk than an action that
does enable privilege escalation. Ideally, we could compute a risk
cost for each operation and determine whether that cost is within
a risk budget, analogous to di�erential privacy [16]. Unfortunately,
we presently lack the formal foundations of di�erential privacy
in evaluating access control, but perhaps studying how risk may
accumulate may lead to insights in the future.

To capture real risks, we propose to compute risk by tracking
the dynamic behaviors in program executions. To capture unsafe
operations and abuse of authorized permissions, we propose to
collect risks associated with these operations as they are autho-
rized. To capture risks from security-sensitive operations that are
not explicitly authorized, we collect risks associated with those
operations when they are run.

To capture risks monotonically, we propose to separating the
accumulation of threats from the risks actually taken by targets.
As shown in Figure 1, there is both a threatening operation (e.g.,
writing to an object used by a high integrity party) and a risky
operation (e.g., reading the object by the high integrity party). A
threatening operation creates a potential for risk by propagating
threats from untrusted subjects to objects. �e potential risk created
by threatening operations accumulates in objects, which we call
object risk. A risky operation occurs when a target subject accesses

(reads or executes) an object that has been threatened, transferring
the risk from the object to the target subjects. �at is, a threat is
not truly a risk until at least one target subject performs a risky
operation on a threatened object. �us, if an object if threatened,
but the risk never is taken (e.g., the object is deleted before being
accessed), then the threats are not turned into risk for any subject.
However, if a risk is taken by a subject, that risk is maintained with
the subject even if the threatened object is removed later (e.g., to
hide the a�ack).

To capture risks proportionally, we propose to estimate the value
of the risk based on how the risk may impact the victim. For
example, we explore estimating risk based on three factors: (1) the
scope of the threat created by adversaries; (2) how unique the risk is;
and (3) how much an adversary may gain from the risk. First, an
adversary may create a larger risk by controlling more data used
by the victim. Also, for each threat, we increase the potential for
risk based on the uniqueness of the unsafe operation. For example,
if very few low integrity subjects can write to a particular object,
then we envision that the potential for risk of this subject writing
to the object is greater than if many subjects may have the same
permission. �ird, we assume that a threat that may enable an
adversary to gain access to more new privileges should be a higher
risk than one that only grants fewer new privileges.

Finally, to compute risk, we propose to collect risk estimate
information at runtime. We �nd that access control enforcement
allows many risks to be taken, but if such risks are expected (e.g.,
receiving a network packet) and infrequent then the risk estimate
for the subject should be low. However, modifying programs in
an ad hoc manner is complex and error-prone. We envision that
program code to collect information for risk estimates at runtime
should be generated from declarative speci�cations, as proposed
for auditing code [4]. One concern is the overhead incurred by
runtime logging, so we suggest exploring optimizations to compute
information statically, such as proposed for ContexIoT [29].

5 RUNTIME RISK ESTIMATION
5.1 Computing Risk Estimates
�e idea of computing risk is to record for each threatening op-
eration how much risk is created by the threat. �e risk created
by threatening operations is accumulated at the object for each
threatening operation. �en, when a target subject performs a
risky operation, the risk transfers from the object to the subject
that invoked the risky operation. A subject’s risk then is an accu-
mulation of the risks collected from the threatened objects that that
subject accesses.

In theory, if an object utilized (i.e., read or executed when consid-
ering integrity) by a subject is fully controlled by an adversary, then
the risk faced by that subject is complete for that object. However, a
complete risk may or may not provide an advantage to an adversary,
depending on what an adversary gains from the risk. For integrity
violations, we consider the privilege escalation that an adversary
may gain from the permissions available to the subject, such as by
compromising the subject completely or exploiting its permissions
as a confused deputy [26, 40].

�us, we envision a risk estimation method where a complete
risk incurs a risk estimate of 1 and no risk incurs a risk estimate of

SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA G. Petracca et al.

0. Given information �ow as a motivation, a risk estimate of 0 for
a subject would occur if the subject only reads objects that have
never had a threatening operation. On the other extreme, a subject
that only performs risky operations on objects whose data is fully
threatened would incur a risk value of k , where k is the number
of objects read and each object has a risk value of 1. To estimate
risk between these two extremes, we propose equations that relate
the adversary control of an object to the risk of accessing it. �e
equations presented are strawmen, so the focus should be on the
elements that constitute risks.

To capture the proportionality of risk, we modulate the risk
estimates by the uniqueness of the threatening operation and the
advantage to be gained by the adversary through that operation.
First, if a risk can rarely be created, i.e., very few subjects could
perform the threatening operation, then we propose that the risk
estimate should be increased. Second, if a risk may have a big
payout, i.e., enables an untrusted subject to gain access to many
or critical privileged permissions, we also propose to increase the
risk estimate based on the fraction of privileged permissions that
are available to the target subject performing a risky operation. In
this paper, we say that privileged permissions are permissions not
available to any low integrity subject.

Example: Risk Flows between Subjects andObjects. Wenowdemon-
strate the proposed approach for risk estimation with a simple
example based on Figure 1. Suppose that (low integrity) Subject
A contributes 10 bytes to Object X, which consists of 100 bytes
altogether. If the remaining 90 bytes are from writes from high
integrity subjects, then one could say that Object X’s risk estimate
is 0.1 (10 bytes out of 100 bytes). When (high integrity) Subject Y
reads from Object X, the risk estimate of Subject Y is updated based
on the risk estimate of Object X. Suppose that Subject Y only reads
or executes Object X, then the risk estimate of Subject Y will be
the value of Object X at the time of read (risky) operation, which
could be 0.1. We will examine the speci�c approaches proposed for
computing risk estimates for objects and subjects in the remainder
of this section.

5.2 Risk Estimation for Unsafe Operations
Unsafe operations are authorized by the existing authorization
hooks, so we can update risk estimates when such unsafe opera-
tions are authorized. �e main challenge is to determine whether
an operation is unsafe, and hence either a threatening or risky
operation. To do this, the system must have identi�ed the low
integrity (high secrecy) and high integrity (low secrecy) subjects
in the access control policy. For example, researchers have used
knowledge of how system’s boot [28] or which subjects may a�ack
the kernel [49] to estimate low and high integrity subjects. Identi-
fying high secrecy subjects is more di�cult because a wider variety
of subjects and objects contain secret information. We assume that
some choice of trusted and untrusted subjects has been made a
priori and utilize this knowledge to identify unsafe operations.

However, a second challenge occurs if other threatening opera-
tions change the risk estimate of an object while it is in use. Suppose
that a high integrity subject and a low integrity subject have a �le
open concurrently. �us, if the low integrity subject continues to
write the object a�er the �rst time the object is read by the high

integrity subject, we may compute the risk estimate incorrectly if
we only update risk when the open operation occurs. Although
authorization may occur at the open operation, we need to be able
to update the risk estimate each time an object is used (e.g., read
operations).

To compute a risk estimate for unsafe operations, we propose
that the risk estimate account for: (1) the scope of the threat; (2)
the uniqueness of the threat; and (3) the gain for the adversary in
terms of the privilege escalation possible via compromise. For a
threatening operation, the scope of the threat may be re�ected by
the amount of threatening data contained in the object,

scope(obj) = x(obj)/d(obj) (1)

where: (1) x(obj) is the amount of threatening data (i.e., data wri�en
by threatening operations) wri�en to the object and d(obj) is the
total amount of data for the object. Presumably, the more adversary-
controlled data that a program must process, the greater the risk,
although the risk may not be linear as re�ected here.

However, the threatening operation may be common, which
should reduce the threat of any individual operation, as the more
common a threat, the more likely it is to be addressed. �us, we
may want to adjust the risk caused by an unsafe operation in an
inverse relationship to the number of subjects who may perform it,

uniqueness(obj) = f (potentialThreat(obj)) (2)

where f is a function and potentialThreat(obj) is the fraction of
threatening subjects that are authorized to write to the object. �is
term aims to adjust the risk estimate based on the uniqueness of the
adversary’s ability to create the threat from f (potentialThreat(obj)) =
0 (if common) and approximately f (potentialThreat(obj)) = 1 (if
rare). f could be linear (i.e., 1 − potentialThreat(obj)), but alterna-
tives may re�ect that risks emerge mainly from rare permissions
(higher order) or that risk only reduces if a permission is very
common. We will explore these alternatives.

�us, for each object its associated risk is estimated by,

riskun (obj) = scope(obj) × uniqueness(obj) (3)

For a subject, we want to produce a risk estimate that re�ects
the impact of the risky unsafe operations that the subject has per-
formed. For example, a subject’s risk estimate may depend on the
combination of the risk estimates for the objects that the subject
has accessed,

riskun (subj) =
n∑
i=1

max(riskun (obji)) (4)

where n is the number of objects accessed by the subject. �e
maximum value is used here for each object to account for the fact
that the risk associated with an object may change at each access
of the object by the subject. �us, by using the max we account for
the access with the higher risk. An alternative would be to have n
be the number of operations, where risk would be summed using

On Risk in Access Control Enforcement SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA

the current object risk value. However, that approach may enable
an adversary to hide risk, if an object is accessed many times in a
safe form.

Finally, the risk to a subject should also factor in the bene�t of
exploiting the permissions available to the subject. �us, we suggest
multiplying the risk estimate resulting from risky operations by the
privilege escalation possible via compromise potentialGain(subj),

riskun (subj) =
n∑
i=1

max(riskun (obji)) × potentialGain(subj) (5)

where potentialGain(subj) is the fraction of privileged permis-
sions accessible to the subject. �e fraction of the privileged per-
missions available to a subject indicates the amount of privilege
escalation that may be achieved by an adversary, which justi�es an
adversary trying to exploit the subject. Privileged permissions may
include high secrecy and high integrity permissions for resources
that must be protected in the system.

�ese risk equations leave open the question of which bytes in a
�le currently may have originated from a threatening operation or
a safe operation. �e problem is that both threatening and safe data
may be overwri�en, so all the prior threatening (or safe) data may
have been removed or at least reduced. Tracking �le taint per byte
may be expensive, but simply tracking the amount of data wri�en
can be straightforward since we can simply log these operations.
We will conservatively assume that all the threatening data wri�en
remains in the �le, and explore this problem further in future work.

5.3 Risk Estimation for Permission Abuse
In this section, the challenge is to map the threatening and risky
operations to operations performed by a subject with their own
permissions. In this case, the threat is due to sensitive data de�ned
by or protected by a high integrity subject that may be tampered
with or leaked should that subject be compromised or be a malicious
insider. �us, we must identify threatening and risky operations,
and determine how to compute risk estimates for each.

In this case, we view threats as being the operations that cause
data to be sensitive. If some subject adds sensitive data to an object
that can be accessed by a target subject, then we want to measure
how much of this sensitive data each target subject may put at
risk by accessing those objects. However, programmers do not
explicitly identify sensitive information, so we need a way to detect
operations that cause an object to become sensitive. A simplistic
approach is to assume that all the data of each object available to
a subject is sensitive. We can mitigate the impact of the threat by
determining if adding data to the resource is a common operation.
If so, it is likely the data is less sensitive.

As a result, the risk estimate for objects related to permission
abuse is calculated as follows,

riskab (obj) = scope(obj) × actualThreat(obj) (6)

where: (1) scope(obj) is again the fraction of sensitive data wri�en
in the object (which may be assumed to be 1 in some cases) and
(2) actualThreat(obj) estimates the sensitivity of the object based
on the fraction of subjects that wrote (read) the object for integrity
(for secrecy). We plan to track the amount of data produced by
threatening operations x as described above, but the challenge is
to estimate which operations produce sensitive information. To
do this we propose to leverage the commonality of access to the
data, where a higher commonality reduces the risk of permission
abuse. For integrity, the higher the fraction of subjects that can
write to the object, then the lower the sensitivity of the object.
Since few objects may be wri�en (read) by all subjects, the estimate
for actualThreat(obj) may be normalized to �ll more of the range
between 0 and 1 (e.g., use the maximum fraction of subjects).

Risky operations occur when a subject uses its permissions to
access a threatened object. We propose that the risk estimate for
subjects abusing permissions is calculated as follows,

riskab (subj) =
n∑
i=1

max(riskab (obji)) × actualGain(subj) (7)

wheremax(riskab (obji)) is the maximum value of object i’s risk es-
timate across all accesses so far by the subject upon this object. �e
function actualGain(subj) adjusts the risk sum by the fraction of
sensitive permissions that the subject has utilized. �e actualGain
term captures the level of abuse across all the sensitive data in a
system.

5.4 Risk Estimation for Authorization Context
Other risks occur because of the di�culty in predicting which
permissions to authorize in which program execution contexts.
First, malicious programs may abuse the permissions that they are
granted and request permissions that are not relevant to the execu-
tion context to spy on users or leak information. Second, programs
may fall victim to a�acks that trick them into using their privi-
leged permissions on behalf of adversaries, in the so-called confused
deputy a�acks [26, 40]. Finally, the party performing authorization
(e.g., operating system or server program) typically does not track
the execution context of a program requesting permissions. �us,
traditional access control does not identify such abuses.

In general, risks of malicious programs or confused deputy at-
tacks because access control enforcement does not consider pro-
gram context occur because the program may access di�erent ob-
jects through the same system call invocation. Researchers have
found that while programs may access lots of di�erent objects, sev-
eral system calls only access a small number of objects and only
access objects with similar properties. Vijayakumar [48] found that
67% of the statements that invoked system calls to retrieve an object
(e.g., calls to the libc function open) retrieve only one object in the
programs in a LAMP stack (i.e., Apache, MySQL, and PHP). 78% of
the statements retrieved objects of only one SELinux label. �us,
risk estimate due to the objects retrieved riskr e (subj) should be
based on the variance in security properties of objects retrieved,

SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA G. Petracca et al.

riskr e (subj) =
m∑
k=1

classes(subj, stmtk) × actualGain(subj) (8)

wherem is the number of system call statements and classes is the
fraction of classes of objects associated with a particular statement
that retrieves objects for that subject (stmtk). Classes of objects
can be based on the object name (one or more), label (one or more),
secrecy and integrity classi�cation. In general, the worst case
occurs when a subject has a single statement that may retrieve a
variety of objects that di�er in their security classi�cations (e.g.,
high and low integrity as well as high and low secrecy). In such
a case, the program has to determine how to enforce a variety of
security requirements itself, creating more risk.

Another aspect of risk is the way that the program gathers the
information that leads to system calls that retrieve or access system
objects. Researchers have explored methods that collect control
�ows and data �ows, as well as detect particular operations, such
as �ltering, to judge whether to allow a program to perform a
particular system call [29, 47]. For example, the complexity of the
control and data �ows that lead to a particular system call statement
in terms of the size of these �ows may be indicative of risk,

riskf low (subj) =
m∑
k=1

f low(subj, stmtk) × actualGain(subj) (9)

where f low computes a risk estimate based on the complexity of
the control and data �ows that produced the inputs to the state-
ment. �e complexity should be normalized (between 0 and 1) to be
consistent with other risk values. Computing risk estimates from
�ows will require the application of static analysis tools to collect
such information at runtime. �us, we will defer calculation of
such risk to future work.

5.5 Risk Estimation for Mediation Granularity
Recall that risks due to mediation granularity are caused because a
programmer chooses not to directlymediate some security-sensitive
operations. We �nd that computing risk estimates related to me-
diation granularity is essentially the same as computing the risk
estimate for unsafe operations, as described above. �e di�erence
is that the administrators do not specify policy for unmediated op-
erations, so the main challenges are to identify which unmediated
security-sensitive operations are unsafe and how many untrusted
subjects can perform threatening operations. In addition, identify-
ing security-sensitive operations is itself an imprecise process that
induces risk.

An operation is unsafe if it causes an illegal information �ow as
shown in Figure 1. �reatening operations occur when untrusted
subjects actually access objects that may be accessible to trusted
subjects. Although we lack a policy to determine whether a trusted
subject may be able to access an unmediated object explicitly, we
can record risk estimates for all unmediated objects accessed by un-
trusted subjects. We envision that programs would record risk esti-
mates for objects accessed in unsafe, unmediated security-sensitive
operations in the same way as described in Section 5.2.

Risky operations transfer the objects risk estimate to the subject
that has taken the risk, as for unsafe operations. One question is
how to estimate the impact of privilege escalation given that we are
tracking objects for which there is no explicit authorization policy.
One simple approachwould be to simply use the privilege escalation
possible in the speci�ed access control policy alone, although this
misses the possible escalation in unmediated security-sensitive
operations. Researchers need to develop methods to extrapolate
policies for unmediated operations to estimate where escalation is
possible.

Finally, asmentioned in Section 2.1, identifying security-sensitive
operations itself induces risk. First, both data-�ow and control-�ow
methods require programmers to manually identify untrusted and
secret inputs, which itself is error-prone [34, 45]. Second, the com-
putation of security-sensitive operations using control �ow involves
heuristics and the resolution of information-�ow violations using
data �ow involves possible imperfect sanitizers. Again, we must
log information necessary to compute risk estimates and determine
how such inaccuracies may impact risk estimation.

We propose to estimate the risk for mediation granularity as
follows,

riskme (subj) =
n∑
i=1

max(riskun (obji)) × SSOunmed (subj) (10)

where SSOunmed (subj) is the fraction of unmediated security-
sensitive operations (SSOs). We identify three types of unmediated
SSOs: (1) “open” SSOs that are not control-�ow dominated by
any authorization hook on any control-�ow path leading to those
SSOs; (2) “partial” SSOs that are control-�ow dominated by an
authorization hook on some, but not all, control-�ow paths leading
to those SSOs; and (3) “dominated” SSOs that are control-�ow
dominated along all control-�ow paths leading to those SSOs. We
consider the dominated SSOs to be the least risky, although because
these operations are not directly associated with an authorization
hook they may still incur risk. Interestingly, we consider “open”
SSOs to be less risky than “partial” SSOs, because an open SSO
may legitimately be accessible to all subjects or not actually access
security-sensitive resources. On the other hand, a “partial” SSO is
expected to be mediated along some paths. �us, we propose to
compute SSOunmed (subj) as a combination of the three types of
unmediated operations, where their fractions are augmented by
multiplicative factors α , β and γ , for dominated, open, and partial,
respectively. In addition, we require that α < β < γ to account for
their relative levels of risk.

6 EXPERIENCES WITH RISK
In this section, we examine experimental results in computing risk
estimates for access control enforcement. Primarily, we evaluate
use of the risk estimate equations proposed in Section 5 on Android
systems. �e main question that we aim to answer is whether the
inputs to risk estimation described above may actually be computed
in practice andwhat the inputs currently look like for benign system
operation.

On Risk in Access Control Enforcement SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA

Figure 3: Scope and fraction of threatening subjects (po-
tential threat) for the six untrusted objects accessed by the
mediaserver

6.1 Experiences with Unsafe Operations
Regarding tracking unsafe operations, we examined a stockAndroid
policy for the Android 6.0.1 (kernel 3.4.0) version. To determine
how many unsafe operations are performed, we utilize the An-
droid Compatibility Test Suite (CTS) [2]. CTS is designed to reveal
functional incompatibilities between applications and the Android
system. CTS runs unit tests to test for incompatibilities. Using
CTS, we ran 127,058 tests over 20 hours and 44 minutes. �e access
control policy is enforced by SEAndroid.

What we see in Android is that for 1,264,978 operations there
are 926,491 operations that are threatening operations, but only
445 operations that are risky operations. While this may appear
surprising, CTS creates a factor of 10 more write-like operations
than read-like operations. �at is, while the untrusted subjects may
perform a wide variety of operations that may threaten privileged,
high-integrity subjects, the high-integrity subjects only use risk
operations for a very small fraction of their authorized operations.
�us, most of the risk estimate computation e�ort would apply
to threatening operations. Future risk estimation methods should
focus on low-overhead for threatening operations and put more
e�ort for assessing risky operations.

Furthermore, we examined a macrobenchmark of 15 system apps
shipped with the stock Android operating system for the Android
6.0.1 (kernel 3.4.0) version. We used the Android UI/Application Ex-
erciser Monkey [1] to target sensitive operations and automatically
generate sequences of input events.

From the data collected via the UI/Application Exerciser we
calculated the risk taken by 10 Android processes selected among
those implementing core features of the operating system. �e
selected processes are listed in column 1 of Table 1, whereas the
corresponding calculated risk for unsafe operations (riskun) is listed
in column 5 of Table 1.

To calculate such values of risk we adopted equation (5). In par-
ticular, we started by measuring the scope of all untrusted object
accessed by each process as per equation (1), and the fraction of
subjects that are authorized to write to such object. For example,

Figure 4: Uniqueness values for the six untrusted objects ac-
cessed by the mediaserver, plotted for three di�erent choices
of the f function: f1(obj) = 1 − potentialThreat(obj), f2(obj) =
e1−potentialThreat (ob j), and f3(obj) = (1−potentialThreat(obj))2

Figure 3 plots the measured values for the 6 untrusted objects ac-
cessed by the mediaserver process, as reported in column 2 of
Table 1. As one can see, adversaries o�en control a small amount of
data in threatened objects (scope), but few enough subjects can ex-
ercise the threat to make that estimate signi�cant (potential�reat).

For our experimental measurements, we have considered as
untrusted objects all �les that can be wri�en by low-integrity pro-
cesses, which were identi�ed as the complement of the transitive
closure of transition rules for subject types starting with the kernel
label. Such choice is motivated by the fact that a�er the kernel is
loaded during the boot process, the initial process is assigned the
prede�ned initial SELinux ID kernel, which is used for bootstrap-
ping before the policy is loaded.

We then proceeded with the calculation of the uniqueness value,
which we used to calculate the risk reported in column 5 of Ta-
ble 1, for such objects by adopting equation (2). Figure 4 plots
the measured values for the 6 untrusted objects accessed by the
mediaserver process by considering three alternative choices for
the f function to model a linear, a polynomial, and an exponential
dependency of the uniqueness factor from the potential threat.

6.2 Experiences with Permission Abuse
As shown in Table 2, using CTS again over the stock Android
policy we found that no trusted subject uses more than 143 of
their permissions (su) or greater than 12% of their permissions
(system server). As a result, permission use greater than about 20%
may be considered unusual. �us, we may want to adjust the risk
estimation approach from a linear approach to one that accelerates
risk at lower fractions. Alternatively, we may compare permission
use to an average over a period of time.

Furthermore, from the data collected via the UI/Application
Exerciser, we calculated the risk taken by 10 Android processes
when considering possible permission abuse (riskab) as listed in
column 6 of Table 1. To calculate such values of risk we adopted
equation (7). In particular, we started by measuring the fraction

SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA G. Petracca et al.

Table 1: Risk measurements for the ten core Android processes. We report the untrusted objects and the unmediated security
sensitive operations (SSOs) as fractions of the total number of objects and total number of SSOs respectively

Subject Untrusted
Objects

Call
Sites

Unmediated
SSOs riskun riskab riskr e riskme

mediaserver 6/115 6 17/334 0.0246 0.0031 0.0626 0.0417
init 2/96 18 5/145 0.03 0.0164 0.0299 0.0259
main 8/1,122 8 18/2,511 0.0234 0.035 0.0039 0.0028
activitymanager 9/7,650 11 45/27,552 0.012 0.0057 0.0013 0.0005
servicemanager 1/568 8 2/1,018 0.0105 0.0053 0.0005 0.0007
surfaceflinger 1/5 4 4/55 0.0019 0.0002 0.008 0.0705
keystore 1/24 5 8/129 0.0077 0.0019 0.002 0.0477
netd 8/48 10 7/130 0.0176 0.0039 0.0667 0.0473
rild 1/3 2 1/10 0.0297 0.0002 0.03 0.099
sdcard 1/104 8 4/409 0.008 0.0098 0.0023 0.0039

Table 2: Permissions usage information for a run of the An-
droid Compatibility Test Suite for the top ten subjects (by
number of permissions)

Subject Used
Permissions

Total
Permissions

Fract. of Used
Permissions

su 143 1,983 0.07
dumpstate 96 1,237 0.08
system server 92 787 0.12
system app 26 468 0.06
radio 18 531 0.03
nfc 16 406 0.04
bluetooth 15 497 0.03
mediaserver 14 655 0.02
shell 5 1,272 < 0.01
surfaceflinger 5 329 0.01

of sensitive data in each object scope(obj) again calculated as the
amount of data wri�en by low-integrity subjects to the object.
We then measured the sensitivity of the object sensitivity(obj)
as fraction of subjects that can write the object. By following
equation (6) we obtained the risk estimate for each object related
to permission abuse. We then used such estimate to calculate the
corresponding risk for each of the subjects accessing the object by
following equation (7).

6.3 Experiences with Authorization Context
�e data collected via the UI/Application Exerciser also allowed us
to calculate the risk taken by the 10 Android processes when consid-
ering their authorization context while retrieving objects (riskr e).
�e measurements are listed in column 7 of Table 1. To calculate
such values of risk we adopted equation (8). In particular, we iden-
ti�ed all the call sites (or system call statements) used by each of
the 10 processes when accessing untrusted objects. We enumerated
them in column 3 of Table 1. We then calculated classes(subj, stmtk)
as 1 plus the fraction of trusted object labels times the fraction of
untrusted object labels (over the total objects labels speci�ed in the
policy) seen at call site k when retrieving untrusted objects. �is is
in line with the intuition that the risk increases if the subject access

Table 3: Evolution in authorization hook counts for X Win-
dows. Manually placed hooks are compared to “Automated
Hooks” generated using a proposed method [34]

XServer
versions

Automated
Hooks

Manual
Hooks

1.7 278 186
1.8 280 186
1.9 276 181
1.10 272 180
1.11 284 180
1.12 312 207
1.13 333 206
1.14 333 206
1.15 317 207
1.16 310 207
1.17 334 207

a higher number of untrusted objects, and increases even further if
the subject also accesses a set of trusted objects.

Also, our �ndings are in line with previous research [29] report-
ing that the number of operations requested per application in a
particular context on average is only 3.5 with no more than 30 con-
texts being seen. Again, this runtime analysis may be prone to false
positives. However, one can see that while restricting permissions
available in individual contexts may lead to program failures (due
to blocking necessary permissions), risk may be limited to only
a small number operations because only a few program contexts
require risk and only a small fraction of the program contexts are
complex and/or variable.

6.4 Experiences with Mediation Granularity
As shown in Table 3, developers o�en have di�culty determining
the correct placement of authorization hooks for their programs.
As can be seen, the actual number of authorization hooks in X Win-
dows varied slightly with each version, excepting between versions
1.11 and 1.12 where a signi�cant change was made to the program.
Also, we compare the number of hooks placed manually to the

On Risk in Access Control Enforcement SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA

number of security-sensitive operations computed using a control-
�ow method [35]. As one can see, there is not a clear correlation
between changes in the number of hooks placed manually and
changes in the number of security-sensitive operations identi�ed
automatically.

Additionally, we calculated the risk taken by the ten core Android
processes when considering their mediation granularity in security
sensitive operations, shown as the riskme column in Table 1. We
de�ne the security-sensitive operations in this study as those op-
erations that operate on data types considered security sensitive,
such as �les, sockets, and databases. Using data types to identify
security-sensitive operations has been a common approach [24].

In our study, such operations are said to be “unmediated” if
they were not preceded by a permission check (either SELinux or
Android permission check) in the most enclosing control block.
We then classify the unmediated operations using a static control-
�ow analysis to detect whether the operation is mediated along
all control-�ow paths (dominated), no control-�ow paths (open),
and some control-�ow paths (partial). We set the risk factor of
each type, α , β , and γ to the values 1, 2, and 3, respectively, for
application of equation (10).

7 DISCUSSION
We note that the risks computed in this evaluation are examples
of “baseline” risks, not risks under a�ack conditions. Programs are
run in a benign manner, so the risk values computed are modest in
many cases. None of the programs evaluated in Table 1 incur a risk
estimate of over 0.1 for any of the four categories.

An aim of using risk estimates would be to use accumulated
risk to motivate changes in security posture, analogous to using
accumulated privacy cost to block queries in di�erential privacy.
However, at present, we lack a de�nition of security risk that pre-
cisely describes a security property as meaningful as di�erential
privacy. We advocate comparing accumulated risk of one system or
program to that system or program under conditionals that comply
with safe, expected use to identify when risk estimates di�er by
more than an expected amount as a basis for adjusting security
decision-making. By identifying dimensions upon which risk may
be tracked and proposing strawman risk estimates that accumulate,
we hope to further investigate how risk estimates may relate to
security properties in the future.

Finally, the focus of this research should primarily be on the types
of risk related to authorization, one type of security mechanism.
We propose simple equations for each type of risk, but much more
work will be necessary to devise equations that capture expected
security properties.

8 CONCLUSIONS
In this paper, we present a study of risk in access control enforce-
ment. While we have long had principles describing how access
control enforcement should be implemented, imprecision in access
control mechanisms and access control policies leads to risks that
may enable exploitation. We identify four types of risk in access
control enforcement, two that relate to access control policies and
two that relate to access control mechanisms. We propose an ap-
proach for estimating risk as subjects perform operations. At a

high level, the approach aims to leverage tracking of information
directed at risk estimation and the development of risk estimation
approaches that are monotonic and account for the impact of risks
proportionally. We examine challenges in implementation such risk
estimation for the four types of risks. Our evaluation shows that in
normal use programs due not take excessive risks for the programs
we investigated directly under benign use conditions. �us, it may
be possible to use such risk estimation to gauge when defenses
should be added (e.g., more authorization hooks) and/or operations
should be blocked or audited more carefully (e.g., tighter access
control policies) when seeing an excessive or increased accumu-
lation of risk. We propose using the scope, uniqueness, and gain
possible via risk as principles underlying risk estimation, although
a formal de�nition of a risk property for access control remains
future work.

ACKNOWLEDGEMENTS
�is research was sponsored by the Army Research Laboratory and
was accomplished under Cooperative Agreement Number W911NF-
13-2-0045 (ARL Cyber Security CRA). �e views and conclusions
contained in this document are those of the authors and should
not be interpreted as representing the o�cial policies, either ex-
pressed or implied, of the Army Research Laboratory or the U.S.
Government. �e U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any
copyright notation hereon.

�is research is also based in part upon work supported by the
National Science Foundation (NSF) under Grant Numbers CNS-
1408880 and CNS-1408801. Any opinions, �ndings, and conclusions
or recommendations expressed in this material are those of the
author(s) and do not necessarily re�ect the views of the National
Science Foundation.

REFERENCES
[1] Android UI/Application Exerciser. h�ps://developer.android.com/studio/test/

monkey.html.
[2] Compatibility Test Suite — Android Open Source Project. h�ps://source.android.

com/compatibility/cts/.
[3] Tresys. SETools - Policy Anakysis Tools for SELinux. h�ps://github.com/

TresysTechnology/setools3/wiki.
[4] Sepehr Amir-Mohammadian, Stephen Chong, and Christian Skalka. 2016. Correct

Audit Logging: �eory and Practice. In Principles of Security and Trust (POST).
[5] Sepehr Amir-Mohammadian and Christian Skalka. 2016. In-Depth Enforce-

ment of Dynamic Integrity Taint Analysis. In ACM Programming Languages and
Security Workshop (PLAS).

[6] J. P. Anderson. 1972. Computer Security Technology Planning Study, Volume
II. Technical Report ESD-TR-73-51. Deputy for Command and Management
Systems, HQ Electronics Systems Division (AFSC), L. G. Hanscom Field, Bedford,
MA.

[7] D. E. Bell and L. J. LaPadula. 1976. Secure Computer System: Uni�ed Exposition
and Multics Interpretation. Technical Report ESD-TR-75-306. Deputy for Com-
mand and Management Systems, HQ Electronic Systems Division (AFSC), L. G.
Hanscom Field, Bedford, MA.

[8] K. J. Biba. 1977. Integrity Considerations for Secure Computer Systems. Technical
Report MTR-3153. MITRE.

[9] Khalid Zaman Bijon, Ram Krishnan, and Ravi S. Sandhu. 2013. A framework for
risk-aware role based access control. In IEEE Conference on Communications and
Network Security. 462–469.

[10] Hong Chen, Ninghui Li, and Ziqing Mao. 2009. Analyzing and Comparing the
Protection�ality of Security Enhanced Operating Systems. In Proceedings of
the Network and Distributed Systems Security Symposium (NDSS).

[11] Liang Chen and Jason Crampton. 2011. Risk-Aware Role-Based Access Control.
In Proceedings of 7th International Workshop on Security and Trust Management.
140–156.

https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://source.android.com/compatibility/cts/
https://source.android.com/compatibility/cts/
https://github.com/TresysTechnology/setools3/wiki
https://github.com/TresysTechnology/setools3/wiki

SACMAT’17, , June 21–23, 2017, Indianapolis, IN, USA G. Petracca et al.

[12] Ying Chen, Heng Xu, Yilu Zhou, and Sencun Zhu. 2013. Is �is App Safe
for Children?: A Comparison Study of Maturity Ratings on Android and iOS
Applications. In Proceedings of the 22nd International Conference on World Wide
Web. 201–212.

[13] Pau-Chen Cheng, Pankaj Rohatgi, Claudia Keser, Paul A. Karger, Grant M. Wag-
ner, and Angela Schue� Reninger. 2007. Fuzzy Multi-Level Security: An Experi-
ment on �anti�ed Risk-Adaptive Access Control.. In Proceedings of the 2007
IEEE Symposium on Security and Privacy. 222–230.

[14] Pern Hui Chia, Yusuke Yamamoto, and N. Asokan. 2012. Is �is App Safe?: A
Large Scale Study on Application Permissions and Risk Signals. In Proceedings of
the 21st International Conference on World Wide Web. 311–320.

[15] D. Denning. 1976. A La�ice Model of Secure Information Flow. Commun. ACM
19, 5 (1976), 236–242.

[16] Cynthia Dwork and Aaron Roth. 2014. �e Algorithmic Foundations of Di�er-
ential Privacy. 9, 3 (2014), 211–407.

[17] Antony Edwards, Trent Jaeger, and Xiaolan Zhang. 2002. Runtime veri�cation
of authorization hook placement for the Linux security modules framework. In
Proceedings of the 9th ACM Conference on Computer and Communications Security.
225–234.

[18] William Enck, Machigar Ongtang, and Patrick McDaniel. 2009. On lightweight
mobile phone application certi�cation. In Proceedings of the 16th ACM Conference
on Computer and Communications Security. ACM, New York, NY, USA, 235–245.
DOI:h�p://dx.doi.org/10.1145/1653662.1653691

[19] W. Enck et al. 2010. TaintDroid: an information-�ow tracking system for realtime
privacy monitoring on smartphones. In Proceedings of the 9th USENIX conference
on Operating systems design and implementation.

[20] Adrienne Porter Felt, Erika Chin, Steve Hanna, Dawn Song, and David Wagner.
2011. Android permissions demysti�ed. In Proceedings of the 18th ACMConference
on Computer and Communications Security. 627–638.

[21] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security Analysis of
Emerging Smart Home Applications. In IEEE Symposium on Security and Privacy.
636–654.

[22] V. Ganapathy, T. Jaeger, and S. Jha. 2005. Automatic placement of authorization
hooks in the Linux security modules framework. In Proceedings of the 12th ACM
Conference on Computer and Communications Security. Alexandria, VA, USA.

[23] V. Ganapathy, T. Jaeger, and S. Jha. 2006. Retro��ing Legacy Code for Authoriza-
tion Policy Enforcement. In Proceedings of the 2006 IEEE Symposium on Security
and Privacy. To Appear.

[24] Vinod Ganapathy, David H. King, Trent Jaeger, and Somesh Jha. 2007. Mining
security-sensitive operations in legacy code using concept analysis. In Proceedings
of the 38th International Conference on So�ware Engineering. 458–467.

[25] Andreas Haeberlen, Benjamin C. Pierce, and Arjun Narayan. 2011. Di�erential
Privacy Under Fire. In Proceedings of the 20th USENIX Security Symposium.

[26] N. Hardy. 1988. �e Confused Deputy. Operating Systems Review 22 (1988),
36–38.

[27] Boniface Hicks, Sandra Rueda, Trent Jaeger, and Patrick McDaniel. 2007. From
trusted to secure: building and executing applications that enforce system secu-
rity. In Proceedings of the USENIX Annual Technical Conference. USENIX Associa-
tion, Berkeley, CA, USA, 1–14.

[28] T. Jaeger, R. Sailer, and X. Zhang. 2003. Analyzing Integrity Protection in the
SELinux Example Policy. In Proceedings of the 12th USENIX Security Symposium.
59–74.

[29] Yunhan Jack Jia, Qi Alfred Chen, Shiqi Wang, Amir Rahmati, Earlence Fernandes,
Z. Morley Mao, and Atul Prakash. 2017. ContexIoT: Towards Providing Contex-
tual Integrity to Appi�ed IoT Platforms. In Proceedings of the 21st Network and
Distributed System Security Symposium (NDSS’17).

[30] Yiming Jing, Gail-Joon Ahn, Ziming Zhao, and Hongxin Hu. 2014. RiskMon:
Continuous and Automated Risk Assessment of Mobile Applications. In Proceed-
ings of the 4th ACM Conference on Data and Application Security and Privacy.
99–110.

[31] Savith Kandala, Ravi S. Sandhu, and Venkata Bhamidipati. 2011. An A�ribute
Based Framework for Risk-Adaptive Access Control Models. In Proceedings of the
Sixth International Conference on Availability, Reliability and Security. 236–241.

[32] Stephen McCamant and Michael D. Ernst. 2008. �antitative information �ow
as network �ow capacity. In Proceedings of the ACM SIGPLAN 2008 Conference on
Programming Language Design and Implementation. Tucson, AZ, USA, 193–205.

[33] Frank D. McSherry. 2009. Privacy Integrated�eries: An Extensible Platform
for Privacy-preserving Data Analysis. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data. 19–30.

[34] Divya Muthukumaran, Trent Jaeger, and Vinod Ganapathy. 2012. Leveraging
“Choice” to Automate Authorization Hook Placement. In Proceedings of the 19th

ACM Conference on Computer and Communications Security. ACM Press, Raleigh,
North Carolina, USA.

[35] Divya Muthukumaran, Nirupama Talele, Trent Jaeger, and Gang Tan. 2015.
Producing Hook Placements to Enforce Expected Access Control Policies. In
Proceedings of the 2015 International Symposium on Engineering Secure So�ware
and Systems.

[36] Andrew C. Myers and Barbara Liskov. 1997. A Decentralized Model for Informa-
tion Flow Control. ACM Operating Systems Review 31, 5 (Oct. 1997), 129–142.
h�p://www.cs.cornell.edu/andru/papers/i�ow-sosp97/paper.html

[37] �n Ni, Elisa Bertino, and Jorge Lobo. 2010. Risk-based Access Control Sys-
tems Built on Fuzzy Inferences. In Proceedings of the 5th ACM Symposium on
Information, Computer and Communications Security. 250–260.

[38] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. 2013. WHY-
PER: Towards Automating Risk Assessment of Mobile Applications. In Proceed-
ings of the 22nd USENIX Security Symposium. 527–542.

[39] Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li, Yuan Qi, Rahul Potharaju,
Cristina Nita-Rotaru, and IanMolloy. 2012. Using Probabilistic GenerativeModels
for Ranking Risks of Android Apps. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security. 241–252.

[40] Giuseppe Petracca, Yuqiong Sun, Trent Jaeger, and Ahmad Atamli. 2015. Audroid:
Preventing a�acks on audio channels in mobile devices. In Proceedings of the
31st Annual Computer Security Applications Conference. ACM, 181–190.

[41] Indrajit Roy, Srinath T. V. Se�y, Ann Kilzer, Vitaly Shmatikov, and Emme�
Witchel. 2010. Airavat: Security and Privacy for MapReduce. In Proceedings of
the 7th USENIX Conference on Networked Systems Design and Implementation.

[42] Farzad Salim, Jason Reid, Ed Dawson, and Uwe Dulleck. 2011. An Approach
to Access Control under Uncertainty. In Proceedings of the Sixth International
Conference on Availability, Reliability and Security. 1–8.

[43] J. H. Saltzer et al. 1975. �e Protection of Information in Computer Systems.
Proc. IEEE (1975).

[44] Sooel Son, Kathryn S. McKinley, and Vitaly Shmatikov. 2011. RoleCast: �nding
missing security checks when you do not know what checks are. In Proceedings
of the 2011 ACM international conference on Object oriented programming systems
languages and applications.

[45] Sooel Son, Kathryn S. McKinley, and Vitaly Shmatikov. 2013. Fix Me Up: Repair-
ing Access-Control Bugs in Web Applications. In Proceedings of the 20th Annual
Network and Distributed System Security Symposium.

[46] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and Yuanyuan Zhou. 2008.
AutoISES: automatically inferring security speci�cations and detecting violations.
In USENIX Security.

[47] Hayawardh Vijayakumar, Xinyang Ge, Mathias Payer, and Trent Jaeger. 2014.
JIGSAW: Protecting Resource Access by Inferring Programmer Expectations. In
Proceedings of the 23rd USENIX Security Symposium.

[48] Hayawardh Vijayakumar and Trent Jaeger. 2012. �e Right Files at the Right
Time. In Proceedings of the 5th IEEE Symposium on Con�guration Analytics and
Automation (SafeCon�g 2012).

[49] Hayawardh Vijayakumar et al. 2012. Integrity Walls: Finding a�ack surfaces
from mandatory access control policies. In ASIACCS.

[50] Wen Zhang, You Chen, �addeus Cybulski, Daniel Fabbri, Carl Gunter, Patrick
Lawlor, David Liebovitz, and Bradley Malin. 2014. Decide Now or Decide Later?:
�antifying the Tradeo� Between Prospective and Retrospective Access De-
cisions. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. 1182–1192.

http://dx.doi.org/10.1145/1653662.1653691
http://www.cs.cornell.edu/andru/papers/iflow-sosp97/paper.html

	Abstract
	1 Introduction
	2 Risks in Access Control
	2.1 Access Control Enforcement
	2.2 Risks of Authorizing Unsafe Operations
	2.3 Risks of Permission Abuse
	2.4 Risks in Authorization Context
	2.5 Risks in Mediation Granularity

	3 Security Model
	4 Risk Model Objectives
	5 Runtime Risk Estimation
	5.1 Computing Risk Estimates
	5.2 Risk Estimation for Unsafe Operations
	5.3 Risk Estimation for Permission Abuse
	5.4 Risk Estimation for Authorization Context
	5.5 Risk Estimation for Mediation Granularity

	6 Experiences with Risk
	6.1 Experiences with Unsafe Operations
	6.2 Experiences with Permission Abuse
	6.3 Experiences with Authorization Context
	6.4 Experiences with Mediation Granularity

	7 Discussion
	8 Conclusions
	References

