
The Right Files at the Right Time
Hayawardh Vijayakumar and Trent Jaeger

Systems and Internet Infrastructure Security Lab,
The Pennsylvania State University,

University Park, PA 16802
Email: {hvijay, tjaeger}@cse.psu.edu

Abstract—Programs fetch resources, such as files, from the
operating system through the process of name resolution. How-
ever, name resolution can be subverted by adversaries to redirect
victim processes to resources chosen by the adversaries, leading to
a variety of attacks. These attacks are possible because traditional
access control treats processes as black boxes, permitting all pro-
cess permissions to all process system calls, enabling adversaries
to trick victims into using resources that are not appropriate
for particular system calls. Researchers have examined methods
for enforcing distinct policies on individual system calls, but
these methods are difficult to use because programmers must
specify which permissions apply when manually. In this work, we
examine the generation of system call-specific program policies to
augment access control to defend against such name resolution
attacks. Our insight in this paper is that system calls can be
classified by the properties of the resources accessed to produce
policies automatically. Given specific knowledge about name
resolution attacks, such a classification may be refined further
to prevent many name resolution attacks with little chance of
false positives. In this paper, we produce a policy using runtime
analysis for an Ubuntu 12.04 distribution, finding that 98.5%
of accesses can be restricted to prevent typical name resolution
attacks and more than 65% of accesses can be restricted to
a single file without creating false positives. We also examine
three programs in detail to evaluate the efficacy of using the
provided package test suites to generate policies, finding that
administrators can produce effective policies automatically.

I. INTRODUCTION

Many vulnerabilities are caused because processes are
tricked into using the wrong file for a particular task. In
some cases, processes use adversary-controlled files when
they expect protected files. For example, an untrusted search
path vulnerability directs a process to an adversary-controlled
file instead an expected library. In other cases, processes
access trusted files when they expect unprivileged resources.
Adversaries may redirect vulnerable processes to system files
using links or maliciously-crafted file names using link and
directory traversal attacks, respectively. We refer to these
vulnerabilities collectively as name resolution vulnerabilities.

Authorization systems do not block access to name resolu-
tion vulnerabilities because they treat processes as black boxes.
An authorization system restricts each process to perform only
authorized operations on authorized objects given the process’s
subject, but any process system call can use any of these
operations at any time. Processes are not homogenous entities,
however. Each system call may have distinct expectations
regarding the properties of the files used, as described above.
For example, a process may require access to the password

file for one system call (e.g., to authenticate users), but access
to the password may not be appropriate for other system calls
that retrieve content to be returned to a remote user. In general,
if an access control policy permits access to any file that is
inappropriate for even one system call, then the process may
be vulnerable to attack.

Such problems cannot be prevented by proposed system
defenses. Sandboxing [1], [2], [3], [4] limits the permissions
of a process, but cannot prevent one file from being ac-
cessible in one system call, but not another. A variety of
system defenses have been proposed to prevent exploitation of
race conditions in time-of-check-to-time-of-use (TOCTTOU)
attacks [5], [6], [7], [8], [9], [10]. However, researchers have
found that systems defenses are fundamentally limited or incur
false positives because they lack an understanding of process
expectations [11].

As a result, the task falls to programmers to ensure that
the files they use satisfy their requirements. However, this is
a difficult task for programmers to get right. The fundamental
problem for programmers is that they often do not know when
their adversaries may have access to the files they request
or the directories they use to retrieve files from names. This
depends on the configuration of the system upon which the
program is run. System call APIs have been extended to check
file properties or for the following of links in name resolution,
but these conditions are not always unsafe and are only
useful in preventing some of these vulnerabilities. As a result,
vulnerabilities are often present even when programmers use
these APIs [12]. Capability systems [13] enable programmers
to specify different permissions on different system calls, but
capability systems are not commonly used in practice where
programmers need to specify permissions manually, probably
for the reasons above.

As a result, researchers are confident that many name reso-
lution vulnerabilities could be prevented by enforcing system
call policies, but no single system policy always applies and
programmers are incapable of manually specifying policies
correctly. As a result, we need methods to generate system
call policies automatically. Such policies must be consistent
with process expectations to prevent attacks without creating
false positives [11]. Runtime analysis is now commonly used
to produce access control policies [14], [15], [16]. However,
runtime analysis is inherently unsound, so test cases must
test enough of the program’s behavior to avoid false positives
and testing must distinguish safe from unsafe cases to avoid



false negatives. Static analysis can be sound, but as described
above, safe name resolution depends on both the system and
the program, making tractable static analysis difficult.

Our insight in this paper is that programs often expect
particular system calls to retrieve objects with the same
properties on each use. We find that many name resolution
system calls always retrieve the same file, files with the same
security label, or files that are trusted by the program. For
such system calls, invariants can be enforced that limit the
files that may be accessed based on such classification. With
further knowledge about name resolution attacks, classification
may be refined further to prevent more attacks. For example,
a single system call may only access trusted files, but if we
know that the system call is prone to time-of-check-to-time-
of-use (TOCTTOU) attacks [17], [5], then the files that may
be accessed may be limited further (e.g., to those in a prior
system call). Finally, knowledge that the program is run from
the same configuration inputs may be used to further refine
policy. For example, the same program run from two different
configuration files may make distinct accesses as guided by
the configuration file.

In this paper, we describe a method for generating sys-
tem call policies automatically using runtime analysis. We
produce system call policies for all programs the Ubuntu
12.04 distribution with a LAMP stack installed, finding that
98.5% of accesses can be restricted to prevent typical name
resolution attacks and more than 65% of accesses can be
restricted to a single file without creating false positives. As
runtime analysis is unsound, we studied the use of package
test suites for Apache, MySQL, and PHP. Results show how
test suites can be helpful in covering more entrypoints and also
exercising existing entrypoints in different ways. At the same
time, we also find care must be taken to not allow test suites to
generate false negatives for a particular deployment, and find
that generating policies for a deployment can be automated.

II. ATTACKS

Once started, a process often needs additional system re-
sources to complete any task (e.g., libraries, configuration
files, logs, etc.) and may need to retrieve task-specific system
resources (e.g., web content files, web requests via sockets,
IPCs to worker processes, etc.). For convenience, resources
are often retrieved by name, using a method known as name
resolution [18], [19]. In a name resolution, a client (the
process) provides a name to a name server (the OS), which
uses name bindings managed by the name server to map the
name to a resource managed by the OS. Various namespaces
exist in operating systems, including the filesystem namespace,
the signal namespace, and the System V IPC namespace in
typical UNIX-based systems.

Name resolution attacks are possible because the names,
name bindings, and resources used by the resolution mecha-
nism may be controlled by adversaries. While programs may
need to legitimately accept adversary interaction in certain
name resolutions for functionality, problems arise when ad-
versaries control name resolutions in ways the program does

Adversarial Attack Examples
control of
Name Directory traversal (CWE-22), external

control of filename or path (CWE-73)
Binding Link following (CWE-59), TOCTTOU (CWE-367)
Resource Resource squatting (CWE-283), untrusted

search path (CWE-426), TOCTTOU (CWE-367)

TABLE I: Table showing example attacks (with CWE classes) that
occur due to unexpected adversarial control of name resolution
components.

01 read(client_socket, filename);
02 extn = extension(filename);
03 if (extn requires module m) {
04 load_module(m);
05 process(m, filename);
06 } else {
07 stat(filename, &buf);
08 if (filename not found) {
09 write(client_socket, "404 Not Found");
10 } else {
11 fd = open(filename, O_RDONLY);
12 write(client_socket, "200 OK");
13 write(client_socket, contents(fd));
14 }
15 }

Fig. 1: Simplified processing cycle of a typical webserver.

not expect. Table I shows examples of attacks that occur due
to unexpected adversarial control of each of these components
involved in name resolution.

As an example illustrating these attacks, consider a simpli-
fied version of the processing loop of a typical webserver (e.g.,
Apache) in Figure 1. A remote client requests filename
to be served. The webserver checks if a special module is
required to serve the request (e.g., PHP for dynamic content),
and loads it if required. Otherwise, it checks for the existence
of the requested filename, and serves it if present. Possible
adversaries of the webserver include both remote parties and
local adversaries, such as dynamic content scripts supplied by
untrusted parties. Only local adversaries are capable of modi-
fying local information, such as name bindings and resources,
whereas remote adversaries can modify names supplied to the
server.

First, an adversary may attack the webserver by supplying
malicious names. For example, load_module on line 4
searches for module files. Local adversaries have a variety
of ways to affect the name used in such searches, using
search path environment variables, insecure RUNPATH in
binaries (CVE-2006-1564), and dynamic linker bugs. Remote
adversaries may supply malicious names for the filename.
For example, they may supply sequences of ../ to break
out of the server’s directory root and mount a directory
traversal attack. If input filtering is not done properly, then
the webserver may serve unauthorized files (line 14). While
network filtering [20], [21] may block some attacks of this
type, malicious names may not always be filtered correctly.



Handling names correctly has proven to be difficult for web
application code (e.g., PHP inclusion attacks [22], [23]). Also,
malicious names may obtained from local adversaries (e.g.,
untrusted configurations). Second, an adversary may attack the
webserver by supplying malicious name bindings. Adversaries
may supply symbolic links to redirect victims to sensitive re-
sources, such as /etc/shadow. By default, Apache refuses
to follow symbolic links in users’ web directories to prevent
this attack. This checking is done on line 7. However, a local
adversary could change the name bindings corresponding to
filename to a symbolic link to /etc/shadow between the
check on line 7 and the use on line 11. Since the webserver is
authorized to read /etc/shadow, this file will be opened on
line 11, enabling leakage of secret data. This is an example of a
classic time-of-check-to-time-of-use (TOCTTOU) attack [17],
[5].

Third, an adversary may attack the webserver by controlling
resources accessed by the webserver in unexpected ways. For
example, if the webserver searches for modules in the user’s
document root directory, the user can supply a malicious
library to gain control of the webserver process. Another
example of unexpected control of a resource is IPC squatting,
where the adversary creates a socket at a well-known location
and masquerades as a legitimate server.

No current mechanism effectively prevents the myriad of
name resolution attacks described above. Traditional access
control is insufficient to prevent such attacks, as it views
processes as a monolithic unit. In the example above, opening
files in a user’s web directory is valid on line 14, but invalid
on line 4 while loading module libraries. Sandboxes [1], [2],
[3], [4] have a similar limitation, as they may reduce process
permissions, but they still view processes monolithically. Prior
defenses against such attacks [8], [10], [24], [9], [25], [7], [6]
have been found to be flawed or only cover a subset of these
attacks under limited conditions [26], [11].

III. RELATED WORK

Relevant prior work has shown us that having policies
that provide distinct permissions for some system calls is
valuable and that useful security policies can be produced
in a mostly-automated way. However, current methods for
producing policies are inadequate for preventing attacks on
system calls without creating too many false positives and
negatives.

a) System Call Enforcement: Research has identified the
need to mediate process access to system resources inde-
pendently per system call to prevent vulnerabilities. Sekar
et al. [27] presented an intrusion detection system that used
the instruction that invokes the system call library (which
we call entrypoint below) to parameterize automata models
of programs. However, such models are not directed towards
attacks and do not scale. In addition, program-only models
in general cannot prevent name resolution vulnerabilities,
because programs may still use the same name.

More recently, methods to approximate classical integrity
are capable of reasoning about individual program system

calls [28], [29], [30], [31], [32], judging whether the program
will be able to upgrade or discard inputs safely as required
by Clark-Wilson integrity [33]. Some systems provide limited
integrity protection by identifying objects that may affect the
processes’ integrity [28], [29]. However, if the process is
allowed to use adversary-controlled objects and uses them at
the wrong time, then vulnerabilities are likely. Some system
calls may require protected objects only, but others may accept
a variety of inputs. Other research requires programmers to de-
scribe the permissions per system call using annotations [30],
[31], analogous to capabilities. Such policies are complex
for programmers to specify correctly, as evidenced by name
resolution vulnerabilities. Researchers have shown that such
annotations can be produced from constraints [34], although
programmers must still specify such constraints manually.

Researchers have also explored methods to enable pro-
grams to enforce access control policies [35], [36]. Such
methods depend on programmers labeling the system call
invocations through which untrusted inputs may be received.
To improve the accuracy of such enforcement, researchers
have also examined integrating system and program MAC
enforcement [37], [38]. In this case, system and program
policies must be integrated. In some cases, it is possible to
automate such integration [39], although program policies are
still uncommon.

b) Policy Generation: Historically, MAC policies, such
as Bell-LaPadula [40], IX [41], and Caernarvon [42], must
be specified manually. In modern commodity systems, how-
ever, runtime analysis is now commonly used to produce
mandatory access control (MAC) policies [14], [16], [15].
Runtime analysis is primarily used to prevent false positives in
policies, as early commodity MAC enforcement was shunned
due to too many false positives. In these runtime analyses,
security-critical programs are run, and the permissions that
they use are logged. Any permission request logged is then
granted for the program since some real program operation
required the permission. As a result, these MAC enforcement
policies are designed to satisfy least privilege [43], where
processes are only granted the permissions that they require to
perform their function. Since such policies are not produced
from a security goal some permissions may be unsafe for the
process. In addition, as discussed in the Section II, any process
system call may use any of the permissions associated with
the process, which causes the risks that adversaries leverage
in name resolution attacks.

Runtime analysis is unsound, however, meaning that both
false positives and false negatives are possible. False negatives
may occur because even benign conditions may be unsafe.
Suppose that the same system call is run in two different
configurations where two different, but incompatible, files are
accessed. Use of the wrong file may cause a vulnerability,
which would be a false negative since both would be allowed.
False positives may occur because of the lack of coverage
in runtime test cases. If not enough cases are run, then the
analysis may conclude that one file is accessed when in fact
many may be accessed.



IV. APPROACH

To prevent name resolution attacks, we must limit the files
that may be retrieved as part of a name resolution system call.
Thus, a system call policy consists of a set of files that may
be retrieved for a particular system call1. The challenge is to
define system call subjects and determine a method to find the
files that such subjects may access safely. As with commodity
MAC policies, the goal is to minimize false positives.

Starting with system calls, we uniquely identify each system
call invocation by its program entrypoint. A program entry-
point is the program instruction calls a function in the system
call library that results in a system call invocation [44]. For
example, when a program wants to open a new file, it invokes
the open function in the system call library (e.g., libc). As
the program may have many different instructions that request
the open system call, the program entrypoint differentiates
among them enabling distinct policies to be applied based on
each.

Each program entrypoint may request one or more different
files. We identify four distinct classifications: (1) same file2;
(2) same label; (3) same integrity; and (4) any file. An
entrypoint that is classified as same file is thought to retrieve
one file in all cases. An entrypoint that is classified as same
label is thought to retrieve multiple files, but each file has
the same MAC label. An entrypoint that is classified as same
integrity either only retrieves files that are assigned labels that
are trusted by the program or untrusted by the program. Note
that many name resolution attacks can be prevented simply by
ensuring that system calls only retrieve trusted or untrusted
files. The finer classifications provide further assurance that
adversaries cannot redirect victim processes in an exploitable
manner. The fourth classification is for entrypoints that may
retrieve arbitrary files.

The classification of objects may be refined by knowledge
about specific name resolution attacks, but we must be careful
not to introduce false positives when using such knowledge.
For example, TOCTTOU attacks change the file retrieved
between a check system call and a corresponding use system
call [24]. A check system call examines a file and the use
system call enables the file to be processed. In general, a
check-use pair is supposed to use the same file, so it is possible
to restrict a use system call to a specific file (i.e., the one used
in the check) even of the entrypoint was classified as any.
Other attacks, such as PHP includes or directory traversal,
may require limiting the file retrieved to a specific type and/or
directory, although these restrictions are often represented in
the MAC labeling of files.

Once the entrypoint is classified, then file access can be
controlled per system call. While the approach above results in
a low probably of false positives (depending on the analysis ac-
curacy), some unnecessary false negatives may be created. The

1Name resolution attacks may be launched with any operation privilege to
files, so we ignore the file operations requested in this work.

2This is actually the same inode, as inode is the unique identifier for file
objects.

problem is that a single program may be run under multiple
deployments. A program deployment may be influenced by a
number of factors, such as its configuration files, environment
variables, command line options, etc. The classifications may
be refined further based on a specific program deployment,
although the number of possible deployments for some pro-
grams may be large. Such deployment-specific policies are
analogous to “booleans” in the SELinux policy, which specify
different permissions when particular configuration options are
selected. Note that booleans are set manually in SELinux
policies, where we want find mappings between deployments
and classifications automatically, if possible.

Finally, we use runtime analysis to produce the classifica-
tion described above. As mentioned, runtime analysis may
be error-prone because it is unsound, so it is important to
find a method of producing runtime test cases with broad
coverage of the functions performed by each program. Many
program packages now include test suites used to test program
functionality over a variety of configurations, so we explore
the effectiveness of using such test suites for runtime analysis
in this paper.

V. DESIGN AND IMPLEMENTATION

In this section, we discuss the design and implementation
of our system to defend against name resolution attacks.

Our system is broadly divided into logging and enforcement
phases. During the logging phase, our system logs accesses
made by programs during name resolution calls, along with
the entrypoint and security label of the final resource retrieved.
Test suites for programs are run at this stage. These access
logs are then used to classify entrypoints into four categories
(Section VI), which are then enforced through rules that make
sure that entrypoints obey their classification.

However, runtime coverage during the logging phase may
not have captured all entrypoints possible, and test suites are
not available for all programs. Thus, legitimate accesses may
be blocked because they are not seen at runtime. This is a
common problem amongst other runtime policy-generation
approaches such as SELinux as well. Our approach is to
allow any operation at previously unseen entrypoints; thus,
the program will continue to function, although attacks may
be missed.

Our system is implemented for the Linux 3.2 kernel. It
layers on top of the SELinux access control module, which
is itself called on Linux Security Module (LSM) hooks. Thus,
we intercept security-sensitive operations, and our enforcement
is done on top of access control.

Obtaining the entrypoint is done in the kernel by unwinding
the userspace stack. However, straightforward unwinding fails
in modern distributions as programs are compiled without
frame pointers. To overcome this, we parse the eh_frame
section of the ELF binary, which contains the necessary
information to obtain the stack trace, and is compiled by
default on modern Fedora and Ubuntu distributions.

If the program is an interpreter, obtaining the stack will
only give the interpreter’s entrypoint, and not the script file



or line number. In previous work [44], we devised methods
to introspect into Bash and PHP interpreters to obtain this
information. Finally, the entrypoint for processes launched
from the Bash shell interpreter contains the parent shell script’s
filename and line number. This is because the entrypoints for
programs like cp, mv should be considered in relation to
their parent script and not solely as separate programs.

VI. EVALUATION

In this section, we first study the feasibility of using entry-
point classifications to restrict resource access. Our results sug-
gest that most entrypoints can be classified as either accessing
high or low integrity resources, leading to enforcement with
few false positives. Next, test suites can help exercise programs
to generate more accurate entrypoint resource mappings. We
find that while test suites help significantly, they may also
cause false negatives. Finally, we evaluate how effective our
enforcement is in stopping attacks.

Our tests were carried out on an Ubuntu 12.04 Desktop
distribution that also had the LAMP (Linux-Apache-MySQL-
PHP) stack installed. The kernel had our module that layered
on top of SELinux to perform logging and enforcement.

A. Entrypoint classification

Table II shows the classification of entrypoints exercised
system-wide at normal runtime. Most entrypoints access very
specific resources, and only a few (around 1.4%) of the total
access resources of both high and low integrity. This was
consistent even for programs run under the test suites – most
entrypoints either accessed only high, or only low integrity.
This suggests it is possible to constrain most entrypoints
to either high or low resources, thereby enabling effective
enforcement with low false positives.

Figure 2 shows the distribution of the number of resources
accessed per entrypoint. More than 90% of entrypoints access
3 resources or less.

Fig. 2: Histogram showing the distribution of the number of resources
accessed by entrypoints.

Entrypoint Class Number Percentage
Total 2196 -
Single filename 1486 67.6%
Single label 1716 78.1%
Only high-integrity 1910 86.9%
Only low-integrity 254 11.5%
Any integrity 32 1.5%

TABLE II: Different entrypoint classifications. It can be seen that only
very few entrypoints access both high and low integrity resources.

Program Normal Test Class Change
Run Suite FP Reduce FN Increase

Apache 32 36 2 2
MySQL 12 14 0 0
PHP 33 48 0 1

TABLE III: Table showing the effect of test suites on programs. The
first column shows the number of entrypoints exercised by a normal
run, the second using the test suites. The last two columns show
the number of entrypoints that changed classification after running
the test suite, and whether they led to false positives, or negatives
(identified manually)

B. Test Suites

We first examine how test suites can help generate accurate
entrypoint to resource mappings by comparing normal runtime
with test suites. Test suites contain test cases created by devel-
opers and are primarily geared towards testing functionality,
although a few test suites also look for known security bugs.
These test suites are usually meant to test binaries compiled
from the package’s source code, although many also support
testing already deployed binaries. For example, test suites
for the Apache webserver, PHP and MySQL support testing
existing deployments, whereas the test suite for the OpenSSH
server supports testing only a compiled binary. For normal
runtime of the LAMP server stack, we installed phpBB, a
PHP-based bulletin board system, and carried out tasks such
as posting messages on the board. PHP was setup through
FastCGI so it runs as a process separate from Apache.

Table III shows how test suites are helpful in identifying
additional behaviour. In all cases, we found the test suites un-
covered additional entrypoints beyond normal runtime, thereby
leading to more complete code coverage. In addition, the test
suites may exercise already known entrypoints in ways normal
runtime does not, thereby augmenting the set of accessed
resources at this entrypoint. Thus, while test suites reduce false
positives by exercising known entrypoints in different ways,
they may also introduce false negatives by accessing resources
not valid in the actual deployment of the program.

C. Factors Affecting Entrypoint Classification

We found that the sets of resources accessed by entrypoints
in programs are affected by the several factors. Test suites both
uncover new entrypoints and exercise entrypoints in different
ways by varying these factors. However, some of these factors
are fixed for a deployment, and varying them may result in
false negatives. We discuss each factor below in relation to
Table III with examples.



Configuration. Some entrypoints only operate under certain
configurations. This was one reason why additional entrypoints
were uncovered by the test suites. However, such entrypoints
may not be enabled at all in normal runtime.

Other entrypoints exercise different configurations. How-
ever, these might result in false negatives. As an example,
the Apache configuration option AllowOverride allows
Apache to accept user-defined configuration files for user web
pages. This may cause a security threat if such configuration
files are not handled properly. it was tested by the test
suite, thereby classifying the entrypoint reading configurations
as accessing both high-integrity system-defined configuration
and low-integrity user-defined configuration. However, our
deployed configuration did not allow this option. Here, the
test suite caused a false negative by making the entrypoint
classification more generic than it should be.

Rules should thus be generated keeping for a particular
deployment configuration. However, knowledge of how con-
figuration options affect entrypoints is beneficial. We propose
“tagging” generated rules with the corresponding configuration
options, so a rule base appropriate for a deployment can be
generated by simply examining target configuration.

Command line parameters and Environment Variables.
Varying command-line parameters can both reduce false pos-
itives and increase false negatives, similar to configuration
options. This depends on whether a program is launched with
differing arguments, or with a fixed set of command-line
parameters (e.g., startup scripts).

First, changing command line parameters reduces false pos-
itives. For example, the mount program takes as a command
line parameter a mountpoint. If runtime sees only a single
invocation with a single mountpoint, it can erroneously con-
clude that the mount entrypoint can only access that particular
mountpoint. However, during normal system boot, several
mountpoints are used, and the mount entrypoint is classified
as accessing both high- and low-integrity directories. Other
utilities such as cp, mv, cat also exhibit similar behavior.

However, note that such programs are often launched from
scripts where they have to access very particular files (e.g.,
redirect output to a temporary file). Thus, if a program is
launched from a shell script, we take its entrypoint to be
the parent interpreter’s script, and can enforce such resource
access.

Second, changing command line parameters increases false
negatives. This behaviour is observed when command line
parameters indicate configuration options that are not used.
For example, the Apache test suite specifies a configuration
file using a command line parameter, and runtime erroneously
concludes that entrypoints accessing the log file are more
generic than they should be.

Environment variables also have effects similar to command
line parameters.

Working Directory. The working directory may affect the
resources accessed if relative pathnames are specified. These
again mainly affect utility programs.

Program Reference Class
Firefox CVE-2010-3182 Untrusted Search
Apache CVE-2006-1564 Untrusted Search

php CVE-2006-5178 TOCTTOU
init script Prev. unknown Link following

php CVE-2011-2202 Directory Traversal
mysql CVE-2010-1848 Directory Traversal

TABLE IV: The exploits we tested our process firewall against.

D. Effectiveness of Enforcement

To evaluate the effectiveness of our enforcement on known
bugs, we selected a few previously known vulnerabilities
and a previously unknown and unpatched name resolution
vulnerability [12] at entrypoints uncovered by our runtime
analysis. Table IV shows the exact attacks we tried. We found
that all the exploits that we tested were blocked.

Firefox and Apache searched for library files in the cur-
rent working directory, which could lead to compromise if
they were launched in an adversary-accessible directory. The
entrypoint that reads library files was associated only with
high-integrity files and so adversary supplied libraries at this
entrypoint were blocked.

PHP is vulnerable to a directory traversal attack due to a
parsing error in the filename of uploaded files (CVE-2011-
2202). We tried to force a vulnerable version of PHP to store
our uploaded file at an arbitrary location. This attack was
also blocked because this entrypoint was associated only with
resources in /tmp. This entrypoint was actually covered by
the test suite and not normal runtime (as we did not upload
any file during normal runtime), and is an example of how
test suites help in covering program entrypoints. Finally, a
shell script that initializes the avahi-daemon is vulnerable to
link following due to insecurely writing to a temporary file.
We created a symbolic link in /tmp to /etc/passwd. This
attack was also blocked, because the script entrypoint was
again associated with only /tmp, and access to /etc was dis-
allowed. This demonstrates how our enforcement mechanism
stops attacks, even though it aims for low false positives.

VII. CONCLUSIONS

The class of name resolution attacks is a difficult problem
to solve, because it involves both program context and system
knowledge. Thus, adversaries have been able to keep taking
advantage of these vulnerabilities to compromise systems. We
identify how adversarial control of the name, binding and
resources used in name resolution can lead to a variety of
attacks. We propose a uniform solution for these problems by
restricting program entrypoints to only appropriate resources.
We find that program entrypoints fall under classes which can
be easily enforced to stop these attacks with little or no false
positives. We find over 98% of name resolution accesses can
be restricted to rule out name resolution attacks. Since our
classification of entrypoints is based on a runtime analysis for
which coverage is a challenge, we examine how test suites
help to generate policies, and steps towards automation of



policy generation. Finally, we demonstrate how our system can
defend against instances of name resolution attacks, showing
the promise of our system to protect programs against this
class of attacks, while not unduly producing false positives.
In future work, we aim to explore how static analysis can be
used to generate rules.

REFERENCES

[1] A. Berman et al., “TRON: Process-specific file protection for the UNIX
operating system,” in USENIX TC ’95, 1995.

[2] Goldberg et al., “A secure environment for untrusted helper applica-
tions,” in USENIX Security ’96, 1996.

[3] Acharya et al., “MAPbox: Using parameterized behavior classes to
confine untrusted applications,” in USENIX SSYM, 2000.

[4] Garfinkel et al., “Ostia: A delegating architecture for secure system call
interposition,” in NDSS ’04, 2004.

[5] M. Bishop and M. Digler, “Checking for race conditions in file accesses,”
Computer Systems, vol. 9, no. 2, Spring 1996.

[6] C. Cowan et al., “Raceguard: Kernel protection from temporary file race
vulnerabilities,” in USENIX Security Symposium, 2001.

[7] Tsyrklevich et al, “Dynamic detection and prevention of race conditions
in file accesses,” in USENIX Security, 2003.

[8] Dean et al., “Fixing races for fun and profit,” in USENIX SSYM, 2004.
[9] D. Tsafrir et al., “Portably solving file tocttou races with hardness

amplification,” in USENIX FAST, 2008.
[10] S. Chari et al., “Where do you want to go today? escalating privileges

by pathname manipulation,” in NDSS ’10, 2010.
[11] X. Cai et al. , “Exploiting Unix File-System Races via Algorithmic

Complexity Attacks,” in IEEE SSP ’09, 2009.
[12] H. Vijayakumar, J. Schiffman, and T. Jaeger, “Sting: Finding name

resolution vulnerabilities in programs,” in Proceedings of the 21st
USENIX Security Symposium (USENIX Security 2012), August 2012.

[13] H. M. Levy, Capability-based Computer Systems. Digital Press, 1984,
available at http://www.cs.washington.edu/homes/levy/capabook/.

[14] N. Provos, “Improving host security with system call policies,” in
USENIX Security ’03. USENIX Association, 2003.

[15] “AppArmor Linux application security,” http://www.novell.com/linux/
security/apparmor/, 2008.

[16] “audit2allow,” http://fedoraproject.org/wiki/SELinux/audit2allow.
[17] W. S. McPhee, “Operating system integrity in OS/VS2,” IBM Syst.

J., vol. 13, pp. 230–252, September 1974. [Online]. Available:
http://dx.doi.org/10.1147/sj.133.0230

[18] R. Needham, Chapter: Names. In S. Mullender (Ed): Distributed Sys-
tems. Addison-Wesley, 1989.

[19] “Domain Names - Implementation and Specification,” http://www.ietf.
org/rfc/rfc1035.txt.

[20] Vigna et al. , “Testing Network-based Intrusion Detection Signatures
Using Mutant Exploits,” in ACM CCS, 2004.

[21] “What is “Deep Inspection”?” http://http://www.ietf.org/rfc/rfc1035.txt.
[22] “PHP LFI to arbitrary code execution. ,” http://www.exploit-db.com/

download pdf/17010/.
[23] Balzarotti et al., “Saner: Composing static and dynamic analysis to

validate sanitization in web applications,” in IEEE SSP, 2008.
[24] Wei et al., “Tocttou vulnerabilities in unix-style file systems: an anatom-

ical study,” in USENIX FAST ’05, 2005.
[25] K. suk Lhee and S. J. Chapin, “Detection of file-based race conditions,”

Int. J. Inf. Sec., 2005.
[26] Borisov et al., “Fixing races for fun and profit: How to abuse atime,”

in USENIX Security ’06, 2005.
[27] R. Sekar, V. Venkatakrishnan, S. Basu, S. Bhatkar, and D. C.

DuVarney, “Model-carrying code: a practical approach for safe
execution of untrusted applications,” in Proceedings of the nineteenth
ACM symposium on Operating systems principles, ser. SOSP ’03.
New York, NY, USA: ACM, 2003, pp. 15–28. [Online]. Available:
http://doi.acm.org/10.1145/945445.945448

[28] Li et al., “Usable Mandatory Integrity Protection For Operating Sys-
tems,” in IEEE SSP, 2007.

[29] W. Sun, R. Sekar, G. Poothia, and T. Karandikar, “Practical proactive
integrity protection: A basis for malware defense,” in Proceedings of the
2008 IEEE Symposium on Security and Privacy, May 2008.

[30] U. Shankar, T. Jaeger, and R. Sailer, “Toward automated information-
flow integrity verification for security-critical applications,” in Proceed-
ings of the 2006 ISOC Networked and Distributed Systems Security
Symposium (NDSS’06), San Diego, CA, USA, Feb. 2006.

[31] M. N. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris, “Information flow control for standard OS abstractions,”
in Proceedings of the 21st ACM Symposium on Operating Systems
Principles, Oct. 2007, pp. 321–334.

[32] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières, “Making
information flow explicit in HiStar,” in Proceedings of the 7th Sympo-
sium on Operating System Design and Implementation, 2006, pp. 263–
278.

[33] D. D. Clark and D. Wilson, “A comparison of military and commercial
security policies,” in 1987 IEEE Symposium on Security and Privacy,
May 1987.

[34] W. Harris, S. Jha, and T. Reps, “Difc programs by automatic instru-
mentation,” in Proceedings of Computer and Communications Security
(CCS), 2010.

[35] D. Denning, “A lattice model of secure information flow,” Communica-
tions of the ACM, vol. 19, no. 5, pp. 236–242, 1976.

[36] A. C. Myers and B. Liskov, “A decentralized model for information
flow control,” in Proceedings of the 16th ACM Symposium on Operating
System Principles, October 1997.

[37] S. Hicks, Boniface and, T. Jaeger, and P. McDaniel, “From trusted to
secure: building and executing applications that enforce system security,”
in Proceedings of the USENIX Annual Technical Conference. USENIX
Association, 2007.

[38] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers,
“Fabric: A platform for secure distributed computation and storage,” in
In Proc. ACM Symposium on Operating Systems Principles, 2009, pp.
321–334.

[39] S. Rueda, D. King, and T. Jaeger, “Verifying Compliance of Trusted
Programs,” in Proceedings of the 17th USENIX Security Symposium,
2008.

[40] D. E. Bell and L. J. LaPadula, “Secure computer system: Unified exposi-
tion and Multics interpretation,” Deputy for Command and Management
Systems, HQ Electronic Systems Division (AFSC), L. G. Hanscom
Field, Bedford, MA, Tech. Rep. ESD-TR-75-306, March 1976, also,
MITRE Technical Report MTR-2997.

[41] D. McIlroy and J. Reeds, “Multilevel windows on a single-level ter-
minal,” in Proceedings of the (First) USENIX Security Workshop, Aug.
1988.

[42] D. C. Toll, P. A. Karger, E. R. Palmer, S. K. McIntosh, and S. Weber,
“The caernarvon secure embedded operating system,” SIGOPS Oper.
Syst. Rev., vol. 42, no. 1, pp. 32–39, Jan. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1341312.1341320

[43] J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,” Proceedings of the IEEE, vol. 63, no. 9, September
1975.

[44] H. Vijayakumar, G. Jakka, S. Rueda, J. Schiffman, and T. Jaeger,
“Integrity walls: Finding attack surfaces from mandatory access control
policies.” in Proceedings of the 7th ACM Symposium on Information,
Computer, and Communications Security (ASIACCS 2012), May 2012.


