
SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks 00: 1–18 (2009)
Published online in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/sec.0000

Protecting the Integrity of Trusted Applications in Mobile
Phone Systems

Divya Muthukumaran, Joshua Schiffman, Mohamed Hassan, Anuj Sawani, Vikhyath Rao, Trent Jaeger
Systems and Internet Infrastructure Security Lab
The Pennsylvania State University, University Park, PA 16802

Summary

Mobile phones have evolved into indispensable devices that run many exciting applications that users can download
from phone vendor’s application stores. However, as it is not practical to fully vet all application code, users
may download malware-infected applications, which may steal or modify security-critical data. In this paper, we
propose a security architecture for phone systems that protects trusted applications from such downloaded code.
Our architecture uses reference monitors in the operating system and user-space services to enforce mandatory
access control policies that express an approximation of Clark-Wilson integrity. In addition, we show how we can
justify the integrity of mobile phone applications by using the Policy Reduced Integrity Measurement Architecture
(PRIMA), which enables a remote party to verify the integrity of applications running on a phone. We have
implemented a prototype on the Openmoko Linux Platform, using an SELinux kernel with a PRIMA module and
user-space services that leverage the SELinux user-level policy server. We find that the performance of enforcement
and integrity measurement is satisfactory, and the SELinux policy can be reduced in size by 90% (although even
more reduction should ultimately be possible), enabling practical system integrity with a desirable usability model.
Copyright c© 2009 John Wiley & Sons, Ltd.

KEY WORDS: Mobile phones, integrity measurement, Clark-Wilson integrity, mandatory access control,
reference monitor, SELinux

1. Introduction

Smart-phones have become today’s gadgets of
necessity. From making calls to checking email, from
downloading the latest chart-topper to checking bank
balances, they symbolize the convergence of tech-
nology in one small, mobile device. Recently, phone
vendors have transitioned from highly customized to
general purpose operating systems, such as Symbian,
Windows Mobile, and Linux, making it easier for
third-party developers to build applications. Further,
mobile application stores like the Apple iPhone App
store [3], BlackBerry App World [28] and Android
Market [13] have made the user community dependent
on downloading such applications.

However, enabling users to download arbitrary
applications presents a threat to security-critical
applications on the phone system. Since users almost
always have their phones with them, many businesses
envision the phone as a client in e-commerce
applications, such as mobile banking [6]. These
applications may be security-critical in that they
must protect the integrity and secrecy of their data
(e.g., account balances). There have been several
documented cases of malware for phones since
2004 [5, 18, 37], so phone systems must be able to
protect security-critical applications from others.

Handset manufacturers are aware of this threat, but
current defenses are inadequate. Initially, Linux and

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls [Version: 2008/03/18 v1.00]

2

Windows-based phone systems were built assuming
that all applications would be trusted, but handset
manufacturers are exploring as-yet-unreleased efforts
to control individual applications [20, 1]. Symbian
phone systems use a hierarchical model [36], similar
to Windows Vista∗, where the origin of the application
determines its permissions. Symbian distinguishes
among Symbian, Symbian-signed, and unsigned
applications, preventing unsigned applications from
modifying the files of Symbian and Symbian-
signed applications. However, like Windows Vista,
the Symbian model does not prevent a variety
of security problems [22]. We have previously
shown that a malicious, unsigned application can
attack a Symbian phone system by downloading
secret files, installing keyloggers, and submitting
malicious telephony commands [27]. Security-critical
applications and the phone system itself may be
compromised by these actions. For example, key
banking files may be downloaded to the attacker’s
system, a user’s PIN may be stolen by a keylogger,
and unauthorized mobile banking commands may be
submitted to the bank by the attacker.

Providing adequate security for security-critical
applications on a system with arbitrary downloaded
applications is a difficult problem. We identify two
main challenges: (1) ensuring that all operations
that may access security-critical data are mediated
correctly and (2) designing security policies that
enforce the necessary protections while still enabling
downloaded applications to execute effectively. The
Symbian system fails the first case, as only write
access to files are mediated, so any data on the phone
may be accessed by any application. Further, we
have found that phone systems (Symbian and others)
leverage many user-space services for processing
security-critical data, and these services have been
implemented under the assumption that all requests
are from trusted software. For example, the Symbian
windowing server assumes that a request for callbacks
on key presses is from a trusted process, enabling the
installation of a keylogger of another application.

All phone systems also fail the second requirement,
as Symbian’s policy is too permissive†, whereas others
have not yet found an adequate policy to release in
their devices. We note that simply denying untrusted

∗The Symbian access control model predates the introduction of
Windows Vista.
†The Symbian policy on some systems allow untrusted applications
to modify key system files, such as the Bluetooth pairing database,
permitting untrusted devices to upload files unbeknownst to the
user [27].

applications the access to user-space services is not
an option, as even untrusted applications depend
on some operations provided by these services.
For example, even untrusted applications require
windowing support and may use telephony services
for a variety of operations, such as GPRS. Our goal
is to mediate all security-critical operations securely
while still permitting such normal accesses.

In this paper, we develop a phone system archi-
tecture that enables the protection of security-critical
applications while running arbitrary downloaded
applications. Our insight is that it is possible to
build phone systems targeting an approximation of
classical integrity models (e.g., Biba [17] and Clark-
Wilson [8]), called CW-Lite [32]. Using CW-Lite
as a guide, we define an architecture where the
phone’s operating system and user-space services
must be built to satisfy the requirements of an access
enforcer, called the reference monitor concept [2]
and where the access policies are verified to protect
the integrity of security-critical applications. Finally,
we build proofs that our phone systems satisfy CW-
Lite integrity. Such proofs can be put into a remote
attestation protocol [16] to be verified by remote
parties (e.g., banks) to determine whether the client
banking application is protected adequately on the
phone system.

The result of this effort is an Openmoko phone
system running an SELinux operating system and
security-enforcing telephony server and installer that
enforce CW-Lite integrity, using PRIMA to build
proofs of such enforcement. The Openmoko/SELin-
ux/PRIMA phone system enforces a simplified
SELinux policy designed specially for the phone
system environment that reduces the policy size
from the SELinux reference policy by 90%. The
resultant Openmoko system adds less than 0.1 ms
overhead to the processing of telephony commands
and can generate proof statements (hashes) in less
than 0.1 seconds for nearly all phone executables.
The Openmoko system does not include a root of
trust measurement (e.g., MTM [38], TPM [39], or
facsimile implemented via curtained memory, such
as TrustZone [40]), but can easily be integrated (i.e.,
PRIMA has been integrated on with such hardware on
desktop and server systems).

Specifically, we make the following contributions:

• Integrity Model for Phone Systems: We show
that the CW-Lite integrity model applies to the
protection of security-critical applications on
phone systems by constructing an Openmoko
phone system that enforces CW-Lite.

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–18 (2009)
DOI: 10.1002/sec

3

• Access Enforcement: We provide mediation
of installation, telephony, and audio subsystem
operations that access security-critical data on
the phone system. The Openmoko software
installer and telephony server gsmd are aug-
mented to protect security-critical applications,
and we leverage mediation provided by the
Linux Security Modules interface [42] and
SELinux conditional policy enforcement to
control audio access.
• Mandatory Access Control Policy: We define

a simplified SELinux mandatory access control
policy for protecting security-critical applica-
tions using the mediation described above.
This policy enables enforcement of CW-Lite
integrity with a policy 90% smaller than the
SELinux reference policy.
• Integrity Measurement: We generate a proof

that the resultant system satisfies CW-Lite
integrity sufficient for creating a remote
attestation using trusted computing hardware.
We extend the SELinux system to add the
Policy-Reduced Integrity Measurement Archi-
tecture [16] (PRIMA), an extension of the Linux
Integrity Measurement Architecture [31].

This paper is structured as follows. In Section 2, we
outline a phone system that runs both security-critical
applications and arbitrary downloaded applications.
In Section 3, we discuss related work and tie our
work to past work in related topics. In Section 4,
we define the security architecture for enforcing
protection of security-critical applications and their
data. In Section 5, we describe the implementation
of this architecture, highlighting the contributions
listed above. In Section 6, we evaluate the security,
performance, and ease-of-configuring our system.
Finally, Section 7 describes future work and concludes
the paper.

2. Problem Definition

In this section, we first classify the major players in a
mobile phone system from a security perspective, and
identify their interactions and the potential security
problems that stem from these interactions. We then
define the security requirements for a solution to
address these problems. In general, we expect a
solution that ensures protection of the security-critical
(trusted) applications in their use of operating system
and user-space service resources in a system that
also runs untrusted (e.g., downloaded) applications.
Finally, we expect that phone systems that achieve

Mobile Banking
Trusted Application

Third-party Games
Untrusted Application

Telephony server
User-space Service

Software Installer
User-space Service

Operating System

X

Fig. 1. Mobile phone systems consist of trusted appli-
cations, untrusted applications, user-space services that
provide function to both trusted and untrusted applications,
and the operating system. We prohibit untrusted applications
from communicating with trusted applications

such requirements be capable of proving that to remote
parties (e.g., the mobile banking client prove its phone
system integrity to the bank).

We first classify the entities on the mobile phone
system into four categories, as shown in Figure 1:

• Trusted Applications: Trusted applications
are the applications that are entrusted with
the processing of security-critical data. These
applications must not receive any untrusted
inputs as described below. If one of these
applications is compromised, then the phone
system is compromised. Such applications
can include both pre-installed and third-
party applications, such as a mobile banking
application. We assume that trusted third-party
applications possess a certificate of trust from
an acceptable authority.

• Untrusted Applications: Untrusted applica-
tions are those that are not entrusted with any
security-critical data. Such applications may be
compromised without compromising the phone
system. Such applications include third-party
downloaded applications, but may also include
pre-installed applications that do not perform
security-critical operations.

• User-Space Services: Phone systems typically
consist of several user-space programs that
provide services to other applications. Examples
of these include the software installer, the
telephony server, windowing server, GPS
server, etc. These services cater to both trusted
and untrusted applications. Such services are

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–18 (2009)
DOI: 10.1002/sec

4

also trusted in that if one is compromised, then
the phone system is compromised.

• Operating System: The phone’s operating sys-
tem (e.g., Linux, Symbian, Windows Mobile,
etc.) is also trusted.

These entities can interact as shown in Figure 1,
leading to security problems as described below.

Untrusted and Trusted Interactions We prohibit
untrusted applications from communicating with
trusted applications directly or indirectly. This
prohibition protects the secrecy and integrity of
trusted applications. From an integrity perspective,
such communication is undesirable because if an
untrusted game or other malicious application is
allowed to modify a file read by trusted application
or send an IPC to a trusted application, then it
may impact the integrity of that trusted application.
From a secrecy perspective, we also prohibit flows
from trusted applications to untrusted applications to
prevent leakage security-critical data. In general, there
is no need for a security-critical application to provide
data to an untrusted application.

Untrusted and Service Interaction User-space
services perform operations for both the trusted and
untrusted applications. For example, an untrusted
game may call the telephony server to check battery
status or send GPRS data requests to its server, so
some interaction with the telephony server must be
permitted. In processing such requests, we expect that
every user-space service will prohibit operations that
would result in an information flow between a trusted
and an untrusted application. This means that each
user-space service must be able to mediate operations
that may access security-critical data and that the
service must enforce the expected access policy. In
addition, each user-space service must protect itself
from requests from untrusted applications, as user-
space services are trusted by our trusted applications.

Untrusted and Operating System Interaction As
for user-space services, both the trusted and untrusted
applications, as well as the user-space services, may
request that the operating system perform operations.
For instance, the telephony server interacts with the
audio subsystem in the OS to play voice from the other
end. Even if an untrusted application is prevented
from accessing a voice call in the telephony server, it
may be able to interfere with voice call via the audio
subsystem. To achieve comprehensive protection of
trusted applications, it is important to ensure that

the operating system mediates access to all security-
critical data according to the expected policy. Some
OS’s provide such mediation (e.g., Linux Security
Modules [42]). The challenges are to configure OS
access control that supports phone systems and to
handle dynamic changes, such as when a voice call
terminates we may want to allow an untrusted game to
play audio.

To address these concerns, we envision that the
phone system will require an integrity model that
will reflect the requirements above and will enable
practical operation (e.g., access to user-space services
by untrusted applications). The OS and user-space
services must be capable of enforcing such a model,
including a practical approach to configure access
policies reflecting the model. Finally, the phone
system requires a mechanism to prove enforcement of
the integrity model to remote parties. We discuss why
these are not addressed in current systems below.

3. Related Work

Below, we review related work in integrity models,
mandatory access control systems, user-level enforce-
ment, and integrity measurement that is relevant to
our problem statement. In general, current integrity
models are too strict for phone systems and current
access control methods are not used to enforce a
verifiable integrity goal. Once we define a verifiable
goal, we can design an integrity measurement
approach to enable verification by remote parties.

Integrity Models The main problem with classical
integrity models, such as Biba [17], LOMAC [12], and
Clark-Wilson [8], is their applicability to conventional
systems, such as phone systems, that have trusted and
untrusted processes. The Biba integrity model [17]
assigns integrity labels to processes and relates these
labels in an integrity lattice. It follows a ”no read
down, no write up” model, thereby restricting any
information flow from a lower integrity process to
one of a higher integrity. Unfortunately, many critical
applications, including software installers, read some
low integrity data (e.g., requests). To permit critical
applications to receive such data, Biba requires a
separate, fully-assured guard process to sanitize the
inputs, but such programs are not developed for
conventional systems. LOMAC [12] requires that a
process drop its integrity level to that of the lowest
integrity data it reads or executes, but this does not
work for some processes, such as the telephony server,
which must maintain high integrity after receiving low

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–18 (2009)
DOI: 10.1002/sec

5

integrity commands. We note that we can use LOMAC
for software installers, but not all high integrity
processes. Clark-Wilson integrity [8] provides a more
flexible alternative, by permitting processes to read
low integrity data if they immediately discard or
upgrade the data, but Clark-Wilson requires full
formal assurance of such process’s programs. Such
assurance must be performed manually, so Clark-
Wilson has not been applied to conventional systems.

Mandatory Access Control As mentioned in the
Introduction, the developers of mobile phone systems
have recognized that access control is a necessary
feature, but current phone systems lack a mandatory
access control approach that can be used to ensure
enforcement of a precise security goal. Mandatory
access control (MAC) enables the system (i.e.,
administrator or distributor) to define the access
control policy for its processes, thus preventing
a compromised process from compromising the
entire system. While MAC systems originated with
Multics, and there have been several implemented
since, current examples of such MAC systems
include Trusted Solaris, SELinux, and Apparmor
(Linux), and variants of SELinux for BSDs and
Mac OS X. Most prior MAC systems have focused
on enforcing the multilevel security (MLS) policy,
which provides verifiable enforcement of secrecy, but
integrity protection is handled in an ad hoc manner.
Trusted Solaris [35] continues this focus. Novell
AppArmor [23] uses LSM hooks to prevent remote
network attacks from compromising the system
by confining network-facing daemons. However,
AppArmor does not prevent attacks from downloaded
applications, which is key on phone systems. SELinux
is a general MAC system, which can be applied to
a variety of security goals. In the past, it has been
applied to least privilege (strict policy), MLS, and
containment of network-facing daemons along the
lines of Apparmor (targeted policy). None of these
policies addresses a verifiable integrity policy, but
since SELinux is general and comprehensive, we
plan to apply it to our integrity goal. The SELinux
approach can result in large policies, however. The
current SELinux policies are approximately 3MB in
size, containing over 2000 types and between 50,000
to 100,000 permission assignments.

User-Level Access Enforcement Until recently,
security researchers focused solely on the enforcement
provided by the operating system. However, it
has become clear that there are several user-space
programs that are entrusted with enforcing the system

security policy. For example, SELinux/MLS identified
34 programs that are trusted by SElinux to enforce
MLS on their execution. Work is underway to
extend several programs with a satisfactory reference
monitor [2] implementation to justify such trust,
such as for Linux user space services gconf [7],
XServer [41], etc. Phone systems, however, bring
additional programs that deal with security-critical
phone operations or user data, and these programs
also will need such enforcement. We identify two such
phone applications, namely the telephony server gsmd
and the software installer opkg, on the Openmoko
platform.

Integrity Measurement The idea of integrity
measurement is to measure every event that impacts
the integrity of the system, and send a proof of these
events to a remote party who determines whether
these events result in a high integrity system. Most
integrity measurement approaches focus solely on the
code run by a system [10] [31] [9] [34], although
integrity models tell us that all inputs determine
the integrity of a process. Thus, should a high
integrity application use low integrity data and be
compromised, this would not be reflected by such
approaches. Integrity measurement approaches that
also measure data usage, such as Bind [33] and
Flicker [19], measure only a single computation and its
inputs, resulting in significant restrictions in the types
of systems that can be attested. We aim to develop
integrity measurement for a comprehensive integrity
model, enabling attestations for phone systems.

4. Architecture

Figure 2 shows our proposed security architecture
layered on the phone system shown in Figure 1.
The security architecture consists of the following
components:

1. We apply the CW-Lite integrity model [32],
an approximation of the Clark-Wilson integrity
model [8], as our security model. The use
of CW-Lite guides the development of access
policies (described below) and motivates the
requirement for user-space services to use
filtering interfaces to securely receive input
from untrusted applications. We assume that
phone system operating systems also use
filtering interfaces to receive input from
untrusted applications (not shown).

2. We apply reference monitors [2] to enforce
access control in user-space services and the

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–18 (2009)
DOI: 10.1002/sec

6

 Operating
 System

Untrusted
Application

Trusted
Application

User-space
 Service

Security
Policy

Reference
Monitor

Reference
Monitor

Security
Policy

Filtering
interface

Integrity
Measurement

Filtering
interface

(e.g., syscalls)

Fig. 2. Our security architecture introduces the following
concepts to a mobile phone system: (1) the CW-Lite
integrity model, which defines our integrity goal (no flow
from untrusted to trusted and filtering of untrusted inputs
for OS and services); (2) reference monitoring in user-
space services as well as the OS; (3) mandatory access
control policies for the user-space services and the OS;
and (4) integrity measurement in the OS to build proofs of
enforcement of CW-Lite integrity.

operating system. We require that any phone
system operating system itself have a reference
monitor that mediates access to all resources
within the system. We also extend reference
monitoring into user-space services by adding
mediation hooks that control access to security-
critical operations. For phone systems, we will
show how to add reference monitoring to its
installer and telephony server.

3. We design mandatory access control (MAC)
policies that implement the CW-Lite integrity
model for the operating system and user-space
services. These policies isolate trusted and
untrusted applications in their use of service and
OS resources. Where the system only provides
a single resource (e.g., audio), MAC policies
ensure that no untrusted application may use
that resource if any trusted application is. Unlike
prior comprehensive MAC policies for practical
systems, our policy design aims for simplicity.

4. We provide an integrity measurement system
inside the operating system to enable the
generation of proofs of satisfaction of CW-Lite
integrity. We use the Policy-Reduced Integrity
Measurement Architecture [16, 21] (PRIMA)
as the approach for our integrity measurement

system. PRIMA is designed to build CW-Lite
proofs, and we examine the efficacy of building
such proofs for phone systems.

4.1. CW-Lite Integrity Model

We propose to use the CW-Lite integrity model as
the basis for the security architecture of our phone
system [32]. CW-Lite is an approximation of the
Clark-Wilson integrity model [8] that provides a
comprehensive view of integrity that is possible to
deploy on commercial systems. Using CW-Lite, we
can provide comprehensive and practical integrity
protection for the trusted applications, user-space
services, and the operating system of a phone system.

It is difficult to ensure the integrity of phone
systems (and many other modern systems) because
many high integrity components are accessible to low
integrity components. This is especially a problem
on phone systems where arbitrary applications
may be downloaded. In defining a phone systems
architecture, we made an explicit distinction between
trusted applications and user-space services, which
we leverage for defining integrity requirements. As
mentioned in Section 2, trusted applications must be
isolated from untrusted applications, but user-space
services and the operating system provide interfaces
that both the untrusted and trusted applications may
use. Yet, we depend on the user-space services and
operating system to protect themselves from inputs
from untrusted applications, as well as enforcing
an access control policy that ensures their mutual
isolation.

The CW-Lite integrity model approximates the
Clark-Wilson integrity model rule that describes how
a high integrity process must handle low integrity
inputs securely (rule C5 from Clark-Wilson integrity
model [8] paraphrased): a high integrity process that
reads low integrity data must either upgrade the
integrity of that data or discard that data immediately.
Clark-Wilson requires full formal assurance of such
high integrity processes, but such assurance has not
become practical. CW-Lite aims for the spirit of this
integrity rule, given the practical situation.

Definition 4.1 CW-Lite integrity is preserved for a
subject s if: (1) all high integrity objects meet integrity
requirements initially (i.e., Clark-Wilson integrity
verification procedure requirement); (2) all trusted
code is identifiable as high integrity (e.g., from its hash
value); and (3) all information flows from subjects of
lower integrity x to a specific interface I are filtered:

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–18 (2009)
DOI: 10.1002/sec

7

flow(x, s, I) ∧ ¬filter(s, I)→ (int(x) ≥ int(s))

where: (1) flow(x, s, I) defines an information flow
from x to s through interface I; (2) filter(s, I)
implies that subject s filters input at interface I; and
(3) int(x) and int(s) are the integrity levels of x and
s, respectively.

Our previous experiments have shown that high
integrity processes receive untrusted inputs through
only a small number of interfaces [32]. The idea
is that these high integrity processes make these
few interfaces into filtering interfaces, so these
interfaces can be designed to satisfy the requirement
of immediate upgrading or discarding of data. Thus,
CW-Lite makes integrity comprehensive in practical
systems, and motivates system implementors to focus
on the risk areas, where untrusted inputs are provided.
We envision that a practical, comprehensive view
of integrity with known risks is far superior to an
incomplete view that lacks knowledge of risks (i.e.,
the current situation).

The CW-Lite model satisfies the security require-
ments we desire for phone systems. First, the CW-
Lite model ensures that there is no flow of data from
untrusted to trusted applications: trusted applications
have no filtering interfaces, so they cannot legally
receive any untrusted inputs ‡. Second, CW-Lite
ensures that even services that accept untrusted
input must only do so via filtering interfaces that
protect their integrity. Third, CW-Lite ensures that
the operating system must also protect itself from
untrusted inputs (e.g., via system calls). We assume
that operating system filtering is already present. In
this paper, we focus on some specific applications
and services and show how policies over these can be
designed to satisfy CW-Lite.

4.2. Enforcement via Reference Monitoring

We require that the phone systems enforce CW-
Lite integrity. To do this, all the mechanisms that
may provide untrusted applications with access to the
security-critical data of trusted applications must be
controlled according to the CW-Lite integrity model.
We claim that placing reference monitoring in user-
space services and the operating system is necessary
to provide proper enforcement of CW-Lite.

‡CW-Lite does not enforce secrecy, but we will also prevent flow
from trusted applications to untrusted applications in the design of
our policies.

The reference monitor concept [2] defines require-
ments for enforcing an access control policy correctly.
First, access control enforcement must provide
complete mediation. In our case, all the OS and user-
space service operations that enable access to security-
critical data must be mediated. Second, access control
enforcement must be tamperproof, so the OS and user-
space services must protect themselves from untrusted
application requests. Also, the OS and user-space
services must protect their access control policies.
Mandatory access control policies [11], which are
only configurable by the system, prevent tampering
by applications. Third, the overall system must be
simple enough to prove correct according to the
integrity model. For this, we must verify that the
enforcement mechanism is correct and that the MAC
policy enforces the intended security goal. In our case,
the integrity model will drive the design of the MAC
policy.

For a phone system, we leverage SELinux as
the reference monitor for the operating system and
add reference monitoring to two phone system-
specific entities, the installer and telephony server. The
SELinux community has made significant progress
on extending a number of general-purpose, user-
space services with reference monitoring, such as
the windowing server [41], configuration server [7],
and interprocess communication server [15]. Thus, we
will focus on the phone-specific services. To achieve
reference monitor guarantees, we will perform the
following tasks. First, we will extend an installer and a
telephony server with reference monitor interfaces for
which we can validate complete mediation. Second,
we will verify that the deployment and execution of
such services are protected from tampering through
design of the MAC policy (more below). Finally, we
will verify that the code of the two services satisfies
a correctness property and the MAC policies satisfy
CW-Lite (more below). Verifying that a program
meets a general property is intractable, but we design
our to services in such a way that we can claim they
are correct if SELinux is correct.

4.3. Mandatory Access Control Policy

Once we have mediation, we need the reference
monitoring to enforce a policy that satisfies CW-
Lite. We note that we require a mandatory access
control (MAC) policy to ensure that applications
may not tamper with the policy (i.e., to meet the
tamperproof requirement of a reference monitor).
The policy must: (1) ensure that the untrusted
applications cannot access trusted application data;

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–18 (2009)
DOI: 10.1002/sec

8

(2) enable correctly synchronized access when the
system provides only a single object (e.g., audio);
and (3) ensure that untrusted applications can only
communicate with user-space services via filtering
interfaces. The resulting policy should also be much
simpler than that of a comprehensive MAC system
for commercial deployment (i.e., significantly simpler
than the SELinux reference policy).

We propose a MAC policy consisting of three
labels: trusted, untrusted, and cw trusted.
All trusted applications run under the trusted label,
and all the data that they generate inherits that label§.
Analogously, all untrusted applications run with the
untrusted label. The cw trusted label applies
to the user-space services that use filtering interfaces
to protect themselves from untrusted input. There are
two ways that such interfaces may be used. First, a
service may switch to the cw trusted label prior to
accessing any untrusted inputs, signaling its intention
to the OS [32]. The OS then would know that the
application intends to filter any input it receives while
it runs under that label. A less intrusive alternative is
to label the service process as cw trusted for its
entire run, but the service must guarantee that it always
accesses low integrity data via filtering interfaces.
More code must be trusted in the second case, as the
application would have to determine the label of all
data it accesses, preventing the access of low integrity
data unless a filtering interface is used.

The resultant policy satisfies CW-Lite integrity,
as trusted applications cannot access untrusted data
(and vice versa), and services can only accept
untrusted input via filtering interfaces. This policy
model is much simpler than commercial MAC
policies that enforce integrity. In these policies
(e.g., SELinux [24]), each service and application
would have its own label and associated policy
rules. This results in many thousands of rules in
the SELinux reference policy. As the phone system
integrity depends on all its trusted applications, this
is directly specified in this labeling, resulting in
a significant simplification of MAC policy while
providing comprehensive integrity.

4.4. Integrity Proofs

Finally, we want to prove that the phone system
satisfies CW-Lite integrity to remote parties. Our

§If the resulting trusted computing base becomes too large, we
could also separate trusted system processing from trusted phone
application processing into two labels (where the system is higher
integrity than applications), but that not become necessary yet.

architecture uses an integrity measurement system
module located in the operating system to build such
proofs. The integrity measurement system must ensure
that a valid proof is only possible if a phone system
actually satisfies CW-Lite integrity. It turns out that
such proofs are only slightly different than those that
build proofs for code integrity only [14, 9].

We use the Policy-Reduced Integrity Measurement
Architecture [16] (PRIMA) to build proofs of CW-
Lite integrity. PRIMA justifies CW-Lite integrity by
identifying: (1) the trusted labels for the subjects and
objects that are trusted in a system (e.g., trusted
and cw trusted); (2) the code that runs under
trusted labels (e.g., based on the code hash); and
(3) the MAC policy (described above) that defines
the information flows in the system. With the first
two sets of measurements, a remote party can verify
that trusted applications and user-space services run
trusted code. With the third measurement, a remote
party can verify that these processes can only perform
operations that result in information flows that adhere
to CW-Lite integrity. Note that we do not need to
measure the runtime use of filtering interfaces. The
code measurement must justify that each service only
accepts untrusted input via a filtering interface and that
the filtering interface is acceptable. We are researching
declarative specifications for filtering interfaces to
ease verification.

Unlike the original PRIMA prototype [16], the
MAC policies of the user-space services as well as
the operating system must be measured. Fortunately,
the only significant differences between the two
are the types of objects and operations. These can
be normalized to information flow operations, as
described in the implementation.

5. Implementation

In this section, we describe the implementation
of our proposed architecture on the Openmoko
2007.2 platform of the Openmoko-based Neo1973
phone [26] which uses a Samsung S3C2410 processor.
Openmoko uses a Linux operating system with
drivers customized for the mobile phone, and all
the software on the phone is open-source. It runs
a Linux 2.6 kernel, but SELinux is not enabled in
the Openmoko distribution. We enabled SELinux,
and designed a CW-Lite SELinux policy for the
phone. We will describe our modifications to the
installer (opkg) and telephony (gsmd) user-space
services on the OM 2007.2 version of Openmoko
to implement CW-Lite integrity. The Linux kernel

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–18 (2009)
DOI: 10.1002/sec

9

Installer
(CW-Trusted)

Trusted
Files

Trusted

Trusted
tmp files

Trusted
Process

Installer
(Untrusted)

Untrusted
Process

Untrusted package

Config
Files Scripts

Config
Files Scripts

Untrusted

log file (PFS)

Untrusted
tmp files

Untrusted
Files

Fig. 3. The software installation process

does not yet support integrity measurement by default,
but we leveraged the Linux Integrity Measurement
Architecture patch to construct a PRIMA kernel
library that was integrated with SELinux. While we
have implemented our solution on the Openmoko
Platform, it should apply to any Linux phone system,
and CW-Lite is an appropriate model for guiding
configuration in general.

5.1. Implementing the CW-Lite Model

5.1.1. SELinux

In order to enforce mandatory access control on the
phone, we chose to use SELinux, a kernel module that
implements the Linux Security Modules framework
(LSM). The LSM framework consists of a set of
hooks placed inside the kernel to mediate access to
kernel objects. When a hook is invoked, the installed
LSM (e.g., SELinux) is invoked to authorize the
operation defined by the hook for the caller. There is a
security server which is responsible for making access
decisions using the encapsulated security policy.
SELinux enforces a mandatory access control policy
based on an extended Type Enforcement model [4].
The traditional TE model has subject types (e.g.,
processes) and object types (e.g., sockets), and access
control is represented by the permissions of the subject
types to the object types. All objects are an instance of
a particular class (i.e., data type), which has its own
set of operations. An SELinux permission associates
a type, a class, and an operation set (a subset of
the class’s operations). Permissions are assigned to
subject types using an allow statement.

5.1.2. Specifying a CW-Lite SELinux policy

We modified the Openmoko Linux 2.6 kernel
to enable SELinux support. Normally, SELinux
policies are very complex and involve thousands
of types and even more access rules between
those types, but our classification based on four
application types in Section 2 provided us with
the means to simplify the policy. We specify a
coarse grained policy with four SELinux types:
trusted t for trusted applications, untrusted t
for untrusted applications, kernel t for the OS,
and cwtrusted t for user-space services, so named
because of their CW-Lite filtering.

5.1.3. CW-Lite for the Software Installer

In order to demonstrate the use of CW-Lite on the
phone, we consider the OM 2007.2 software installer,
opkg, as an example of a service that needs a filtering
interface to handle untrusted input. The modified
software installation process is shown in Figure 3.
The software installer is entrusted with the task
of installing and updating software packages. As a
result, it ends up being the entrypoint for all new
software on the system, so the integrity of the system
depends on the integrity of the software installer. Any
application can invoke the installer (trusted t or
untrusted t), but only a trusted installer can install
package files that are labeled either trusted t¶.
However, a trusted installer may also be invoked to
install untrusted packages, resulting in the installer
process receiving untrusted input that it must filter.
A filtering interface, placed at the point where the
installer accepts a package request is provided to
protect the installer. When a process invokes the
installer, the following sequence of actions are taken:

1. Either an untrusted t or trusted t
process can execute an opkg install. We
describe the two cases. First, when invoked
from an untrusted process, opkg runs as
untrusted t (i.e., no transition). Second,
when invoked from a trusted process,
opkg runs as a user-space service under
cw trusted t, as it can install either trusted
or untrusted packages. Of course, the installer
must be trusted to filter the untrusted input of an
untrusted package. A combination of SELinux
rules enables the resultant process to run under

¶We assume that an orthogonal tool has saved a package file,
labeling it trusted or untrusted based on its requirements
(e.g., signed package).

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–18 (2009)
DOI: 10.1002/sec

10

the appropriate SELinux type depending on the
situation, as shown below.

a l l o w { t r u s t e d t u n t r u s t e d t }
p r i v c w e x e c t : f i l e {
g e t a t t r exec } ;

t y p e t r a n s i t i o n t r u s t e d t
p r i v c w e x e c t : p r o c e s s
c w t r u s t e d t ;

a l l o w t r u s t e d t p r i v c w e x e c t :
p r o c e s s t r a n s i t i o n ;

a l l o w c w t r u s t e d t
p r i v c w e x e c t : f i l e
e n t r y p o i n t ;

a l l o w c w t r u s t e d t { u n t r u s t e d t
t r u s t e d t } : f i l e { r e a d } ;

The first rule states that trusted t and
untrusted t processes can execute opkg,
a priv cw exec t file. However, only the
trusted process can cause a transition of the
resulting process to cw trusted t (i.e., an
escalation of permissions to accept untrusted
input) via the remaining rules. The second rule
states that when a trusted process executes a
priv cw exec t file, the resultant process
should attempt to transition to cw trusted t.
The third rule authorizes the newly executed
process’s transition from trusted t when
executing a priv cw exec t file. The fourth
rule allows the cw trusted t process to
execute the opkg. Finally, the fifth rule permits
the cw trusted t installer to access trusted
or untrusted package files.

2. The installer must filter the input arguments
provided by the calling process, as it may be run
at cw trusted t and its input package may
be untrusted. Fortunately, opkg has a relatively
simple interface, enabling specification of the
operation (e.g., install, remove, update, etc.)
and the package file. The installer knows
it is filtering based on its SELinux type,
cw trusted t. This filtering interface allows
the installer to determine the label of the
package to be installed, and reduce its privileges
when installing an untrusted package by
changing its subject to untrusted t. This
ensures that no trusted files are modified by the
installation of an untrusted package. We achieve
the dynamic transition using a function called
setcon in SELinux.

The integrity of the installer is protected by its
filtering interface, so any process can invoke it. The

 Operating System

Untrusted Application Trusted Application

 gsmd

Security
Policy

Reference
Monitor

 Reference monitor hooks

To libselinux to kernel policy

Filtering
interface

Integrity
Measurement

Filtering
interface

(e.g., syscalls)

query battery
status

phonebook
read

Access hooks Security sensitive
operation

Requests from untrusted processes Requests from trusted processes

Non security
sensitive
operation

Filtering
interface for callbacks

sound dev files

modem dev file

Fig. 4. This diagram shows the enforcement components in
the gsmd and the operating system

integrity of the installation process is protected by
the installer lowering its privileges for the installation
of untrusted packages, preventing the modification of
trusted files when an untrusted package is installed.

5.2. User-Space Reference Monitors

To demonstrate how we implement a complete
reference monitor into a legacy user-space service,
we consider the telephony server on the Openmoko
system, called the GSM daemon or gsmd. The
architecture of the resulting enforcement is shown in
Figure 4.

5.2.1. GSM Daemon Processing

The GSM daemon enables applications to use phone
capabilities implemented by the GSM modem. User
applications typically contact the GSM daemon using
the libgsmd library, which is an abstraction layer
that wraps the instruction protocol with a simple API.
There is also a gsmd command shell tool that gives the
user interactive control over the daemon and is used
for testing and debugging. In all cases, requests are
submitted over a UNIX domain socket.

A wide range of functionality is accessible through
the GSM daemon, including the ability to dial and
answer calls, toggle the phone’s vibration mode, detect
signal strength, read and send SMS messages, and
retrieve the phone’s battery status. Recall that both

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–18 (2009)
DOI: 10.1002/sec

11

trusted and untrusted applications may use the GSM
daemon’s operations, where some operations, such as
voice calling, are security-critical while others, such
as checking phone battery status, are not.

5.2.2. Hook Placement Considerations

Based on the architecture of the gsmd code, the
following approach was used to design a reference
monitor interface. We use the term hook to refer to
each function in the interface where an authorization
query is submitted to be evaluated against the gsmd
authorization policy (see Section 5.3.3).

Operation Identification Individual operations are
identified by the payload processing function (e.g.,
the gsmd function usock rcv voicecall) and
subtype flag (e.g., GSMD VOICECALL DIAL). Hooks
are placed once these are identified. Note that the
same AT command may implement multiple distinct
operations. For example, the AT command AT+COPS
0 automatically registers the phone with the network,
but AT+COPS 2 de-registers the phone. Therefore,
we cannot place hooks based on the specific AT
command. A simple call graph analysis shows that
each combination of payload processing function and
subtype flag maps to unique AT command submission,
so we place the hooks after these are known.

Authorization Hook Placement A hook is placed
when the subject and target object of the operation
are both known. The subject must be identified from
the process that submitted the UNIX domain socket
request. The object identity is command-specific. We
further note that the binding of the subject and object
values must not change after authorization because
these values must be submitted to the modem. Subjects
are never changed during request processing, and
only a few operations use distinct objects. Manual
verification was sufficient to determine that this
condition holds.

Callback Operations Some requests register a
client to receive asynchronous callbacks. Hooks are
also placed in callback processing to ensure that the
designated client is authorized to receive the response.
For example, a client can set a callback to receive
notification of signal quality changes. When such an
event occurs, the modem receives a response from
the network, looks up the corresponding command
data structure for the original request, and processes
this data structure to determine the client of the
response. Some of these responses may contain
sensitive data, such as a call status change, change

in the network operators, and a cipher status change.
Prior to delivering the response, a hook is placed to
authorize the response being sent to that client.

5.3. Policy Specification

In this section, we specify MAC policies for both the
gsmd and the system. Since an SELinux policy is
specified in terms of subjects accessing objects, we
have to identify what the subjects and objects are
within the gsmd.

5.3.1. Identifying Objects in the GSM Daemon

We have made a distinction between global and heap
objects in the GSM Daemon. Global objects represent
the collection of data created initially by GSM
Daemon and shared among all subjects, if authorized.
An example is the phonebook object, which is a single
object that any subject may request. Unlike subjects,
objects are given a finer-grained labeling, so each
global object is given its own SELinux type. Heap
objects are those that are created dynamically based
on requests from specific subjects. An example of a
heap object is a phone call. Heap objects are given
the label of the client that created them. For example,
a phone call object is labeled based on the client
process providing the request. When the client wishes
to terminate a call, it provides the object identifier, but
can only terminate the call if its label is authorized to
terminate calls of the call creator’s label.

5.3.2. Identifying Subjects in the GSM Daemon

Subjects correspond to the clients of telephony
requests to the GSM Daemon. The GSM Daemon
listens on a master socket and, once a handshake
is established, a callback is invoked to setup a
user data structure. This structure holds information
about the client, such as the socket file handler
and commands masks. In addition to these fields,
we have added fields to store the SELinux security
information (i.e., SELinux security identifier (SID)
and the SELinux security context, which includes the
SELinux type of the process) for the client. We also
store process state for the client, which is used to
log information regarding its accesses for controlling
usage of resources.

5.3.3. GSM Daemon Policy

We assign subjects to SELinux subject types, such
as trusted t and untrusted t to distinguish
between the trusted and untrusted applications.
Objects are assigned to object types. For global

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–18 (2009)
DOI: 10.1002/sec

12

objects, we assign object types based on their usage.
For example, we use phonebook t for phone books.
For heap objects, we assign object types based on
the subject type of the client that created the object.
The GSM Daemon policy defines which operations
untrusted t may execute safely (i.e., without
causing an information flow to a trusted application).

The GSM Daemon policy server uses the interface
provided by libselinux to query access decisions
from the kernel’s policy server. That is, each policy
request results in a kernel trap that retrieves the
authorization result. A recent patch caches such
requests in the user-space libselinux, but we do
not use this patch yet.

Each application that uses SELinux is required to
initialize its own policy and pass handlers for auditing
and thread management. We make our audit handler
forward audit messages to the gsmd logger.

5.3.4. GSM Daemon Enforcement

In this section, we assess how the implementation
described above protects trusted applications and the
gsmd telephony server in the processing of telephony
requests. Note that the GSM Daemon runs as a CW-
Lite type in SELinux, cw trusted t.

First, untrusted applications cannot access trusted
application data in the modified GSM Daemon, due
to the GSM Daemon’s internal policy. We only give
untrusted applications read access to non-sensitive
GSM global objects (e.g., battery status), so the
untrusted applications cannot impact the integrity of
the GSM Daemon for trusted applications. Also, we
only allow untrusted applications to access untrusted
heap objects.

Second, untrusted applications can only communi-
cate with the GSM Daemon via filtering interfaces.
The only interface for untrusted processes to access
the GSM Daemon is via UNIX domain sockets, so we
ensure that the interface correctly checks the format
of telephony requests. All other interfaces check
that they only read trusted input (e.g., files labeled
trusted t).

5.3.5. SELinux System Enforcement

To ensure protection of the integrity of GSM Daemon
operations, we must also consider the possibility of
other processes attacking the system resources used by
the GSM Daemon. The GSM Daemon depends on a
communication channel to the GSM modem to submit
requests and the audio subsystem to play voice audio.
If an untrusted process can control either of these
objects when the GSM Daemon is processing trusted

application requests, an untrusted application may be
able to compromise the integrity of the trusted process
(e.g., by playing audio controlled by an attacker).

In Openmoko, the GSM Daemon submits GSM
modem requests by writing to the device file for the
modem, /dev/ttySAC0. In a typical UNIX system,
untrusted processes can write to that file. However,
we only want the GSM Daemon to write to this
file on our system. To limit access, we assigned this
device file an SELinux type of trusted t. This
permits any trusted process to write the GSM modem,
but we assume that trusted processes will use the
GSM Daemon for such actions. The result is that
no untrusted application can submit AT commands
directly to the GSM modem, prevent circumvention of
the GSM Daemon authorizations.

Also, the audio subsystem is normally accessible to
both trusted and untrusted applications, so we need
to ensure that when a trusted application is using
audio for a phone call, no untrusted applications can
play audio. The audio subsystem runs in the Linux
kernel and supports software mixing which allows
sound from more than one application to be played
at the same time. Normally, any application can send
sound to the audio subsystem. We verified this on
the Openmoko phone submitting an audio file to the
sound device file /dev/snd. When a voice call is
active, sound files are provided by the GSM Daemon,
but an attacker may be able to slip its own sound file
between actual voice call sound files, compromising
voice communications on the phone. Mediating the
audio subsystem requires us to use a feature of
SELinux called Conditional Policy Extensions [25].
We create a boolean variable in the SELinux policy
called untrustedaudio to correspond to whether
untrusted applications are allowed to play audio or not.
The access rules are then specified as follows:

boo l u n t r u s t e d a u d i o t r u e
I f u n t r u s t e d a u d i o {Rules t o a l l o w

u n t r u s t e d a c c e s s t o a u d i o
subsys t em }

This indicates that untrusted applications will
be allowed access only if untrustedaudio is
true. When a trusted application wants exclusive
access it sets this boolean to false and so
untrusted applications can no longer access the
sound subsystem. To control this, we enable the
GSM Daemon to toggle this boolean when a trusted
application initiates a phone call. The GSM Daemon
invokes the SELinux Policy Management Server to

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–18 (2009)
DOI: 10.1002/sec

13

Load
Request(policy,

execs, libs,
configs, ...)

Measurement Verification

Trusted Subject/
object type?

Measure File +
Append to List =

Extend TPM

yes

A

Trusted?

Policy/Infoflow
Analysis

Low Integrity
Flow?

Into Trusted
Subject?

Subject Filtered?

ok

failno

yes

no

no

yes

yes

yes

no

fail

no

Policy, Code, File
Measurements

Fig. 5. The PRIMA integrity measurement process

change the value of policy booleans‖. When the phone
call completes, the GSM Daemon resets the boolean.
The result is that while a phone call from a trusted
application is active, no untrusted process can play
sound.

5.4. Integrity Measurement

In this section, we discuss how we use integrity
measurement to build a proof that the resultant
phone system enforces CW-Lite integrity. We use the
Policy Reduced Integrity Measurement Architecture
(PRIMA) integrity measurement approach described
in Section 4.4 and shown in Figure 5.

PRIMA functions like a Linux kernel library that
can be called from SELinux. In order to integrate
integrity measurement functionality into SELinux,
Linux IMA callback functions were added after each
of SELinux’s authorization hooks, so they are invoked
only if SELinux authorizes the policy decision. There
is a list of trusted subjects in PRIMA. This list
specifies the SELinux subject types that run trusted
software only. Prior to the loading of this list, all
of the subjects that are part of the early boot phase
are trusted. A sysfs file /selinux/ts load
was created to load and view the trusted label list.
Measurement is done as follows:

‖Only trusted processes can contact the Policy Management Server.

• file mmap was modified to obtain the subject
of the current context. Whenever a code that
is memory mapped as an executable is called,
PRIMA checks the trusted label list for a match
with the subject of the current context. On
finding a match, the code is measured.

• PRIMA then measures the concatenation of the
code hash above with the SELinux subject type.

• To measure the SElinux policy,
PRIMA provides another sysfs file
/selinux/measurereq, which enables us
to pass a pointer to a MAC policy. We measure
an information flow representation of the policy,
generated as specified in Section 5.4.1.

• PRIMA also measures the aggregate of pre-
kernel integrity measurements generated during
PRIMA’s initialization. Because the policy is
not available at this point, no subject binding
measurement is done.

• PRIMA also performs measurement, including
the subject binding, whenever a kernel module
is loaded into the kernel.

5.4.1. Building the Information Flow Graph

We created a program that parses the SELinux policy
binary to extract information flows. The aim is to
simplify verification for the remote party. We want
to identify what flows are possible from and to the
different types, especially the trusted types, that are
specified in the policy. This is done in the following
manner:

• We first extract the mapping between type
numbers and their string representations -
Type number:Type name map

• We build a hash table of access vectors (AV).
These access vectors represent the allow rules
that define access rights in the system.

• We run through the hashtable and identify
whether the permissions between the source and
target type correspond to reads or writes or both
and this defines the flow between them. We
collect this in an information flow graph after
mapping the subject and object type numbers to
the names using the map will built in the first
step. An entry in the information flow graph
looks like this

trusted_t untrusted_t 2

where trusted t is the source type, untrusted t
is the target type and 2 indicates a flow only

from the subject to the object.
Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–18 (2009)
DOI: 10.1002/sec

14

5.4.2. init Modification

PRIMA requires the following modifications to init:

• init needs to load the trusted label
list before loading the policy. First the
contents of the trusted label list stored in
/etc/selinux/trusted is written to
measurereq for measurement, and then
written to /selinux/ts load to load into
kernel memory.
• A call to generate the information flows is

also added to init and the graph generated is
passed to measurereq for measurement.

6. Evaluation

In this section, we evaluate the implementation
of our security architecture on the Openmoko
2007.2 platform of the Openmoko-based Neo1973
phone [26]. We perform the evaluation in three steps:

• We evaluate the security of the resultant
Openmoko system in terms of reference monitor
guarantees [2] and show how our system
achieves these guarantees.
• We evaluate the function and performance of

the resultant Openmoko phone system and show
that the performance overhead is negligible.
• We evaluate the use of PRIMA to generate

integrity proofs by showing that such proofs are
practical to build and incur a modest overhead
on executable and library loads.

6.1. Security Evaluation

In our system, we leverage an existing SELinux
implementation and add reference monitoring to
some key services, such as the telephony server and
installer, to enforce comprehensive mandatory access
control over phone system use. An implementation
that enforces mandatory access control must satisfy
reference monitor guarantees [2]. Below, we examine
whether the resultant system satisfies these three
guarantees in turn.

Complete Mediation This guarantee requires that
all security-sensitive operations run in the system be
mediated to enforce access control. To ensure this,
we need to show that for the applications we are
securing, we have added access hooks to all security-
sensitive operations they can execute. Within the
gsmd, all requests are converted to AT commands
based on the payload processing function and subflag,

so we added security hooks for each security-sensitive
combination. The gsmd also receives callbacks
for requests that must be delivered to authorized
receivers, so mediation of callbacks is also necessary.
Fortunately, callbacks are filtered through a single
function that also identifies the possible operations.
Some broadcasts are for specific clients, so we have
to save context for these callbacks. There is only
one call context allowed on the Openmoko phone,
so it is trivial to match the context to the callback.
The software installer application is even simpler, in
that it accepts untrusted input from only a couple of
interfaces (install and update), so we added filtering
code to mediate that interface by detecting whether the
operation is for trusted or untrusted code.

Tamperproof Tamperproof means that the code and
data (including policy) of the enforcing OS and
user-space services cannot be modified by untrusted
parties. Tampering can take place at rest (e.g.,
through malicious modification of files) or at runtime
(e.g., through malicious inputs). For example, if an
untrusted process can modify the gsmd executable,
configuration, or policy files, then the reference
monitor in the gsmd can be tampered. On the other
hand, runtime tamperproofing involves validation that
all access to untrusted processing is filtered, that is,
verification of CW-Lite integrity. As this is the same
requirement as for any trusted processing, we verify
that our enforcing OS and user-space services are
protected at rest at this stage, and below we verify
that all trusted processing is protected by a policy that
satisfies CW-Lite integrity.

To verify that a trusted program cannot be tampered
at rest, we use a technique that we previously have
developed [30]. In this approach, we use program
packages to define the set of files in a program∗∗,
and verify that only trusted processes can modify such
files. To implement this verification, we built a policy
analysis tool, called PALMS [29], which converts
SELinux policy to a Prolog representation that is
queried to identify any information flows that violate
Biba integrity. We apply PALMS by determining
whether any untrusted process (i.e., process other
than the installer, kernel, and package process itself)
can modify any file once installed from the package
(i.e., opkg packages for Openmoko). No access that
violates this tamperproofing requirement was found
for gsmd. For the installer, we had to take a slightly

∗∗System libraries are not included in packages, but they must also
be protected from tampering. We verify the protection of these files
separately.

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–18 (2009)
DOI: 10.1002/sec

15

different route, as the installer does not have a package
definition (i.e., a chicken-and-egg problem, since it
needs an installer). Instead, we used strace to
determine the files loaded when the installer is built
and installed on an Openmoko system. Based on this
set of files, we apply PALMS, and once again found
that the tamperproofing requirement was met.

Verifiability The reference monitor must be simple
enough to verify that: (1) its code correctly enforces
mandatory access control and (2) that the policy is
correct relative to the system security goal, CW-Lite
integrity.

Verifying that a program is correctly implemented
is not yet a practical undertaking for conventional
systems, so we verify a more modest property,
showing that the enforcement of mandatory access
control is dependent on the correctness of SELinux††.
In the case of gsmd, the opkg installer, and the audio
subsystem, we simply added SELinux enforcement
(e.g., calls to the SELinux enforcement mechanism
via avc has perm) at the necessary filtering and
mediation points, so indeed, the system’s correctness
depends on SELinux.

To verify policy correctness, we once again apply
our PALMS policy analysis tool. In this case, the
verification requirement is CW-Lite integrity, where
trusted processes (e.g., those installed as trusted by the
installer) are protected via Biba integrity and that user-
space services (e.g., the telephony server and installer)
that receive input from untrusted processes be capable
of filtering that input.

In designing the SELinux policy for the phone
system, our aim was to reduce the policy size
and complexity significantly. The key means for
reducing the policy size was the use of four
subject types, representing the four types of sys-
tem components: trusted applications (trusted t),
untrusted applications (untrusted t), user-space
services (cw trusted t), and the operating system
(kernel t). However, while configuring the policy
for this experiment, we found that there were many
dependencies between SELinux types in the policy,
which required us to retain some types in the existing
reference policy. While we were able to compile a
policy of 100 types, other SELinux types, particularly
types for device objects, appear to be necessary
for the system to function properly. We are still
experimenting with the policy to see how many of

††Correctness is also dependent on correct placement of SELinux
code to completely mediate security-sensitive operations, which we
demonstrated in the Complete Mediation paragraph above.

Operation Meaning Category Subject
Type

Outcome

AT+COPS Network Reg-
ister

S U D

ATD Voicecall Dial S U D
ATD Voicecall Dial S T A
AT+CGMM Get phone

model number
N U A

AT+CBC Get Battery
Info

N U A

AT+CBC Get Battery
Info

N T A

alsactl -f
/etc/stere-
oout.state
restore

Set audio codec
to playback
mode

S U D

alsactl -f
/etc/stere-
oout.state
restore

Set audio codec
to playback
mode

S T A

cu −l
/dev/

ttySAC0

Command
interface to
send text to the
modem

S T D

cu −l
/dev/

ttySAC0

Command
interface to
send text to the
modem

S U D

Table I. This table shows some operations that we tried with
trusted(T) and untrusted(U) clients and the result of an access check
i.e., allowed(A) or denied(D). The trusted application is allowed
access to all security-sensitive(S) operations except for directly
accessing the modem. Untrusted applications are allowed access
to all non-sensitive(N) operations like phone model information
(AT+CGMM). They are denied access to all of the strictly sensitive
operations like network registration (AT+COPS). Additionally they
are also not allowed to toggle the audio codec mode.

these types can be eliminated, but currently, our policy
has approximately 700 SELinux types. This is still
a significant improvement over the 2000 types that
are in the SELinux reference policy. In particular, the
SELinux policy binary is reduced from 3MB to less
than 300KB, resulting in greater than a 90% reduction
in policy size that made it easy to verify.

We then applied the PALMS tool to verify CW-Lite
integrity for the resulting policy. With the addition
of these other SELinux types to the policy, more
types needed to be considered for trusted applications
and user-space services. First, the types for the
initial process (init t) and some system processes
(logrotate, ifconfig, and SELinux types, such
as setfiles, although others may be warranted in
more complex configurations) must be considered as
trusted, as well. Second, some user-space services
already have SELinux types, such as dbus. Further,
the matchbox window server must be considered
a user-space service. We note that dbus and the
X window server already have reference monitor
implementations for SELinux, so we would require

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–18 (2009)
DOI: 10.1002/sec

16

a reference monitor for phone window server in
the future. In this configuration, PALMS verified no
information flow from untrusted to any of the trusted
SELinux types, given that the user-space service types
are trusted to filter untrusted inputs correctly. Thus,
CW-Lite integrity for the phone system is verified.

6.2. System Function and Performance

To test the functionality of the modified installer,
we created two different clients, one a trusted client
with type trusted t that can perform all telephony
commands, and an untrusted client untrusted t
that can only query for the phone version and battery
status. The trusted client could perform all commands,
whereas when the untrusted client attempted other
operations, it was denied (i.e., an SELinux denial
message was logged). We performed operations that
were both security-sensitive and not, and show some
of the results in Table I.

We then allowed untrusted processes to perform
SMS messaging in order to test our ability to limit
misuse of other objects, in this case SMS messages.
Untrusted clients were then able to send SMS
messages, but the number of SMSes sent collectively
by untrusted applications was limited to one message
every five minutes and logged as controlled
access granted. Beyond this limit, all SMSes
were blocked, so we saw SELinux denial messages
being logged for these rejections. A blacklist of SMS
numbers were also created, and access was denied to
these specific numbers for untrusted subjects.

The audio subsystem was protected by restricting
access to the sound device file to the trusted processes
when the untrustedaudio flag was false. The
GSM Daemon set this flag to false whenever a
voice call was authorized (via the Policy Management
Server). We found that untrusted clients could not play
sound files during this time.

Implementation overhead was tested by running
local GSM functions with and without the gsmd
hooks. The GSM Daemon command pr requests that
the GSM Daemon read the local phone book. This
command was used for testing because it can be
handled locally on the phone. Commands that do not
use the network minimize variance due to network
delay. The gsmd hooks involve a system call to
the kernel to determine the authorization result for
the requested operation. Only one authorization was
necessary for each client request. We found that on
average overhead was less than 0.1 ms between the
original gsmd and the modified gsmd for executing
pr requests, which is not out of line for system

Vanilla kernel 1 min 39.0 seconds
IMA Kernel 1 min 55.0 seconds

PRIMA Kernel 1 min 52.7 seconds
Table II. Boot time of Vanilla, IMA and PRIMA kernel (in seconds)
on the Openmoko 2007.2 platform of the Neo1973 phone.

call processing on the phone system. A recent patch
enables caching of authorizations in libselinux,
which will remove the need for repeated calls to the
kernel to authorize the same operation. It is future
work to integrate the modified gsmd server with this
mechanism.

6.3. PRIMA Measurement and Performance

In this section, we show that PRIMA integrity proofs
can be generated for phone systems and that the
performance overhead for collecting measurements
for such proofs is acceptable. Figure 6 shows a sample
PRIMA measurement list for an Openmoko phone.
This measurement list includes the following fields:
(1) the PCR extended by the hash (faked since there
is no TPM or MTM hardware); (2) the hash of that
measurement; (3) the filename of the file measured;
and (4) the SELinux subject type into which that file
is being executed. PRIMA stores each measurement in
the order they were performed. This forms a list that is
stored in kernel memory and can be inspected through
the sysfs file ascii runtime measurements.

Recall that PRIMA takes two measurements for
executables (executable file hash and SELinux type),
and only one measurement for libraries (library
file hash, as it is only relevant that the library
was loaded in a trusted subject type). The first
executable measurement includes the file hash only
(e.g., as in traditional integrity measurement, such
as IMA [31]). This first measurement enables the
remote party to identify the executable file uniquely,
since they are identified by their hash value. The
second measurement binds the executable file to the
subject type in which it is loaded. This enables the
remote party to verify that the expected code is being
run for that subject type. Libraries only require one
measurement, as we are only concerned that high
integrity libraries are used, not which subject they are
bound to.

Table II shows the boot time with a vanilla,
IMA and PRIMA Linux kernels on the Openmoko
phone. The overhead for IMA and PRIMA kernels
indicates the additional cost for collecting integrity
measurements (i.e., hash value computation). The time
to update hardware is not included (since there is no
such hardware), but as such updates are performed

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–18 (2009)
DOI: 10.1002/sec

17

10 ff boot_aggregate
10 e56018bfcc61405d9def6a595d2e40b7b11c506a boot_aggregate kernel
10 6f6eb4425481a71ca77d0f1daf66fd15aa8f8767 init
10 2db507746ded4f5d96aaa8ae9b581c020bbc6c82 init kernel_t
10 607923211824a0896681a3905462d686e31efed6 ld-uClibc.so.0
10 72ee17e727640c366694d4688bf1eb8211490139 libselinux.so.1
10 5353b8942212fff22bf8d58cb3a7f95f099633c0 libc.so.0
10 431130f8b5339f70ac96450e2978ad4084b2a5be libsepol.so.1
10 ebf6d1687c36e7bf53cdc62bc1adab62468de21f libgcc_s.so.1
10 0d8a05330cdf2b02a65cf102809a6dd496b2cfff sh
10 b6f76619ca02b186a09a90878aa465e4ce1d331e sh init_t
10 ee7f114040e114012e25c8259d886dd8e8f71aca libcrypt.so.0
10 847a13e34caa35dd7049494e6f474253f1e53c9d syslogd initrc_t
10 57b62f6b521f644093e0b975ea4fd5070f99c28b ipkg-cl
10 bfe18be303892a8cce1cbc2623d2dd150af2742d ipkg-cl init_t
10 8c727828829ab478e7c77fd499543fde9abc52bf libipkg.so.0.0.0

Fig. 6. Example of a PRIMA measurement list. Each line consists of a (a) PCR Location, (b) SHA-1 Hash, (c) filename and (d)
subject type.

asynchronously, the additional overhead should be
negligible. Table II shows that the overall boot time
is increased 13.8% by the integrity measurements
of the PRIMA kernel run on the Openmoko phone.
Note, however, that the increase is reduction from the
IMA kernel, as several applications processes that are
not part of the system’s trusted computing base are
started at boot time. As the Openmoko boot time is
rather slow for a phone, additional work to improve
boot time, such as reducing the number of processes
that must start before the phone is usable, should
be undertaken. Note that such measures would also
reduce the cost of integrity measurement prior to boot.

Table III shows the time taken to measure files
(i.e., compute their hash values) of different sizes. We
tested the performance of our integrity measurement
system on the files of sizes 150 Kb, 1.2 Mb, 4.1 Mb
and 16.8 Mb and found that the time to measure these
were 0.03, 0.16, 0.52 and 2.08 seconds, respectively,
showing a linear growth. The Openmoko distributors
take pains to keep the size of executables modest,
so over 90% of the executable files (in /bin,
/usr/bin, and /usr/sbin) are under 100K in
size and only our modified gsmd is over 1M (probably
due to our build process since the original gsmd is
only 68K). Thus, we would expect overheads of less
than 50 milliseconds for over 90% of code loads
and no overhead greater than 0.2 seconds. Libraries
are generally larger in size, with nearly 1/3 of those
in /usr/lib exceeding 100K, but only 2 exceed
1M (libc and libgtk). While libc is used in many
processes, recall that we only need to measure a library
the first time that it is loaded into a trusted subject
process. Thus, the cost to load all 180 libraries in

File Size Time Taken
150 Kb 0.03
1.2 Mb 0.16
4.1 Mb 0.52
16.8 Mb 2.08

Table III. Time taken to measure files of different sizes (in seconds)
on the Openmoko 2007.2 platform of the Neo1973 phone.

/usr/lib, assuming 2/3 incur the cost of hashing
a 150K file and 1/3 incur the cost of hashing a 1.2M
file (which is conservative), would be 13 seconds total.
We note that this cost appears largely in the system
boot, so the development of an approach to measure
all standard libraries in one step, such as by measuring
a file that specifies the standard library hashes, should
significantly improve boot times.

7. Conclusion

In this paper, we provide a solution for protecting
and measuring the integrity of security-critical
applications running on mobile phones. Our insight
is to employ the CW-Lite integrity model to
protect the integrity of security-critical applications,
while permitting practical system function via user-
space services. CW-Lite dictates that we augment
user-space services with reference monitoring to
enforce mandatory access control policy and filtering
interfaces to protect it from untrusted input. Further,
we integrate access enforcement between user-space
services, a software installer and telephony server, and
the operating system to ensure that comprehensive
mediation of CW-Lite integrity. In particular, we
integrate SELinux enforcement with the extended

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–18 (2009)
DOI: 10.1002/sec

18

telephony server to ensure that attackers cannot
use system resources, such as direct access to the
modem or audio subsystem, to compromise voice
calls. Finally, we incorporate the PRIMA integrity
measurement architecture to build proofs that a remote
party can verify CW-Lite integrity of the applications
on the phone. We achieve all this with low overhead on
the Linux-based Openmoko phone, and hope that our
approach provides guidance for how to build secure
mobile phone systems.

References

1. O. Aciicmez, L. Afshin, J.-P. Seifert, and X. Zhang. A
trusted mobile phone prototype. In Proceedings of the 5th
IEEE Consumer Communications and Networking Conference
(CCNC), pages 1208–1209, 2008.

2. J. P. Anderson. Computer security technology planning study.
Technical report, ESD-TR-73-51, Oct. 1972.

3. Apple Inc. Apple app store. http://www.apple.com/
iphone/appstore/.

4. W. E. Boebert and R. Y. Kain. A practical alternative to
hierarchical integrity policies. In Proceedings of the 8th
National Computer Security Conference, 1985.

5. F-Secure Computer Virus Information Pages: Cabir. web-
site, 2006. http://www.f-secure.com/v-descs/
cabir.shtml.

6. S. Carew. Cingular launches U.S. mobile banking. http:
//www.reuters.com/article/technology-
media-telco-SP/idUSN2719455220070327.

7. J. Carter. Using gconf as an example of how to create an
userspace object manager. 2007 SELinux Symposium, 2007.

8. D. D. Clark and D. Wilson. A comparison of military and
commercial security policies. In 1987 IEEE Symposium on
Security and Privacy, May 1987.

9. P. England, B. Lampson, J. Manferdelli, M. Peinado, and
B. Willman. A trusted open platform. Computer, 36(7):55–
62, 2003.

10. H. M. et al. Trusted platform on demand. Technical Report
RT0564, IBM, Feb. 2004.

11. P. A. L. et al. The inevitability of failure: The flawed
assumption of security in modern computing environments. In
Proceedings of the 21st National Information Systems Security
Conference, pages 303–314, 1998.

12. T. Fraser. LOMAC: Low water-mark integrity protection for
COTS environments. In 2000 IEEE Symposium on Security
and Privacy, May 2000.

13. Google. Android market. http://www.android.com/
market/.

14. IBM. Integrity Measurement Architecture for Linux. http:
//www.sourceforge.net/projects/linux-ima.

15. J. Palmieri. Get on d-bus. http://www.redhat.
com/magazine/003jan05/features/dbus/
#security.

16. T. Jaeger, R. Sailer, and U. Shankar. PRIMA: Policy-reduced
integrity measurement architecture. In Proceedings of the 11th
ACM Symposium on Access Control Models and Technologies,
pages 19–28, June 2006.

17. K.J.Biba. Integrity considerations for secure computer
systems. Technical Report MTR-3153, Mitre Corporation,
June 1975.

18. F-Secure Computer Virus Information Pages: Mabir.A.
http://www.f-secure.com/v-descs/mabir.
shtml, 2005.

19. J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and
A. Seshadri. Minimal TCB code execution. In Proceedings

of the 2007 IEEE Symposium on Security and Privacy, pages
267–272. IEEE Computer Society, 2007.

20. Motorola. Protection must be pervasive. http://www.
motorola.com/content.jsp?globalObjectId=
6693.

21. D. Muthukumaran, A. Sawani, J. Schiffman, B. M. Jung, and
T. Jaeger. Measuring integrity on mobile phone systems. In
SACMAT ’08: Proceedings of the 13th ACM symposium on
Access control models and technologies, pages 155–164, New
York, NY, USA, 2008. ACM.

22. R. Naraine. Russinovich: Malware will thrive, even with
vista’s uac. http://blogs.zdnet.com/security/
?p=175.

23. Novell. AppArmor Linux Application Security. http://
www.novell.com/linux/security/apparmor/.

24. Security-Enhanced Linux. http://www.nsa.gov/
selinux.

25. NSA. SELinux conditional policy language extensions.
http://www.crypt.gen.nz/selinux/
conditional_policy.html.

26. openmoko.com. http://www.openmoko.com/, 2008.
27. V. Rao. Security in mobile phones - handset and

networks perspective. Master’s thesis, The Pennsylvania State
University, 2007.

28. Research In Motion Limited. Blackberry app world.
http://na.blackberry.com/eng/services/
appworld/.

29. S. Rueda. SELinux policy analyzer. http://www.cse.
psu.edu/˜ruedarod/res/analyzer_v4.tar.
bz2.

30. S. Rueda, D. H. King, and T. Jaeger. Verifying compliance
of trusted programs. In USENIX Security Symposium, pages
321–334, 2008.

31. R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design
and implementation of a TCG-based integrity measurement
architecture. In Proceedings of the 13th USENIX Security
Symposium, San Diego, CA, USA, Aug. 2004.

32. U. Shankar, T. Jaeger, and R. Sailer. Toward automated
information-flow integrity verification for security-critical
applications. In Proceedings of the 2006 Networked and
Distributed Systems Security Symposium, Feb. 2006.

33. E. Shi, A. Perrig, and L. van Doorn. Bind: A fine-
grained attestation service for secure distributed systems. In
Proceedings of the 2005 IEEE Symposium on Security and
Privacy, pages 154–168, 2005.

34. S. Shrivastava. Satem: Trusted service code execution across
transactions. In Reliable Distributed Systems, 2006. SRDS
’06. 25th IEEE Symposium on, pages 337–338, Oct. 2006.

35. Sun Microsystems. Trusted Solaris Operating System.
http://www.sun.com/software/solaris/
trustedsolaris/index.xml.

36. Symbian Limited. Symbian signed. http://www.
symbiansigned.com.

37. Trifinite.org – home of the trifinite.group. http://
trifinite.org/trifinite_stuff.html, 2008.

38. Trusted Computing Group. Trusted computing group:
Mobile. https://www.trustedcomputinggroup.
org/groups/mobile.

39. Trusted Computing Group. TCG TPM specification
version 1.2 revision 85, Feb 2005. https://www.
trustedcomputinggroup.org/groups/tpm/.

40. Trustzone technology overview. http://www.arm.com/
products/security/trustzone/, 2007.

41. E. Walsh. Application of the Flask architecture to the X
window system server. 2007.

42. C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-
Hartman. Linux security modules: General security support
for the Linux kernel. In Proceedings of the 11th USENIX
Security Symposium, pages 17–31, August 2002.

Copyright c© 2009 John Wiley & Sons, Ltd.
Prepared using secauth.cls

Security Comm. Networks 00: 1–18 (2009)
DOI: 10.1002/sec

http://www.apple.com/iphone/appstore/
http://www.apple.com/iphone/appstore/
http://www.f-secure.com/v-descs/cabir.shtml
http://www.f-secure.com/v-descs/cabir.shtml
http://www.reuters.com/article/technology-media-telco-SP/idUSN2719455220070327
http://www.reuters.com/article/technology-media-telco-SP/idUSN2719455220070327
http://www.reuters.com/article/technology-media-telco-SP/idUSN2719455220070327
http://www.android.com/market/
http://www.android.com/market/
http://www.sourceforge.net/projects/linux-ima
http://www.sourceforge.net/projects/linux-ima
http://www.redhat.com/magazine/003jan05/features/dbus/#security
http://www.redhat.com/magazine/003jan05/features/dbus/#security
http://www.redhat.com/magazine/003jan05/features/dbus/#security
http://www.f-secure.com/v-descs/mabir.shtml
http://www.f-secure.com/v-descs/mabir.shtml
http://www.motorola.com/content.jsp?globalObjectId=6693
http://www.motorola.com/content.jsp?globalObjectId=6693
http://www.motorola.com/content.jsp?globalObjectId=6693
http://blogs.zdnet.com/security/?p=175
http://blogs.zdnet.com/security/?p=175
http://www.novell.com/linux/security/apparmor/
http://www.novell.com/linux/security/apparmor/
http://www.nsa.gov/selinux
http://www.nsa.gov/selinux
http://www.crypt.gen.nz/selinux/conditional_policy.html
http://www.crypt.gen.nz/selinux/conditional_policy.html
http://www.openmoko.com/
http://na.blackberry.com/eng/services/appworld/
http://na.blackberry.com/eng/services/appworld/
http://www.cse.psu.edu/~ruedarod/res/analyzer_v4.tar.bz2
http://www.cse.psu.edu/~ruedarod/res/analyzer_v4.tar.bz2
http://www.cse.psu.edu/~ruedarod/res/analyzer_v4.tar.bz2
http://www.sun.com/software/solaris/trustedsolaris/index.xml
http://www.sun.com/software/solaris/trustedsolaris/index.xml
http://www.symbiansigned.com
http://www.symbiansigned.com
http://trifinite.org/trifinite_stuff.html
http://trifinite.org/trifinite_stuff.html
https://www.trustedcomputinggroup.org/groups/mobile
https://www.trustedcomputinggroup.org/groups/mobile
https://www.trustedcomputinggroup.org/groups/tpm/
https://www.trustedcomputinggroup.org/groups/tpm/
http://www.arm.com/products/security/trustzone/
http://www.arm.com/products/security/trustzone/

	1 Introduction
	2 Problem Definition
	3 Related Work
	4 Architecture
	4.1 CW-Lite Integrity Model
	4.2 Enforcement via Reference Monitoring
	4.3 Mandatory Access Control Policy
	4.4 Integrity Proofs

	5 Implementation
	5.1 Implementing the CW-Lite Model
	5.1.1 SELinux
	5.1.2 Specifying a CW-Lite SELinux policy
	5.1.3 CW-Lite for the Software Installer

	5.2 User-Space Reference Monitors
	5.2.1 GSM Daemon Processing
	5.2.2 Hook Placement Considerations

	5.3 Policy Specification
	5.3.1 Identifying Objects in the GSM Daemon
	5.3.2 Identifying Subjects in the GSM Daemon
	5.3.3 GSM Daemon Policy
	5.3.4 GSM Daemon Enforcement
	5.3.5 SELinux System Enforcement

	5.4 Integrity Measurement
	5.4.1 Building the Information Flow Graph
	5.4.2 init Modification

	6 Evaluation
	6.1 Security Evaluation
	6.2 System Function and Performance
	6.3 PRIMA Measurement and Performance

	7 Conclusion

