
Exploitation Techniques and Defenses
for Data-Oriented Attacks

Long Cheng∗, Hans Liljestrand†, Md Salman Ahmed‡, Thomas Nyman†,
Trent Jaeger§, N. Asokan†, and Danfeng (Daphne) Yao‡

∗School of Computing, Clemson University, USA
†Department of Computer Science, Aalto University, Finland

‡Department of Computer Science, Virginia Tech, USA
§Department of Computer Science and Engineering, Pennsylvania State University, USA

Abstract—Data-oriented attacks manipulate non-control data
to alter a program’s benign behavior without violating its control-
flow integrity. It has been shown that such attacks can cause
significant damage even in the presence of control-flow defense
mechanisms. However, these threats have not been adequately
addressed. In this systematization of knowledge (SoK) paper,
we first map data-oriented exploits, including Data-Oriented
Programming (DOP) and Block-Oriented Programming attacks,
to their assumptions/requirements and attack capabilities. We
also compare known defenses against these attacks, in terms
of approach, detection capabilities, overhead, and compatibility.
Then we discuss the possible frequency anomalies of data-
oriented attacks, especially the frequency anomalies of DOP
attacks with experimental proofs. It is generally believed that
control flows may not be useful for data-oriented security. How-
ever, the frequency anomalies show that data-oriented attacks
(especially DOP attacks) may generate side-effects on control-
flow behavior in multiple dimensions. In the end, we discuss
challenges for building deployable data-oriented defenses and
open research questions.

Index Terms—Data-oriented attacks; Exploitation techniques;
Defenses; Systematization of knowledge (SoK);

I. INTRODUCTION

Memory-corruption vulnerabilities are one of the most com-

mon attack vectors used to compromise computer systems.

Such vulnerabilities can be exploited in different ways, which

potentially allow attackers to perform arbitrary code execution

and data manipulation. Existing memory corruption attacks

can be broadly classified into two categories: i) control-flow

attacks [1], [2], [3] and ii) data-oriented attacks (also known

as non-control data attacks) [4], [5], [6], [7], [8]. Both types of

attacks can cause significant damages to a victim system [9].

Control-flow attacks corrupt control data (e.g., return ad-

dress or code pointer) in a program’s memory space to

divert the program’s control flow, including malicious code

injection [1], code reuse [2], and Return-Oriented Program-

ming (ROP) [3]. To counter these attacks, many defense

mechanisms have been proposed, such as stack canaries [10],

Data Execution Prevention (DEP) [11], Address Space Lay-

out Randomization (ASLR) [12], Control-Flow Integrity

(CFI) [13], Return-Flow Guard (RFG) [14], Intel’s CET [15]

and MPX [16]. In particular, CFI-based solutions [17] have

received considerable attention in the last decade. The idea is

to ensure that the runtime program execution always follows

a valid path in the program’s Control-Flow Graph (CFG),

by enforcing security policies on indirect control transfer

instructions (e.g., ret/jmp).

In contrast to control-flow attacks, data-oriented attacks [5],

[18] change a program’s benign behavior by manipulating

the program’s non-control data (e.g., a data variable/pointer

which does not contain the target address for a control

transfer) without violating its control-flow integrity. The attack

objectives include: 1) information disclosure (e.g., leaking

passwords or private keys); 2) privilege escalation (e.g., by
manipulating user identity data) [5]; 3) performance degra-

dation (e.g., resource wastage attack) [19]; and 4) bypassing

security mitigation mechanisms [20].

As launching control-flow attacks becomes increasingly

difficult due to many deployed defenses against control-

flow hijacking, data-oriented attacks1 are likely to become

an appealing attack technique for system compromise [6],

[7], [8], [20], [21], [22]. Data-oriented attacks can be as

simple as flipping a bit of a variable. However, they can be

equally powerful and effective as control-flow attacks [23].

For example, arbitrary code-execution attacks are possible if

an attacker could corrupt parameters of system calls (e.g.,
execve()) [9]. Recently, Hu et al. [7] proposed Data-

Oriented Programming (DOP), a systematic technique to

construct expressive (i.e., Turing-complete) non-control data

exploits. Ispoglou et al. [18] presented the Block-Oriented

Programming (BOP), a code reuse technique that utilizes basic

blocks as gadgets along valid execution paths in the target

binary to generate data-oriented exploits. Though data-oriented

attacks have been known for a long time, the threats posed

by them have not been adequately addressed due to the fact

that most previous defense mechanisms focus on preventing

control-flow exploits.

The motivation of this paper is to systematize the current

knowledge about exploitation techniques of data-oriented at-

tacks and the current applicable defense mechanisms. Unlike

prior systematization of knowledge (SoK) papers [4], [24],

1In this work, we mainly focus our investigation on data-oriented attacks that are
caused by memory-corruption vulnerabilities. Data-only attacks that are caused by
hardware transient faults or logic errors in code are beyond the scope of this work.

114

2019 IEEE Secure Development (SecDev)

978-1-5386-7289-1/19/$31.00 ©2019 IEEE
DOI 10.1109/SecDev.2019.00022

[25] related to memory corruption vulnerabilities, our work

specifically focuses on data-oriented attacks. In addition to

generic memory corruption prevention mechanisms discussed

in [4], [24], [25] such as memory safety, software compartmen-

talization, and address/code space randomization, we mainly

discuss recently proposed defenses against data-oriented at-

tacks. Our technical contributions are as follows.

* We systematize the current knowledge about data-oriented

exploitation techniques with a focus on the recent DOP

attacks. We demystify the DOP exploitation technique by

using the ProFTPd DOP attack [6] as a case study, and

provide an intuitive and detailed explanation of this at-

tack by analyzing its constituent steps. We discuss the

automation of data-oriented attacks, e.g., the Block-Oriented
Programming Compiler (BOPC) demonstrated in [18], fun-

damental differences between DOP and BOP, and flexibility

issues in exploit writing languages such as MINDOP and

SPloit Language (SPL). We also discuss representative data-

oriented exploits including their assumptions/requirements

and attack capabilities (Section II).

* We present a three-stage model for data-oriented attacks

and discuss defense techniques according to different stages.

Then, we provide a comparative analysis of recent defensive

approaches focusing on data-oriented attacks (Section III).

* We investigate possible side-effects of data-oriented attacks,

particularly the side-effects of DOP attacks on control-flow

behaviors in multiple dimensions. We show the proof of

frequency anomalies caused by DOP attacks (Section IV).

We also discuss some open research problems and unsolved

challenges (Section V).

II. DATA-ORIENTED ATTACKS

In this section, we first describe why data-oriented attacks

has received attention among security researchers in recent

years. Then we introduce two categories of exploitation tech-

niques to launch data-oriented attacks (Section II-B). We

reproduce a real-world DOP attack against the ProFTPD FTP-

server [7] and present a detailed description of the attack to

demonstrate how the complex attack achieves rich expressive-

ness (Section II-C). Then, we map representative data-oriented

exploits in the literature to their assumptions/requirements and

attack capabilities (Section II-E).

A. Why do data-oriented attacks receive attention?

The war games of memory corruption between attackers and

defenders started in the mid-’90s and have been continuing

to date. The stack smashing attack [71] and related attacks

such as overwriting Structured Exception Handler (SEH) [72]

were popular among attackers for a few years. In those

attacks, attackers inject malicious code to the stack or heap

and then redirect the control-flow to the injected code. Data

Execution Prevention (DEP) [11] and Structured Exception

Handling Overwrite Protection (SEHOP) [73] render those

attacks impossible.

A new class of attacks, namely the code-reuse attacks,

dominated in the last decade due to their capability of by-

passing DEP. Code-reuse includes attacks such as return-to-

libc [74], ROP [75], Call-Oriented Programming [76], and

Jump-Oriented Programming [77]. ASLR [78] was introduced

to make code-reuse attacks difficult and unreliable. However,

attackers demonstrated several methods for bypassing ASLR

by exploiting information leakage vulnerabilities [79], [80],

[81], [82]. An information leak vulnerability may render the

ASLR defense ineffective because it allows inferring the layout

of the address space of a process. A few influential code-

reuse attacks include AOCR [83], JIT-ROP [84], BROP [85],

CFB [86], OOC [76], and EHH [87]. Most of these attacks

extract ROP gadgets from a process’ code segment by utilizing

an information leak and then chain the gadgets together to

bypass ASLR- and CFI-related defenses. A gadget is a short

sequence of instructions (usually 2-5 instructions per gadget)

that performs a single operations such as loading a constant

to a register or reading a value from memory. The prevalence

of information leakage vulnerabilities motivated researchers

to develop leakage-resilient defenses. The existing leakage-

resilient defenses are broadly in four categories: i) fine-

grained code randomization, ii) re-randomization, iii) memory

protection, and iv) code/data pointer integrity.

Researchers have put significant efforts on developing prac-

tical control-flow integrity [63] defenses such as CCFIR [66]

and bin-CFI [65]. However, software supported CFI and

shadow stack implementations incur significant slowdown,

primarily due to the enforcement of control-flow transfers

at runtime after constructing a non-trivial control-flow graph

[88], [89], [90], [91]. This non-trivial control-flow graph

approximates the set of control-flow transfers. Researchers

often balance the trade-offs between security and practicality

of CFI-based solutions by relaxing the CFI policies [65],

[66], [92]. But CFI solutions that relax CFI policies may

not prevent some code-reuse attacks [87]. Thus, in recent

years, researchers’ focus has been transferred to the hardware

supported CFI [67], [68], [69], [70], [93], [94], [95], [96] and

shadow stack [68], [97], [98] implementations that improve

performance without relaxing CFI policies. Budiu et al. first
demonstrated hardware-assisted CFI in [93]. The overall goal

of hardware-assisted CFI defenses is to embed unique labels in

indirect branch instructions and enforce control-flow integrity

at each execution of an indirect branch instruction by loading

those labels in dedicated registers using CFI instructions. CFI

defenses (software- and hardware-based) make most code-

reuse attacks unreliable. Due to this fact, many attackers

have shifted their focus on data-oriented attacks in recent

years [7], [18]. However, that does not mean that code-reuse

attacks have completely prevented in the presence of CFI. For

example, Veen et al. [99] demonstrated code-reuse attacks in

the presence of CFI, leakage-resistant code randomization, and

code-pointer integrity.

In addition to CFI defenses, Table I summarizes other

generic defenses against memory corruption attacks, includ-

ing memory safety, software compartmentalization, leakage-

115

Defense Name and Year Published Defense Type Protection From

PointGuard (2003) [26], Data integrity (2003, 2007) [27], [28], HardBound (2008) [29],
SoftBound (2009) [30], AddressSanitizer (2012) [31], Code-Pointer Integrity (2014) [32], Intel

MPX (2015) [33], Low-fat-pointers (2016-17) [34], [35], Fat-pointer (2017) [36], Pointer
Authentication (2017) [37], Hardware-assisted AddressSanitizer (2018) [38]

Memory safety
Security vulnerabilities dealing with memory

accesses

SFI (1994) [39], XFI (2006) [40], BGI (2009) [41], LXFI (2011) [42], CHERI (2014) [43]
Software

compartmentalization

Consequences of attacks that leverage memory
vulnerabilities, including software

compartmentalization and randomization
(diversification) techniques

ASLP (2006) [44], ILR (2012) [45], Binary stirring (2012) [46], Multicompiler (2013-14) [47],
[48], Selfrando (2016) [49], CCR (2018) [50]

Fine-grained
Randomization

Basic ROP exploits

TASR (2015) [51], Shuffler (2016) [52], Remix (2016) [53], Runtime-ASLR (2016) [54] Re-randomization
JIT-ROP and BROP type ROP attacks if

re-randomization time is less than attack time

XnR (2012) [55], HideM (2015) [56], Readactor (2015) [57], Heisenbyte (2015) [58], NEAR
(2016) [59]

Memory protection JIT-ROP and BROP type ROP attacks

PointGuard (2010) [60], Oxymoron (2014) [61], ASLR-Guard (2015) [62] Code pointer integrity Code pointer overwrite or corruption

CFI (2005) [63], ROP-Guard (2012) [64], Bin-CFI (2013) [65], CCFIR (2013) [66] Software-assisted CFI Code reuse and code injection attacks

CFIMon (2012) [67], Branch regulation (2012) [68], Hcfi (2016) [69], HAFIX (2015) [70] Hardware-assisted CFI Code reuse and code injection attacks

TABLE I. A set of recent and influential memory safety, software compartmentalization, leakage-resilient and CFI defenses

resilient defenses, which can also be applied to mitigate data-

oriented attacks. However, memory corruption problems are

still possible due to the lack of deployable solutions in terms of

both effectiveness and efficiency [4]. In Sec. III-B, we provide

a detailed discussion of representative generic defenses.

B. Classification of data-oriented attacks
We classify data-oriented attacks into two categories based

on how attackers manipulate the non-control data in memory

space: 1) Direct Data Manipulation (DDM); and 2) Data-

Oriented Programming (DOP).
1) DDM refers to a category of attacks in which an

attacker directly manipulates the target data to accomplish the

malicious goal. It requires the attacker to know the precise

memory address of the target non-control-data. The address

or offset to a known location utilized in the attack can be

derived directly from binary analysis (e.g., global variable with
a deterministic address) or by reusing the runtime randomized

address stored in memory [6]. Several types of memory

corruption vulnerabilities, e.g., format string vulnerabilities,

buffer overflows, integer overflows, and double free vulner-

abilities [25], allow attackers to directly overwrite memory

locations within the address space of a vulnerable application.

Chen et al. [5] revealed that DDM attacks can corrupt a

variety of security-critical variables including user identity

data, configuration data, user input data, and decision-making

data, which change the program’s benign behavior or cause

the program to inadvertently leak sensitive data.
Listing 1 illustrates an example of the attack on decision-

making data in SSH server, which was first reported in [5].

A local flag variable authenticated is used to indi-

cate whether a remote user has passed the authentication

(line 3). An integer overflow vulnerability exists in the

detect_attack() function, which is internally invoked

whenever the packet_read() function is called (line 6).

When the vulnerable function is invoked, an attacker is able

to corrupt the authenticated variable to a non-zero value,

which bypasses the user authentication (line 16).

1 vo id d o _ a u t h e n t i c a t i o n (ch a r ∗use r , . . .) {
2 . . .
3 i n t a u t h e n t i c a t e d = 0 ;
4 . . .
5 wh i l e (! a u t h e n t i c a t e d) {
6 t yp e = p a c k e t _ r e a d () ; / / Co r r up t a u t h e n t i c a t e d
7 /∗ Ca l l s d e t e c t _ a t t a c k () i n t e r n a l l y ∗ /
8 sw i t c h (t yp e) {
9 . . .

10 c a s e SSH_CMSG_AUTH_PASSWORD:
11 i f (au th_pa s sword (use r , password)) {
12 a u t h e n t i c a t e d = 1 ;
13 b r e ak ; }
14 c a s e . . .
15 }
16 i f (a u t h e n t i c a t e d) b r e ak ;
17 }
18 d o _ a u t h e n t i c a t e d (pw) ;
19 /∗ Per form s e s s i o n p r e p a r a t i o n ∗ /
20 }

Listing 1: DDM attack in a vulnerable SSH server [5]

2) DOP is an advanced technique to construct expressive

non-control data exploits [7]. It allows an attacker to perform

arbitrary computations in program memory by chaining the

execution of short sequences of instructions (referred to as

data-oriented or DOP gadgets). DOP gadgets are similar to

ROP gadgets that can perform arithmetic/logical, assignment,

load, store, jump, and conditional jump operations. The idea

of DOP is to reuse DOP gadgets for malicious purposes

other than the developer’s original intent. Similarly, Block-

Oriented Programming (BOP) [18] constructs exploit pro-

grams by chaining BOP gadgets without violating CFI, where

each BOP gadget corresponds to a basic block that contains

a DOP gadget. Without loss of generality, we use DOP

to represent this exploitation technique, which misinterprets

multiple gadgets and chains these gadgets together by one or

more dispatchers to achieve the desired outcome. A dispatcher

is a fragment of logic that chains DOP gadgets. A typical

example of a dispatcher is a loop within the influence of a

memory corruption vulnerability.

Typically, a DOP attack corrupts several memory locations

in a program and involves multiple steps. To understand the

116

complexity and the expressiveness of the DOP technique, we

dissect a real-world DOP attack in Section II-C.

There also exists multi-step DDM attacks, where an ad-

versary exploits memory corruption vulnerabilities multiple

times to write data to adversary-chosen memory locations. For

example, suppose an attacker needs to change two decision-

making variables while the vulnerability only allows the

attacker to change one value each time. It requires a 2-step

DDM. Morton et al. [8] recently demonstrated a multi-step

DDM with Nginx (listed in Table II). The attack leverages

memory errors to modify global configuration data structures

in web servers. Constructing a faux SSL Config struct in Nginx

requires as many as 16 connections (i.e., 16-step DDM) [8].

Like the DOP attack, a multi-step DDM attack violates data-

flow integrity. DDM is a pre-requisite for DOP. However,

DOP is much more complex than the multi-step DDM. We

summarize their key differences in the following.

* Gadgets and code reuse. DOP/BOP attacks involve reusing

code execution through CFI-compatible gadgets. Multi-step

DDM hinges on direct memory writes and does not involve

any gadget executions.

* Stitching mechanism and ordering constraint. In DOP

and BOP attacks, how to orderly stitch gadgets to form a

meaningful attack is important. Multi-step DDM attacks,

e.g., crafting and sending multiple attack payloads to ma-

nipulate memory values, do not need any special stitching

mechanism (and thus there is no ordering constraint).

A significant contribution by Ispoglou et al. in [18] is the

block-oriented programming compiler (BOPC). BOPC is the

first compiler technique that automates the BOP/DOP attack

generation (given the arbitrary memory write vulnerability).

With the automatically generated attack payloads by the com-

piler, an attacker first performs a series of DDMs to modify

memory and then launches a BOP/DOP attack by chaining

gadgets that leverage memory manipulation via DDMs.

C. Demystifying the ProFTPd DOP attack

We use the ProFTPd DOP attack crafted by Hu et al. [7]
to illustrate the typical flow of DOP attacks. The goal of

this DOP attack is to bypass randomization defenses (such as

ASLR [12]), and then leak the server’s OpenSSL private key.

The private key is stored on the heap with an unpredictable

layout, which prevents the attacker from reliably reading

out the private key directly. Though the key is stored in a

randomized memory region, it can be accessed via a chain

of 8 pointers. As long as the base pointer is not randomized,

e.g., when the position independent executables (PIE) feature

is disabled, it is possible to exfiltrate the private key by starting

from the OpenSSL context base pointer (i.e., a known location

of the static variable ssl_ctx) and recursively de-referencing
7 times within the server’s memory space.

1) The ProFTPd vulnerability: ProFTPD versions 1.2 and

1.3 have a stack-based buffer overflow vulnerability in the

sreplace function (CVE-2006-5815 [100]). The overflow

can be exploited by an attacker to obtain an arbitrary write

primitive. The server program provides a feature to display

customized messages when a user enters a directory. The

message content is saved in .message file in each direc-

tory. It can be edited by any user with write-access to the

directory. The .message file can contain special characters

(i.e., specifiers) which will be replaced with dynamic con-

tent such as time/date and server name by the sreplace
function. For example, the string "%V" in .message will

be replaced by the main_server->ServerName string,

and "%T" will be replaced by the current time and date.

Changing the working directory with a CWD command triggers

the processing of .message, and subsequently triggers the

invocation of the sreplace function. To trigger a memory

error in sreplace, the attacker prepares payloads in the

.message files, and then sends CWD commands to the server.

1 cha r ∗ s s t r n c p y (cha r ∗de s t , c o n s t c h a r ∗ s r c , s i z e _ t n) {
2 r e g i s t e r c h a r ∗d = d e s t ;
3 f o r (; ∗ s r c && n > 1 ; n−−)
4 ∗d++ = ∗ s r c ++;
5 . . .
6 }
7 ch a r ∗ s r e p l a c e (ch a r ∗s , . . .) {
8 . . .
9 c h a r ∗m,∗ r ,∗ s r c = s ,∗ cp ;

10 c h a r ∗∗mptr ,∗∗ r p t r ;
11 c h a r ∗marr [33] ,∗ r a r r [3 3] ;
12 c h a r buf [BUF_MAX] = { ’ \ 0 ’ } , ∗pbuf = NULL;
13 s i z e _ t mlen =0 , r l e n =0 , b l e n ; cp=buf ;
14 . . .
15 wh i l e (∗ s r c) {
16 f o r (mptr=marr , r p t r = r a r r ; ∗mptr ; mptr ++ , r p t r ++) {
17 mlen = s t r l e n (∗mptr) ;
18 r l e n = s t r l e n (∗ r p t r) ;
19 i f (s t rncmp (s r c ,∗mptr , mlen) ==0) { / / check s p e c i f i e r s
20 s s t r n c p y (cp ,∗ r p t r , b len−s t r l e n (pbuf)) ; / / r e p l a c e

a s p e c i f i e r w i th dynamic c o n t e n t s t o r e d i n ∗ r p t r
21 i f (((cp + r l e n) − pbuf + 1) > b l en) {
22 cp = pbuf + b l en − 1 ; . . .
23 } /∗ Overf low Check ∗ /
24 . . .
25 s r c += mlen ;
26 b r e ak ;
27 }
28 }
29 i f (!∗ mptr) {
30 i f ((cp − pbuf + 1) > b l en) { / / o f f−by−one e r r o r
31 cp = pbuf + b l en − 1 ; . . .
32 } /∗ Overf low Check ∗ /
33 ∗cp++ = ∗ s r c ++;
34 }
35 }
36 }

Listing 2: The vulnerable function in ProFTPd

Listing 2 shows the vulnerable sreplace function. The

vulnerability is introduced by an off-by-one comparison bug in

line 30, and allows attackers to modify the program memory. A

defective overflow check in lines 29-34 is performed to detect

any attempt to write outside the buffer boundary. When writing

to the last character of the buffer buf, (cp-pbuf+1) equals

to blen. Thus, the predicate in line 30 returns false, and
the string terminator is overwritten in line 33. Consequently,

the string is not properly terminated inside the buffer because

the buffer’s last character has been overwritten with a non-

zero byte. In the next iteration of the while loop, the input

blen-strlen(pbuf) of the sstrncpy function becomes

negative, which will be interpreted as a large unsigned integer

(in line 20). Hence, the invocation of sstrncpy overflows

outside buffer bounds into the stack and overwrites local

117

Fig. 1: ProFTPd DOP attack flow. An attacker needs to know the underlined addresses and offsets to launch the attack.

variables such as cp. Both the source (i.e., *rptr) and

the destination (i.e., cp) of the string copy function, i.e.,
sstrncpy in line 20, are under the control of the attacker,

where *rptr can be manipulated by the attacker through

specifying special characters in .message (e.g., "%C" will

be replaced by an attacker-specified directory name). As a

result, the vulnerability allows the attacker to control the

source, destination, and number of bytes copied on subsequent

iterations of the while loop in lines 15-35.

2) The attack flow: The attacker interacts with the server

(over the course of numerous FTP commands) to corrupt

program memory by repeatedly exploiting the buffer over-

flow vulnerability. In this scenario, the command handler

cmd_loop in ProFTPd serves as the data-oriented gadget dis-

patcher. On each iteration, the attacker triggers the execution

of targeted gadgets by sending a crafted attack payload to the

server program, e.g., the dereference gadget *d++=*src++
located in sstrncpy (line 4 in Listing 2). We reproduced

the ProFTPd DOP attack, and observed that the vulnerable

function sreplace is called over 180 times during the attack.

Fig. 1 shows a step-by-step description of the ProFTPd

DOP attack. The underlined addresses and offsets are acquired

through binary analysis before launching the attack. During

the attack, program memory is systematically corrupted to

construct a DOP program out of individual operations. The

main steps, shown in Fig. 1, are described as follows.

� To read data from arbitrary addresses in the server,

the attacker needs to overwrite string pointers used by

a public output function (e.g., send). To this end, the

attacker manipulates 12 pointers in a local static mons array

located at 0x80cf6e0 to a global writable location (i.e.,
the attacker specifies this location, denoted by G_PTR). As
shown in Fig. 1, the mons array is filled with G_PTR’s
address 0x80d3450. Thus, when the server returns the

date information to the client, it prints the value pointed by

G_PTR. This step builds an exfiltration channel which can

leak information from the server to the network.

� The attacker knows the memory address of the global

pointer main_server at 0x80d6e14, and reads the

main server structure address pointed by main_server,

i.e., 0x871ae3c. The read operation is implemented by

writing the address of the main server structure to the global

writable location G_PTR, and then transmitting the output

via the exfiltration channel to the attacker side.

� The attacker knows the offset, 0x10, of

the ServerName field in the main server

structure and is able to calculate the ad-

dress of main_server->ServerName, i.e.,
0x871ae3c+0x10=0x871ae4c. Given the memory

address 0x80de0c8 of ssl_ctx, i.e., the base pointer

of a chain of 8 pointers to the private key, the attacker

writes this address to main_server->ServerName
located at 0x871ae4c.
� The dereferencing operation dereferences the value cur-

rently located at main_server->ServerName, by trig-

gering the execution of the dereference gadget in line 4 of

Listing 2. The dereferenced value will be copied to a known

position in the response buffer resp_buf. The attacker

then obtains the address 0x874d868 of cert (D1 in

Fig. 1) by adding the offset 0xb0 to the dereferenced value

0x874d7b8. After that, the attacker copies the address

of cert to main_server->ServerName for the next

iteration of deference. This step repeats 7 times (D1∼D7 in

Fig. 1) following the dereference chain as shown in Fig. 1.

Finally, the address of the private key is obtained.

� The attacker sequentially reads 8 bytes from the private

key buffer via the information exfiltration channel con-

structed in the first step. This process repeats for 64 times

to retrieve a total of 512 bytes data.

D. Block-Oriented Programming (BOP) attack

The core of the Block-Oriented Programming (BOP) [18]

attack is the Block-Oriented Programming Compiler (BOPC)

that automates the process of constructing data-oriented ex-

ploits. BOPC provides the flexibility to construct data-oriented

exploits by defining the exploit goals using a high-level C

like language called SPloit Language (SPL). BOPC is the

compiler of an SPL exploit. The target binary and its program

states are the execution environment. Fig. 2(a) shows three

statements of a sample SPL payload. Each statement of the

118

Fig. 2: Four major components of BOP Compiler. The double and single border boxes (�) indicate functional and dispatcher

blocks. The number inside a circle (©) represents the functional block number. The � represents irrelevant basic blocks.

SPL exploit or payload is mapped to a functional block and a

set of dispatcher blocks (where each block is actually a basic

block). The double- and single-bordered rectangles in Fig. 2(b)

represent functional and dispatcher blocks. A functional block

executes the semantics of an SPL statement whereas a set of

dispatcher blocks links between two functional blocks.
BOPC matches a functional block to an SPL statement using

constraint summaries by isolating and symbolically executing

the block. Constraint summaries include registers, memory

locations, jump types, and library calls. BOPC searches for

functional blocks for SPL statements and selects a functional

block for each statement. To do this, BOPC creates a bipartite

graph by associating each SPL statement with a set of func-

tional blocks that may potentially serve the SPL statement.

Fig. 2(c) shows a bipartite graph for the SPL statements

in Fig. 2(a) where functional blocks � and 	 can serve

SPL statement #1; functional blocks
, �, and � can serve

SPL statement #2; and functional blocks
 and � can serve

statement #3. BOPC selects an association from many possible

associations. Fig. 2(c) shows one such association (r0 � rax,
r1 � rbx, and r2 � rcx).
However, this selection process is not arbitrary because the

functional blocks are volatile. Due to the volatility charac-

teristics of functional blocks, the selection of a functional

block may reduce the availability of other functional blocks.

This volatility behavior makes the functional block selection

process an NP-hard problem. Thus, the selection process

requires heuristics for selecting a set of suitable functional

blocks in polynomial time.
As a set of dispatcher blocks links between two functional

blocks, an arbitrary selection of the dispatcher blocks may also

clobber the SPL state. This is why a small set of dispatcher

blocks is more likely to be non-clobbering than a large set

of dispatcher blocks for linking two functional blocks. To

select a small set of non-clobbering dispatcher blocks, BOPC

constructs a delta graph. A delta graph is a multipartite graph

that has functional blocks as nodes. An edge of the graph

represents the basic blocks that are necessary for moving from

one functional block to the next one with the numbers of

basic blocks as edge weights. Fig. 2(d) shows a delta graph

for the SPL statements in Fig. 2(a). A recursive version of

Dijkstra’s [101] shortest path algorithm minimizes the set of

basic blocks required for moving from one functional block

and another. This minimization process produces a sub-graph

of the delta graph. Fig. 2(d) indicates the sub-graph using bold

arrows.
Once the subgraph is created, BOPC selects a functional

block and translates the basic blocks between the selected

and the next functional blocks into constraints by leveraging

concolic execution [102]. Once the last functional block is

reached, BOPC checks for satisfying assignments for these

constraints. If the satisfying assignments are possible, BOPC

produces a BOP gadget chain.
Difference between DOP and BOP. Though Data-Oriented

Programming (DOP) is a generalization of data-oriented at-

tacks, Block-Oriented Programming (BOP) has a few key

differences from DOP: i) automatic generation of exploit

payload, ii) exploits are written in the easily understandable

high-level C-like SPL, and iii) granularity. In DOP, one must

analyze and construct exploit manually. However, one can

write exploit using SPL by specifying the exploit goal. BOPC

automatically parses the SPL exploit and constructs BOP gaget

chain automatically. In terms of the granularity, DOP works

at the gadget level whereas BOP works at the basic block

level. Another noticeable thing is that BOPC is not fully

automated. The output produced by BOPC is a set of address-

value pairs. An attacker requires to modify an address with

the corresponding value from the address-value pairs in order

to launch an attack. Thus, BOPC is not designed to implement

a complete end-to-end attack.
Exploit payloads can be specified using MINDOP for DOP

attacks whereas SPL is used for BOP exploits. Both MINDOP

and SPL are Turing-Complete languages. That means both

languages support memory read/write, assignment, arithmetic

operation, logical operation, control-flow (e.g., jump), func-

tion call, and system API calls. The fundamental differences

between the two languages are granularity and flexibility as

discussed below.
SPL: SPL is an exploit writing language based on C dialect

to express data-oriented attacks. This language provides the

flexibility of expressing BOP gadgets in a high-level language

like C which is easy to understand from an exploit point of

view. SPL also allows the explicit access of virtual registers,

library functions, and APIs to call OS functions. The BOPC

compiler translates each statement of an SPL program to a

set of constraints. The set of constraints are then solved to

119

Targeted Application
and Year

Type Assumption/Requirement Capability

Chrome [103], 2016 DDM
Identified security-critical variables, and

arbitrary read/write capability
Bypass the same-origin policy

Linux Page
Table [104], 2017

DDM
Kernel code writable, and arbitrary

read/write capability
Bypass the kernel CFI

InternetExplorer,
Chrome [105], 2017

DDM
Identified security-relevant variables, and

arbitrary read/write capability
Information leakage, bypass the

same origin policy, etc.

Nginx [8], 2018
Multi-step
DDM

Identified security-critical data structures,
known unused portion of the data section,

and arbitrary read/write capability

Disable or degrade services,
information leakage, etc.

ProFTPd [7], 2016 DOP
Memory addresses of multiple involved data,
identified gadgets/dispatchers, and arbitrary

read/write capability
Private key leakage w/ ASLR

ProFTPd, Nginx,
sudo, etc. [18], 2018 BOP Arbitrary read/write primitive

Automatic construction of BOP
gadget chain or exploit payload

TABLE II. Recent data-oriented attacks pose serious threats against real-world programs.

map the statement to a set of basic blocks that satisfy the

constraints. Though SPL is Turing complete, it is still quite

limited in terms of its richness of operations.

MINDOP: MINDOP is a simple language with a set of

virtual instructions and virtual register operands. MINDOP

supports 6 kinds of virtual instructions: i) arithmetic/logical,

ii) assignment, iii) load, iv) store, v) jump, and vi) conditional
jump. Each instruction of MINDOP can be simulated using

x86 instructions.

E. Representative data-oriented attacks

In the seminal work of non-control data attacks [5] and

later FlowStitch [6], the authors have described more than 20

different data-oriented exploits (most of them are single-step

DDM attacks). More recently, several research efforts have

shown that data-oriented attacks pose serious threats to real-

world programs.

Jia et al. [103] utilized data-oriented attacks to bypass the

same-origin policy (SOP) enforcement in the Chrome browser.

By manipulating the values of in-memory flags related to

SOP security policy checking (which requires an arbitrary

read/write privilege), the SOP enforcement can be undermined

in Chrome. Davi et al. [104] showed that a data-only attack

on page tables can undermine the kernel CFI protection. By

manipulating the memory permissions in kernel page entries,

the attack makes kernel code pages writable and subsequently

enables malicious code injection to kernel space.

Rogowski et al. [105] introduced a new technique, called

memory cartography, that an adversary can use to navigate

itself at runtime to reach security-critical data in process

memory, and then modify or exfiltrate the data at will. They

demonstrated the feasibility of data-oriented exploits against

modern browsers such as Internet Explorer and Chrome, where

possible attacks range from cookie leakage to bypassing the

SOP. Morton et al. [8] demonstrated the potential threat of

data-oriented attacks against asynchronous web servers (e.g.,
Nginx or Apache). By manipulating only a few bytes in

memory, it is possible that an attacker re-configures a running

asynchronous web server on the fly to degrade or disable

services, steal sensitive information, and distribute arbitrary

web content to clients. The attack consists of multiple steps

(i.e., a multi-step DDM). It starts with locating the security-

critical configuration data structures of the server and exposing

their low-level state at runtime by leveraging memory disclo-

sure vulnerabilities. Then, an adversary constructs faux copies

of security-critical data structures into memory by exploiting

memory corruption vulnerabilities. By redirecting data point-

ers to faux structures, a running web server instance can be

re-configured by the attacker without corrupting the control-

flow integrity or configuration files on disk. However, in the

end-to-end exploits, authors in [8] simulated the arbitrary

write vulnerability in the recent version of Nginx, rather than

exploiting a real-world vulnerability.

Table II summarizes these recent data-oriented attacks.

Because existing CFI-based solutions are rendered defense-

less under data-oriented exploits, such threats are particularly

alarming. To construct a data-oriented exploit, attackers must

have an in-depth knowledge of the vulnerable program’s exact

memory layout at runtime. In comparison to the DDM attack,

a DOP attack requires non-trivial engineering efforts to chain

gadgets for malicious effect.

III. DEFENSES AGAINST DATA-ORIENTED ATTACKS

In this section, we first describe a three-stage model for

data-oriented attacks, and a taxonomy of existing applicable

defense techniques. Then, we provide a comparative analy-

sis of recent defensive approaches, particularly against data-

oriented attacks.

A. Three-stage model for launching data-oriented attacks

Fig. 3 illustrates the abstract view of three stages in data-

oriented attacks. To launch such attacks, it starts with trig-

gering a memory error of a vulnerable program (i.e., Stage
S1), which empowers an attacker with control of the memory

space, e.g., read/write capability. In Stage S2, the targeted non-

control-data is modified (through either DDM or DOP). In

Stage S3, the manipulated data variable is used and takes effect

to change the default program behavior. Note that S3 does not

necessarily happen immediately after the data manipulation.

The back edges pointing from S3→S1 and S2→S1 indicate

that an attacker may need to corrupt non-control-data multiple

times to achieve the malicious goal.

We discuss requirements in different stages (i.e., the threat

model) that are essential to launching a successful DOP attack.

The first three requirements apply for DDM exploits.

120

Fig. 3: Stages in data-oriented attacks and mitigation in different stages

* The presence of a memory corruption vulnerability (such

as a buffer or heap overflow) in the target program, which

allows attackers to modify the content of the application’s

memory (i.e., write capability). This is a reasonable assump-

tion since low-level memory-unsafe languages (e.g., C/C++)
are still in widespread use today due to interoperability

and speed considerations, even though memory corruption

vulnerabilities are an inevitable security weakness in these

languages.

* Knowing the exact location of target non-control data in
memory. Due to the wide deployment of exploit mitigation

technologies such as DEP and ASLR, it is likely attackers

need to first leverage memory disclosure vulnerabilities to

circumvent the address space randomization [8]. In this

case, an exfiltration channel to achieve information leakage

is needed (i.e., read capability), such as reading data from

arbitrary addresses of the target program.

* Knowing exactly the transformation of an attack payload
to the impact on memory space of the target program. For

example, a continuous buffer overflow may generate side

effects that cause the program to crash. When launching

a data-oriented exploit, attackers need to avoid any CFI

violation and program crash.

* Availability of DOP gadgets that are reachable by the

memory corruption vulnerability, and triggerable by the

attack payload.

* Stitchability of disjoint DOP gadgets. A gadget dispatcher is

needed to dispatch and execute the functional DOP gadgets.

However, it is non-trivial to find gadget dispatchers in a

program since they require loops with suitable gadgets and

selectors controlled by a memory error.

B. Taxonomy of applicable defense techniques
We briefly discuss defenses focusing on preventing these

requirements from being satisfied at different points/stages.

More generic memory corruption prevention mechanisms (in

Stages S1 and S2) can be found in [4], [24], [25].
1) S1 Defense – Preventing exploitation of memory errors:

Memory safety enforcement is the first line of defense, which

aims to prevent both spatial and temporal memory errors,

such as buffer overflows and use-after-free errors. Memory-

safe programming languages achieve this with built-in runtime

bounds checks and garbage collection that make them immune

to memory errors. In contrast, memory-unsafe languages such

as C/C++ lack built-in memory safety guarantees. Programs

written in memory-unsafe languages therefore commonly ex-

hibit memory errors that may make them vulnerable to runtime

exploitation. Enforcing all memory accesses staying within

the bounds of intended objects would completely eliminate

the pre-conditions for attacks that rely on gaining access

to a prohibited area of memory. Despite considerable prior

research in retrofitting memory-unsafe programs with memory

safety guarantees, memory-safety problems persist due to an

trade-off between effectiveness and efficiency: low-overhead

approaches usually offer inadequate protection/coverage, while

comprehensive solutions either incur a high performance over-

head or provide limited backward compatibility [4], [106].

SoftBound [107] and HardBound [108] perform pointer

bounds checks against metadata stored in a shadow memory

area. SoftBound incurs an average performance overhead of

67% in standard benchmarks. HardBound is a hardware-

assisted scheme where the processor checks associated pointer

bounds implicitly when a pointer is dereferenced. As the check

is performed by hardware logic, the average performance over-

head is reduced to around 10%. Both schemes have a worst-

case memory overhead of 200%. Fat-pointer schemes store

the associated bounds metadata [109] together with pointers,

e.g., by increasing their length [110] or by borrowing unused

bits from pointers [109]. But changing the representation

of pointers in memory breaks both binary and source code

compatibility. Code-Pointer Integrity (CPI) [111] provides

control-flow hijacking protection with a very low performance

overhead (e.g., 8.4% slowdown for C/C++ program). However,

it only focuses on code-pointer checking without providing the

complete memory safety.

2) S2 Defense – Providing a barrier to access to data
or guess memory layout: The purpose of S2 defenses is

to mitigate the consequences of attacks in the presence of

memory vulnerabilities. S2 defenses include software com-
partmentalization [112], [113], [114] and address space or
data layout randomization [12], [115] techniques. They serve

as the second line of defense, which creates a barrier for

121

attackers trying to access target data or guess the memory

layout.

Software compartmentalization isolates software compo-

nents into distinct protection domains in order to limit the

utility of existing memory errors (i.e., when the memory

error and data to be manipulated exist in different protec-

tion domains), but also limit the abilities of a compromised

software component. For example, Software Fault Isolation
(SFI) [112] compartmentalizes software in a single address

space by sandboxing untrusted modules into separate fault

domains. This compartmentalization ensures that code in the

fault domain is unable to directly access memory or jump to

code outside the reserved portion of address space, but must

interact with code outside it’s domain through well-defined

call interfaces.

Randomization aims to hide attack targets by randomiz-

ing the location of program segments [24], layout of the

code [116], layout of data [115] or the data itself [117] so that

unauthorized access would lead to unpredictable behavior. In

particular, data space randomization [115], [118], [119] aims

to randomize the representation of data stored in program

memory at runtime to make it unpredictable for unauthorized

accesses, and thus reducing the possibility that attackers can

leak security-critical memory addresses or manipulate the

content of targeted data. ASLR [12] randomly chooses the

base addresses of the stack, heap, code segment, and shared

libraries. Data Space Randomization (DSR) [115] encrypts

data stored in memory, rather than randomizing the location.

Though strong randomization can stop memory corruption

attacks with a high probability, the protection is confined to all

data/addresses that are randomized/encrypted. In practice, to

avoid a significant performance degradation, not all data/ad-

dresses are protected by randomization defenses [4]. On the

other hand, information leaks can undermine randomization

techniques. In addition, data/address encryption based solu-

tions are not binary compatible (i.e., protected binaries are

incompatible with unmodified libraries) [4].

3) S3 Defense – Preventing/detecting use of corrupted data:
Data-Flow Integrity (DFI) [122] mitigates data corruption

before the manipulation takes effect. Before each read in-

struction, DFI ensures that a variable can only be written

by a legitimate write instruction which can be derived by

reaching definitions analysis (i.e., for each value read instruc-

tion, it statically computes the set of write instructions that

may write the value). However, DFI usually overestimates

the set of valid write instructions since the set is statically

determined without runtime information. Moreover, Software-

based DFI incurs a high performance overhead [7] due to

the frequent read instruction checking. Intra-procedural DFI

incurs 44% and inter-procedural DFI incurs 103% runtime

performance overhead, respectively, and approximately 50%

space overhead for instrumentation [122]. Hardware-based

DFI, e.g., HDFI [121], is efficient, but limited by the number

of simultaneous protection domains it can support.

Depending on the granularity of compartmentalization and

the boundaries of the security domain, software compartmen-

talization can also function as a defense in S3. It can prevent

the use of corrupted data. For example, when a corrupted

pointer is referencing memory in another protection domain,

it thwarts the dereference operation.

Szekeres et al. [4] provide a systematic overview of mem-

ory corruption attacks and mitigations. They highlighted that

though a vast number of solutions have been proposed,

memory corruption attacks continue to pose a serious se-

curity threat. Real-world software exploits are still possible

because currently deployed defenses can be bypassed. Program

anomaly detection complements the aforementioned mitigation

techniques, and serves as the last line of defense against

data-oriented attacks. As shown in Fig. 3, passive monitoring

based program anomaly detection has the potential to detect

anomalous program behaviors exhibited in all the three stages

of data-oriented attacks.

C. Defense mechanisms against data-oriented attacks

In addition to generic memory corruption prevention mech-

anisms, a number of detection and prevention techniques

specially focusing on data-oriented attacks have been proposed

in the literature. In this section, we discuss these defenses.

YARRA [21] is a C language extension that validates a

pointer’s type for critical data types annotated by developers,

which is an S1 defense. It guarantees that critical data types

are only written through pointers with the given static type.

YARRA is suitable for hardening access to isolated pieces of

critical data, such as cryptographic keys stored in program

memory at runtime. However, when applied for the whole

program protection, it incurs a performance overhead in the

order of 400%∼600%. In addition, YARRA relies on the

programmers’ manual annotations, which is undesirable for

complicated programs.

HardScope [22] is a hardware-assisted variable scope en-

forcement approach to mitigate data-oriented attacks by intro-

ducing intra-program memory isolation based on C language

variable visibility rules derived during program compilation.

On each memory access (i.e., load/store), HardScope enforces
that the memory address requested is in the accessible memory

areas. Nyman et al. [22] demonstrated the effectiveness of

HardScope for the RISC-V open instruction set architecture,

by introducing a set of seven new instructions. HardScope

instructions are instrumented at compile-time, and memory

access constraints are enforced at runtime. It shows that

HardScope has a real-world performance overhead of 3.2%

in embedded benchmarks. Although HardScope significantly

reduces the usefulness of DOP gadgets and thwarts Hu et
al. [7]’s example attacks, HardScope cannot guarantee the

absence of DOP gadgets in arbitrary programs.

PrivWatcher [120] is a framework for monitoring

and protecting the integrity of process credentials (i.e.,
task_struct that describes the privileges of a process in

the Linux kernel) against non-control data attacks. It involves

a set of kernel modifications including relocating process cre-

dentials into a safe region, code instrumentation and runtime

data integrity verification, in order to provide non-bypassable

122

Defense and Year Stage Approach Security Guarantee Overhead
General
Approach

YARRA [21], 2011 S1 (Pointer safety)
Program

instrumentation
User-specified critical data

400%∼600% (whole
program)

�

HardScope [22], 2018
S2 & S3

(Compartmentalization)
Hardware extension Context-specific memory isolation ∼3.2% �

PrivWatcher [120],
2017

S2
(Compartmentalization)

Kernel modification
Protect process credentials data in

Linux kernel
∼3% (94% in
extreme cases)

�

HDFI [121], 2016
S2

(Compartmentalization)
Hardware extension Coarse-grained data-flow isolation ∼2% �

PT-Rand [104], 2017 S2 (Randomization) Kernel modification Protect kernel page tables 0.22% �

DFI [122], 2006 S3
Program

instrumentation
Data-flow integrity ∼100% �

CVI [123], 2018 S3
Program

instrumentation
Selective data-flow integrity ∼2.7% �

Hardware-based detec-
tor I [124], 2016

S1 – S3
Hardware

performance counters

Detection of Heartbleed attacks
with an accuracy of 70% to 92%

and 1% false negatives
NR �

Hardware-based detec-
tor II [125], 2018

S1 – S3
Hardware

performance counters

Detection of Heartbleed attacks
with an accuracy of 97.75% to

98.36%
NR �

TABLE III. Comparison of defensive mechanisms against data-oriented attacks. NR means not reported.

integrity assurances. It ensures the Time of Check To Time of

Use (TOCTTOU) consistency between verification and usage

contexts for process credentials by adopting a dual reference

monitor model. The authors implemented the PrivWatcher

prototype in Ubuntu Linux. The experiment results show

that PrivWatcher incurs an overhead less than 3%. But it

incurs more than 94% overhead for applications that involve

installing new task_struct structures to processes.

Hardware-Assisted Data-flow Isolation (HDFI) [121] ex-

tends the RISC-V architecture to provide an instruction-level

isolation by tagging each machine word in memory (also

known as the tag-based memory protection). The one-bit tag

of a memory unit in HDFI is defined by the last instruction

that writes to this memory location. At each memory read

instruction, HDFI checks if the tag matches the expected value.

However, unlike software-enforced DFI, HDFI only supports

two simultaneous protection domains.

Davi et al. [104] presented a data-oriented attack against

kernel page tables to bypass CFI-based kernel hardening tech-

niques, and subsequently attackers can execute arbitrary code

with kernel privileges. To mitigate the threat, they proposed

PT-Rand, which randomizes the location of page tables to

prevent attackers from manipulating page tables by means of

data-oriented attacks. Evaluation results show that PT-Rand

on Debian only incurs a low overhead of 0.22% for common

benchmarks. However, it is still possible attackers undermine

these schemes if the secret information (e.g., randomization

secret) is leaked or inferred [22].

CVI (Critical Variable Integrity) [123] verifies define-use

consistency of critical variables for embedded devices. The

define-use consistency is defined as the property that the

value of a variable cannot change between two adjacent

define- and use-sites. After identifying critical variables (either

automatically identified or manually annotated), the compiler

inserts instrumentation at all the define- and use-sites for these

critical variables, to collect values at runtime and send them

to an external measurement engine. CVI checking compares

the current value of a variable at every use-site, and the

recorded value at the last legitimate define-site. However, like

DFI [122], CVI is based on compile-time instrumentation and

frequent runtime checking, which incurs a high overhead for

the complete protection.

Hardware-based detector I. Torres et al. [124] presented

a framework for detecting data-only exploits by collecting

information from Hardware Performance Counters (HPCs).

However, the authors mainly focused on the Heartbleed at-

tack [126], which exploit a buffer overread vulnerability in the

OpenSSL library to leak information from memory (e.g., the
private key associated with the website’s certificate). The orig-

inal intentions of designing HPC registers were to debug hard-

ware designs and identify program inefficiency or bottlenecks

during execution. HPC registers can also help identify some

hardware events related to instructions retired, cache-misses

suffered, and branches miss-predicted. The authors collected

12 such hardware events during the normal executions of

OpenSSL and tagged these samples as good, where a sample

consists of multiple hardware events. Similarly, they collected

these 12 events during the executions of OpenSSL when

OpenSSL executes under Heartbleed attacks. They tagged

these samples as bad. Next, the authors used these samples to

train and tested a multi-class support vector machine model to

classify between normal and abnormal behaviors. The authors

pointed out a few fundamental limitations such as instability

and unreliability. Co-executing programs significantly affect

HPC-based events. Also, the HPC-based events are dependent

on instruction set architectures (ISAs). Thus, architecture

support can improve the generalization and accuracy of such

hardware-based detection models.

Hardware-based detector II. Liu et al. [125] extended

the previous HPC-based data exploit detector [124]. In this

work, the authors also collected 12 HPC events the same

as the previous HPC-based work [124]. However, the events

were collected as a short time series by monitoring various

execution regions of a vulnerable program. Especially, the

samples include the region before, during, and after executing

a vulnerable region of a program. This time series approach

enables more fine-grained detection than using only hardware

events. This approach is independent of the underlying ap-

plications. The authors evaluated their technique using dif-

ferent classification algorithms and found promising results,

123

especially the Stacked Denoising Autoencoder and Echo State

Network classifiers are around 98% accurate for detecting

data-oriented exploits.

Table III compares representative data-oriented attack spe-

cific defensive mechanisms. PrivWatcher [120], HDFI [121],

PT-Rand [104], and CVI [123] protect specific non-control

data. HardScope [22] can protect against all DOP attacks that

violate variable visibility rules at runtime. However, it requires

developer assistance in certain settings. The main drawback

of HarScope and other solutions based on new hardware

extensions [121] is the high bar for deployment. They cannot

be directly applied to protect user-space applications against

general data-oriented attacks, in particular DOP attacks. On the

hand, the two general approaches DFI [122] and YARRA [21]

incur a high performance overhead at runtime. In general, the

HPC-based hardware events are significantly affected by co-

existing programs. Thus, the filtration of the hardware events

that are produced by co-existing programs is a critical step

for obtaining accuracy and reliability by HPC-based detec-

tors. The primary limitation of the hardware-based detector

I [124] is unreliability due to the unrelated hardware events

produced by co-existing programs. This technique [124] is

also dependent on ISAs which limits the generic deploya-

bility of the detector for detecting data-oriented attacks. The

hardware-based detector II [125] overcomes these limitations

by collecting the hardware events as a short time series by

monitoring the execution of a vulnerable program before,

during, and after the execution of the vulnerable section. The

time series approach makes this technique less independent of

the underlying applications.

IV. FREQUENCY ANOMALIES OF DATA-ORIENTED

ATTACKS

In addition to the defense mechanisms described above

to detect or prevent data-oriented attacks, we compare the

frequency distributions of a program’s normal executions and

when the program executes under data-oriented attacks. More

specifically, we attempt to characterize how DOP impacts the

frequency distributions of ProFTPd. We conducted two sets of

comparisons, i) on macro-level interaction frequencies and ii)
on micro-level control-flow frequencies.

1) Macro-level interaction frequencies: In DOP (also

BOP) attacks, an attacker normally needs to interact with a

vulnerable program to repeatedly corrupt variables to achieve

the attack purpose and avoid segmentation faults. This at-

tack activity inevitably results in frequency anomalies during

the client-server interaction, which can also be captured by

control-flow tracing. For example, in the ProFTPd DOP at-

tack introduced in Section II-C, an attacker needs to send a

large number of FTP commands with malicious inputs to the

ProFTPd server to corrupt the program memory repeatedly.

To detect interaction frequency anomalies under the DOP

attack, we derived the FTP commands sent from clients by

tracing control-flow transfers of the FTP command dispatcher

function _dispatch in the ProFTPd server program. For

frequency distributions of normal operations, we used the

LBNL-FTP-PKT [127] dataset. It contains all incoming anony-

mous FTP connections to public FTP servers at the Lawrence

Berkeley National Laboratory over a ten-day period, a total of

21482 FTP connections.
We computed the frequency distributions of 2-gram FTP

command sequences. Each 2-gram transition corresponds to a

high-level execution feature. We applied the Principal Com-

ponent Analysis (PCA) technique for dimension reduction, as

such a distribution-based profiling produces a large number of

features. We adopted the X-means clustering approach [128]

to cluster all behavior instances in baseline FTP command se-

quences, where the center of each of the X-clusters represents

a normal program execution context.

−50
0

50
100

150
200

250
300

350 −20

0

20

40

60

80

100

−60

−40

−20

0

20

40

60

80

Fig. 4: For macro-level interaction frequencies, X-clustering

for 2-grams of FTP commands with PCA reduction to 3-

dimension using LBNL-FTP-PKT dataset [127]. The DOP

attack involves an abnormally high number of client-server

interactions.

Fig. 4 illustrates the X-clustering for 2-grams of FTP

commands with PCA reduction to 3-dimension. The DOP

instance (i.e., red triangle) does not belong to any normal

clusters (i.e., blue dots). These results suggest that the client-

server interactions under the DOP attack drastically differ from

the baseline executions.
2) Micro-level control-flow frequencies: Short control-

flow paths may exhibit unusual execution frequencies. For

instance, corrupting variables which directly or indirectly

control loop iterations can cause such frequency anomalies.
In the ProFTPd DOP attack, an attacker crafts .message

files (i.e., as malicious payloads) to repeatedly fill up the allo-

cated buffer and write bytes beyond the buffer in sreplace,
which exhibits anomalous behaviors of control-flow transfers.

We defined all control-flow transfers in each sreplace
invocation as a behavior instance, following the approach

in [129]. Since it is difficult to harvest .message files from

old version FTP servers, in this experiment, we randomly gen-

erated 1000 .message files without triggering the overflow

as the baseline executions.
The feature extraction and dimension reduction procedures

are similar to the macro-level analysis described above. After

applying PCA, we reduced the original high-dimensional data

to 3-dimensional data and then performed the X-clustering.

Our result comparing the control-flow frequency properties

124

Fig. 5: For micro-level control-flow frequencies, X-clustering

for 2-gram control-transfers with PCA reduction to 3-

dimension in sreplace. The DOP attack exhibits a unique

pattern of control-flow transfers in comparison to baseline

executions.

in sreplace is shown in Fig. 5. The baseline dataset is

clustered into 23 clusters. Similar to Fig. 4, the DOP instance

is an obvious outlier.

BOP is likely to have a similar type of frequency anomalies

because BOPC utilizes multiple arbitrary memory read/write

primitives to modify the memory state of the target binary.

In addition to that BOPC may trigger the arbitrary memory

read/write primitives multiple times. However, the frequency

anomalies may not be as observable as DOP because the

frequency anomalies for BOPC largely depend on a spe-

cific attack and the nature of the vulnerability. For example,

frequency anomalies for BOPC depend on the number of

memory addresses that an attacker requires to manipulate.

The frequency anomalies also depend on how the attacker

manipulates the memory addresses. In an extreme case, an

attacker may require to manipulate only a few memory ad-

dresses. Additionally, some vulnerabilities (e.g., printf()
format string vulnerability) allow direct memory manipulation

using a just one command. Thus, the trigger of two or three

commands can be hard to detect. This is why the frequency

anomaly for BOP may not be as observable as DOP.

V. CONCLUSION AND FUTURE RESEARCH OPPORTUNITIES

In this SoK work, we systematized the current knowledge

on data-oriented exploits and applicable defense mechanisms.

We experimentally explored the possible side-effects of data-

oriented attacks on control-flow behaviors in multiple di-

mensions. We hope that this systematization will stimulate

a broader discussion about possible ways to defend against

data-oriented attacks. We highlight some interesting future

directions in this area.

Automation of Small Footprint DOP Attacks. An interesting

research direction is how to minimize the footprints (i.e., side
effects) of a DOP attack while achieving the same attack goal.

Our simple investigations in Section IV showed that DOP

clearly exhibits some anomalies in the control-flow behavior.

Our empirical study using the FlowStitch benchmarks [6] re-

vealed that on average 43% data-oriented gadgets are involved

in at least one conditional branch. Gadgets may have different

impacts on control-flow behaviors. Attackers may prefer data-

oriented gadgets that cause a minimum deviation from normal

executions. Such a selection process requires automation to

be efficient. Besides automation, one also needs to define

metrics to measure the footprints, i.e., the amount of alteration

caused by a DOP execution. Ispoglou et al. [18] made the first

step towards automating data-oriented programming through

a powerful Block Oriented Programming Compiler (BOPC).

Searching for gadget chains under specific constraints is an

interesting research direction.

Assessment of Programs’ Susceptibility to Data-Oriented
Attacks. Such a characterization – statically or dynamically

– would help one understand the threats that CFI cannot

protect against. A promising direction is to quantify the degree

of control-flow decisions that are dependent on adversarially

controlled data (e.g., user input). Such a characterization also

helps prioritize the defense effort, enabling one to address

programs with the highest susceptibility first.

Low False Positive PT-based Anomaly Detection. DOP

attacks exhibit occasional anomalous execution behaviors at

runtime, as we have demonstrated in Section IV. However, to

design a successful anomaly detection solution targeting DOP,

much more work is needed. Specifically, one needs to show the

instruction-level detection does not trigger many false positives

in normal executions. Virtually all existing learning-based

program anomaly detection demonstrations are at the higher

system-call and method-call levels. Reasoning instruction-

level PT traces for anomaly detection is challenging.

Deep Learning for Control-Flow Behavior Modeling. Non-
control data violations may involve control flows in multi-

ple locations that are far apart. How to detect incompatible

control-flow paths, given a relatively long control-flow se-

quence, is challenging. Exploring deep learning techniques,

such as Long Short-Term Memory (LSTM), may be promis-

ing, as LSTM keeps track of temporally distant events.

Selection of Tracing Checkpoints. Due to the storage con-

straint, it is probably impractical to monitor the complete

control-flow transfers of a program. Given a limited overhead

budget, how to systematically determine strategic checkpoints

for tracing (e.g., setting filters to monitor key functions) would

be useful in practice.

ACKNOWLEDGEMENT

This work has been in part supported by the Office of
Naval Research under Grant ONR-N00014-17-1-2498, Na-
tional Science Foundation under Grants OAC-1541105 and
CNS-1801534, Intel Collaborative Research Institute for Col-
laborative Autonomous & Resilient Systems (ICRI-CARS),
and the Academy of Finland under Grant 309994 (SELIoT).
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of any of the above organizations or any person
connected with them.

125

REFERENCES

[1] A. Francillon and C. Castelluccia, “Code injection attacks on harvard-
architecture devices,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2008.

[2] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in ACM SIGSAC Conference
on Computer and Communications Security (CCS), pp. 552–561, 2007.

[3] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Trans. Info.
& System Security, vol. 15, Mar. 2012.

[4] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in IEEE Symposium on Security and Privacy (S&P), pp. 48–
62, 2013.

[5] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, “Non-control-
data attacks are realistic threats,” in USENIX Conference on Security
Symposium, 2005.

[6] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, “Automatic gen-
eration of data-oriented exploits,” in USENIX Conference on Security
Symposium, pp. 177–192, 2015.

[7] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control
data attacks,” in IEEE Symposium on Security and Privacy (S&P),
pp. 969–986, 2016.

[8] M. Morton, J. Werner, P. Kintis, K. Z. Snow, M. Antonakakis,
M. Polychronakis, and F. Monrose, “Security risks in asynchronous
web servers: When performance optimizations amplify the impact of
data-oriented attacks,” in IEEE European Symposium on Security and
Privacy (EuroS&P), 2018.

[9] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross,
“Control-flow bending: On the effectiveness of control-flow integrity,”
in USENIX Conference on Security Symposium, pp. 161–176, 2015.

[10] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang, “StackGuard: Auto-
matic adaptive detection and prevention of buffer-overflow attacks,”
in USENIX Conference on Security Symposium, 1998.

[11] “Microsoft. Data Execution Prevention (DEP).”
http://support.microsoft.com/kb/875352/EN-US/. [Accessed 08-
12-2019].

[12] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh, “On the effectiveness of address-space randomization,” in
ACM Conference on Computer and Communications Security (CCS),
pp. 298–307, 2004.

[13] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS), 2005.

[14] “Microsoft. Return Flow Guard (RGF).”
https://technet.microsoft.com/en-us/security/dn425049.aspx. [Accessed
08-12-2019].

[15] “Control-flow Enforcement Technology Preview.”
https://software.intel.com/sites/default/files/ managed/4d/2a/control-
flow-enforcement-technology-preview.pdf. [Accessed 08-12-2019].

[16] “Intel’s Memory Protection Extensions.” https://software.intel.com/
en-us/isa-extensions/intel-mpx. [Accessed 08-12-2019].

[17] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler,
and M. Payer, “Control-flow integrity: Precision, security, and perfor-
mance,” ACM Computing Surveys, vol. 50, pp. 1–33, Apr. 2017.

[18] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, “Block oriented
programming: Automating data-only attacks,” in ACM SIGSAC Con-
ference on Computer and Communications Security (CCS), pp. 1868–
1882, 2018.

[19] A. Baliga, P. Kamat, and L. Iftode, “Lurking in the shadows: Identify-
ing systemic threats to kernel data,” in IEEE Symposium on Security
and Privacy (S&P), pp. 246–251, 2007.

[20] J. Xiao, H. Huang, and H. Wang, “Kernel data attack is a realistic
security threat,” in SecureComm (B. Thuraisingham, X. Wang, and
V. Yegneswaran, eds.), pp. 135–154, 2015.

[21] C. Schlesinger, K. Pattabiraman, N. Swamy, D. Walker, and B. Zorn,
“Modular protections against non-control data attacks,” in IEEE Com-
puter Security Foundations Symposium, pp. 131–145, 2011.

[22] T. Nyman, G. Dessouky, S. Zeitouni, A. Lehikoinen, A. Paverd,
N. Asokan, and A. Sadeghi, “Hardscope: Thwarting DOP
with hardware-assisted run-time scope enforcement,” CoRR,
vol. abs/1705.10295, 2017.

[23] C. Song, B. Lee, K. Lu, W. R. Harris, T. Kim, and W. Lee, “Enforc-
ing Kernel Security Invariants with Data Flow Integrity,” in Annual
Network and Distributed System Security Symposium (NDSS), 2016.

[24] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated
software diversity,” in IEEE Symposium on Security and Privacy
(S&P), pp. 276–291, 2014.

[25] D. Song, J. Lettner, P. Rajasekaran, Y. Na, S. Volckaert, P. Larsen, and
M. Franz, “SoK: Sanitizing for Security,” ArXiv e-prints, June 2018.

[26] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “PointGuardTM:
Protecting pointers from buffer overflow vulnerabilities,” in USENIX
Security Symposium, vol. 91, 2003.

[27] S. H. Yong and S. Horwitz, “Protecting c programs from attacks via
invalid pointer dereferences,” in ACM SIGSOFT Software Engineering
Notes, vol. 28, pp. 307–316, ACM, 2003.

[28] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing
memory error exploits with wit,” in 2008 IEEE Symposium on Security
and Privacy (sp 2008), pp. 263–277, IEEE, 2008.

[29] J. Devietti, C. Blundell, M. M. Martin, and S. Zdancewic, “HardBound:
architectural support for spatial safety of the c programming language,”
in ACM SIGARCH Computer Architecture News, vol. 36, pp. 103–114,
ACM, 2008.

[30] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic, “SoftBound:
Highly compatible and complete spatial memory safety for c,” ACM
Sigplan Notices, vol. 44, no. 6, pp. 245–258, 2009.

[31] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Ad-
dressSanitizer: A fast address sanity checker,” in Presented as part
of the 2012 USENIX Annual Technical Conference (USENIXATC 12),
pp. 309–318, 2012.

[32] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pp. 147–163, 2014.

[33] C. W. Otterstad, “A brief evaluation of intel R© mpx,” in 2015 Annual
IEEE Systems Conference (SysCon) Proceedings, pp. 1–7, IEEE, 2015.

[34] G. J. Duck and R. H. Yap, “Heap bounds protection with low fat
pointers,” in Proceedings of the 25th International Conference on
Compiler Construction, pp. 132–142, ACM, 2016.

[35] G. J. Duck, R. H. Yap, and L. Cavallaro, “Stack bounds protection
with low fat pointers.,” in NDSS, 2017.

[36] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia,
P. Felber, and C. Fetzer, “SGXbounds: Memory safety for shielded
execution,” in Proceedings of the Twelfth European Conference on
Computer Systems, pp. 205–221, ACM, 2017.

[37] “Qualcomm Technologies Inc., “Pointer Authentication on
ARMv8.3", 2017.” https://www.qualcomm.com/media/documents/files/
whitepaper-pointer-authentication-on-armv8-3.pdf. [Online; accessed
03-31-2019].

[38] “Hardware-assisted AddressSanitizer".” https://clang.llvm.org/docs/
HardwareAssistedAddressSanitizerDesign.html. [Online; accessed
03-31-2019].

[39] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in ACM SIGOPS Operating Systems
Review, vol. 27, pp. 203–216, ACM, 1994.

[40] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula,
“XFI: Software guards for system address spaces,” in Proceedings of
the 7th symposium on Operating systems design and implementation,
pp. 75–88, USENIX Association, 2006.

[41] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Don-
nelly, P. Barham, and R. Black, “Fast byte-granularity software fault
isolation,” in Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pp. 45–58, ACM, 2009.

[42] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F.
Kaashoek, “Software fault isolation with api integrity and multi-
principal modules,” in Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles, pp. 115–128, ACM, 2011.

[43] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
cheri capability model: Revisiting risc in an age of risk,” in 2014
ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), pp. 457–468, IEEE, 2014.

[44] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address space layout
permutation (aslp): Towards fine-grained randomization of commod-
ity software,” in 2006 22nd Annual Computer Security Applications
Conference (ACSAC’06), pp. 339–348, IEEE, 2006.

126

[45] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson, “Ilr:
Where’d my gadgets go?,” in 2012 IEEE Symposium on Security and
Privacy, pp. 571–585, IEEE, 2012.

[46] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code,” in
Proceedings of the 2012 ACM conference on Computer and communi-
cations security, pp. 157–168, ACM, 2012.

[47] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz,
“Profile-guided automated software diversity,” in Proceedings of the
2013 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pp. 1–11, IEEE Computer Society, 2013.

[48] P. Larsen, S. Brunthaler, and M. Franz, “Security through diversity: Are
we there yet?,” IEEE Security & Privacy, vol. 12, no. 2, pp. 28–35,
2014.

[49] M. Conti, S. Crane, T. Frassetto, A. Homescu, G. Koppen, P. Larsen,
C. Liebchen, M. Perry, and A.-R. Sadeghi, “Selfrando: Securing the tor
browser against de-anonymization exploits,” Proceedings on Privacy
Enhancing Technologies, vol. 2016, no. 4, pp. 454–469, 2016.

[50] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M. Polychronakis,
“Compiler-assisted code randomization,” in 2018 IEEE Symposium on
Security and Privacy (SP), pp. 461–477, IEEE, 2018.

[51] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi, “Timely
rerandomization for mitigating memory disclosures,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pp. 268–279, ACM, 2015.

[52] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake, X. Yuan,
P. Colp, M. Zheng, V. P. Kemerlis, J. Yang, and W. Aiello, “Shuf-
fler: Fast and deployable continuous code re-randomization,” in 12th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pp. 367–382, 2016.

[53] Y. Chen, Z. Wang, D. Whalley, and L. Lu, “Remix: On-demand live
randomization,” in Proceedings of the sixth ACM conference on data
and application security and privacy, pp. 50–61, ACM, 2016.

[54] K. Lu, W. Lee, S. Nürnberger, and M. Backes, “How to make ASLR
win the clone wars: Runtime re-randomization.,” in NDSS, 2016.

[55] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and
J. Pewny, “You can run but you can’t read: Preventing disclosure
exploits in executable code,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1342–
1353, ACM, 2014.

[56] J. Gionta, W. Enck, and P. Ning, “HideM: Protecting the contents
of userspace memory in the face of disclosure vulnerabilities,” in
Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy, pp. 325–336, ACM, 2015.

[57] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in 2015 IEEE Symposium on Security
and Privacy, pp. 763–780, IEEE, 2015.

[58] A. Tang, S. Sethumadhavan, and S. Stolfo, “Heisenbyte: Thwarting
memory disclosure attacks using destructive code reads,” in Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pp. 256–267, ACM, 2015.

[59] J. Werner, G. Baltas, R. Dallara, N. Otterness, K. Z. Snow, F. Monrose,
and M. Polychronakis, “No-execute-after-read: Preventing code disclo-
sure in commodity software,” in Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security, pp. 35–46,
ACM, 2016.

[60] S. C. Cowan, S. R. Arnold, S. M. Beattie, and P. M. Wagle, “Point-
Guard: method and system for protecting programs against pointer
corruption attacks,” July 6 2010. US Patent 7,752,459.

[61] M. Backes and S. Nürnberger, “Oxymoron: Making fine-grained mem-
ory randomization practical by allowing code sharing.,” in USENIX
Security Symposium, pp. 433–447, 2014.

[62] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee, “ASLR-
Guard: Stopping address space leakage for code reuse attacks,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pp. 280–291, ACM, 2015.

[63] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM conference on Computer
and communications security, pp. 340–353, ACM, 2005.

[64] I. Fratrić, “ROPGuard: Runtime prevention of return-oriented program-
ming attacks,” tech. rep., Technical report, 2012.

[65] M. Zhang and R. Sekar, “Control flow integrity for cots binaries.,” in
USENIX Security Symposium, pp. 337–352, 2013.

[66] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and random-
ization for binary executables,” in Security and Privacy (SP), 2013
IEEE Symposium on, pp. 559–573, IEEE, 2013.

[67] Y. Xia, Y. Liu, H. Chen, and B. Zang, “CFIMon: Detecting violation
of control flow integrity using performance counters,” in IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN
2012), pp. 1–12, IEEE, 2012.

[68] M. Kayaalp, M. Ozsoy, N. Abu-Ghazaleh, and D. Ponomarev, “Branch
Regulation: low-overhead protection from code reuse attacks,” in ACM
SIGARCH Computer Architecture News, vol. 40, pp. 94–105, IEEE
Computer Society, 2012.

[69] N. Christoulakis, G. Christou, E. Athanasopoulos, and S. Ioannidis,
“HCFI: Hardware-enforced control-flow integrity,” in Proceedings of
the Sixth ACM Conference on Data and Application Security and
Privacy, pp. 38–49, 2016.

[70] L. Davi, M. Hanreich, D. Paul, A.-R. Sadeghi, P. Koeberl, D. Sulli-
van, O. Arias, and Y. Jin, “HAFIX: hardware-assisted flow integrity
extension,” in Proceedings of the 52nd Annual Design Automation
Conference, p. 74, ACM, 2015.

[71] A. One, “Smashing the stack for fun and profit,” Phrack, vol. 7,
November 1996.

[72] D. Litchfield, “Defeating the stack based buffer overflow prevention
mechanism of microsoft windows 2003 server,” 2003.

[73] “Microsoft Structured Exception Handling Overwrite Protection
(SEHOP).” https://support.microsoft.com/en-us/help/956607/how-
to-enable-structured-exception-handling-overwrite-protection-sehop/.
[Accessed 08-12-2019].

[74] A. Peslyak, ““return-to-libc” attack,” Bugtraq, Aug, 1997.
[75] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-

libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and communications security, pp. 552–
561, ACM, 2007.

[76] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in Security and Privacy
(SP), 2014 IEEE Symposium on, pp. 575–589, IEEE, 2014.

[77] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: a new class of code-reuse attack,” in Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security, pp. 30–40, ACM, 2011.

[78] P. Team, “Pax address space layout randomization (aslr),” 2003.
[79] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens, S. Lachmund, and

T. Walter, “Breaking the memory secrecy assumption,” in Proceedings
of the Second European Workshop on System Security, pp. 1–8, ACM,
2009.

[80] A. Barresi, K. Razavi, M. Payer, and T. R. Gross, “CAIN: Silently
breaking ASLR in the cloud,” in 9th USENIX Workshop on Offensive
Technologies (WOOT 15), 2015.

[81] A. Oikonomopoulos, E. Athanasopoulos, H. Bos, and C. Giuffrida,
“Poking holes in information hiding,” in 25th USENIX Security Sym-
posium (USENIX Security 16), pp. 121–138, 2016.

[82] J. Seibert, H. Okhravi, and E. Söderström, “Information leaks without
memory disclosures: Remote side channel attacks on diversified code,”
in Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, pp. 54–65, ACM, 2014.

[83] R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, T. Hobson, S. Crane,
C. Liebchen, P. Larsen, L. Davi, M. Franz, et al., “Address-oblivious
code reuse: On the effectiveness of leakage resilient diversity,” in Pro-
ceedings of the Network and Distributed System Security Symposium
(NDSS’17), 2017.

[84] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in Security and Privacy
(SP), 2013 IEEE Symposium on, pp. 574–588, IEEE, 2013.

[85] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh,
“Hacking blind,” in Security and Privacy (SP), 2014 IEEE Symposium
on, pp. 227–242, IEEE, 2014.

[86] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross,
“Control-flow bending: On the effectiveness of control-flow integrity.,”
in USENIX Security Symposium, pp. 161–176, 2015.

[87] N. Carlini and D. Wagner, “Rop is still dangerous: Breaking modern
defenses.,” in USENIX Security Symposium, pp. 385–399, 2014.

[88] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Trans-

127

actions on Information and System Security (TISSEC), vol. 13, no. 1,
p. 4, 2009.

[89] B. Zeng, G. Tan, and G. Morrisett, “Combining control-flow integrity
and static analysis for efficient and validated data sandboxing,” in
Proceedings of the 18th ACM conference on Computer and communi-
cations security, pp. 29–40, ACM, 2011.

[90] A. J. Mashtizadeh, A. Bittau, D. Mazieres, and D. Boneh,
“Cryptographically enforced control flow integrity,” arXiv preprint
arXiv:1408.1451, 2014.

[91] T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost of
shadow stacks and stack canaries,” in Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security,
pp. 555–566, ACM, 2015.

[92] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent ROP
exploit mitigation using indirect branch tracing,” in Presented as part of
the 22nd USENIX Security Symposium (USENIX Security 13), pp. 447–
462, 2013.

[93] M. Budiu, Ú. Erlingsson, and M. Abadi, “Architectural support for
software-based protection,” in Proceedings of the 1st workshop on
Architectural and system support for improving software dependability,
pp. 42–51, ACM, 2006.

[94] L. Davi, P. Koeberl, and A.-R. Sadeghi, “Hardware-assisted fine-
grained control-flow integrity: Towards efficient protection of em-
bedded systems against software exploitation,” in 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6,
IEEE, 2014.

[95] D. Sullivan, O. Arias, L. Davi, P. Larsen, A.-R. Sadeghi, and Y. Jin,
“Strategy without tactics: Policy-agnostic hardware-enhanced control-
flow integrity,” in 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1–6, IEEE, 2016.

[96] P. Qiu, Y. Lyu, J. Zhang, D. Wang, and G. Qu, “Control flow integrity
based on lightweight encryption architecture,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 7, pp. 1358–1369, 2018.

[97] M. Frantzen and M. Shuey, “StackGhost: Hardware facilitated stack
protection.,” in USENIX Security Symposium, vol. 112, 2001.

[98] “Intel Control-flow Enforcement Technology, In-
tel Corporat., SantaClara, CA, USA, 2017.”
https://software.intel.com/sites/default/files/managed/4d/2a/control-
flow-enforcement-technology-preview.pdf. [Online; accessed 03-31-
2019].

[99] V. van der Veen, D. Andriesse, M. Stamatogiannakis, X. Chen, H. Bos,
and C. Giuffrdia, “The dynamics of innocent flesh on the bone: Code
reuse ten years later,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1675–
1689, ACM, 2017.

[100] “ProFTPD remote exploit.” http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2006-5815. [Online; accessed 04-
05-2019].

[101] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[102] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit hardening
made easy.,” in USENIX Security Symposium, pp. 25–41, 2011.

[103] Y. Jia, Z. L. Chua, H. Hu, S. Chen, P. Saxena, and Z. Liang, “"the
web/local" boundary is fuzzy: A security study of chrome’s process-
based sandboxing,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS), pp. 791–804, 2016.

[104] L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, “Pt-rand: Practical
mitigation of data-only attacks against page tables,” in Annual Network
and Distributed System Security Symposium (NDSS), 2017.

[105] R. Rogowski, M. Morton, F. Li, F. Monrose, K. Z. Snow, and
M. Polychronakis, “Revisiting browser security in the modern era: New
data-only attacks and defenses,” in 2017 IEEE European Symposium
on Security and Privacy (EuroS&P), pp. 366–381, 2017.

[106] K. Sinha and S. Sethumadhavan, “Practical memory safety with REST,”
in Annual International Symposium on Computer Architecture (ISCA),
2018.

[107] S. Nagarakatte, J. Zhao, M. Martin, Milo, and S. Zdancewic, “Soft-
Bound: Highly compatible and complete spatial memory safety for C,”
in ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pp. 245–258, 2009.

[108] J. Devietti, C. Blundell, M. M. K. Martin, and S. Zdancewic, “Hard-
bound: Architectural support for spatial safety of the c programming

language,” in Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pp. 103–114, 2008.

[109] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia,
P. Felber, and C. Fetzer, “SGXBOUNDS: Memory safety for shielded
execution,” in European Conference on Computer Systems (EuroSys),
pp. 205–221, 2017.

[110] G. C. Necula, S. McPeak, and W. Weimer, “CCured: Type-safe
retrofitting of legacy code,” in ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL), 2002.

[111] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in USENIX Conference on Operating Systems
Design and Implementation (OSDI), 2014.

[112] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in ACM Symposium on Operating
Systems Principles (SOSP), pp. 203–216, 1993.

[113] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula,
“XFI: Software guards for system address spaces,” in Symposium on
Operating Systems Design and Implementation (OSDI), pp. 75–88,
2006.

[114] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F.
Kaashoek, “Software fault isolation with api integrity and multi-
principal modules,” in ACM Symposium on Operating Systems Princi-
ples (SOSP), pp. 115–128, 2011.

[115] S. Bhatkar and R. Sekar, “Data space randomization,” in International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), 2008.

[116] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A. R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in 2015 IEEE Symposium on Security
and Privacy (S&P), pp. 763–780, 2015.

[117] C. Cadar, P. Akritidis, M. Costa, J.-P. Martin, and M. Castro, “Data
randomization,” Tech. Rep. MSR-TR-2008-120, Microsoft Research,
September 2008.

[118] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced operating
system security through efficient and fine-grained address space ran-
domization,” in USENIX Conference on Security Symposium, pp. 475–
490, 2012.

[119] B. Belleville, H. Moon, J. Shin, D. Hwang, J. M. Nash, S. Jung,
Y. Na, S. Volckaert, P. Larsen, Y. Paek, et al., “Hardware assisted
randomization of data,” in International Symposium on Research in
Attacks, Intrusions, and Defenses, pp. 337–358, Springer, 2018.

[120] Q. Chen, A. M. Azab, G. Ganesh, and P. Ning, “Privwatcher: Non-
bypassable monitoring and protection of process credentials from
memory corruption attacks,” in ACM on Asia Conference on Computer
and Communications Security, ASIA CCS ’17, pp. 167–178, 2017.

[121] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee,
and Y. Paek, “HDFI: Hardware-assisted data-flow isolation,” in IEEE
Symposium on Security and Privacy (S&P), pp. 1–17, 2016.

[122] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in Symposium on Operating Systems Design and
Implementation (OSDI), 2006.

[123] Z. Sun, B. Feng, L. Lu, and S. Jha, “OEI: operation execution integrity
for embedded devices,” CoRR, vol. abs/1802.03462, 2018.

[124] G. Torres and C. Liu, “Can data-only exploits be detected at runtime
using hardware events?: A case study of the heartbleed vulnerability,”
in Proceedings of the Hardware and Architectural Support for Security
and Privacy 2016, p. 2, ACM, 2016.

[125] C. Liu, Z. Yang, Z. Blasingame, G. Torres, and J. Bruska, “Detecting
data exploits using low-level hardware information: A short time series
approach,” in Proceedings of the First Workshop on Radical and
Experiential Security, pp. 41–47, ACM, 2018.

[126] “The heartbleed bug.”
[127] “Anonymous FTP connections dataset at the Lawrence Berkeley Na-

tional Laboratory.” https://ee.lbl.gov/anonymized-traces.html. [Online;
Accessed 08-12-2019].

[128] D. Pelleg and A. W. Moore, “X-means: Extending k-means with effi-
cient estimation of the number of clusters,” in International Conference
on Machine Learning (ICML), 2000.

[129] X. Shu, D. Yao, and N. Ramakrishnan, “Unearthing stealthy program
attacks buried in extremely long execution paths,” in ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2015.

128

