
Adversarial Network Forensics
in So�ware Defined Networking

Stefan Achleitner, �omas La Porta, Trent Jaeger, Patrick McDaniel

Computer Science and Engineering, Pennsylvania State University

University Park, PA 16802

{sachleitner,tlp,tjaeger,mcdaniel}@cse.psu.edu

ABSTRACT
So�ware De�ned Networking (SDN), and its popular im-

plementation OpenFlow, represent the foundation for the

design and implementation of modern networks. �e essen-

tial part of an SDN-based network are �ow rules that enable

network elements to steer and control the tra�c and deploy

policy enforcement points with a �ne granularity at any

entry-point in a network. Such applications, implemented

with the usage of OpenFlow rules, are already integral com-

ponents of widely used SDN controllers such as Floodlight
or OpenDayLight. �e implementation details of network

policies are re�ected in the composition of �ow rules and

leakage of such information provides adversaries with a sig-

ni�cant a�ack advantage such as bypassing Access Control
Lists (ACL), reconstructing the resource distribution of Load
Balancers or revealing of Moving Target Defense techniques.

In this paper we introduce a new a�ack vector on SDN by

showing how the detailed composition of �ow rules can be re-

constructed by network users without any prior knowledge

of the SDN controller or its architecture. To our best knowl-

edge, in SDN, such reconnaissance techniques have not been

considered so far. We introduce SDNMap, an open-source

scanner that is able to accurately reconstruct the detailed

composition of �ow rules by performing active probing and

listening to the network tra�c. We demonstrate in a num-

ber of real-world SDN applications that this ability provides

adversaries with a signi�cant a�ack advantage and discuss

ways to prevent the introduced reconnaissance techniques.

Our SDNMap scanner is able to reconstruct �ow rules be-

tween network endpoints with an accuracy of over 96%.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for pro�t or commercial advantage and that copies bear

this notice and the full citation on the �rst page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permi�ed. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior speci�c permission and/or a fee. Request

permissions from permissions@acm.org.

SOSR’17, Santa Clara, CA
© 2017 ACM. © 2017 ACM. ISBN 978-1-4503-4947-5/17/04. . . $15.00

DOI: h�p://dx.doi.org/10.1145/3050220.3050223

CCS CONCEPTS
•Security and privacy →Network security; Security pro-
tocols; Domain-speci�c security and privacy architectures;

KEYWORDS
OpenFlow rule reconstruction, A�acks on SDN

ACM Reference format:
Stefan Achleitner, �omas La Porta, Trent Jaeger, Patrick McDaniel.

2017. Adversarial Network Forensics

in So�ware De�ned Networking. In Proceedings of ACM Sympo-
sium on SDN Research, Santa Clara, CA, April 3–4, 2017 (SOSR’17),
13 pages.

DOI: h�p://dx.doi.org/10.1145/3050220.3050223

1 INTRODUCTION
So�ware De�ned Networking (SDN) has received a signif-

icant amount of a�ention in both the academic research

community and industry due to its potential for the imple-

mentation of dynamic and �exible networked systems. �e

essential part of SDN-based networks and applications are

�ow rules, deployed on SDN-enabled switches, to control the

network tra�c. �e construction of �ow rules is de�ned by

protocols, such as OpenFlow [9], which is widely used in the

major open-source SDN controllers such as OpenDayLight

or Floodlight. In this paper we study OpenFlow-based SDNs.

In comparison to legacy networks, SDN enables a cen-

tral controller to dynamically program the data plane and

implement applications and network policies with a �ne

granularity of information to steer and control tra�c. In

legacy networks policy enforcement techniques such as �re-

walls or ACLs are deployed at the edge of a network, in

contrast OpenFlow-enabled networks give a deeper level of

granularity to SDN controllers and enables them to place

enforcement points at any entry point in a network [7, 22].

Since the internals of SDN-enabled switches are not ac-

cessible to network users, they appear as a black-box and

the deployed system of �ow rules is assumed to be invisible

to users. �is central assumption is especially important for

the deployment of SDN-based security-aware policies.

In this paper we infer the composition details of Open-

Flow rules on the data plane, independent of the controller

platform, by developing tra�c analysis techniques that are

SOSR’17, April 3–4, 2017, Santa Clara, CA Stefan Achleitner, Thomas La Porta, Trent Jaeger, Patrick McDaniel

able to gather high granularity information about SDN-based

packet forwarding. Our approach is able to gather enough

information to infer the detailed composition of rules, includ-

ing matching and action �elds along with their associated

�eld values. To our best knowledge, such reconnaissance

techniques have not been considered so far as a potential

a�ack vector in the context of SDN-based networks. Using

our approach, we demonstrate that by inferring �ow rule de-

tails, adversaries can reconstruct deployed network policies

and use this knowledge for cra�ing a�ack tra�c to bypass

ACLs, map load balancing strategies or defeat moving target

defense implementations to name a few examples.

Existing adversarial probing techniques used in �rewall

�ngerprinting [18, 25, 27, 30], collect a coarser granularity

of packet information, limited to port numbers, IP addresses

and protocols, used to �lter packets at policy enforcement

points. In contrast, OpenFlow considers a signi�cantly larger

range of information over multiple network layers, to iden-

tify packets. Additionally, dynamic packet manipulation

actions executed by �ow rules and required for the imple-

mentation of novel security mechanisms, such as moving

target defense, are neglected by existing probing techniques.

Inferring the details of SDN-based policy enforcement points

deployed with a �ne granularity requires advanced probing

techniques to collect information ranging over multiple net-

work layers, contrary to traditional techniques targeting

policies located at the edge of a network.

We introduce scanning methods that are able to retrieve

the required information to fully and accurately reconstruct

�ow rules. Following the principle of “low and slow”, our

probing techniques aim to reduce the probes to one packet

per second on average for reconstructing �ow rules from

the scanning source to a destination host. In Section 5 we

show that this approach makes SDNMap stealthy by staying

below the tra�c threshold considered in recent SDN defense

techniques [20]. �is new a�ack vector on analyzing the pre-

cise forwarding policy of SDN switches, gives an adversary

detailed knowledge of what packet and meta information is

used to match packets and which actions are applied.

We also discuss the e�ects of current defense systems, fo-

cused on SDN, on our a�ack approach and list improvements

to prevent the re-construction of �ow rules. �e following

is a summary of our contributions:

• Development of rule reconstruction techniques
We develop network probing techniques to infer the com-

position of OpenFlow rules that implement speci�c net-

work policies on the data plane. By applying these probing

techniques in a set of scanning steps our approach can

retrieve a �ne enough granularity of information to deter-

mine the construction details of �ow rules, which can be

used to cra� adversarial network tra�c.

• Analyzing new a�ack vectors in SDN
We evaluate the developed probing techniques by apply-

ing them on various real-world application scenarios and

show that knowledge about the construction details of

OpenFlow rules gives adversaries a signi�cant advantage

for the execution of targeted a�acks in SDN.

Based on the introduced adversarial probing techniques

we implement SDNMap, an open-source tool available at

[17], that can be used as a scanner for the reconstruction of

OpenFlow rules on the data plane. We show that SDNMap

is able to reconstruct �ow rules to a target host with an

accuracy of over 96%.

2 MOTIVATION
�e dynamic programmability of switches is a characteristic

distinguishing SDN from traditional networks. Policies (e.g.

ACL’s, user identi�cation, �rewalls), entire applications (e.g.

load balancers) or novel defense mechanisms (e.g. moving

target defense) can be implemented with �ow rules de�ned

by protocols such as OpenFlow [9]. Typically, SDN con-

trollers follow either a reactive or a proactive approach for

�ow rule deployment. For the analysis of reconstructing

�ow rules on the data-plane we consider both approaches

in this paper. �e de�nition of �ow rules is based on �elds

that analyze, control and manipulate tra�c with a �ne gran-

ularity, extending the precision and �exibility of traditional

network policies (e.g. �rewalls).

�e internal functionality of SDN-enabled switches, deter-

mined by the deployed �ow rules, is assumed to be invisible

to network users, which is especially critical for applications

with a security purpose such as access control, or resource

distribution as achieved by load balancers. Construction

details of rules which control the tra�c between network

endpoints, reveals the internal functionality of SDN-enabled

switches and give adversaries an advantage in the identi�-

cation of targets and development of a ba�le plan for the

execution of a�acks.

2.1 Problem statement
�echallenge in the development of rule-reconstruction tech-

niques is to infer the internal functionality of an OpenFlow

enabled network element by determining which packet in-

formation was used to make a matching decision and which

actions are applied on matching packets. Since network

users are not able to gain access to the SDN-switch internals,

this information has to be inferred by transmi�ing probing

packets. We consider a source host which aims to determine

the detailed composition of �ow rules and sends probing

packets to a set of target hosts, which are de�ned by a list of

IP addresses. A scanner aiming to infer the details of Open-

Flow rules has to make the target hosts reply in a way that

leaks enough information to reveal the used �ow rule �elds

to make a matching decision and the applied rule actions.

Adversarial Network Forensics
in So�ware Defined Networking SOSR’17, April 3–4, 2017, Santa Clara, CA

Table 1: OpenFlow �elds reconstructed with di�erent probing techniques
OpenFlow �eld Type2 SDNMap aFWFP bFPSDN cFirewalk dFirecracker eLumeta
Ingress port (SIP) (used/not used) M X
MAC destination address (HWd) M X
MAC source address (HWs) M X
Ethernet type (PT) M X(ARP, IP)
IPv4 protocol (PT) M X(ICMP, TCP, UDP) X(TCP, UDP) X(TCP, UDP) X(TCP, UDP) X(TCP, UDP)
IPv4 source address (IPs)

1
M X X X

IPv4 destination address (IPd)
1

M X X X X
TCP/UDP source port (POs) M X X X X
TCP/UDP destination port (POd) M X X X X
Egress action (FA) (forward/drop) A X X X X X X
Modify IPv4 src address (rIPs) A X
Modify IPv4 dst address (rIPd) A X

Existing probing techniques, such as used in �rewall �n-

gerprinting, can not be directly applied in SDN since �rewalls

are usually deployed on the edge of the network and only

collect a limited set of information used for packet �ltering.

In contrast OpenFlow enabled network elements have a sig-

ni�cantly larger set of �elds to identify packets and apply

�ow actions. Furthermore, network policies implemented

with OpenFlow can be deployed with a higher granularity,

at any entry point of the network.

To determine the construction details of OpenFlow rules,

a �ner granularity of information is required to infer the

matching as well as the action part of a �ow rule. We over-

come this challenge by implementing scanning techniques

which retrieve a �ne granularity of information to determine

the �ow rule details controlling tra�c between hosts.

Since the main focus of this work is to map the internals of

an OpenFlow-enabled switch, we consider pure SDN-based

networks. We do not consider hybrid networks (SDN and

legacy combined) in this work.

2.2 Comparison of probing techniques
To set our approach apart from existing scanning techniques

aiming to infer network security policies, we analyze which

information existing probing techniques are able to infer. In

Table 1 we show that existing techniques are at most collect-

ing half of the information required to reconstruct the core

list of the OpenFlow [9] protocol �elds, as well as address

rewriting techniques frequently used in SDN applications.

Based on the analysis presented in this paper, we provide

an implementation of our rule-reconstruction scanner SDN-

Map [17] which is easy to execute and provides a signi�cant

advantage to adversaries for the planning and execution of

targeted a�acks in SDN-based networks, as we demonstrate

in Section 4. We plan to further extend SDNMap in our fu-

ture work to reconstruct an extended part of the OpenFlow

protocol. In the following we brie�y discuss the existing

comparison techniques listed in Table 1.

aFirewall Fingerprinting (INFOCOM 2012) [25]: A probing

technique is presented using either a sequence of TCP or

UDP probing packets with �xed header and varying source

port numbers, which evaluates the packet classi�cation al-

gorithm used and its performance.

bFingerprinting So�ware-de�ned Networks (ICNP 2015) [19]:
�e authors of this work propose a technique of network

�ngerprinting to determine architectural details of an SDN.

As shown in Table 1, this technique is only able to determine

if a packet is forwarded or not, but is not able to retrieve a

�ne granularity of information to infer details of �ow rule

construction.

cFirewalk Firewall scanner (Open-source so�ware) [4], dFire-
cracker: A framework for inferring �rewall policies using
smart probing (ICNP 2007) [27], eArchitecting the Lumeta
Firewall Analyzer (USENIX 2001) [30]: Firewalk, Firecracker
and Lumeta are tools and papers focused on reconstruct-

ing �rewall policies. While not directly applicable to SDN,

the techniques are able to determine if certain IP addresses

and port numbers are allowed or denied. Such information

could be translated into SDN rules used to implement Fire-

walls or ACL’s. As shown in Table 1, �rewall reconnaissance

techniques are able to identify about half of the information

SDNMap is retrieving.

2.3 �reat model
In our threat model we consider a user who has access to

a computer connected to a SDN-based network and is able

to run SDNMap with root privileges. �e user has no prior

knowledge of the network architecture or any privileges of

a network administrator or operator. We do not assume that

the SDN controller, other SDN elements or the probed des-

tination hosts are compromised by a malware or any other

adversarial user.

Techniques to prevent network scanning o�en depend on

monitoring packet throughput or blocking of certain proto-

cols. �e scanning procedure in SDNMap does not depend

on a single protocol to perform the required steps; TCP or

ICMP can be used interchangeably as we discuss in Section

3. SDNMap does not perform actions such as link fabrication

1
OpenFlow also de�nes the usage of IPv6 addresses. We do not consider

IPv6 in this version of SDNMap, but are planning to include IPv6 in future

versions of SDNMap.

2
M=Matching, A=Action

SOSR’17, April 3–4, 2017, Santa Clara, CA Stefan Achleitner, Thomas La Porta, Trent Jaeger, Patrick McDaniel

or creating a fake topology targeted by recent SDN-speci�c

defense approaches ([20, 21]), but aims to exploit the details

of existing �ow rules and network policies. Following the

principle of “low and slow” SDNMap transmits less than one

packet per second during the scanning process on average,

depending on the user se�ings. We evaluate the e�ects of

current SDN-speci�c defense techniques in Section 5.

3 RULE RECONSTRUCTION
To infer the details of an OpenFlow rule we transmit probing

packets with the actual source host header information and

compare the received response to probing packets that use

spoofed values for the evaluated header �eld. To overcome

the challenge of inferring matching and action parts de�ned

in OpenFlow rules we exploit certain features in existing

network protocols.

3.1 Rule reconstruction overview
To scan a SDN-based network and reconstruct OpenFlow

rules, we assume a user can detect if a network is SDN-based

using previously published techniques such as [19, 28].

We seek to reconstruct rules using only external entities,

i.e. hosts that are connected to an SDN-based network. We

do not assume that the controller or network elements, i.e.

SDN switches, are compromised. �e challenge of recon-

structing OpenFlow rules is to cra� a sequence of probes

that cause su�cient information to be leaked so the details

of rules can be determined. Our approach aims to cra� the

required sequence of probes to network endpoints with very

low overhead.

We introduce techniques in this paper to infer the match-

ing and action �elds as well as their associated values. �e

scanning process to determine the composition of �ow rules

is performed on the data plane, where OpenFlow speci�c

rules are reactively or proactively deployed. �is makes our

approach independent of speci�c controller platforms.

In OpenFlow, rule �elds have a speci�c value assigned and

evaluate arriving packets for that speci�c value. Multiple

values, e.g. a list of port numbers, cannot be checked in a

single OpenFlow rule as de�ned in the protocol speci�cation

[9]. With the exception of IP addresses which can be evalu-

ated by network pre�x (e.g. 10.0.0.0/16).

In the following we present an overview of these scanning

steps along with the number of probing packets required by

each step. �e number of probing packets are required to

infer the �ow rules from the scanning host to a destination

host, that is speci�ed by the SDNMap user. SDNMap allows

to scan single or multiple hosts by specifying a range of

IP addresses to probe. To resolve the corresponding MAC

addresses for the supplied range of IP addresses SDNMap

transmits ARP request packets as we discuss in the following.

In case multiple hosts are scanned, the introduced scanning

steps have to be executed multiple times.

• Host reachability (2 probing packets)
As an initial scanning step, SDNMap transmits an ARP

request packet and a probing packet (TCP or ICMP) with

the real packet header �eld values of the probing source

host to the destination host. With this scanning step, we

evaluate if the �ow rules controlling the tra�c between

the source and destination host forward benign packets

with legitimate header information.

• MAC addresses (4 probing packets)
In this scanning step SDNMap sends probing packets to

infer if the matching part of the �ow rule forwarding

packets between the scanning and destination host, con-

siders speci�c MAC source and destination addresses to

identify a packet. By executing this scanning step we

are able to infer if the �elds match:MACsrc=HWs , where
HWs is the scanning host’s actual MAC address and the

�eldmatch:MACdst =HWd , whereHWd is the destination

host’s actual MAC address, are used in the matching part

of the �ow rule. We discuss this step in Section 3.2.

• IP addresses (3 probing packets)
Following a similar approach as inferring MAC address

�elds, in this scanning step we send probing packets to de-

termine if speci�c IP addresses are checked in the match-

ing part of an OpenFlow rule. By executing this scan-

ning step we are able to infer if the �eld match:IPsrc=IPs ,
where IPs is the actual IP address of the scanning host,

and match:IPdst=IPd , where IPd is the actual IP address

of the destination host are used as matching criteria in a

�ow rule. We discuss this step in detail in Section 3.3.

• Protocols and ports (2 + 2p2 probing packets)
To evaluate if a �ow rule is matching packets for speci�c

protocols, SDNMap sends probing packets of the type

ARP, ICMP, TCP and UDP to the destination host and

analyzes the received responses. For the TCP and UDP

protocol, SDNMap also evaluates if a list of user de�ned

port numbers is checked in the matching part of a �ow

rule. �is scanning step determines if the protocol �eld

PT , where PT ∈ {ARP , ICMP ,TCP ,UDP} is considered
in a �ow rule. If PT = {TCP or UDP} SDNMap also de-

termines if the �eld tpsrc = POs is matching packets for

a speci�c source port number POs and if tpdst = POd is

matching packets for a speci�c destination port number

POd . For this step a user speci�ed list p of port numbers

is considered for the scanning procedure. We discuss this

step in detail in Section 3.4.

• Ingress port (2 probing packets)
�e OpenFlow �eld ingress port can be seen as meta infor-

mation which is only available once a packet arrives at the

switch. SDNMap is not able to determine the actual ingress

port number, but can infer if the �eld match:in port=SIP
is used in the matching part of a �ow rule. �e value

Adversarial Network Forensics
in So�ware Defined Networking SOSR’17, April 3–4, 2017, Santa Clara, CA

SIP is replaced with the placeholder #IN PORT . We de-

termine this value by impersonating another host in the

same sub-network as we will discuss in Section 3.5.

• IP address rewriting action (1 probing packet)
�e action part of an OpenFlow rule is executed if a packet

ful�lls all matching criteria of a �ow rule. For inferring

if an OpenFlow rule is performing IP address rewriting

actions, SDNMap transmits a UDP packet which triggers

an ICMP error message at the destination host that will

reveal the actual IP addresses received by the destina-

tion. With this scanning step we are able to determine the

�elds actions:set IP src =rIPs for rewriting the IP source

address and actions:set IP dst=rIPd for rewriting the IP

destination address, where rIPs is the value overwriting
the original IP source address and rIPd the value overwrit-

ing the original IP destination address. We will discuss

the details of this scanning step in Section 3.6.

• Forwarding action
�e forwarding action in a �ow rule either transmits a

packet to a speci�c switch port or drops the packet. Here,

our approach is able to infer which action, forwarding

or dropping of a matching packet, is used. SDNMap con-

cludes this action based on the received response packets

from the previously executed scanning steps as discussed.

In the following we will discuss the technical details of

the introduced scanning steps.

3.2 Scanning step: MAC addresses
In this scanning stepwe infer if the �ow rule �eldsmatch:MACsrc
=HWs and match:MACdst=HWd evaluate a packet for spe-

ci�c MAC source (HWs) and destination (HWd) addresses.
To determine the usage of MAC address �elds and the

speci�c values of HWs and HWd we exchange packets as

shown in Figure 1. For this scanning step, SDNMap gener-

ates probing packets, by using either TCP or ICMP, with a

spoofed MAC source address. To generate a spoofed MAC

source address we use the �rst three octets of its current

physical host which is also known as the Organizationally
Unique Identi�er (OUI), and select the last three octets of

the spoofed MAC address randomly. �is procedure will

generate a valid MAC address, with a high likelihood that

no other host in the network has the same MAC address.

To generate a reply packet to the transmi�ed probe of

our SDNMap scanner, the destination host will not use the

received source MAC address of the probing packet, but

will lookup the corresponding MAC address of the received

source IP address in its local ARP cache as explained in RFC

826 [16]. If an entry is present, the host will generate a probe

reply message with the MAC destination address from its

local ARP cache and send it back to the source host. If an

entry for the IP in its local ARP cache is not present, the des-

tination host will send out an ARP request packet to resolve

the received source IP address in our probing packet. If a

reply for the ARP request was received, the host updates the

entry in its local ARP cache and will send the probe reply

packet back to the source host.

Figure 1: Steps to determine MAC address �elds

Upon receiving a probe reply or ARP request packet, our

SDNMap scanner can conclude that the MAC source address

was not used for transmi�ing the probe packet to the des-

tination host since it was spoofed. If no reply packet to

the probing message was received, the procedure can be

repeated to eliminate other causes for not receiving a reply

packet, such as packet loss. If no probe reply or ARP re-

quest packet is received a�er a speci�ed waiting threshold,

it can be assumed that the source MAC address was used as

a matching criteria to deliver the packet to the destination

host. �e explained process is visualized with messages 1
and 2 in Figure 1.

To determine if a �ow rule uses the MAC destination ad-

dress, the SDNMap scanner does not directly send probes

with spoofed destination MAC addresses since such a packet

could be misrouted, but makes use of a well know vulnera-

bility of the ARP protocol, called ARP poisoning. SDNMap

uses this vulnerability to make the destination host reply to

a probing packet with a MAC address of our choice to reveal

the usage of the MAC destination address �eld in an Open-

Flow rule. We assume that bidirectional rules between a

source and destination host are constructed in a similar way.

As de�ned in RFC 826 [16] and further discussed in RFC 5227

[13], hosts correctly implementing the ARP protocol will

accept ARP reply packets, even if they were not preceded by

an ARP request packet. We are aware that there are methods

to prevent ARP poisoning in networks. Nevertheless, ARP

poisoning is alive and a security threat since defense meth-

ods are o�en hard to deploy in real-world scenarios. Static

con�gurations of ARP caches are very hard to maintain as

discussed in [21] and not recommended by major network

vendors [3]. Further, it has recently been shown in [20] that

major SDN controllers (Floodlight, OpenDayLight, POX) are

SOSR’17, April 3–4, 2017, Santa Clara, CA Stefan Achleitner, Thomas La Porta, Trent Jaeger, Patrick McDaniel

vulnerable to ARP poisoning since traditional defense tech-

niques cannot trivially be extended to SDN-based networks.

As a reconnaissance tool, SDNMap uses ARP cache poison-

ing in a slightly di�erent way than it is traditionally exploited

by a�ackers. As shown in messages 3, 4 and 5 in Figure 1,

we �rst send an ARP reply message to the destination host

that will update its cache entry for the IP address of our

probing host to the spoofed MAC address. A�er that we

send a correct probe request packet to the destination. Upon

arrival of our probe, the destination host will now lookup

the corresponding MAC address to the received IP source

address, which is now the spoofed MAC and will send a

probe reply message back to the requester with the spoofed

MAC address as the layer 2 destination address. If the probe

reply packet is received at the SDNMap host our SDNMap

scanner will conclude that the destination MAC address was

not used as a criteria in the �ow rule matching process to

deliver the packet.

If no reply packet to the probe request is received a�er

a de�ned timeout, SDNMap will conclude that the correct

MAC destination address was used by the �ow rule to deliver

the packet. To restore the correct ARP cache entry for the

probing host’s IP address at the destination, SDNMap will

send an ARP reply packet to the destination with the correct

addresses (not shown).

Two steps, as described, are required to determine if layer

2 information is used for the forwarding of packets, since it

is possible that a �ow rule uses source MAC and/or destina-

tion MAC address. If we would only use messages 3, 4 and 5
shown in Figure 1 and the �ow rules only use the destination

MAC address �eld, SDNMap would not be able to �nd out if

the source MAC address �eld is used or not.

3.3 Scanning step: IP addresses
To determine the usage of IP addresses, this scanning step

infers if the �elds match:IPsrc=IPs and match:IPdst =IPd are

used in a �ow rule to match a packet for speci�c IP source

(IPs) and destination (IPd) addresses. In Figure 2 we give

an overview of the probing steps our SDNMap scanner per-

forms to determine the values IPs and IPd and the usage of

their associated �elds in the matching part of a �ow rule.

To reconstruct the usage of IP addresses, we generate ei-

ther a TCP or ICMP probing packet and set the source IP

address to a spoofed address as shown in packet 1 in Figure

2. For the generation of spoofed IP addresses, SDNMap uses

the network pre�x of its host machine and selects the host

number in a random way. In addition multiple probing pack-

ets with di�erent spoofed IP source addresses can be sent to

the destination host, to ensure that a packet with an unseen

IP source address will arrive.

In case SDNMap is scanning a host within the same sub-

network, the delivered packet will generate an entry in the

destination host’s ARP cache. �is will trigger the transmis-

sion of an ARP request packet which the destination host

will broadcast into the network to determine the correspond-

ing MAC address to the received spoofed IP address.

If a host in a distant sub-network is probed, the network

gateway will receive the probing packet and broadcast an

ARP request to the originating sub-network, to determine

the senders MAC address.

In both cases, receiving an ARP request, SDNMap can

conclude that the packet with the spoofed IP address was

received and that the source IP address is not used by the

SDN network element for the forwarding of packets to the

destination host.

Figure 2: Steps to determine IP address �elds

If no ARP request packet from the destination host was

received, the procedure is repeated to exclude delivery fail-

ures like lost packets on the communication path. If no ARP

request was received a�er multiple a�empts, SDNMap will

conclude that the �ow rule is matching packets for a speci�c

IP source address and therefore a packet with a spoofed IP

source address will not be delivered to the destination host.

Upon the reception of an ARP request packet for the

spoofed IP address used in the �rst probing message, SDN-

Map will send an ARP reply message telling the destination

that the spoofed IP address is at the SDNMap’s host MAC

address. In message 4, SDNMap will now re-send a probing

packet with the spoofed IP source address to the destination.

�is will trigger the generation of a reply packet and makes

the destination host send a packet with the a spoofed desti-

nation IP address back to the probing host which enables us

to infer the usage of the IP destination �eld.

If a probing reply packet, shown as 5 in Figure 2, is re-

ceived by our SDNMap scanner and since we assume that

most bidirectional rules are constructed in a similar way, it

will conclude that the IP destination is not used as part of the

�ow rule matching �eld. If no reply packet was received by

SDNMap a�er multiple a�empts, our so�ware will conclude

that the correct IP destination address is required by the

matching process and is therefore part of the �ow rule.

Adversarial Network Forensics
in So�ware Defined Networking SOSR’17, April 3–4, 2017, Santa Clara, CA

3.4 Scanning step: Protocols and ports
In this scanning step, our approach determines if �ow rules

are using OpenFlow �elds to match packets for speci�c pro-

tocols and use the �elds tpsrc = POs and tpdst = POd to

match packets for speci�c source POs and destination POd
ports. SDNMap evaluates rules for the protocols ARP, IP,

ICMP, TCP and UDP.

SDNMap determines if ARP packets are forwarded by

the SDN controller, by sending an ARP request packet to

the speci�ed destination IP in the initial scanning step as

discussed in Section 3.1. To determine if ICMP packets are

forwarded we send ICMP Echo Request (type 8 code 0) packets
and listen for Echo Reply (type 0 code 0) packets.

If the SDN controller generates �ow rules matching pack-

ets for protocols such as TCP or UDP, the accepted source

and destination ports, can also be part of the matching cri-

teria used in �ow rules. Since there is a huge number of

source and destination port combinations, a user can pass

a list of ports p to be checked as an argument when SDN-

Map is started. Our scanner takes the list of supplied port

numbers and checks all possible source and destination port

combinations by sending probing packets. �e matching

part of an OpenFlow rule is able to evaluate packets for spe-

ci�c source and destination port numbers. By supplying a

list of port numbers p, SDNMap is able to evaluate if a �ow

rule between the source and destination host is matching

packets for the speci�ed ports. If no list of speci�c ports to

evaluate is supplied by the user, SDNMap will not determine

the exact allowed port numbers, but will select a source and

destination port in p randomly between the ranges 35000-
65000, to evaluate if a �ow rule is matching for the TCP or

UDP protocol.

To determine if �ow rules to the probed destination host

are matching packets for the TCP protocol, we send a TCP

SYN packet to a port at the destination host. In case a TCP

probing packet is sent to an open port, the destination host

will send a TCP packet with the ACK �ag back to the probing

host. If the TCP packet is sent to a closed port, the destina-

tion will answer with a TCP RST packet as speci�ed in RFC

793 [15]. By receiving a TCP packet with the ACK or RST

�ag set, we can derive that TCP packets are forwarded by

the �ow rule controlling tra�c to the destination host.

It is also possible to evaluate the reception of TCP packets

at the destination host by overhearing ARP request packets.

�erefore, SDNMap transmits TCP packets with spoofed

source IP addresses to the destination host. �e reception

of a packet with a spoofed IP address at the destination will

trigger the transmission of an ARP request packet by the

destination. Overhearing an ARP request packet by SDNMap

also con�rms the reception of the TCP probing packet.

Determining if �ow rules match packets for the UDP pro-

tocol is more challenging since UDP is a connectionless pro-

tocol and will not send a reply message upon receiving a

UDP packet. To evaluate the reception of a UDP packet, SD-

NMap transmits a probing packet to a port which is likely

closed at the destination host, to trigger the destination to

send an ICMP port unreachable message (type 3 code 3) as
de�ned in RFC 792 [14]. To construct such a UDP probing

message, SDNMap selects a random source and destination

port between the range 35000-65000. �ere is no guarantee

that a randomly selected port in this range will be closed at

the destination host, but it is likely since studies such as [26]

show that 90% of the used port numbers are in lower ranges.

�e reception of UDP probing packets can also be con-

�rmed by sending probing packets with spoofed IP source

addresses to the destination host and listening for ARP re-

quest packets. ARP requests will be transmi�ed from the

destination host in case the received packet source IP address

is not present in the local ARP cache of the destination host.

Based on the reply packets received by transmi�ing the

probing packets, SDNMap can reconstruct the usage of spe-

ci�c source and destination port number combinations and

protocol usage. As a result of this, SDNMap determines the

values PT and PO to identify if their associated OpenFlow

�elds are used as a matching criteria in the �ow rules for-

warding packets to the scanned destination host.

If the scanning process determined that ICMP, TCP and

UDP packets are delivered by the �ow rule, SDNMap will re-

construct a single rule that matches packets for an IP header

as speci�ed by the OpenFlow protocol. Otherwise a separate

rule for each delivered protocol is reconstructed.

3.5 Scanning step: Ingress port
Besides using header information of packets as a matching

criteria, SDNMap infers if the �eldmatch:in port=SIP is used

as part of the matching criteria in a �ow rule, but does not

determine the actual port number SIP . A packet’s ingress

port number is determined by the physical or logical port to

which a host is connected to an OpenFlow-enabled switch.

Unless a host physically changes its connection to a di�erent

port, the ingress port number cannot be manipulated by a

user. To determine if the ingress port, which can be classi�ed

as packet meta information, is used as a matching criteria in

a �ow rule, SDNMap performs a number of checks based on

certain assumptions. A core assumption we make for deter-

mining this matching criteria is that �ow rules connecting

the SDNMap host to the probed host are constructed similar

as the �ow rules from the probed host to other nodes in the

same sub-network.

As the �rst step to determine if the ingress port is used

as a matching criteria, our scanner has to �nd two hosts in

the sub-network which can be contacted by the SDNMap

SOSR’17, April 3–4, 2017, Santa Clara, CA Stefan Achleitner, Thomas La Porta, Trent Jaeger, Patrick McDaniel

host and are able to connect to each other. As an assump-

tion we can start by selecting two random nodes that are

reachable by the probing host as previously determined by

the performed ARP scan.

A�er the selection of two hosts, A and B, SDNMap sends

a probing packet with the source address of A to B as shown

in Figure 3. Upon reception of the probing packet, B will

lookup A’s MAC address in it’s local cache. If no cache entry

is present, B will broadcast an ARP request that will also be

received by SDNMap’s host node. �e reception of the ARP

request indicates to SDNMap that the previously transmi�ed

probing packet, as shown on the le� in Figure 3, was received

at B. Since SDNMap transmi�ed the probing packet with A’s
source addresses, but from a di�erent ingress port than A’s,
it can be concluded that the ingress port is not checked as

part of the �ow rule matching criteria.

Figure 3: Initial steps to determine ingress port �eld

If the above procedure does not trigger the broadcast of an

ARP request from B, SDNMap also considers the case when

A’s MAC address is already present in B’s ARP cache. If this

is true, B will not broadcast an ARP request upon receiving

a probing message from A, which can be overheard by SDN-

Map to determine if the probe was received. In such a case,

SDNMap will exploit the feature of validating an ARP cache

entry with a unicast probe as discussed in RFC 1122 [12]. To

trigger this procedure SDNMap will spoof A’s ARP cache en-

try at B to point to the MAC address of SDNMap’s host. �is

will appear to host B that A recently has changed its assigned

MAC address, (e.g. if a di�erent device got A’s IP address

assigned) and according to RFC 1122 a unicast ARP request

will be sent to A’s spoofed MAC address that is present in

B’s ARP cache to validate the cache entry. �is unicast ARP

validation request will be received by SDNMap’s host since

we previously set A’s ARP cache entry at B to this MAC

address. �e reception of this unicast ARP validation request

will indicate to SDNMap that the initial probing message that

was sent to B on behalf of A was received and therefore the

ingress port is not checked as part of the matching criteria.

If a�er executing the described procedure with multiple

di�erent host pairs A and B, no ARP request was received

by SDNMap, our so�ware concludes that none of the trans-

mi�ed probing messages was received. Based on that, we

can assume that OpenFlow �eld match:in port=SIP , is part

of the matching criteria of the evaluated �ow rule to pre-

vent the transmission of a probing packet on an incorrect

switch ingress port. In this scanning step, SDNMap does

not determine the actual value of the ingress port, since this

information is only available inside the actual switch, but

assigns the placeholder #IN PORT to the ingress port �eld

in the reconstructed �ow rules.

3.6 Scanning step: Rewriting IP addresses
In this step we determine the �elds actions:set IP src=rIPs
and actions:set IP dst=rIPd are used as actions in a �ow

rule, and infers the assigned IP addresses rIPs and rIPd . To
determine if an OpenFlow-enabled switch performs IP rewrit-

ing actions, SDNMap sends a UDP probing packet to a port

which is very likely closed at the destination host. �e source

and destination port for the probing packet are randomly

selected in the range 35000-65000, as also discussed in Section
3.4. If the selected destination port is closed at the receiver,

it will trigger the generation of an ICMP - Destination Port
Unreachable message (type 3 code 3) that is sent back to the

probing host.

Figure 4: Steps to determine IP address rewriting

According to RFC 792 [14], an ICMP destination unreach-

able message will contain the �rst 64 bits of the original

datagram. In this case, the original datagram is the probing

packet SDNMap sent to the destination host. If the �ow rule

forwarding packets between the source and destination host

also performed a rewriting action of the packets IP addresses,

the encapsulated original datagram in the ICMP unreach-

able message will contain the IP addresses as received at the

destination host. We show this procedure in Figure 4 where

the encapsulated probing packet has di�erent IP addresses

than the ICMP destination unreachable message that is sent

back to the probing host. �e generating of an ICMP desti-

nation unreachable message will make the destination host

reveal the received IP address �elds of the probing packet,

which enables us to conclude if an IP rewriting action was

performed on the packet in the OpenFlow-enabled switch.

In OpenFlow [9], including version 1.5, actions for rewrit-

ing the header information of encapsulated datagrams are

not provided. �e leakage of rewri�en IP addresses back

to the original sender as explained, enables our SDNMap

Adversarial Network Forensics
in So�ware Defined Networking SOSR’17, April 3–4, 2017, Santa Clara, CA

scanner to determine if the received IP addresses at the des-

tination are equal to those that were sent. If the IP addresses

in the encapsulated datagram are di�erent, SDNMap will

conclude that an IP address rewriting action was performed

by the �ow rule. �is enables our so�ware to determine

the values rIPs and rIPd and the usage of their associated

OpenFlow �elds actions:set IP src=rIPs for rewriting the IP
source address and actions:set IP dst= rIPd for rewriting the

IP destination address in a rule.

3.7 Scanning step: Forwarding action
An essential part of the actions performed in a �ow rule

is forwarding or dropping of packets. If a packet’s header

information is matching with the criteria de�ned in a rule’s

match �elds, and optional actions such as address rewriting

are performed, a forwarding action is executed. Such for-

warding actions either send packets out of the appropriate

port on a network element to reach its destination, or drop

a packet in case of a security aware SDN application, such

as a �rewall. For sending a packet out of a speci�c port the

OpenFlow action �eld actions:output=#OUT PORT will be

applied, or in case a packet is dropped actions:DROP will be

used in the �ow rule. SDNMap will reconstruct the action if

a packet is forwarded or dropped, based on analyzing which

probing packets were transmi�ed during the scanning steps

discussed in Section 3.2, 3.3 and 3.4 received reply messages.

4 EVALUATION
In this section we evaluate our SDNMap scanner by apply-

ing it on a number of existing scenarios and applications to

demonstrate that security issues arise when SDN �ow rules

can be reconstructed. We would like to point out that the dis-

cussed scenarios are real-world applications from di�erent

vendors which are implemented on existing SDN platforms

and available online. Here, the composition of SDN �ow

rules is de�ned by the vendors of these applications.

We installed and replicated these scenarios in our test en-

vironments and strictly followed the supplied manuals to

con�gure and run the applications in our SDN test networks.

�e a�ack approaches we demonstrate are di�erent from

a�acks on SDN discussed in the literature. While most cur-

rent a�ack vectors on SDN target reactive deployments, to

our best knowledge SDNMap is the �rst a�ack vector tar-

geting reactive and proactive SDN deployments. Previously,

a�acks such as poisoning network topology or fabricating

links [21], saturating the link between control- and data

plane [29] or exploiting con�icting �ow rules in �rewall

implementations [22], did not consider the approach of pre-

dicting the exact details of �ow rules and use them as an

a�ack advantage.

�e presented scenarios show a subset of the applications

we used to evaluate our techniques. We used both a so�ware-

and hardware-testbed to evaluate SDNMap.

4.1 Test environment
For testing and evaluating SDNMap we focus on SDN en-

vironments such as enterprise networks in organizations,

local area or campus networks or networks in data centers

and server farms. We tested its functionality on a testbed

with so�ware SDN switches (OpenVSwitch [10]) and on a

testbed with hardware SDN switches (Brocade ICX 6610 [1]).
We evaluated SDNMap on three widely used open-source

controllers, POX [11], Floodlight [6] and OpenDayLight [8].
As network endpoints, we use personal computers with

Ubuntu 14.04 LTS 64bit. OpenFlow versions 1.0 and 1.3 were

used for the deployment of �ow rules.

4.2 Performance of rule reconstruction
To evaluate the rule reconstruction capability of SDNMap

we tested it on a number of existing applications.

In the SDN network scenarios we replicated the recon-

struction of �ow rules from the SDNMap host to a destina-

tion host in the network takes 20 seconds on average. �is

scanning delay depends mostly on the performed scanning

steps and de�ned timeout thresholds in SDNMap, and less

on di�erent network topologies. If a range of hosts and a

list of protocol ports is scanned, the reconstruction process

will take appropriately longer since several steps have to be

performed multiple times.

To evaluate the accuracy of reconstructing �ow rules, we

denote the number of OpenFlow �elds in a rule with F , the
number of correctly determined �ow rule �elds as f and the

number of incorrectly identi�ed �ow rule �elds asm. We

calculate the �ow rule reconstruction accuracy α as shown

in Equation 1.

α =
f −m
F

(1)

In Table 2 we show the accuracy SDNMap achieved in dif-

ferent application scenarios. In Sections 4.3 to 4.5 we present

a detailed description of test-scenarios. In addition, we also

evaluated SDNMap on a SDN-based �rewall (FW), a role-

based access controlled SDN-network de�ned by Brocade

[2] (RBAC) and a multi-hop proactive topology SDN net-

work (MHPA) as listed in Table 2, but have to omit a detailed

description of these scenarios due to space limitations. On

average, SDNMap achieves an accuracy of over 96% on all

evaluated scenarios.

Table 2: SDNMap �ow rule prediction accuracy
ACL LBaaS MTD FW RBAC MHPA

Sec. 4.3 Sec. 4.4 Sec. 4.5 - - -

α 1 1 0.83 0.93 1 1

�e reason if SDNMap is not able to correctly reconstruct

a rule to 100%, is that some scanning steps could not resolve

all required information for the reconstruction of �elds, such

as not �nding appropriate neighbor nodes to determine the

ingress port �eld as discussed in Section 3.5.

SOSR’17, April 3–4, 2017, Santa Clara, CA Stefan Achleitner, Thomas La Porta, Trent Jaeger, Patrick McDaniel

To scan a destination host with the introduced rule- re-

construction techniques discussed in Sections 3.2 to 3.7, SD-

NMap needs to transmit 14 + 2p2 packets, where p is the

user-speci�ed list of port numbers evaluated during the scan-

ning process. SDNMap will evaluate all possible source and

destination combinations of the supplied port numbers for

TCP and UDP packets, therefore 2p2 probes are required.
In the following application scenarios we will present how

the ability of �ow rule reconstruction can be used by adver-

saries as a reconnaissance tool to plan and execute further

a�ack maneuvers.

4.3 Floodlight Access Control List
�e open-source Floodlight controller includes a number

of applications, such as the implementation of an Access

Control List (ACL) which deploys rules on an OpenFlow en-

abled switch to control network access. As explained on the

Floodlight webpage [6], the ACL implementation enables

users to allow or deny access to hosts in a network. For

the deployment of �ow rules in this scenario, we follow the

con�guration examples listed on the Floodlight webpage [6].

To demonstrate SDNMap’s functionality in such a scenario

we created a small network of six hosts connected by an SDN

switch. By following Floodlight’s ACL manual we are using

its REST interface to proactively deploy rules for denying

access to the host at 10.0.0.2 by host 10.0.0.1 by executing the

following commands:

”src-ip”:”10.0.0.1/32”,”dst-ip”:”10.0.0.2/32”,”action”:”deny”
”src-ip”:”10.0.0.2/32”,”dst-ip”:”10.0.0.1/32”,”action”:”deny”
Weused SDNMap to perform a scan of the network 10.0.0.0/24
from the node with address 10.0.0.1. �e scanning results

of SDNMap labeled host 10.0.0.2 as being online, reported

that a learning approach is used on the paths from 10.0.0.1
to 10.0.0.3, .4, .5 and .6, and reconstructed the following rules
for the path 10.0.0.1 to 10.0.0.2:
match=type:ip,nw src:10.0.0.1,nw dst:10.0.0.2 actions=drop
match=type:ip,nw src:10.0.0.2,nw dst:10.0.0.1 actions=drop
�e reconstructed �ow rules by SDNMap are an exact match

with the previously deployed access control rules. An at-

tacker using SDNMap in such a scenario is now able to

determine how packets have to be cra�ed to be success-

fully delivered to the host at 10.0.0.2. For example, sending

a packet with the correct destination address but a source

IP address di�erent than 10.0.0.1, will be delivered to host

10.0.0.2 since the Floodlight controller is forwarding packets

not matching ACL rules with the default learning approach.

Besides blocking access from host 10.0.0.1 to host 10.0.0.2,
the path to host 10.0.0.2 still follows the default learning

approach implemented by the Floodlight controller. In our

testbed we created a scenario where host 10.0.0.2 runs a web-
server hosting �les which are not supposed to be accessed by

host 10.0.0.1. As discussed, we used Floodlight’s ACL imple-

mentation to deny access from host 10.0.0.1 to host 10.0.0.2.

By using SDNMap we retrieved the �ow rule composition as

demonstrated. Based on SDNMap’s result we sent a HTTP
GET request packet with a spoofed IP source address from

10.0.0.1 to 10.0.0.2. Since tra�c not matching the access con-

trol rules is delivered based on the default learning approach,

the packets from 10.0.0.1 with a spoofed IP source address

were forwarded to 10.0.0.2 and the HTTP response tra�cwas

delivered back to 10.0.0.1. Such a scenario can be imagined

to be deployed for denying access to a company’s Intranet

for guest users who are temporarily connecting to the com-

pany’s network. With SDNMap malicious users are able to

reconstruct the deployed access control policy and bypass it

with appropriately cra�ed packets as demonstrated.

4.4 Load Balancing as a Service
�e Floodlight SDN controller provides a load balancer mod-

ule which is de�ned by the OpenStack�antum LBaaS (Load-

Balancing-as-a-Service) API. �e LB- aaS API provides a

framework to virtualize networking resources and balances

client requests between the available physical resources. We

followed the setup instructions for the LBaaS module as dis-

cussed on the Floodlight webpage [5].

In such a setup, a client requests access to a resource which

is mapped onto a virtual network topology. Such a request

is forwarded to a physical network resource by translating

packet information, such as IP addresses, accordingly. �is

functionality is implemented with the use of OpenFlow rules

that are deployed on the SDN network elements.

�e provided LBaaS API allows network administrators

and cloud operators to con�gure the load balancer by de�n-

ing a list of virtual IP addresses, a list of physical network

endpoints and resource pools to map the handling of virtual

resources to physical resources. Following the con�gura-

tion manual on the Floodlight webpage [5], we speci�ed

the virtual network endpoint 10.0.0.150 which is assigned

to a resource pool that is handled by the physical network

endpoints 10.0.0.7 and 10.0.0.8.
�e generated �ow rules to implement this load balancing

function are deployed over multiple SDN network elements

and forward tra�c to their assigned physical network end-

point based on their IP source address. Tra�c to the virtual

endpoint 10.0.0.150 from the client endpoint 10.0.0.1 is han-
dled by the following �ow rules which are automatically

generated and deployed by the controller:

nw src=10.0.0.1 actions=mod nw dst:10.0.0.7,output:#port
nw dst=10.0.0.1 actions=mod nw src:10.0.0.150,output:#port
�e deployed �ow rules show that tra�c originating from

node 10.0.0.1 is forwarded based on its IP source address,

and the destination address is translated to 10.0.0.7 to be

handled by the physical network endpoint at this address.

Return tra�c to 10.0.0.1, as de�ned by the second rule, has

its IP source address rewri�en to 10.0.0.150, so that it appears
to the client that it is communicating with 10.0.0.150 rather

Adversarial Network Forensics
in So�ware Defined Networking SOSR’17, April 3–4, 2017, Santa Clara, CA

than 10.0.0.7.
Using our SDNMap tool to scan host 10.0.0.150, we are

able to reconstruct the following rule which reveals the load

balancing functionality:

match=type:nw src:10.0.0.1,nw dst:10.0.0.150
actions=mod nw dst:10.0.0.7,output:#OUT PORT
�e reconstructed rule states that tra�c to 10.0.0.150 is for-
warded based on its source and destination address and

shows that the IP destination address is rewri�en to 10.0.0.7.
�is reveals to a user that address 10.0.0.150 is actually han-

dled by a server at 10.0.0.7. A malicious user who scans a

range of virtual IP addresses is able to reconstruct the imple-

mented load balancing policy, and launch a targeted denial

of service a�ack on speci�c virtual IP addresses which all

map to the same server, to overwhelm a speci�c physical

network resource.

�e ability to reconstruct load balancingmechanismwhich

are implemented based on SDN for cloud platforms, such as

OpenStack, represent a severe security leakage since adver-

saries can use this knowledge for launching a�acks to target

speci�c endpoints in such systems and disrupt the provided

service for cloud customers.

4.5 Moving Target Defense
It has been proposed in recent publications [23, 24], to use

SDN rule functionalities as a Moving Target Defense tech-

nique, by randomizing the address space of a network with

high frequency. �is is done by using the packet header �eld

modi�cation functionalities provided by OpenFlow. Using

such techniques can defend against network adversaries,

such as computer worms, performing network scans and

trying to map the address space of a network to identify

targets and perform further a�acks.

We implemented the OpenFlow Random Host Mutation
(OF-RHM) defense mechanisms proposed in [23, 24] in the

POX controller framework and randomize the IP address

space with high frequency (every 5 seconds). SDNMap is

able to successfully reconstruct the �ow rules used for the

address space randomization. On average SDNMap required

∼4 seconds to report during the scanning process that the IP
addresses of a packet are rewri�en while it passed through

an SDN switch and was forwarded to its destination. To

show an example, during the scanning process in our test

environment of host 10.0.0.97, SDNMap reported the rewrit-

ing of packet header information on the path:

Sending UDP packet to port 36028 at 10.0.0.97 / 00:00:00:00:00:05

Received ICMP Port Unreachable message
IP src 10.0.0.1 is rewri�en to 10.0.0.97
IP dst 10.0.0.97 is rewri�en to 10.0.0.5
�is re�ects precisely the functionality that was implemented

by the OF-RHM controller to hide the true IP address of net-

work endpoint 10.0.0.5 in the example above. An adversary

using SDNMap can perform such a scanmultiple times, deter-

mine that the network implements a moving target defense

technique and collect the real number and IP addresses of

hosts in such a network, which is supposed to be only known

by the network operator or administrator.

5 DEFENDING RULE RECONSTRUCTION
While the focus of this paper is on demonstrating the possibil-

ities and impacts of SDN �ow rule reconstruction techniques,

we want to discuss defense techniques to prevent this new

a�ack vector. We summarize existing, SDN speci�c defense

techniques and discuss that such techniques are ine�ective

against multiple rule reconstruction techniques presented in

this paper.

We also present an overview of methods to defend SD-

NMap, but leave a detailed analysis of such techniques for

future work.

5.1 Current defense techniques
In this section we discuss recently published defense tech-

niques against adversarial actions in SDN. �e proposed de-

fense approach Sphinx [20] evaluates Flow mod, Stats reply,
Packet in and Features reply messages, which are exchanged

between control and data plane for adversarial behavior.

While the proposed defense approach is novel and e�ective

against certain a�ack actions in SDN, it assumes a static

network environment by depending on �xed IP/MAC and

MAC/Port bindings. In dynamic environments with chang-

ing network conditions, which are pertinent for the usage of

SDN, such a con�guration would be hard to maintain and

might not be feasible as discussed in [21].

�e authors of [20] state that Sphinx does not raise alarms

when new �ow behavior is discovered, but raises alarms

when changes in existing �ow behavior is found. �e ap-

proach we use in SDNMap does not aim to change existing

�ow behavior, or manipulate the topology, but maps the de-

tails of existing �ow behavior.

To prevent Sphinx from triggering false alarms, the au-

thors de�ne 1/τ < ∑
n+1/

∑
avд < τ , where τ is manually

con�gured, so that τ = 1.045 by default.

∑
is de�ned as the

similarity-index and calculated as the moving average of the

di�erence in byte-level statistics, where

∑
avд is the average

similarity index of a �ow, and

∑
n+1 is the index for the next

switch in a �ow. �e authors state that Sphinx will not raise

alarms if 1/τ < ∑
n+1/

∑
avд < τ holds true.

As stated in Section 4.2, SDNMap transmits 14+2p2 pack-
ets to reconstruct the �ow rules to a destination host. For a

set of ports to scan, e.g. p = {22, 80}, SDNMap will transmit

22 packets. With the average scanning time of 20s, SDNMap

would transmit ∼1 (22/20) probing packets per second on

average. In the evaluations presented in [20], scenarios with

�ows of 100-10000 packets per second are assumed. Using the

lower bound of such scenarios, 0.96 < (1+ 100)/100 < 1.045,

SOSR’17, April 3–4, 2017, Santa Clara, CA Stefan Achleitner, Thomas La Porta, Trent Jaeger, Patrick McDaniel

holds true and SDNMap would stay “under the radar” of the

detection system.

Scanning multiple destination hosts is executed sequen-

tially in SDNMap and will not exceed the detection threshold

of defense systems such as Sphinx, as shown above. �e au-

thors of [20] state that Sphinx does not work for proactive

SDN deployments. SDNMap does not a�ack the controller

platform in SDN deployments and therefore works equiva-

lently on reactive and proactive deployments. Based on the

presented analysis it can be assumed that SDNMap’s activity

would be insensitive to systems such as Sphinx.

5.2 Rule reconstruction defense discussion
In Section 4 we demonstrate how a number of real-world

applications can be a�acked given an adversary is able to

determine the details of �ow rules. �e defense mechanism

we discuss in this section represents a list of potential ideas

which we are planning to further evaluate in our future work.

Handling of ARP tra�c by the controller:
As discussed in papers and by networking companies [3, 20,

21], ARP poisoning is an existing problem, especially in mod-

ern networking concepts such as SDN, and static network

con�gurations are impractical defense approaches. In SDN,

rules forwarding broadcasted ARP requests to the controller

can be pro-actively installed on network elements. Since the

controller maintains a global network view, ARP requests

can be handled by the controller which is able to reply on

behalf of the actual hosts. Such a setup will prevent the

leakage of information caused by broadcasting ARP requests

and avoid ARP cache poisoning on network endpoints. In-
formation leakage through nested packets:
We demonstrate in Section 3.6 how SDNMap is able to infer

address rewriting actions by triggering ICMP error reply

messages. To prevent such information leakage, an SDN

controller should adjust nested packets according to the

implemented network policy to prevent adversaries from

revealing actions, such as the adjustment of header �elds.

De�nition of best practice for OpenFlow rules:
In the existing SDN applications we analyzed in our evalua-

tions, we observe that no common standard is used to de�ne

which �elds to use for the construction of OpenFlow rules.

Identifying packets only based on destination addresses or

without considering the switch ingress port, will provide

a�ackers with an increased �exibility for generating adver-

sarial tra�c by spoo�ng packet information that is not used

in the matching criteria. Even if adversaries are able to recon-

struct �ow rules, de�ning best-practice for their construction

will reduce the ability for a�ackers to transmit cra�ed tra�c.

6 RELATEDWORK
In [19] and [28] the authors discuss the possibilities of �n-

gerprinting SDN networks. �eir work is focused on deter-

mining if a network is SDN based by analyzing the timing

distribution of active probing messages as well as passive

observations of the network tra�c. Both papers demonstrate

how the timing distribution of packets on the network can

reveal an SDN network and retrieve certain details about the

network topology, for example the number of SDN switches

visited on a path in the network. Neither [19] nor [28] con-

siders analyzing the deeper functionality of SDN networks

de�ned by the detailed composition of �ow rules we show

how to reconstruct in this paper.

In [29] the framework Avant-Guard is introduced which

addresses the challenges of control plane saturation a�acks

in SDN architectures where an a�acker aims to over�ow

the bo�leneck between SDN network elements (switches)

and the SDN controller. Another challenge addressed in this

paper is to expedite the detection of, and the responses to cer-

tain changes in a network’s �ow dynamics. �e Avant-Guard
framework is an extension of the data plane that enables scal-

able and resilient security aware SDN architectures.

�e authors of [31] presentOrchSec an orchestration based
architecture for the development of SDN based security ap-

plications. �e development process of OrchSec is based on

analyzing SDN characteristics, such as a centralized man-

agement or network visibility, for the development of secu-

rity aware network applications. �e work points out the

de�ciencies of SDN for security applications and proposes

several architectural requirements to adapt the architecture

of SDN for security use cases.

7 CONCLUSION
In this paperwe demonstrate that �ow rules in SDNnetworks

can be predicted and reconstructed in detail by a user con-

nected to the network. Using our techniques, an adversary

is able to reveal implementation details of network policies

based on OpenFlow rules, and can use this knowledge to

exploit the �ow rule composition for further malicious ac-

tions. We discuss real-world SDN application scenarios, and

point out that the predictability of �ow rules can open severe

security leaks if exploited by a�ackers. To prevent this and

make SDN-based network systems more secure, we brie�y

discuss defense approaches, such as de�ning best practices

for the construction of OpenFlow rules.

ACKNOWLEDGMENT
�e e�ort described in this article was sponsored by the U.S.

Army Research Laboratory Cyber Security Collaborative Re-

search Alliance under Cooperative AgreementW911NF-13-2-

0045. �e views and conclusions contained in this document

are those of the authors, and should not be interpreted as

representing the o�cial policies, either expressed or implied,

of the Army Research Laboratory or the U.S. Government.

�e U.S. Government is authorized to reproduce and distrib-

ute reprints for Government purposes, notwithstanding any

copyright notation hereon.

Adversarial Network Forensics
in So�ware Defined Networking SOSR’17, April 3–4, 2017, Santa Clara, CA

REFERENCES
[1] Brocade icx 6610. h�p://bit.ly/2d3TSBH. Accessed: 2016-04-20.

[2] Brocade open�ow developer guide. h�p://bit.ly/2cXwn�. Accessed:

2016-04-21.

[3] Cisco con�guring port security. h�p://bit.ly/ZfVjpD.

[4] Firewalk �rewall scanner. h�ps://packetstormsecurity.com/UNIX/

audit/�rewalk/.

[5] Floodlight lbaas. h�p://bit.ly/2d6gKUY. Accessed: 2016-06-12.

[6] Floodlight sdn controller. h�p://www.project�oodlight.org/�oodlight/.

Accessed: 2016-04-20.

[7] Is an sdn switch a new form of a �rewall? h�p://bit.ly/1xDhVAo.

[8] Opendaylight sdn controller. h�ps://www.opendaylight.org/. Ac-

cessed: 2016-04-20.

[9] Open�ow. h�ps://www.opennetworking.org/sdn-resources/

open�ow.

[10] Openvswitch. h�p://openvswitch.org/.

[11] Pox sdn controller. h�p://stanford.io/2ctlCEf. Accessed: 2016-04-20.

[12] Rfc1122 requirements for internet hosts. tools.ietf.org/html/rfc1122.

[13] Rfc5227 ipv4 address con�ict detection. tools.ietf.org/html/rfc5227.

[14] Rfc792 internet control message protocol. tools.ietf.org/html/rfc792.

[15] Rfc793 transmission control protocol. tools.ietf.org/html/rfc793.

[16] Rfc826 an ethernet address resolution protocol. tools.ietf.org/html/

rfc826.

[17] Sdnmap repository. h�ps://github.com/SDNMap/sdnmap.

[18] Ali, M. Q., Al-Shaer, E., and Samak, T. Firewall policy reconnais-

sance: Techniques and analysis. IEEE Transactions on Information
Forensics and Security (2014).

[19] Bifulco, R., Cui, H., Karame, G. O., and Klaedtke, F. Fingerprinting

so�ware-de�ned networks. In 2015 IEEE International Conference on
Network Protocols (ICNP).

[20] Dhawan, M., Poddar, R., Mahajan, K., and Mann, V. Sphinx: De-

tecting security a�acks in so�ware-de�ned networks. In NDSS (2015).
[21] Hong, S., Xu, L., Wang, H., and Gu, G. Poisoning network visibility

in so�ware-de�ned networks: New a�acks and countermeasures. In

NDSS (2015).
[22] Hu, H., Han, W., Ahn, G.-J., and Zhao, Z. Flowguard: building robust

�rewalls for so�ware-de�ned networks. In Proceedings of the third
workshop on Hot topics in so�ware de�ned networking (2014), ACM.

[23] Jafarian, J. H., Al-Shaer, E., and Duan, Q. Adversary-aware ip ad-

dress randomization for proactive agility against sophisticated a�ack-

ers. In Computer Communications (INFOCOM), 2015 IEEE Conference
on.

[24] Jafarian, J. H., Al-Shaer, E., and Duan, Q. Open�ow random

host mutation: transparent moving target defense using so�ware

de�ned networking. In Proceedings of the �rst workshop on Hot topics
in so�ware de�ned networks (2012).

[25] Khakpour, A. R., Hulst, J. W., Ge, Z., Liu, A. X., Pei, D., and Wang,

J. Firewall �ngerprinting. In INFOCOM, 2012 Proceedings IEEE.
[26] Lee, D., Carpenter, B. E., and Brownlee, N. Observations of udp to

tcp ratio and port numbers. In IEEE Internet Monitoring and Protection
(ICIMP), 2010.

[27] Samak, T., El-Atawy, A., and Al-Shaer, E. Firecracker: A frame-

work for inferring �rewall policies using smart probing. In 2007 IEEE
International Conference on Network Protocols.

[28] Shin, S., and Gu, G. A�acking so�ware-de�ned networks: A �rst

feasibility study. In Proceedings of the second ACM SIGCOMMworkshop
on Hot topics in so�ware de�ned networking (2013), ACM.

[29] Shin, S., Yegneswaran, V., Porras, P., and Gu, G. Avant-guard:

Scalable and vigilant switch �ow management in so�ware-de�ned

networks. In Proceedings of the 2013 ACM SIGSAC conference on Com-
puter & communications security.

[30] Wool, A. Architecting the lumeta �rewall analyzer. In USENIX
Security Symposium (2001).

[31] Zaalouk, A., Khondoker, R., Marx, R., and Bayarou, K. Orchsec:

An orchestrator-based architecture for enhancing network-security

using network monitoring and sdn control functions. In Network
Operations and Management Symposium (NOMS), 2014 IEEE.

http://bit.ly/2d3TSBH
http://bit.ly/2cXwnfh
http://bit.ly/ZfVjpD
https://packetstormsecurity.com/UNIX/audit/firewalk/
https://packetstormsecurity.com/UNIX/audit/firewalk/
http://bit.ly/2d6gKUY
http://www.projectfloodlight.org/floodlight/
http://bit.ly/1xDhVAo
https://www.opendaylight.org/
https://www.opennetworking.org/sdn-resources/openflow
https://www.opennetworking.org/sdn-resources/openflow
http://openvswitch.org/
http://stanford.io/2ctlCEf
tools.ietf.org/html/rfc1122
tools.ietf.org/html/rfc5227
tools.ietf.org/html/rfc792
tools.ietf.org/html/rfc793
tools.ietf.org/html/rfc826
tools.ietf.org/html/rfc826
https://github.com/SDNMap/sdnmap

	Abstract
	1 Introduction
	2 Motivation
	2.1 Problem statement
	2.2 Comparison of probing techniques
	2.3 Threat model

	3 Rule reconstruction
	3.1 Rule reconstruction overview
	3.2 Scanning step: MAC addresses
	3.3 Scanning step: IP addresses
	3.4 Scanning step: Protocols and ports
	3.5 Scanning step: Ingress port
	3.6 Scanning step: Rewriting IP addresses
	3.7 Scanning step: Forwarding action

	4 Evaluation
	4.1 Test environment
	4.2 Performance of rule reconstruction
	4.3 Floodlight Access Control List
	4.4 Load Balancing as a Service
	4.5 Moving Target Defense

	5 Defending Rule Reconstruction
	5.1 Current defense techniques
	5.2 Rule reconstruction defense discussion

	6 Related Work
	7 Conclusion
	References

