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Abstract. It is no surprise to say that attackers have the upper hand on secu-
rity practitioners today when it comes to host security. There are several causes
for this problem ranging from unsafe programming languages to the complex-
ity of modern systems at large, but fundamentally, all of the parties involved in
constructing and deploying systems lack a methodology for reasoning about the
security impact of their design decisions. Previous position papers have focused
on identifying particular parties as being “enemies” of security (e.g., users and
application developers), and proposed removing their ability to make security-
relevant decisions. In this position paper, we take this approach a step further
by “keeping the enemies closer,” whereby the security ramifications of design
and deployment decisions of all parties must be evaluated to determine if they
violate security requirements or are inconsistent with other party’s assumptions.
We propose a methodology whereby application developers, OS distributors, and
system administrators propose, evaluate, repair, and test their artifacts to provide
a defensible attack surface, the set of entry points available to an attacker. We
propose the use of a hierarchical state machine (HSM) model as a foundation for
automatically evaluating attack surfaces for programs, OS access control policies,
and network policies. We examine how the methodology tasks can be expressed
as problems in the HSM model for each artifact, motivating the possibility of a
comprehensive, coherent, and mostly-automated methodology for deploying sys-
tems to manage accessibility to attackers.

1 Introduction

It is no surprise to say that attackers have the upper hand on security practitioners to-
day when it comes to host security. For the most part, security practitioners have little
insight into where the next exploitable vulnerability will be found, so there seems to
be little that they can do to detect and remove vulnerabilities before attackers. For ex-
ample, a significant effort has been put into reengineering of network-facing servers
(e.g., OpenSSH [45] and Postfix mail server [65]), but while these improvements have
prevented a variety of new exploits against those daemons, there are so many programs
that have access to network data that security practitioners are overwhelmed. On the



positive side, many of these programs are run in unprivileged processes, so their com-
promise does not directly impact the system integrity. However, the negative side is that
we (the security community) are even less effective at preventing local exploits than
remote exploits.

Finding the root causes of such problems has been difficult. It appears that each
party in the construction and deployment of a system is at fault for multiple poor de-
cisions. Application developers clearly are not developing secure code. They still fail
to prevent the same types of basic vulnerabilities (e.g., buffer overflows) that we have
recognized for years. Further, when given type-safe languages with well-defined for-
mal semantics, developers choose C and various scripting languages, which have all
proven very difficult to use securely. OS distributors package the applications together
into distributions, but historically, they abdicate responsibility for securing deployment
of their distributions to application developers (it’s the programs that have the bugs) or
the system administrators (they cannot configure systems properly). Despite the intro-
duction of comprehensive mandatory access control (MAC) systems [43, 63] in some
distributions, we are still suffering from a variety of local exploits6. Finally, the system
administrators are left to try to deploy a secure system from insecure parts. It is an im-
possible task of immense complexity. Currently, in order to deploy a system securely,
a system administrator must understand the manner in which attackers can access their
systems via the network (which they do pretty well), how the access control policy man-
ages attackers’ access to process (such policies are complex), and how programs handle
untrusted input data (there are too many interfaces).

A variety of valuable security mechanisms have been developed, but these have
not resulted in shifting the balance from the attackers to the defenders. For example,
we have known about buffer overflows for many years, so a variety of mechanisms
ranging from buffer overflow prevention [14, 44] to protecting the programs execution
integrity [1, 10] to controlling the operating sequences that may be invoked [17, 29].
The expense of many of these services has prevented or delayed their adoption, so oth-
ers have focused on bug detection and prevention (e.g., [5, 40, 46, 68]). Researchers
have also developed models that enable reasoning about the integrity of systems [7,12].
However, the assumptions underlying these models have been in conflict with the prac-
tice of deploying systems, and the security community has made little or no headway
in changing such practice. Researchers again have developed other models that approx-
imate classical integrity for conventional systems [28, 53, 57], but these require more
effort that has not been forthcoming. Finally, system administrators are left to contem-
plate all the options and trade-offs without any coherent approach to reason about such
options. Their task is far too complex.

Returning to the question of who is at fault, it appears that everyone is at one level or
another, so the question is how to proceed forward. A number of approaches have been
proposed to remove security decision-making from various parties. We agree that the
user cannot be trusted to make anything but win-win security decisions [60], but what
should be done about the application developers, OS distributors, and system adminis-
trators? All need to make decisions that may impact security, but as with users, they also

6 Part of the problem is that to reduce the complexity of use, these systems are used incompletely,
only to protect system services against network attackers, as proposed by other incomplete
methods [36, 41].
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should only decide among win-win choices with respect to security. Wurster and van
Oorschot argue this point for application developers [67], but we argue that this applies
to all parties. The challenge is how to apply this approach to all parties. Solworth argues
that this will require a fundamental change in systems and programming practice [56],
and while we agree that some changes should be encouraged wholeheartedly, we argue
that the revolutionary change must be accompanied by a tool-driven methodology that
enforces any new requirements comprehensively and usably for each party. Building on
the prior analogies, we refer to this approach as “keeping your friends close, but your
enemies closer.”7 The idea is that the application developers, OS distributors, and sys-
tem administrators must work by a methodology that supports decision-making among
secure choices rather than giving insecure choices.

In this paper, we propose a methodology for constructing and deploying systems
based on the concept of a hierarchical state machine [2] (HSM), a model used previ-
ously in software model checking. We find that application developers, OS distributors,
and system administrators each make decisions that impact security and that these deci-
sions build on one another, requiring a representation that enables checking of conflicts
between different party’s decisions. The HSM model represents a hierarchy of compo-
nents (originally, code modules) and their interactions (calls and returns, and resultant
data flows), but we find that this approach can be generalized to represent not only pro-
gram modules, but the data flows that result from the combination of programs into an
OS distribution with its access control policy and the data flows that result from the
combination of OS distributions into systems of OS distribution instances (which we
will call hosts, regardless of whether they run on physical or virtual machines) with
its network policy (and optionally, virtual machine monitor policy). With the system’s
data flows expressed in an HSM, the question then is whether we can automate key
decisions that these parties make. Our methodology identifies the types of decisions
that must be made by each party, which turn out to be the same decisions on different
artifacts, and we examine the possibility of automating or at least providing significant
automated support for these decisions. While it is early, we are optimistic that such
a view of system-wide management of data flow has potential as a new paradigm for
achieving secure construction and deployment in practice.

The remainder of the paper is as follows. In Section 2, we examine problems with
the current approach to configuring systems and discuss some trends that motivate our
proposed approach. In Section 3, we define the concept of attack surfaces, which serves
as the basis for decision-making for each party. In Section 4, we outline the proposed
approach, showing that application developers, OS distributors, and system adminis-
trators need to make decisions that are test against security requirements and be able
to build on each others’ work effectively. In Section 5, we define our approach, based
on the hierarchical state machine model [2] and examine the problems that need to be
solved at each methodology task in detail to identify the opportunities and challenges
in providing automated support for such tasks.

7 There seems to be a lot of confusion about the origin of this quote, ranging from Sun-Tzu
(Art of War), Machiavelli, and Petrarch, but we were not able to find a definitive source that
predates its use in the movie, “The Godfather, Part II.”
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Fig. 1: Application developers, OS distributors, and system administrators are the main parties in
constructing software components. The process of constructing a computing system involves the
composition of programs into OS distributions and then into systems.

2 Background

In this section, we review how systems are currently configured, the recent trends that
may change this situation (hopefully for the better).

2.1 System Configuration

Figure 1 shows the process of configuring a system in terms of the major parties. There
would be no system to configure without programs, and application developers pro-
vide programs. A program consists of one or more executables and scripts, optional
program-specific libraries, and deployment-independent data. Operating system (OS)
distributors configure one or more programs for their system, including the definition
of program packages for installation (including configurations) and security policies.
Here, we focus mainly on the access control policy covering the program. System ad-
ministrators compose systems from one or more OS distributions at a time. These distri-
butions may run on one physical platform or more, thanks to ubiquitous virtualization.
System administrators configure network policies to determine how the systems inter-
act, may apply system hardening [6] to improve the security of the system beyond that
of the OS distributor, and may change the configurations and access control policies
over programs. Users are not shown in Figure 1, as, like many others, we assume that
users do not make security-critical decisions [60].

Application developers have a tremendous challenge in building programs that pro-
tect themselves from attackers. Nearly any interesting program consists of multiple
components, written in multiple languages, by many application developers. Also, soft-
ware engineering practice has made design approaches that reuse components success-
ful, but many bugs result from incorrect reuse of components. Further, the trade-offs
that application developers make often involve compromises of security (e.g., features
vs. security) that result in further vulnerabilities. The current state of application de-
veloper practice with respect to security is so dismal that Wurster and van Oorschot
propose to take security-relevant programming decisions away from application devel-
opers through enforcement of best practices [67].

Operating system distributors have an even more difficult challenge in configuring
their OS distributions in a manner that ensures security. Historically, the task of OS
distributors is to provide an ecosystem for deploying applications easily, flexibly, and
with good performance characteristics. While operating systems fundamentally provide
protection mechanisms (e.g., address spaces and access control mechanisms), the aim
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was mainly to keep one program’s failure from affecting another program’s execution.
As a result, security decisions were largely left in the hands of application developers in
conventional systems. This approach is inherently incapable of enforcing security [31].
Some operating systems over the years deploy mandatory access control (MAC) for
controlling, even malicious, programs, but mandatory access control systems that aim
to enforce strong integrity guarantees [4,12,23,30,53] have not seen broad use, and the
application of MAC enforcement to conventional systems [41, 43] has been hampered
by complexity and enforcement of informal goals, such as least privilege [51]. Sol-
worth argues for improved testing effectiveness and reduced complexity in operating
systems [56], which we agree are insufficient in current MAC systems.

System administrators are left with the task of configuring the deployment of these
OS distributions consisting of many such programs. System administration may consist
of many tasks. First, system administrators specify the network policy, which deter-
mines how the deployed systems communicate among one another and the Internet at
large. Second, they may determine the programs that are run on each system. Third,
they may configure various system services based on the site’s security requirements.
Finally, system administrators are often responsible for the access control policies on
their systems. Given that they have many physical machines to manage and they must
respond to the non-deterministic behavior of their user community (and, of course, at-
tackers), the security community’s assumption that they can perform all of these tasks
effectively on such complex systems is misplaced.

Thus, we find that none of these parties is capable of performing the tasks necessary
to configure secure systems. Application developers do not ensure that their programs
can defend themselves from attackers. OS distributors piece these programs together
into systems without understanding the limitations that are built into programs nor con-
figuring systems in a way that ensures any meaningful security property. Finally, system
administrators are left with the responsibility to make all of this work. The semantic gap
between the fine-grained security decisions in programs and those at the system-level
make it impractical for even the best system administrators to configure a secure system
unless they terminate all connections to attackers.

2.2 Trends in System Configuration

Despite our current situation, there are some trends that indicate that the kind of revolu-
tionary change needed to develop systems that protect their integrity may be possible.

System Administrators Can Manage Firewalls First, we start with a low-hanging fruit.
It appears that network firewalls are an effective approach for protecting systems from
attackers. We surmise that firewalls are effective for two reasons: (1) they actually are
capable of reducing the accessibility of systems to attackers and (2) system administra-
tors can define firewall policies with little knowledge about program or OS behavior.
First, a firewall defines the first line of defense to a system, so its effectiveness is largely
independent of how the system is configured behind the firewall. Thus, a firewall rule
that denies an attacker access to a particular host prevents the host from being directly
accessible to an attacker, regardless of how poorly the OS or programs are built Second,
system administrators only need to understand the binding between ports and programs
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to configure a firewall. This information is standardized, so it is well-known. The re-
sult is that system administrators can do an effective job of defining firewall rules, even
though these rulebases can get complex [66].

OS Distributors Define MAC Policies MAC policy design unfortunately interacts more
subtly with the system’s programs, but recent trends in MAC policy configuration in-
volve OS distributors learning more about their programs. MAC policies for SELinux
are defined by a small group of experts in SELinux who define policies per program,
implying that they study the permissions necessary for the program to run securely.
This marks a major shift from OSes supporting arbitrary programs and their security
requirements to OS distributors planning for the programs that their OS will run (for
the security-relevant ones, anyway). A problem is that the permissions necessary for
the program to run are easier to determine than the permissions necessary to protect the
security of the system. Also, an artifact of the complexity of MAC policies is that users
of such systems are no longer capable of modifying the OS distributors’ policies. This
may be a blessing in disguise, as this removes the responsibility of MAC policy speci-
fication from system administrators and places more demands on the OS distributors to
assess programs. We have not yet seen the benefit from the former, as MAC policies for
conventional systems are not designed to meet a security goal (e.g., Biba integrity [7],
Clark-Wilson integrity [12], or even any practical approximation [28, 53, 57]) and OS
distributors still lack the tools necessary to understand how a program’s implementation
may impact the security of the system at large.

Application Developers Can Follow Directions A variety of software engineering method-
ologies have been developed, but it was not until recently that security improvement
became a focus. Meta-compilation [68], ITS4 [61], and Prefast [34] were developed to
find program bugs, including security bugs. However, such tools are unsound (i.e., do
not find all bugs). More powerful approaches were developed to prove the correctness
of complex software [47], such as drivers, although such techniques do not scale to large
software components. We believe that programmers could be induced to follow a test-
ing approach that scaled to the size of systems effectively. Many companies implement
structured test procedures before releasing code, but that has not had a tangible effect on
overall system security. Studies have shown that “test-driven development” [39] does
have a significant impact on defect reduction, but our concern is that we are not doing
the right testing in programs nor are we testing the composition of programs and OS
distributions into systems.

Emerging Systems Architectures Might Enable Better Scalability in Administration Say
what one will about whether to trust your security-critical data to cloud systems [48],
but the cloud architecture offers an opportunity to improve the scalability of system
administrator decision-making. This occurs in two ways: (1) the cloud base platforms
are defined by the cloud vendor, enabling a single configuration to apply to many sys-
tems, and (2) cloud vendors often provide a list of preconfigured OS distributions for
their clients, aiming to encourage the use of known systems. In the first case, we en-
vision that a single group of developers and administrators could define and manage
the most secure system we can configure. Further, as this group could include the skills
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of application developers, OS distributors, and system administrators, they could cover
the entire scope of security decisions. At present, however, few if any concrete security
guarantees are offered by cloud vendors8. Second, by standardizing the OS distribu-
tions used, there is the potential that their configurations could be carefully designed to
improve security. This will depend greatly on how well the OS distributors understand
their programs’ security defenses (or lack thereof).

Our claim is that the lack of a comprehensive methodology for designing and de-
ploying systems that meet concrete security requirements prevents us from getting the
upper-hand on attackers. As a result, everyone is the enemy of security. We have been
looking for short-cuts, hoping that by incremental changes, we may be able to luck-out
into the deployment of well-defended systems. However, the reality is otherwise. We
need an approach based on concrete security goals. To date only information flow secu-
rity models offer a precise and comprehensive understanding of possible attacks, as all
the paths that attackers can use to access processes are identified by information flows.
We need application developers to build their programs in such a way that they can un-
derstand the threats to their programs and evaluate the effectiveness of their defenses to
such threats. We need OS distributors to be able to reason about program security in the
context of their access control policy to determine if the threats they face are adequately
addressed. Finally, we need a methodology where system administrators can make the
decisions that they understand and leverage the improved efforts of the OS distributors
and application developers effectively.

3 Attack Surfaces

We propose that the basis for security decisions should be the system’s attack surface.
An attack surface is defined as the entry points that are accessible to an attacker [20].
An attack surface was originally defined in the context of a program, but we use it
in the context of programs, OS distributions, and systems, such that every design and
deployment decision must account for the resulting attack surface and whether that
attack surface can be adequately defended.

The key challenge regarding attack surfaces is to identify all the attack surfaces
that may be used in a deployment. Consider the Apache web server program. The
httpd-2.2.14 distribution including the Apache core and all the modules contains
2451 unique library calls. In theory, any of these library calls may cause an Apache
process to input data from a system object (e.g., a network connect, an IPC, a file, etc.)
accessible to an attacker. However, we may not want just any interface to be used to
read data that may be modified by an attacker. Instead, the Apache team may consider
only the interfaces that are known to be accessible to attackers, Apache’s attack surface.
A problem is that the Apache team’s view of an attack surface may not correspond to
the actual attack surfaces created when it is deployed.

Probably, the Apache team will consider the network interfaces among its attack
surface, but an Apache process may also retrieve untrusted inputs from files, IPCs, etc.
For example, users may be able to provide content, including scripts, that Apache uses.

8 As a contrast, concrete claims regarding physical security, such as armed guards for the data
center, are made [3].
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Fig. 2: The proposed approach for testing the composition of programs and OS distributions into
systems.

In another case, when Apache forks a child process it creates a pipe to receive input
from that child, but that child may be used to execute untrusted content, so such pipes
may be the source of untrusted input. A recent vulnerability was found for this interface.

Previous work in identifying attack surfaces has focused on one component at a
time, either on a program or an OS access control policy, but neither alone is suffi-
cient to reason about attack surfaces accurately. First, researchers examined programs
to identify possible attack surface interfaces and evaluate their significance [32]. In gen-
eral, any program interface may define a location through which an attack may origi-
nate, so this work focused on identifying interfaces to valuable resources for attackers,
hypothesizing that these would require the most attention for defense.

Second, others have used the system’s access control policy to identify the programs
that may have attack surfaces [11]. In this case, Linux systems with SELinux [43] and
AppArmor [41] access control policies were compared based on the number of pro-
grams that were accessible to a network attacker and also had direct access to mod-
ify the Linux kernel (e.g., install a rootkit). What we want to know is whether at-
tack surfaces created by the deployment conflict in some way with the expected at-
tack surfaces of the program. For example, the OpenSSH daemon was carefully reengi-
neered (privilege-separated) to limit the interfaces through which it receives untrusted
input [45]. Nonetheless, a recent vulnerability was found caused by the incorrect pars-
ing of users’ authorized keys files. By looking at attack surfaces in the context of their
deployment, we could locate this interface as a potential risk, rather than waiting for
the attacker to identify it for us [62]. We also believe that examining OS distributions to
identify attack surfaces in the context of their deployment, relative to network policies,
is necessary to ensure that all decisions are acceptable for security.

4 Proposed Approach

What we want is to be able to test: (1) whether the attack surface expected for each
component is consistent with its deployment and (2) that each component only per-
mits authorized operations for its deployment. First, suppose that application developers
constructed their program assuming that a program interface was adequately defended,
but a vulnerability is found. In that case, OS distributors better design access control
policies that prevent attackers from accessing that program interface. Second, the OS
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distributor must verify that the program when limited to this restricted attack surface
only authorizes operations approved by the OS distributor.

The current approach to testing and the use of results of prior testing is inadequate to
build secure systems. We surmise that program vulnerabilities are caused because: (1)
the product was tested under an attack surface that differs (if any was identified) from
the attack surface when deployed; (2) the product was not tested thoroughly enough
to protect itself from threats at the “tested” interfaces; and/or (3) the OS distributors
and system administrators do not know the extent of such testing, so their suggested
deployment is a blind risk. A similar relationship between OS distributors and system
administrators holds for determining whether an entire OS distribution will be deployed
securely. Unfortunately, the testing of access control policies is even more ad hoc than
for programs, as conventional systems that use MAC enforcement typically aim for
least privilege [51], but that requirement cannot be precisely specified and tested. As
a result, we are not surprised that the security community is in a reactive, rather than
proactive mode of operation. The question is whether we can develop a methodology
for comprehensive testing of programs and distributions based on explicit assumptions
that can be validated by parties that use these components. We examine the roles that
application developers, OS distributors, and system administrators would play (enabled
by automated tools) to enable such a methodology.

Figure 2 shows the high-level view of the proposed approach. For each component,
we see a sequence of steps consisting of: (1) (propose) propose the component’s at-
tack surface; (2) (find) identifying data (information) flows where an attacker affects
the component’s integrity, identifying a flow error; (3) (mediate) asserting mediators
that comprehensively resolve all flow errors in the component; and (4) (test) testing the
efficacy of the mediators to thwart all instances of the possible attacks from those flows.
The aim is that each party inputs their component to this methodology and the method-
ology generates a security-tested version of that component. Any other party that uses a
security-tested version obtains the proposed attack surface used in testing (from step 1),
a summary of the information flows enabled by the component (from step 3), and the
testing methodology used in determining the summary (from step 4). Thus, parties can
test the use of others’ components in their systems to obtain a comprehensive evaluation
of security.

What we find intriguing is that the sequence of steps for each component is the same
in this methodology, regardless of whether the component is a program, OS distribution,
or system consisting of many OS distribution instances (hosts).

Application developers need to test their programs against the threats of attackers.
First, they propose an attack surface for their program, which defines their assump-
tion of the threats that are possible. An attack surface identifies low-integrity sources
to the program. Second, application developers need to find what problems exist in
their programs. In this case, a problem is where data from an attacker source may be
used to modify data that is used for a high-integrity sink. That is, there is a data flow
from the attacker to high-integrity program data. Third, the application developers must
assert mediation statements to control such data flows. The problem is to determine
what mediation statements to place at what locations in the code to address the ille-
gal flow. The placement problem is non-trivial, as the application developer must make
sure that all illegal flows are covered, this is difficult to ensure manually. Determining
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what mediation is necessary to prevent attacks is also difficult because such mediation
is program-specific, in general. Fourth, we need to test that these mediations are ade-
quate for the program. In general, testing is language and program-specific, but there
is a rich literature in both testing methods and techniques for various problems, includ-
ing security [5, 27,34,54, 68,70]. We envision that our methodology will leverage such
methods and techniques, making them available to application developers. Eclipse [16]
is a good foundation for integrating such testing for programmers.

We find that OS distributors have to perform similar tasks as those of application
developers, but they construct a different artifact (an OS distribution) and they build
this from others’ components9 (multiple programs). As mentioned in Section 2.2, a
key trend is that OS distributors will have some prior knowledge about the programs
(security-relevant ones) that run on their systems, so they will configure MAC poli-
cies for the programs running on their systems. For each program, the OS distributor
first proposes an attack surface for their distribution. This typically consists of iden-
tifying the networked programs on their system, but some systems enable inter-VM
communication via hypervisor operations, resulting in more operations to consider.
Second, the OS distributor needs to compute the programs that may be accessible to
attackers, particularly how attackers may impact how the valuable system data may be
accessed. In this case, an information flow analysis is proposed to find how network
processes create information flows in the distribution (e.g., computed from SELinux
policies [19, 22, 52, 59]). Rather than just using the access policy though, we envision
that the information flows enabled by programs (from their data flows computed above)
should be used to compute more accurate flows – not all program data flows, however,
but a summary that expresses the information flows generated. Third, the OS distribu-
tor must identify where to resolve such information flow errors. In Biba integrity [7],
such flows may be mediated by guards, but in conventional systems, the programs are
expected to mediate their low-integrity inputs. In this case, the OS distributor needs in-
formation to make decisions about how to choose among such options based on what
component attack surfaces they will accept. Fourth, the OS distributor must test the ef-
fectiveness of the selected mediation. Where such mediation depends on a program, we
should leverage prior program testing in this evaluation.

Finally, the system administrators must configure systems consisting of one or more
OS distributions into a coherently-defended whole. As described previously, system
administrators’ main focus is network policy (e.g., firewall). The question is how can
configuration of a network policy build effectively on the work of the application de-
velopers and OS distributors. First, system administrators define the actual attack sur-
face of the system from the network policy. However, they may not have as clear an
understanding of what is valuable in the distributions that they use. Currently, OS de-
ployments mix data (which belongs to the system administrator’s organization) with
code (which belongs to the OS distributor), so making this separation explicit and en-
abling each of the OS distributor and system administrator to define valuable data would
make the security problem clearer. Second, while system administrators do not need to
make any assumptions about what the attack surface might be, they must determine

9 Of course, application developers may have to compose programs from others’ programs, so
in those cases, they may have to adopt some aspects of the OS distributors’ tasks described
here.

10



how the network policy enables attacks across hosts. A summary of the information
flows generated by OS distributions, including their programs, should be constructed
from which system-level information flows can be computed to identify information
flow errors. Third, system administrators may need to assert network mediation, such
as the placement of firewall rules to control information flow among individual distri-
bution instances. At present, this seems like something that system administrators can
do relatively well, but we may find that more accurate configuration of programs and
systems may expose limitations in manual network configuration. Fourth, the system
administrators must test the resultant configuration. A key ingredient in such testing
is that it builds on the previous testing of OS distributors and application developers,
but also informs system administrators of discrepancies between assumptions in attack
surfaces that underlie any error.

5 Deploying the Approach

In this section, we propose that the hierarchical state machine (HSM) model [2] can
serve as the formal foundation for our approach. First, we show that data flow in pro-
grams, distributions consisting of multiple programs, and systems consisting of multi-
ple distributions can be expressed using an HSM. As a result, we can annotate an HSM
representation with assumptions about attack surfaces, basically untrusted inputs to the
representation. We then discuss the problem of inferring and resolving flow errors using
data flow analyses of an HSM instance, based on the approach of the previous section.

5.1 Hierarchical State Machine Model

First, we define the hierarchical state machine (HSM) model [2].

Definition 1 A hierarchical state machine K is a tuple (K1, ...Kn) of modules, where
each module Ki has the following components:

• A finite set Vi of vertices, and a finite set Bi of boxes.
• Subsets Ii and Oi of Vi, respectively consisting of the entry vertices and exit

vertices.
• An indexing function Yi : Bi → {i + 1, ..., n} that maps each box of the i-th

module to an index greater than i. That is, if Yi(b) = j for box b of module Ki, then b
can be viewed as a reference to the definition of module Kj .
• If b is a box of the module Ki with j = Yi(b), then pairs of the form (b, u) with

u ∈ Ij are the calls of Ki and pairs of the form (b, v) with v ∈ Oj are the returns of
Kj .
• An edge relation Ei consisting of pairs (u, v), where the source u is either a vertex

or a return of Ki and v is either a vertex or a call of Ki.

An HSM model represents an hierarchical structure of modules connected by inter-
faces, called boxes. Modules may have an arbitrary internal structure of connections,
so they are represented by a graph. The HSM model is a well-known formalism in the
model checking community, and we leverage it because it gives us a well-understood
formalism on which to base our analysis.
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We find that the HSM model maps directly to that of a system of hierarchically-
arranged components, as ours is. We describe the intuition here, shown in Figure 3.
What is important about the structure of such systems is that they are encapsulated, hi-
erarchical systems. A system is encapsulated in that all interaction between components
must be mediated by their reference validation mechanisms. Program information flows
can only be propagated to other programs through operating system mechanisms. The
hosts (i.e., instances of distributions) can only communicate via the network or virtual
machine mechanisms (if on a VM system). These systems are also hierarchical in that
the authority to make security decisions is monotonically-reduced from the root to the
leaves. For example, processes cannot make a security decision unless their operating
system authorizes them to make that decision.

Converting a program, distribution, or system to an HSM representation involves
identifying each component that enforces its own information flow security policy,
computing the authorized information flows of that component, and connecting the in-
formation flows between parent and child components. Figure 3 shows the resultant
representation for a system. At the leaves are the programs that enforce information
flow security. These programs include all the programs that have any attack surface.
These programs must, at a minimum, ensure that low integrity data that they receive is
sanitized effectively, although mandatory access control within programs is also prac-
tical now [38, 58]. Next, each OS distribution enforces its own access control policy,
so if such a policy represents an enforcement of information flow security then it can
be converted to an HSM module. Such policies must be mandatory access control poli-
cies that can be converted to an information flow representation, such as information
flow policies [7, 18], type enforcement policies [43, 63], approximations of informa-
tion flow enforcement [28, 53, 57], or sandbox policies that confine enough processes
to constrain information flow [41]. Dynamic information flow enforcement, such as the
Decentralized Information Flow Control model [25, 69], may be converted to an HSM
model, although program discretion about the creation of new attack surfaces must be
modeled. Finally, virtual machine monitor and/or network policies control information
flow among individual hosts in a system. Figure 3 shows just one level of hosts, where
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Fig. 4: A simple information flow graph where valuable data of integrity level A and attack
data of integrity level B are imported. Vertex x has an attack surface caused by the graph’s
flows that is mediated at vertex y.

system policy controls information flow among hosts, using firewalls or VMM policies.
For example, firewalls state communication paths between hosts, and VMM policies
state which virtual resources may be shared by hosts running in VMs [13, 26, 50].

The most difficult task is to connect the information flows between parent and child
modules. In constructing an HSM instance from a set of policies, we need to know how
components at a parent layer (e.g., system) are connected to components at a child layer
(e.g., hosts) and construct boxes to represent such connections (see Definition 1). This
is fairly well-defined between the system and hosts by firewall and VMM policies. For
example, firewalls state which ports can receive a packet, but many ports have well-
known associations with processes. Nonetheless, such information may be ambiguous,
so the use of labeled networking policies [21,35,42] is recommended, as these explicitly
state the security labels of the processes that are authorized to use network connections.
For VMMs, often any root process is typically authorized to make hypervisor calls,
so these processes must be connected to the inter-VM flows authorized by a VMM
policy. Fortunately, the only normal inter-VM interaction is between guest VMs and a
single privileged VM, although this makes the privileged VM more complex. Finally,
for programs, any program interface is authorized to access any resource that its process
is authorized for (based on the process’s security label). This presents a problem in that
any interface may be part of that program’s attack surface, although this is typically
not expected to be the case. The HSM model makes this relationship explicit, and our
approach aims to tease out the actual program attack surfaces.

5.2 Proposing Attack Surfaces

Assuming an attack surface for a program, distribution, or system involves identifying
where an attacker may access that component. While the notion of “assuming” an attack
surface is inherently incomplete and subject to change, it is important to state the as-
sumptions under which one makes security decisions for a component. Others can then
use a component under those assumptions or cause the assumptions to be re-evaluated.
Neither task is performed in any principled manner currently.

An attack surface has a similar meaning for each component, but a different physi-
cal manifestation. All attack surfaces refer to the sources of untrusted data to the com-
ponent. In the Common Criteria, these are called imports10. For a program, its attack

10 Exports are also a concern for secrecy.
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surface consists of program interfaces (code instructions) that import data that may be
modified by an attacker. For a host, its attack surface consists of a set of processes that
have access to attacker data (e.g., data imported via devices, such as the network or
disk, or program data downloaded with the distribution). For a system, its attack sur-
face consists of the untrusted hosts and external components accessible to the system
(e.g., via the network). Finally, we note that components also have valuable data, so
imports must also identify key valuables (otherwise the attacker has nothing to attack).
Elliciting imports with minimal manual effort is the goal, and we are exploring the de-
velopment of a knowledge base to infer a conservative set of imports and their relative
integrity relationships automatically [62].

The simple view of an attack surface in an HSM instance is shown in Figure 4. This
figure shows that all these surfaces are represented by a set of imports to the graph,
which represent set of entry vertices from boxes of its potential parent components.
Imports are explicitly added to the HSM model to show where attacker data (level B)
and valuable data (level A) originates.

5.3 Finding Flow Errors

Once we know we know where attacker data and valuable data are imported into the
component, we need to identify flow errors, cases where an attacker can impact the
component in unauthorized ways. While the security community has significant expe-
rience in inferring information flows and detecting information errors in programs and
systems, we find that inferring information flow errors from OS attack surfaces may
require different methods than for programs.

An information flow error occurs where a component tries to access unauthorized
(i.e., lower integrity) data. For programs, information flows are inferred based on Den-
ning’s lattice model [15]. In this model, a component may either be bound to a security
class (e.g., integrity level) statically or dynamically. If a component is bound to a secu-
rity class statically and an access it performs violates the authorized flows in the lattice,
then that access is a information flow error. If the component is dynamically bound to a
security class, then the security class of the accessed data is combined with the current
security class (e.g., using a least upper bound for the lattice) to assign a new security
class to the component, if necessary. An error may then occur when the dynamically
bound component is used by a component with a statically bound security class. This
method of inference has been applied to identify information flow errors for both se-
crecy and integrity in programs [37].

For OS information flow policies, the bindings are typically all static (Biba and
Clark-Wilson integrity [7,12]) or all dynamic (LOMAC [7,18]), although the IX system
allows dynamic binding with limits [33]. Thus, typical OS integrity policies bind or set
bounds on each process or object a priori, or the entire OS is dynamically bound with
no constraints. In conventional systems, integrity levels are not bound to each process or
objects, so it is necessary to determine what each is supposed to be. However, manually
binding each process or object to an integrity level is impractical, so the nature approach
would be to bind some statically (e.g., attackers, which are low, and trusted components,
which are high), and dynamically bind the rest using Denning’s inference approach.
Then, information flow errors can be found.
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However, we find that this inference approach does not work well for non-information
flow, OS policies, such as Type Enforcement [8]. If we bind processes that access the
network to low integrity and the kernel to high integrity, we find that almost all the
dynamically bound processes will be inferred to be low. This may be an accurate repre-
sentation of modern, conventional operating systems, but we want to identify problems
and fix them coherently. As an alternative, we propose an inference model where each
process’s integrity is determined by the transitive closure of the integrity levels that
reach it [49]. This approach reflects a process’s desire to remain high integrity, unless
explicitly downgraded, but still shows that all processes are insecure (i.e., receive data
of multiple integrity levels), unless mediation is performed somewhere. Using this infer-
ence approach, flow errors correspond to processes or objects (labels in a MAC policy)
in the OS access control policy that receive multiple integrity levels of data.

Figure 4 shows how the HSM model is used to compute information flow errors. A
layer-specific method is used to propagate imported integrity levels through the system.
In practice, the application developer will focus only on their programs and the flow
errors identified at that level, using Denning’s inference. A number of programming
languages have tools that provide such inference, including Java [38], OCaml [55],
and C 11. OS distribution and system layer analysis is either performed based on an
information flow policy or based on the transitive closure approach above for a non-
information flow policy. In Figure 4, transitive closure propagation shows that A and B
both reach vertex X .

5.4 Mediating Flow Errors

Once flow errors are found, then the respective parties need to resolve such errors. The
first decision is which party is assigned to fix the problem. For example, if the problem is
a mismatch between the deployment attack surface and that which was assumed by the
child component, then the question is whether to fix the policy or the attack surface. We
assume that this decision has been made. Traditionally, resolution is a manual process,
but the aim is to leverage the HSM model to automate some steps of the resolution
process.

We have developed a method that generates placements for resolving data flow er-
rors based on graph cuts [24]. In this method, the program is converted into an infor-
mation flow graph, as above, and all paths from a source to a program location where a
flow error occurs must be cut by a mediation statement (e.g., sanitizer or runtime check)
that resolves that error. This method is general for information flow graphs, so we pro-
pose to apply it to information flow graphs at different layers in the HSM model like the
OS distribution layer. Figure 4 shows how a flow of level B is cut at vertex y removing
all attack surfaces (not just the one shown at vertex X). However, for the approach to
be practical, we must be able to construct complete cut problems. For this, we need to
know the mediation statements, their possible locations, and costs (we can then use a
min-cut algorithm). We also need to account for functionality, as we cannot simply cut
access control policy flows, as they may be necessary for the system to work.

11 Since C is not type-safe, such inference only applies if the application developer is not adver-
sarial.
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An advantage of reasoning about security in terms of information flows is that this
reduces the number of options for resolving a flow error. We can either change a vertex
or change the flows into or out of a vertex. Changes to vertex include removing it (e.g.,
removing a program from a distribution) or changing the information flows within the
vertex (e.g., changing attack surface of the program). Changes to an edge include adding
a sanitizer on an edge (e.g., guard process) or changing the integrity level of the imports
(e.g., use more reliable inputs). We note that removing an edge alone is problematic in
that this is likely to remove a necessary function for that vertex.

The problem of automating resolution is complex due to conflicting constraints. A
system may both require particular information flows to occur for the system to function
and restrict certain information flows from occurring. Finding solutions to constraint
systems with positive and negative constraints, in our setting, will result in a PSPACE-
hard branching-time model checking problem [2]. As a result, even with a small number
of resolution options, if there are a large number of possible locations, then automating
resolution will be computationally complex. Powerful solvers (e.g., SAT solvers) are
now available that can search large solution spaces efficiently.

If the solution is to add a sanitizer or runtime check at a particular location, then
the question is what this code should do. Historically, sanitization has been error-prone,
so identifying locations is not sufficient to ensure error resolution. Further, researchers
have found that simply placing one sanitizer may not be sufficient as different uses may
require different sanitizations [5]. Thus, the purpose of the resolution must be clear
enough to assess whether other mediation may also be required to satisfy security con-
straints. For example, if a sanitizer is for a web server to handle untrusted data, then
that mediation may still permit data that is unsafe for the database (e.g., for SQL injec-
tions). Subsequent resolutions must be found for these “secondary” imports resulting
from partial sanitization. Finally, while sanitization is inherently program-specific, a
number of sanitizing functions have been identified over based on the type of error,
programming language, etc. Tools based on this methodology should provide access to
known sanitization functions to reduce the effort of the parties.

5.5 Testing the Resulting System

Finally, once the actor has decided on a resolution to any flow errors, it is necessary
to test such resolutions, particularly for sanitization. Sanitization aims to allow a trans-
formed version of an information flow that meets some requirements. Such require-
ments must be made explicit and test thoroughly. Fortunately, a variety of methods for
testing sanitization procedures have been proposed, although most are language and
bug-specific [5,64]. We envision that such procedures would be provided to application
developers and sanitizer developers for systems, and that a required degree of testing
would be enforced.

Testing of sanitizers involves conservative static analysis to ensure no false nega-
tives (errors relative to requirements) and a supplementary runtime analysis to validate
the existence of real errors [5]. Such testing is limited by the problem of identifying
the sources of untrusted data, but the HSM model makes the sources of untrusted data
explicit. Also, test cases need to be generated for the runtime validation. Fuzz testing
tools generate inputs to programs to find vulnerabilities. One tool, EXE, automatically
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generates inputs that will crash a program [9]. It tracks possible values that variables
can have symbolically. When an assert statement is reached, EXE checks if there is
an input that causes the statement to become false.

6 Conclusions

Developing a software engineering methodology for security would be a significant un-
dertaking. In addition to providing mechanisms to convert the relevant program, distri-
bution, and system information into a canonical format (an HSM instance), algorithms
must be developed to solve the problems highlighted above, and a user interface must
be designed to convey this information clearly. Finally, testing tools must be integrated
with the methodology to enable comprehensive testing for all the target languages and
bugs.

Waiting for a “big bang” of all the technology above before we have a useful system
pretty much guarantees that it will never happen, so the question is how should we pro-
ceed to provide a useful, but perhaps incomplete, functionality that leads to a desired
goal. We envision that such tools must be integrated into a common, open software en-
gineering ecosystem, such as Eclipse. We imagine that any initial methodology would
enable testing of one component and the testing of its deployment, such as building a
program and testing its deployment in an OS distribution. Finally, the security com-
munity will have to consider how to pull together the myriad of prior research into a
coherent approach, whether for the proposed approach or another. The security com-
munity has undertaken similar challenges for defining assurance criteria, and this will
be a similarly large undertaking.
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