
0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2984407, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

Abstract—RISC-V is a promising open source architecture that

targets low-power embedded devices and SoCs. However, there is
a dearth of practical and low-overhead security solutions in the
RISC-V architecture. Programs compiled using RISC-V
toolchains are still vulnerable to code injection and code reuse
attacks such as buffer overflow and return-oriented programming
(ROP). In this paper, we propose two hardware implemented
security extensions to RISC-V that provides a defense mechanism
against such attacks. We first employ a Physically Unclonable
Function (PUF)-based randomized canary generation technique
that removes the need to store the sensitive canary words in
memory or CPU registers, thereby being more secure, while
incurring low overheads. We implement the proposed Canary
Engine in RISC-V RocketChip with Rocket Custom Coprocessor
(RoCC). Simulation results show 2.2% average execution
overhead with a single buffer protection, while a 10X increase in
buffer count only increases the overhead by 1.5X when protection
is extended to all buffers. We further improve upon this with a
dedicated security coprocessor FIXER, implemented on the
RoCC. FIXER enforces fine-grained control-flow integrity (CFI)
of running programs on backward edges (returns) and forward
edges (calls) without requiring any architectural modifications to
the processor core. Compared to software-based solutions, FIXER
reduces energy overhead by 60% at minimal execution time
(1.5%) and area (2.9%) overheads.

Index Terms— Buffer overflow, PUF, Stack Canary, RISC-V

I. INTRODUCTION
rogramming languages such as C which are closer to the
hardware provide a lot of flexibility in terms of memory and

IO access to allow system and device level programming.
However, such languages are weakly typed and often tend to
have inherent deficiencies leading to security vulnerabilities if
not used with proper and secure practices. Buffer overflow (Fig.
1) is the most common vulnerability that can be exploited to
launch a variety of attacks. In a program without bounds
checking, an adversary can overload a user input with excess
data that can overrun the buffer capacity and overwrite nearby
memory locations with potentially malicious data, leading to
attacks such as return-oriented programming (ROP), function
pointer manipulation and violation of data flow integrity.

Stack canaries [4] are sacrificial words placed on the stack at

Asmit De is with The Pennsylvania State University, University Park, PA
16802 USA (email: asmit@psu.edu).

Aditya Basu is with The Pennsylvania State University, University Park, PA
16802 USA (e-mail: aditya.basu@psu.edu).

stack frame boundaries to detect potential return address
overwriting. If an adversary overflows a buffer in order to
overwrite the return address, the canary is also overwritten.
Before returning in the program’s execution stack, the canary is
checked, and if modified, the return address is assumed to be
compromised. This approach works if the adversary’s target is
to overflow a buffer to overwrite the return address. However,
there are scenarios where the adversary can skip over the canary
using a vulnerable pointer reference, guess the canary, or learn
the canary using a disclosure vulnerability.

Unfortunately, stack canaries cannot detect a buffer overflow
if the attack payload does not actually overwrite the canary
value. In a data-oriented attack, the adversary can overflow the
buffer just enough to overwrite some sensitive variable above
the buffer, but not cross stack frame boundaries. Here, the
canary will not be overwritten; hence, it will not be able to
detect the attack. Fig. 2 shows a typical layout of the stack
frame, where such an attack is possible.

Fig. 3 shows an example of vulnerable code for a data-flow
attack [5]. In this example, an adversary can send more than
1000 bytes of data which the PacketRead function writes to
the packet variable. If the adversary’s payload is large
enough, it will overwrite the return address which will be
detected by the canary when the stack rolls back. However, if
the payload is carefully crafted, adversary can just overwrite the
authenticated variable above the packet buffer. Then the
check Authenticate(packet) can be bypassed and the
packet will be processed, without being detected by the canary.

Swaroop Ghosh is with The Pennsylvania State University, University Park,
PA 16802 USA (e-mail: szg212@psu.edu).

Trent Jaeger is with The Pennsylvania State University, University Park, PA
16802 USA (e-mail: trj1@psu.edu).

Hardware Assisted Buffer Protection
Mechanisms for Embedded RISC-V

Asmit De, Aditya Basu, Swaroop Ghosh and Trent Jaeger

P

Fig. 1. Buffer overflow exploit.

Args to bar()

Return address

Saved %ebp

Local variables

Buffer

fo
o(

)
S
ta
c
k
F
ra
m
e

ba
r(

)
S
ta
c
k
F
ra
m
e

System Stack foo():
▪ Some code
▪ Push args for bar()
▪ Push return address on stack
▪ Jump to bar()

bar():
▪ Some code (adversary injects

payload here)
▪ Begin bar() epilogue actions
▪ Jump to malicious location

L
i
n
k
s

t
o

m
a
l
i
c
i
o
u
s

l
o
c
a
t
i
o
n

3
Args to bar()

Return address fo
o(

)
S
ta
c
k
F
ra
m
e

M
a
l
i
c
i
o
us

P
a
y
lo
a
d

1

1

2

2

3

3

Authorized licensed use limited to: Penn State University. Downloaded on June 22,2020 at 19:42:38 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2984407, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

The obvious solution is to detect a buffer overflow as soon as
it happens, and not wait for the function to end and the stack to
rollback in order to validate the canary. One possible way is to
place canaries at the top of every buffer. This leads to some
challenges. Canaries are held in specialized canary registers or
in a protected memory location in the address space. If the
canaries are randomized, they take up some memory space or
several registers. This is expensive in terms of memory space,
especially if we try to put multiple canaries in the same stack
frame to protect every buffer. Moreover, a vulnerability in
saved canary locations can also lead to disclosing the canaries.
The canaries also need to be validated after every write to a
buffer. This can be expensive if implemented in a fine-grained
manner. Existing solutions to protect programs from data-flow
integrity are software based, e.g., performing reaching
definitions analysis [5], or enforcing compile-time memory
safety constraints [48], while others use specialized hardware
or architecture to perform tagging and metadata processing [6-
7]. However, these techniques are expensive in terms of
performance and/or memory requirements or require hardware
or architectural modifications to support them.

In this work, we present PUFCanary, a fine-grained yet
lightweight hardware generated stack canaries to protect buffer
boundaries and can detect overflow of the buffers using
Physically Unclonable Function (PUF) [8]. The PUF generates
randomized canary words in a secure manner based on the
address in use. We implement our design in RocketChip [9]
based on the RISC-V architecture. The Rocket Custom
Coprocessor (RoCC) of RocketChip allows a flexible hardware
design implementation of our Canary Engine without
modifying the core processor architecture. Compared to
existing stack canary, our design provides the following key
benefits: (i) secure and randomized canary word generation
using PUFs, (ii) fine-grained individual buffer protection, and,
(iii) no need to save canaries in memory/ registers.

We further design FIXER (Flow Integrity Extensions for
Embedded RISC-V), a low energy, low overhead security
coprocessor that ensures integrity of backward and forward
edge control flow of programs running on a RISC-V core.
FIXER decouples the security architecture from the RISC-V
core architecture, enabling a highly flexible security design. In
the target deployment platform, the unmodified RISC-V core

will be a hard IP, while the dynamically reconfigurable FIXER
coprocessor will be implemented on an on-chip FPGA. Such an
approach has the potential to be scaled to hybrid processor
designs e.g., a Xeon + FPGA core [10]. The FPGA also
provides the flexibility to change and update the security
architecture in demand to new threats, without a complete
redesign of the primary computing core. With the number of
vulnerabilities rapidly increasing, it demands an efficient low-
power flexible and scalable security solution that is sustainable
for long periods of time. FIXER potentially unlocks the design
capability to protect our systems from such cybersecurity
threats. Software based CFI techniques are also limited by the
size of the address space, which can be overcome by FIXER’s
flexible FPGA implementation. Compared to NILE [11],
FIXER achieves better performance. Although NILE uses an
unmodified RISC-V core similar to FIXER, the core-
coprocessor interface is modified for the coprocessor to tap into
more resources of the core. Note that, even though PUFCanary
and FIXER both aim to protect memory, they approach the
solution in different ways. PUFCanary tries to proactively
detect one of the fundamental causes of memory exploits – the
buffer overflow itself. This requires compiler support and
incurs more overhead than FIXER, especially if protecting
multiple buffers. However, this allows protection against both
control-flow and data-flow attacks originating from buffer-
overflow. Hence security critical systems may opt to use
PUFCanary, trading in some performance. FIXER, on the other
hand, implements a shadow stack and policy memory for
preventing control flow violations, but it cannot prevent data-
flow attacks. The tradeoff is simpler design and better
performance than PUFCanary, hence this can be used for
resource-constrained embedded systems. Table I shows a
qualitative comparison of PUFCanary and FIXER with the
state-of-the-art memory protection solutions. Both PUFCanary
and FIXER maintain high-performance with low energy, the
difference being PUFCanary can also detect data-flow attacks.
PUFCanary and FIXER are both hardware agnostic, however,
special compiler support is required for PUFCanary
implementation. FIXER also has the added benefit of being
dynamicaly updated due to it’s flexible FPGA implementation.

The major contributions of this work are: (a) a secure PUF
TABLE I. Qualitative Comparison of FIXER with Related Works

C
an

ar
y

[4
]

A
SL

R
 [3

]
C

FI
 [1

]
PU

M
P

[1
8]

H

A
FI

X
 [2

7]

G
R

IF
FI

N
 [2

9]

H
D

FI
 [3

1]

N
IL

E
[1

0]

PU
FC

an
ar

y
FI

X
E

R

Control flow hijacking protection ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Data flow hijacking protection  ✓  ✓   ✓  ✓ 
Maintains high-performance     ✓  ✓ ✓ ✓ ✓
Low energy overhead       ✓ ✓ ✓ ✓
No architecture modifications ✓ ✓ ✓   ✓  ✓ ✓ ✓
No source code pre-processing ✓ ✓ ✓ ✓ ✓ ✓    
No compiler modifications  ✓    ✓    ✓
Software flexibility ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓
Hardware flexibility        ✓ ✓ ✓
Dynamic patching ✓ ✓ ✓       ✓

Fig. 2. A vulnerable stack frame

layout with stack canaries.

1. int authenticated = 0;
2. char packet[1000];
3.
4. while (!authenticated) {
5. PacketRead(packet);
6.
7. if (Authenticate(packet))
8. authenticated = 1;
9. }
10.
11. if (authenticated)
12. ProcessPacket(packet);

Fig. 3. A vulnerable C code.

Args to bar()

Return address

Canary word

Saved %ebp

Local
variables

Buffer

b
a
r
(
)

S
ta
c
k

F
ra
m
e

M
a
l
i
c
i
o
u
s

P
a
y
l
o
a
d

Address space

Authorized licensed use limited to: Penn State University. Downloaded on June 22,2020 at 19:42:38 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2984407, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

based hardware generated canary design; (b) fine-grained
individual buffer protection using canaries; (c) PUF design
optimizations to improve performance.

The paper is organized as follows: Sections II and III describe
existing defense mechanisms, RocketChip and the Rocket
Custom Coprocessor architecture. Section IV presents the
design flow and implementation of the PUF-based randomized
canaries. Section V details the FIXER security coprocessor
architecture. Limitations are discussed in Section VI, and
conclusions are drawn in Section VII.

II. DEFENSE MECHANISMS

Stack Canaries: Stack canaries [4] are sacrificial words
placed on the stack at stack frame boundaries to detect potential
return address overwriting. If an adversary overflows a buffer
and overwrites the return address, the canary gets overwritten.
Before returning in the execution stack, the canary is checked,
and if modified, the return address is assumed to be
compromised, and the program is halted.

Data Execution Prevention: Data Execution Prevention
(DEP) [2] prevents an adversary from executing malicious code
from the stack. Memory pages are marked W⊕X, meaning, a
page can either be executable (code) or be writable (stack,
heap), but not both. However, an adversary can return to
existing code in the program or shared libraries using gadget
chains (return-to-libc attack).

Address Space Layout Randomization: Address Space
Layout Randomization (ASLR) [3] randomizes the code, stack,
heap, and shared library locations on the address space, to make
it difficult to determine specific addresses and launch attacks.
However, buffer overread and side-channel vulnerabilities can
be used to reverse engineer the randomized address.

Control Flow Integrity: Control Flow Integrity (CFI) [1]
involves statically computing a valid control flow graph (CFG)
of the program and ensuring that during runtime, the program
abides by that CFG. A coarse-grained approach to ensuring CFI
while returning from functions is the use of a shadow stack (a
separate stack residing in a secure memory location) [12]. On
each function call, the return address is saved on the shadow
stack alongside being put on the stack normally. While
returning from a function, the return address on the stack is
validated against the one on the shadow stack. On mismatch, it
is assumed that the return address has been compromised.
However, a shadow stack can be performance intensive since
the pages housing the shadow stack may not be present in cache
and may require several cycles to bring the page onto the cache
and perform the validation. Several software techniques have
been proposed for supporting shadow stacks [13-14].

Even with the presence of a shadow stack, an adversary can
bend the control flow of a program. To prevent such incorrect
control flows for indirect calls, the program is first analyzed to
compute a coarse-grained or fine-grained CFG [1]. A policy
matrix can then be created from the CFG that specifies the
allowed call targets for each call site. During execution, for
each indirect call, the policy matrix is looked up to determine
the validity of the call target. However, this approach still

suffers from similar performance degradation if the policy
resides in memory. Compile-time and runtime enforcement of
CFI have been shown in [15-16]. Lazy CFI [17-18] can
somewhat alleviate the performance loss, but that leaves room
for generating false negatives.

Secure hardware platforms: ARM TrustZone [19] and Intel
SGX [20] isolate the hardware restrict access to systems assets.
Hardware acceleration of security validation has been proposed
to address the performance impact partially while covering a
subset of security threats e.g., Intel CET [21] to protect against
control-flow hijacking. Intel MPX [22] is developed to prevent
memory safety violations. Intel TSX [23] exposes and exploits
hidden concurrency in multi-threaded applications. Intel PT
[24] logs TSX events when a transaction begins, commits or
aborts. It has been shown in [25] that tagging of code and data
using software-defined metadata and processing the tag using
custom designed processor can detect ROP, code injection,
memory safety violation and pointer corruption. Although
effective, this new architecture cannot be readily deployed due
to lack of re-configurability, and, area, energy and performance
overheads. Other hardware-assisted techniques to enforce CFI
are proposed in [25-29]. Data flow protection in stack and heap
using hardware assistance is also proposed [30-31]. Specialized
hardware stack redundancy systems have been developed for
embedded systems [32-35], however these are architecture
dependent and cannot be updated post-deployment. The
common challenges associated with these secure hardware
platforms include design overhead, lack of provisions to patch
the design and keep pace with rapidly evolving threats, need of
program binary instrumentations, compiler modifications, and,
lack of adaptability to adjust the security level in runtime as
needed. To alleviate these issues, a decoupled architecture
using hardware performance monitors implemented on a RISC-
V coprocessor has been proposed in [11].

III. OVERVIEW OF THE ROCKETCHIP ARCHITECTURE
The PUFCanary and FIXER architectures are based on

Rocket Chip [9] (written in CHISEL [36]), an open source
parameterized system-on-chip (SoC) design generator. We use
the RocketChip generator to generate synthesizable RTL for the
standard Rocket Core SoC, a six-stage single-issue in-order
pipeline processor that executes the 64-bit scalar RISC-V ISA
(Fig. 4(a)). The Rocket Tile consists of the scalar core, the L1
caches, and the Rocket Custom Coprocessor (RoCC). The
RoCC is a user-defined accelerator for the core which
communicates with core over the RoCCIO interface using a set
of custom instructions.

RoCC Instructions: The 32-bit RoCC instructions extend
the RISC-V ISA and are encoded as shown in Fig. 4(b). The
four custom instructions supported by Rocket Chip is shown in
Table II. The xs1, xs2, and xd bits control read and write of the
core registers by the RoCC instruction. If xs1 is 1, then the 64-
bit value in the integer register specified by rs1 is passed to the
RoCC. If the xs1 bit is clear, no value is passed over the
RoCCIO interface. Similarly, xs2 bit controls the read of
register specified by rs2. If the xd bit is 1 and rd is not 0, the

Authorized licensed use limited to: Penn State University. Downloaded on June 22,2020 at 19:42:38 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2984407, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

core will wait for a value to be returned by the coprocessor over
the RoCCIO after issuing the instruction to the coprocessor.
The value is then written to the register specified by rd. If the
xd is 0 or rd is 0, the core will not wait for a value from RoCC.
The opcode field specifies the custom instruction for the RoCC,
and the funct7 field further specifies a user-defined function
implemented in the RoCC. The RoCC is responsible for
signaling illegal instructions to the core.

RoCCIO Interface: The RoCC interacts with the Rocket
core and the shared memory system via the RoCCIO interface
(Fig. 4(a)). The core initiates a RoCC command by passing the
RoCC instruction to the coprocessor via inst, as well as the
relevant register values via rs1 and rs2. If the RoCC instruction
has the xd bit set, then the RoCC must eventually supply a
response value over the RoCC response interface via data.

IV. PUF BASED RANDOMIZED CANARIES

A. Physically Unclonable Function (PUF)
PUFs are a secure hardware fingerprint applied in hardware

crypto systems. PUF generates the response (key) to a particular
challenge from physical properties of the chip. The exhaustive
set of challenge-response pairs (CRP) serves as the fingerprint

of the PUF chip, which is fixed (even across power cycles) for
a particular chip but varies chip-to-chip. Several flavors of
PUFs exist in literature [37-39], etc. Specially crafted circuit
structures e.g., SRAM and flip-flops are used to amplify
physical randomness for the PUF signature. Traditionally,
PUFs have been used for chip authentication and deter IC
counterfeiting. In this work, we use SRAM PUF for ease of
implementation however, other types of PUFs can also be used.
B. True Random Number Generator (TRNG)

 TRNG harnesses the natural entropy present in the system
e.g., thermal noise [40], shot noise, Brownian motion or nuclear
decay [41]. Techniques to harvest the noise in the operational
amplifier [42], jitter of coupled oscillators [43], state of bi-
stable elements [44] and oxide breakdown of transistors [45]
have also been proposed. The challenges involved in designing
TRNG include exploiting new entropy sources, efficient
harvesting mechanisms and careful post-processing. In this
work, we use FPGA’s oscillator jitter for TRNG, although other
variants can also be used.
C. Generating Randomized Canary Words

 In our proposed design methodology, we generate and place
one canary per buffer in the program’s execution stack. This is
in contrast to the standard canary implementation where only
one canary is placed at the return boundary of an execution
stack. Furthermore, we randomize the canaries such that all the
canary words in use for the current process are unique. This is
to mitigate any attacks resulting from disclosure vulnerabilities.
We design a Canary Engine using a PUF and a TRNG (Fig. 5)
to generate random canaries. Since the canaries are placed at
specific locations in a program’s address space, we randomize
the canaries based on the address where the canary will be
placed. The PUF in the Canary Engine works in challenge-
response mode, where the address location for the canary is
used as challenge. The PUF response 𝑟𝑎 is a partial canary word
based on the challenge address 𝑎. The {𝑎 → 𝑟𝑎} mapping is
obtained from the PUF signature (CRP). This partial word is
used in conjunction with a binary secret value 𝑠, kept in a
dedicated binary secret register in the Canary Engine. This is
crucial in order to make the canary word truly unpredictable for
the adversary, since the PUF by itself is not a secret due to its
fingerprint nature. We use the TRNG in the Canary Engine to
create the secret value 𝑠𝑝 for a process 𝑝 when it is spawned for
the first time. The secret value needs to remain constant for the
lifetime of a process, hence it is backed up in the process’s
Process Control Block (PCB) by the operating system, so that
it can re-populate the register with the value when the process
is switched back in (context switch). The partial word 𝑟𝑎 from
the PUF is XORed with the binary secret 𝑠𝑝 to generate the final
canary word 𝑤 for the requested address 𝑎:

 𝑤 = 𝑟𝑎 ⊕ 𝑠𝑝 (1)
 Note that, in the canary generation procedure, PUF serves the

purpose of randomization within the same process, while the
binary secret makes the canary unique across processes.

(a) (b)
Fig. 4. (a) RocketChip architecture. FIXER coprocessor is also shown, (b)
RoCC instruction encoding.

TABLE II. RoCC Instruction Opcodes
RoCC Instruction Opcode

custom0 0001011
custom1 0101011
custom2 1011011
custom3 1111011

Fig. 5. Canary Engine design.

RoCCIO

MemoryL2 Cache

Rocket Tile

R
o
c
k
e
t
C
h
i
p
S
c
a
l
a
r

C
o
r
e

R
o
c
k
e
t

C
u
s
t
o
m

C
o
p
r
o
c
e
s
s
o
r

[
F
I
X
E
R

S
e
c
u
r
i
t
y

M
o
d
u
l
e
]

L1 I$ L1 D$

T
i
l
e
L
i
n
k
I
O

MemIO

inst[31:7]

rs1[63:0]

rs2[63:0]

ready

valid
rd[4:0]

data[63:0]

valid

ready

R
e
q
u
e
s
t

I
n
t
e
r
f
a
c
e

R
e
s
p
o
n
s
e

I
n
t
e
r
f
a
c
e

31

25
24

20
19

15
14
13
12
11

7
6

0

f
u
n
c
t
7

r
s
2

r
s
1

xd
xs1
xs2

r
d

o
p
c
o
d
e

7

5

5

1
1
1

5

7

R
o
C
C

C
a
n
a
r
y

E
n
g
i
n
e

R
o
C
C
I
O
C
m
d

D
e
c
o
d
e
r

ce_init

Binary Secret Register

rs1[63:0]
0x0

Control
signals

R
o
C
C
I
O
R
e
s
p

I
n
t
e
r
f
a
c
e

rd[63:0]

En

En

R
o
c
k
e
t

C
o
r
e

RoCCIO

M
U
X

ce_set

ce_fetch

ce_reset

TRNG

PUF

Sel

En

XOR

M
U
X

Sel

C
h
a
l
l
e
n
g
e

G
e
n
e
r
a
t
o
r

Authorized licensed use limited to: Penn State University. Downloaded on June 22,2020 at 19:42:38 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2984407, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

PUF optimization: A 1:1 PUF mapping produces a unique
response for every challenge. In a 64-bit architecture, we have
264 addressable locations, where, segments such as kernel space
and code segment will not be writable and will never be used
for canary placement. Moreover, if a word is 8 bytes, and the
data is word aligned, only 261 addresses will actually be used
for addressing and the lower order 3 bits can be ignored. To
optimize our design for this, we can use part of the address bits
as challenge instead of all 64 bits. For example, the higher order
bits (kernel space) and the lower order bits (for alignment) can
be ignored. Fig. 6(a) shows a partial pmap output for a 64-bit
process. We can see that the stack starts at address
0x7ffc0bcd3000 and can grow up to 0x7ff3ee07a000
from where the memory mapping segment begins. Hence, we
can practically ignore the higher order 28 bits (conservatively).
Fig. 6(b) shows the chosen bits from an address for the PUF
challenge. However, if this is not chosen conservatively, it can
lead to duplicate challenges. It should be noted that the chosen
bits are architecture specific and needs to be tuned for different
architectures, which determines the size and region of memory
that can be protected. Furthermore, this optimization is only
applicable for user-space stack buffer protection only. For
kernel space protection, the higher order addresses are also
required, hence there is less scope of optimization. For
protecting the entire address space, other physical optimization
measures can be taken, such as downsizing the PUF.

D. Security Benefits and Implications
Our canary design system provides several benefits over the

conventional canary implementation. We can generate multiple
canaries in the same stack frame, protecting each buffer in the
stack frame. Due to PUF usage, the canaries need not be saved
in a register or in the address space (typically referenced by an
offset from the x86 segment register %gs in GCC). The PUF
signature (CRP) itself acts as a repository for the canaries to
use. Whenever the canary at a particular address needs to be
placed or validated, the PUF can be queried with the address as
the challenge, and it will respond with the correct partial canary
word. This makes it more secure and less prone to disclosure.

The PUF response is XORed with the binary secret to
eliminate a brute-force disclosure of all the canaries from the
PUF. Since the PUF signature is fixed over multiple power
cycles, it is not a strong secret by itself. It generates different

responses for each challenge, but for the same challenge, it
generates the same response every time. This holds for
challenges within the same process, across multiple executions
of the same process, and even across different processes. Note
that the responses change chip-to-chip. Therefore, a successful
attack on one system cannot be deployed globally. Without the
binary secret in place, an adversary can generate all possible
challenges (addresses) and retrieve corresponding responses
(canaries) for those addresses. Thus, the binary secret allows us
to obfuscate the PUF response. To generate a truly random
value for the secret, the hardware TRNG (much faster than
software pseudo-random generator) is used. This provides a far
more efficient and secure random number as the secret value
for each invocation of the same program, or for different
programs. This ensures that an adversary cannot re-compute the
canary values using the secret.

We assume that the OS kernel is secure, and the PCB
information cannot be disclosed from the user space. This is
important, since the binary secret is a critical information for
the particular process and must be stored securely in the PCB
of the process in the kernel space to handle context switches.
We also assume that the Canary Engine is secure, i.e., there is
no instruction that can be used to directly query the PUF and
obtain the response. Hence, there is no direct way of obtaining
the exhaustive CRPs of the PUF. Also, there are no
unprivileged instructions to read the binary secret register,
preventing any information leakage from the Canary Engine
that can be potentially leveraged to obtain the secret value in
order to reconstruct the canaries. Since the secret value is 64-
bit wide, brute-forcing it will require 264 tries. For further
securing the secret, it can be encrypted before storing in the
PCB, however this may increase context-switching time due to
the encryption/decryption process.

For a particular process 𝑝1, the different canary words will be
generated as 𝑤1 = 𝑟𝑎1 ⊕ 𝑠𝑝1 , 𝑤2 = 𝑟𝑎2 ⊕ 𝑠𝑝1 , etc. following
(1). In case of a disclosure vulnerability, if 𝑤1 is known for
address 𝑎1, it is not possible for the adversary to compute 𝑤2
for 𝑎2, since neither 𝑟𝑎1 nor 𝑠𝑝1 can be individually determined.

In our implementation, we have performed the XOR
operation of the binary secret value with the PUF response.
However, the secret can also be XORed with the address and
used as PUF challenge. Either cases provide the same security
guarantees. In both cases, the raw CRPs for the PUF remain
undisclosed to the adversary due to the XOR operation, since
only the challenge or the response is transparent to the
adversary, but never both. To completely hide the PUF
signature, the XOR operation can be performed on both sides,
however, it will reduce performance. The number of PUF CRPs
needs to be more than the size of the address space used for
canary placement to avoid collisions in canary words.

E. Canary Usage and Design Flow
A system with our proposed canary design will be modified

as follows: The kernel scheduler is modified to include a few
extra instructions to configure the Canary Engine for the

00007ff3ee05b000 24K rw--- [anon]
00007ff3ee078000 4K r---- ld-2.23.so
00007ff3ee079000 4K rw--- ld-2.23.so
00007ff3ee07a000 4K rw--- [anon]
00007ffc0bcd3000 132K rw--- [stack]
00007ffc0bd90000 12K r---- [anon]
00007ffc0bd93000 8K r-x-- [anon]
ffffffffff600000 4K r-x-- [anon]

(a) total 20840K

(b)
Fig. 6. (a) A partial pmap result of a process showing the addresses used by the
stack, (b) the address bits chosen for the PUF challenge (‘A’ represents the 3
unused alignment bits).

63 36 35 3 2 0

Unused PUF Challenge A
28 33 3

Authorized licensed use limited to: Penn State University. Downloaded on June 22,2020 at 19:42:38 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2984407, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

protection enabled process. Initially, when the process is to be
scheduled for the first time, the kernel sends ce_init
instruction to the Canary Engine. This is a privileged instruction
and cannot be used from the user space. The TRNG in the
Canary Engine generates the random word and populates the
binary secret register. It also sends the value back to the kernel.
The kernel saves the value in one of fields of the PCB for the
particular process. This is shown in Fig. 7(a).

During a context switch, when the protected process is to be
switched out, the kernel sends ce_reset instruction
(privileged) to the Canary Engine. After decoding, a control
signal is sent to the multiplexer to write a 0x0 (reset) value to
the binary secret register to prevent disclosure of the secret.

When the process is about to be scheduled again, the kernel
sends ce_set instruction (privileged) to the Canary Engine
along with the secret word stored in the PCB. This writes the
secret word and repopulates the binary secret register.

The program to be protected with canaries is compiled as
follows: A static analysis is performed on the assembly code to
identify the buffer locations in each function. A ce_fetch
instruction is placed per buffer in the function prologue. This is
the only unprivileged instruction that can be sent to the Canary
Engine. The instruction sends the address of the canary location
to the Canary Engine which decodes the address and sends the
challenge to the PUF. The PUF responds with the partial canary
word which is XORed with the binary secret register value to
generate the final canary word. The canary word is sent back to
the process to be placed on the memory location. The canary
generation process is depicted in Fig. 7(b).

Placing the canaries on the stack frame also requires some
readjustment of the stack boundaries due to the extra memory
locations taken up by the canaries. This is accomplished by
readjusting the stack pointer and base pointers. Furthermore,
since the original stack layout has been altered, the locations of
the variables and buffers in the stack also needs to be
readjusted. This is done by changing the references to all the
variables and buffers in the stack after taking into consideration
the canary placements. The unmodified and altered stack
frames are shown in Fig. 7(c).

F. Canary Engine Implementation using RoCC
The Canary Engine implementation in the RoCC is shown in

Fig. 5. The program binary runs on the Rocket Core and sends
RoCC instructions over the RoCCIO whenever a canary
generation or validation is required. The RoCC instruction is
first passed through the Cmd decoder, which extracts the

individual fields of the RoCC instruction, and the contents of
the two registers rs1 and rs2 if specified. The opcode field is
decoded to the custom0 instruction in our implementation. The
funct7 field is decoded to interpret ce_init, ce_set,
ce_reset and ce_fetch instructions.

When the kernel sends the ce_init instruction to the Canary
Engine, after decoding, a control signal is sent to the TRNG to
generate a 64-bit random word. The word is sent to a
multiplexer input. The appropriate select signal is sent to a
multiplexer to select and write the random word to the binary
secret register. At the same time, the word is sent to another
multiplexer to be written to the rd[63:0] response interface and
sent back to the core register t0 to be saved in the process PCB.

When decoding the ce_reset instruction, a control signal is
sent to the multiplexer, which selects the 0x0 (reset) value and
writes it to the binary secret register. This resets the Canary
Engine when the protected process is not in context.

For a ce_set instruction, the contents of the t0 (the secret
value held in the PCB of the process) is sent through the
rs1[63:0] field of the RoCCIO interface to the canary engine.
After the instruction is decoded, the value is read from the
rs1[63:0] field and sent to a multiplexer. The required select
signals are sent to the multiplexer and the value is copied to the
binary secret register. This reconfigures the Canary Engine for
the current process.

For the ce_fetch instruction, the contents of the core
register t0 (the address for the canary) is sent through the
rs1[63:0] field of the RoCCIO. The PUF is implemented as a
SRAM memory initialized to random default values of 64-bit
wide words. For our proof-of-concept implementation, we have
used a PUF with 1024 unique challenge-response pairs. This
was sufficient for our implementation since our RocketChip’s
program memory configuration was generated with a usable
stack memory of less than 1024 bytes for the sake of simplicity.
However, in practical applications, PUFs with larger CRPs are
required since all 64 bits of the address or the optimized 32 bits
will be used. When a ce_fetch instruction is interpreted the
appropriate read control signals are sent to the PUF and the
binary secret register. The address in rs1[63:0] is sent to the
Challenge Generator, which prepares the PUF challenge by
selecting the appropriate bits from the address and sends it to
the PUF. The default random word in the memory-PUF for that
particular address (challenge) serves as the response. It is to be
noted that since this is a PUF, the random default values in the
1024 locations are static and is a signature of the PUF, and
hence it will not change. The response value is read and sent to

(a) (b) (c)
Fig. 7. (a) Canary Engine initialization, (b) Canary generation, and, (c) Stack frame modification for canary placements.

TRNG

Kernel code

Process init

ce_init

Binary secret word
PCB

0x34e52a98cce32Store in PCB

Random word

Initialization
request Canary word 1

Buffer 2
PUF

Address space

Canary word 2

Buffer 1

Local vars,
function ptrs

Binary secret word

Canary address

PUF Challenge

Canary word

P
U
F

R
e
s
p
o
n
s
e

Return addr

Saved %ebp

Variable 2

Canary word 1

Buffer 1

Original Stack

Variable 1

Canary word 2

Buffer 2

Return addr

Saved %ebp

Variable 2

Buffer 1

Variable 1

Buffer 2

Modified Stack
Base ptr
(ebp)

Stack
ptr

Base ptr
(ebp)

Stack
ptr

Authorized licensed use limited to: Penn State University. Downloaded on June 22,2020 at 19:42:38 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2984407, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

the XOR gate. Simultaneously, the value in the binary secret
register is also read and sent to the XOR gate. The output of the
XOR gate is the resultant canary word and is fed to the rd[63:0]
field of the response interface. The response is sent back to the
core by writing the value in rd[63:0] to the register t0 on the
core, as indicated by the RoCC instruction.

G. Software Design with PUF Canaries
A program that needs to be protected with PUF-based

canaries is compiled in the following fashion:
Step 1 – Generating assembly: We initially compile the

program to an intermediate assembly code which allows us to
scan the code to identify the target buffers to protect. This is
demonstrated with the example C function in Fig. 8 and the
corresponding assembly code in Fig. 9. Note that this function
is for demonstration purposes only, it is not actually a
vulnerable function. We analyze each stack frame and find the
individual buffer locations based on the stack pointer or base
pointer offset. We calculate the extra memory space required in
the buffer to introduce the canaries, and the specific locations
in the stack frame where those words will be placed. We also
recalculate the references for variables and buffers in the stack.

Step 2 – Modification of assembly: The assembly code
modification involves two major operations – canary placement
and canary validation. The modified assembly code is shown in
Fig. 10. For the canary placement, we first expand the stack
frame by modifying the function prologue. In the example
shown in Fig. 9, we will be placing 2 canaries, hence we
subtract 2 x 8 bytes = 16 bytes to the stack pointer. Hence we
replace add sp,sp,-96 with add sp,sp,-112. We update
all the references that use the stack pointer, such as the location
where the return address is saved. For each buffer we place the
canary in the following manner. First the address where the
canary is to be placed is loaded on to the t0 register. In our
example, for the first buffer, we choose the canary location as -
32(s0). This address indicates the address on top of the buffer.
We use add t0,s0,-32 to load the address onto t0. Now, we
craft our ce_fetch custom instruction. A generic 32-bit RoCC
instruction extends the RISC-V ISA and is encoded in the
format as shown in Fig. 4(b). There are four RoCC instructions
available (custom0-3) that are identified by the 7-bit opcode
field, as shown in Table II. The funct7 field can be used to
further specify a particular function of the RoCC instruction.
We use custom0 to implement the canary instructions. We set
the funct7 field to b’0000000 (0) for ce_fetch. The rs1 field
is set to the t0 register (b’00101), and the rd field is also set to
t0. The corresponding xs1 and xd fields are set to 1. The final
crafted ce_fetch instruction is represented by 0x1714b. The
ce_init, ce_set and ce_reset instructions are also crafted
similarly with funct7 set to 1, 2 and 3 respectively (the details
are omitted for brevity). We repeat the same process for the
second buffer as shown in the example. Next, we readjust the
location of the buffers by subtracting 8 and 16 bytes from the
original addresses. This is accomplished by changing the buffer
references for the memcpy function as add a4,s0,-64 (for

the first buffer). Immediately after the memcpy function returns,
we place our canary validation code. This needs to be done for
any copy to buffer function, such as memcpy, strcpy, etc. First
we load the canary value on the stack onto the register t1 by lw
t1,-32(s0). Next, we follow the same steps as before to fetch
the actual canary value for that location from the Canary Engine
into the register t0. We compare the values in registers t0 and
t1 and proceed or halt depending on a match or mismatch. The
same process is repeated for all the buffers on the stack. Finally,
at the function epilog, we update the references for fetching the
return address, and the stack and base pointers (Fig. 10). In the
validation process, our design only scans for standard library
buffer copy functions. However, it will not be able to detect
manual writes to a buffer using a loop. Such cases may be
handled using LLVM compiler toolchains where the copy
operations can be parsed from intermediate representations
(IR). The assembly modification requires identifying the
number of buffers, their size and their offset from the symbol
used to reference the buffers. The canary address for a buffer
can be calculated using the size and offset for the buffer. The
stack pointer needs to be calculated accordingly to make space
for the canaries. The references to the buffers also need to be

1. func1:
2. add sp,sp,-96
3. sd ra,88(sp)
4. sd s0,80(sp)
5. add s0,sp,96
6. li a5,1
7. sw a5,-20(s0)
8. li a5,2
9. sw a5,-24(s0)
10. add a4,s0,-56
11. li a2,5
12. lui a5,%hi(.LC1)
13. add a1,a5,%lo(.LC1)
14. mv a0,a4
15. call memcpy
16. add a4,s0,-88
17. li a2,5
18. lui a5,%hi(.LC2)
19. add a1,a5,%lo(.LC2)
20. mv a0,a4
21. call memcpy
22. nop
23. ld ra,88(sp)
24. ld s0,80(sp)
25. add sp,sp,96
26. jr ra

Fig. 9. Disassembled code.

1. void func1()
2. {
3. int var1;
4. char buffer1[32];
5. int var2;
6. char buffer2[32];
7. var1 = 1;
8. var2 = 2;
9. memcpy(buffer1,"hello",5);
10. memcpy(buffer2,"world",5);
11. }

Fig. 8. Example C function.

1. func1:
2. add sp,sp,-112
3. sd ra,104(sp)
4. sd s0,96(sp)
5. add s0,sp,112
6. # Place canary @ -32(s0)
7. add t0,s0,-32
8. .word 0x1714B
9. sw t0,-32(s0)
10. # Place canary @ -72(s0)
11. add t0,s0,-72
12. .word 0x1714B
13. sw t0,-72(s0)
14. li a5,1
15. sw a5,-20(s0)
16. li a5,2
17. sw a5,-24(s0)
18. add a4,s0,-64
19. li a2,35
20. lui a5,%hi(.LC1)
21. add a1,a5,%lo(.LC1)
22. mv a0,a4
23. call memcpy
24. # Validate canary @ -32(s0)
25. lw t1,-32(s0)
26. add t0,s0,-32
27. .word 0x1714B
28. bne t0,t1,_die
29. add a4,s0,-104
30. li a2,5
31. lui a5,%hi(.LC2)
32. add a1,a5,%lo(.LC2)
33. mv a0,a4
34. call memcpy
35. # Validate canary @ -72(s0)
36. lw t1,-72(s0)
37. add t0,s0,-72
38. .word 0x1714B
39. bne t0,t1,_die
40. nop
41. ld ra,104(sp)
42. ld s0,96(sp)
43. add sp,sp,112
44. jr ra

Fig. 10. The modified assembly code.
Canary placement and validation code
are shown in boxes.

Authorized licensed use limited to: Penn State University. Downloaded on June 22,2020 at 19:42:38 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2984407, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

calculated considering the extra space for the canaries. For the
canary validation, the symbol referencing the buffer can be used
to identify the location of the canary. A table can be maintained
with the IR to match the buffer to its canary location.

Step 3 – Final Compilation: The final PUFCanary enforced
assembly code is passed to the compiler to assemble, link and
generate the final executable binary of the program. No
compiler modifications are necessary to embed the instructions
in the final binary since we provided the custom instruction as
a binary instruction word, and the RoCC instruction format is
already supported by the RISC-V GNU toolchain.
Clang/LLVM can be used to automate the entire process. The
automation involves emitting the LLVM IR from the source,
writing compiler passes for the IR to modify the assembly by
adding canary placement and validation codes, and compiling
the IR after the passes into machine code using Clang.

H. Experimental Results
We tested our Canary Engine in the C++ cycle accurate

emulator of the RocketChip Generator, and on the Xilinx Zybo
FPGA. The hardware architecture of the Canary Engine is
coded in CHISEL and is translated to synthesizable Verilog
code using the available tools in the RocketChip Generator. We
evaluated the security of our design and the performance
overheads using the Wilander Buffer Overrun Suite [46]. We
compiled the tests using the RISCV GNU GCC compiler in two
versions: (i) the baseline code without canary protections, and
(ii) PUFCanary code with our canary protection. Since our
proof-of-concept design only protects the stack, we considered
only the 12 stack-based test cases in the test suite. However,
due to the limitations in the RISC-V toolchain, we were able to
port only 8 test cases. The 4 test cases (with LONGJMP) could
not be ported. For the 8 working test cases (shown in Table III),
our PUFCanary was able to prevent all 8 attack cases.

Fig. 11(a-b) shows the performance overheads of PUFCanary
over the baseline code. The corresponding instruction
overheads are shown in Table IV. The execution time overhead
of PUFCanary over baseline is 2.3% on average across the 8
test cases. There is none or negligible effect on CPI (cycles per
instruction), where our tests reveal 0.97X average overhead.
Few of the test cases show improvement in execution time; this
may be due to architectural optimizations such as better cache
performance. Our results are better than the original
StackGuard [1] which shows 6% overhead in the best case.
Furthermore, our results are comparable to HDFI [31] which
also has ~2% overhead. To further support our claim of multiple

buffer protection performance, we modified the test case T1 to
include multiple buffers. We enforced canary protection on 1,
3, 5, and 10 buffers in the same vulnerable stack of T1. The
performance trends in case of multiple buffer protection are
shown in Fig. 11(c-d). The execution time overhead trend is
mostly linear with 10-buffer protection having 1.5X the
overhead of 1-buffer protection. Similar trend can be observed
with CPI overhead where 10-buffer protection overhead is 1.4X
that of 1-buffer protection. This shows that a fine-grained
protection with our Canary Engine does not have a significant
performance impact. The Canary Engine RoCC module with a
1024 CRP PUF exhibited ~2.9% area overhead over a vanilla
RocketChip with the default configuration.

V. FIXER SECURITY ARCHITECTURE

A. FIXER Design for Backward-Edge CFI
C programs compiled with the GNU GCC Toolchain for

RISC-V target architecture do not provide any protection
against memory corruption vulnerabilities such as, buffer
overflow. An adversary can provide malicious inputs to a
program and can overwrite the return address of a function and
redirecting the control flow of the program. In FIXER, we
implement the Shadow Stack security primitive to enforce CFI
at the backward edge (return to functions). The RoCC is used
to implement the Shadow Stack, thus preventing the need to
modify the core system architecture. The Shadow Stack is
designed as a hardware memory on the RoCC. Fig. 12 shows
the steps for detecting CFI violation using a Shadow Stack. The
return address is pushed on the system stack by default when a
function call is made in the program. During this time, same

TABLE III. Wilander Test Cases for Stack Corruption
Case Description
T-4 Overflow all the way to FUNCTION PTR as PARAM
T-2 Overflow of a PTR, then pointing at FUNCTION PTR as PARAM
T1 Overflow all the way to RETURN ADDRESS
T2 Overflow all the way to OLD BASE POINTER
T3 Overflow all the way to FUNCTION PTR as local variable
T7 Overwrite of a PTR to point at RETURN ADDRESS
T8 Overwrite of a PTR to point at BASE POINTER
T9 Overwrite of a PTR to point at FUNCTION PTR as variable

TABLE IV. Instruction Overheads
Case Overhead %
T-4 3.00
T-2 5.98
T1 3.21
T2 3.57
T3 5.88
T7 6.05
T8 6.26
T9 6.07

 (a) (b) (c) (d)
Fig. 11. Wilander benchmark evaluation w.r.t. (a) execution time (normalized), and, (b) effective CPI; Performance overhead trends for multiple buffer protection
w.r.t (c) execution time (cycles), and (d) CPI.

0

1

T-4 T-3 T1 T2 T3 T7 T8 T9

Execution Time

baseline PUFCanary

0

2.5

5

T-4 T-3 T1 T2 T3 T7 T8 T9

CPI

baseline PUFCanary

0

1

2

1 3 5 10

#
 C

y
c
le

s
(x

10
3
)

Buffers

Execution Time

baseline

PUFCanary

2

3

4

1 3 5 10

Buffers

CPI

baseline

PUFCanary

Authorized licensed use limited to: Penn State University. Downloaded on June 22,2020 at 19:42:38 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2984407, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

return address is sent using a RoCC custom instruction to the
RoCC to push it on the Shadow Stack as a backup. The return
address is popped from the system stack to the instruction
pointer register for execution when returning from a function.
During this return the RoCC Shadow Stack is queried to
retrieve the backup return address and compare against the one
from the system stack. If they match, the program proceeds with
normal execution, else a potential memory corruption is
detected, and program execution is stopped. Note that
compared to HAFIX [27] where Shadow Stack is part of core,
FIXER implements it in the coprocessor leaving the core
architecture untouched. It is to be noted that FIXER is
complementary to existing DEP protection, since the FIXER
instructions must be tamperproof to ensure protection.

Fig. 13(a) details the software design flow for FIXER. The
source code is first marked with CFI tags (for saving to shadow
stack and validation) and compiled to an intermediate assembly
code using the RISC-V GNU toolchain. The assembly code is
parsed by expanding the tags and injecting the required RoCC
instructions in the assembly. The lifted assembly code is
generated using a custom parsing script or a compiler pass and
then assembled and linked to produce the fully compiled RISC-
V binary. These steps are further elaborated in Section V.B.

Fig. 13(b) shows the hardware design flow for FIXER (coded
in CHISEL [36] as a RoCC). The hardware implementation of
FIXER in RoCC is described in Section V.C. The RocketChip
with the RoCC is then compiled with the generator to output
the synthesizable Verilog code and the FPGA bitstream. The
RISC-V Linux system image, the FPGA devicetree and the
generated bitstream are then deployed to the FPGA to run
RocketChip. This FIXER assisted RocketChip system can
successfully protect against CFI violations on the RISC-V
programs compiled with FIXER assisted compilation process.

B. RISC-V Software Design with FIXER
Any program that needs to be backward-edge CFI enforced,

is compiled and processed by the following steps:
Step 1 - Source code annotation: We annotate the function

calls and returns with a special tag to indicate the sites where
the enforcement needs to take place. We use CFI_CALL tag
before a function call and a corresponding CFI_RET tag just
before a return from the called function, as shown in Fig. 14.

Step 2 – Tag expansion: We expand the CFI tags to actual
RISC-V assembly instructions. During compilation, we
intercept the intermediate assembly code of the program and

inject the RoCC custom instructions to communicate with the
RoCC. Fig. 15 shows the assembly instructions corresponding
to CFI_CALL and CFI_RET, that are placed just before the
call and jr ra (return) instructions respectively.

For CFI_CALL, we first retrieve the current value of the
program counter from the instruction pointer register using the
auipc instruction and add 14 bytes offset (instructions are
variable length) to calculate the target return address. We save
the computed return address in a temporary register t0. Then we
craft the RoCC instruction cfi_call to push the return
address from t0 to the Shadow Stack. A generic 32-bit RoCC
instruction extends the RISC-V ISA and is encoded in the
format as shown in Fig. 4(b). There are four RoCC instructions
available (custom0-3) that are identified by the 7-bit opcode
field, as shown in Table II. The funct7 field can be used to
further specify a particular function of the RoCC instruction.
We use custom0 to implement the CFI instructions. We set the
funct7 field to b’0000000 (0) for cfi_call and to b’0000001
(1) for cfi_ret. We use the rs1 field to set it to use the t0
register (b’00101), where we temporarily stored the computed
return address and set the corresponding xs1 bit to 1. The final
crafted cfi_call instruction is represented by 0x0002a00b.

For CFI_RET, we set the funct7 field to b’0000001 (1) and set
the rd field to use the t0 temporary register (b’00101) along
with xd bit as 1. The final crafted custom instruction word for
cfi_ret is represented by 0x0200428b. During a return from
a function, the saved return address is popped from the system
stack on to the link register ra. We then use the cfi_ret to
retrieve the backup return address from the RoCC Shadow
Shack on to register t0. The value in t0 is then compared against
the value in the register ra using the bne instruction. If they
match, the execution proceeds by completing the return (jr
ra: jump register), else we throw a CFI error.

Step 3 – Compilation: The final CFI enforced assembly code
is passed to the compiler to assemble, link and generate the final
executable binary of the program. No compiler modifications
are necessary to embed the instructions in the final binary since
we provided the custom instruction as a binary word, and the
RoCC instruction format is supported by the GNU toolchain.

C. FIXER Hardware Implementation in RoCC
Fig. 16 shows the FIXER implementation in the RoCC. The

program binary runs on the Rocket Core and sends RoCC
instructions over the RoCCIO whenever a security validation is
required. The RoCC instruction is first passed through the Cmd
decoder, which extracts the individual fields of the RoCC
instruction, and the contents of the two registers rs1 and rs2 if
specified. The opcode field is decoded to the custom0
instruction in our implementation. The funct7 field is decoded
to interpret a cfi_call or a cfi_ret.

For cfi_call, the contents of core register t0 (the return
address) is sent through the rs1[63:0] field of the RoCCIO
interface. The shadow stack is implemented as a SRAM
memory with 64-bit wide words. A top-of-stack register (ToS)

Fig. 12. CFI violation detection using a Shadow Stack.

Args to bar()

Return address

Saved %ebp

Local variables

Buffer []

f
o
o
(
)

S
t
a
c
k

F
r
a
m
e

b
a
r
(
)

S
t
a
c
k

F
r
a
m
e

System Stack foo():
▪ Some code
▪ Push args for bar()
▪ Push return address on stack
▪ Push return address on RoCC

Shadow Stack
▪ Jump to bar()

bar():
▪ Some code (adversary may inject

payload here)
▪ Retrieve return address from

RoCC Shadow Stack
▪ Compare retrieved address with

the return address on stack
• Match: Proceed execution
• Mismatch: Throw CFI error

3
Args to bar()

Return address f
o
o
(
)

S
t
a
c
k

F
r
a
m
e

1Return address

1

2

2

3

Shadow Stack

R
o
C
C

S
t
a
c
k

F
r
a
m
e

4

3

4

CFI error
if mismatch

Authorized licensed use limited to: Penn State University. Downloaded on June 22,2020 at 19:42:38 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2984407, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

holds the address of the top of the shadow stack. If a cfi_call
is interpreted, the content of the ToS register is incremented by
1. The updated value in the ToS register is used to decode the
write address for the shadow stack. The value in the rs1 field is
written to this address on the shadow stack. This operation is
non-blocking, so the core can continue execution after issuing
the cfi_call instruction. There is a command queue at the
RoCCIO interface to prevent race conditions. If the instruction
function is interpreted as cfi_ret, then the ToS register is read
to obtain the address for the shadow stack. This address is used
to read the saved return address from the shadow stack memory.
The value is then sent back to the core by writing to the rd[63:0]
field of the response interface of the RoCCIO, which writes the
value to the t0 register on the core as indicated by the RoCC
instruction. Our proof-of-concept implementation of the
shadow stack can accommodate 1000 addresses. However, this
can be updated on demand by reconfiguring the FIXER module
on the FPGA, a benefit exclusive to our implementation.

D. Forward-edge Protection with FIXER
A shadow stack only protects control flow on return

boundaries. However, programs often use function pointers to
jump to multiple function addresses. To ensure the validity of
such function calls using function pointers, a pre-computed call
policy is enforced. A static or runtime analysis is performed on
the program to construct a control flow graph (CFG),
represented as a policy matrix that indicates the valid call
targets for each function call made using a function pointer. The
policy matrix is loaded in memory and at runtime, it is queried
to validate the call target for every indirect function call. This
forward-edge protection is implemented as another FIXER
security module (Fig. 16). The policy matrix memory is created
in RoCC along with caller and callee address decoders. Our
proof-of-concept implementation has 64 rows (each represents
an originating call site address) in the matrix and each row
holds a 64-bit policy vector (each bit represents a call target
address). A set (unset) bit indicates that the call is valid (invalid)
for that (caller, callee) pair. A RoCC instruction cfi_matld is
used to load the policy bitmap into the FIXER module prior to
the program execution. A RoCC instruction cfi_fwd is
inserted before every indirect function call in the source code.
The cfi_fwd instruction sends the caller and the dereferenced
function pointer (callee) addresses to the RoCC for validation.
The forward-edge FIXER module validates the action using the
policy matrix and sends back a 1 (0) to allow (disallow). Similar
to the shadow stack implementation, the policy matrix size can
also be updated post-deployment by reconfiguring the FPGA.

E. Security Implications and Benefits
FIXER is targeted for hybrid architectures, e.g., CPU+FPGA,

or ASIC+FPGA. Our current results are based on both the
RocketChip and the RoCC accelerator being on the FPGA since
we do not have access to such architecture. It is true that if the
FPGA is off-chip, there could be performance degradation (due
to speed gap between CPU and FPGA) if the checking is
performed in a synchronous and fine-grained manner.
Performance issues can be alleviated by making the checking
asynchronous using interrupts. In such cases, the program can
continue execution, until the FPGA raises an interrupt to halt
the program. However, it cannot be guaranteed that the
adversary has not been able to take control of the system before
the FPGA detects the attack. When the FPGA is on-chip, e.g.,
Intel Xeon with embedded FPGA, performance overheads can
be alleviated due to QuickPath Interconnect (QPI) interface
between the core and the FPGA for fast communication.

FIXER implemented on the FPGA offers benefits compared
to other core based or system level protection schemes. Designs
e.g., NILE which use the virtual address space to house the
shadow stack cannot scale based on the branch sequence depth.
HAFIX has a separate limited memory on the core to store the
CFI tags. However, in case of FIXER, the design can be scaled

void main () { void myFunc() {

 CFI_CALL CFI_RET
 myFunc(); return;
 ... }
}
Fig. 14. Source code annotation

CFI_CALL # CFI_RET
auipc t0,0 .word 0x0200428b
add t0,t0,14 bne t0,ra,_cfi_error
.word 0x0002a00b jr ra
call myFunc
Fig. 15. Tag expansion

Fig. 16. FIXER implementation in RoCC.

R
o
c
k
e
t

C
u
s
t
o
m

C
o
p
r
o
c
e
s
s
o
r

[
F
I
X
E
R
]

R
o
C
C
I
O
C
m
d

D
e
c
o
d
e
r

cfi_call

cfi_ret

Shadow
Stack
Memrs1[63:0]

ToS Reg

T
o
S
A
d
d
r

D
e
c
o
d
e
r

M
U
X+1

-1

Control
signals

R
o
C
C
I
O
R
e
s
p

I
n
t
e
r
f
a
c
e

rd[63:0]

En

R/W

R/W

R
o
c
k
e
t

C
o
r
e

RoCCIO

M
U
X

cfi_fwd

cfi_matld

C
a
l
l
e
r

A
d
d
r

D
e
c
o
d
e
r

Callee Addr
Decoder

Policy
Matrix
Mem

M
U
X

rs2[63:0]

R/W

B
a
c
k
w
a
r
d

E
d
g
e

F
o
r
w
a
r
d

E
d
g
e

(a) (b)
Fig. 13. FIXER design flow in (a) software and (b) hardware.

Source Code
Annotation

• Mark CFI
Tags

• Generate
assembly

Tag
Expansion

• Parse asm
• Insert RoCC
CFI instn

• Lift
assembly

Compilation

• Assemble
• Link
• RISCV
binary

FIXER Design

• FIXER code
in CHISEL

• FPGA Config

Synthesis

• Generate
Verilog

• Synthesize
Verilog

• FPGA
bitstream

Deployment

• Pack bin
• Generate
devicetree

• Compile
riscv-linux

• Flash FPGA

Authorized licensed use limited to: Penn State University. Downloaded on June 22,2020 at 19:42:38 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2984407, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

up or down based on the actual workload of the system.
Typically, embedded devices e.g., IoTs have a limited set of
workloads, and FIXER module on the IoT’s SoC can be scaled
appropriately based on the workload. For example, if a new
workload introduced to the system requires a larger shadow
stack, the FPGA can be reconfigured to accommodate that (the
maximum size being limited by available LUTs).

F. Experimental Results
The hardware architecture of FIXER is coded in CHISEL and

translated to synthesizable Verilog using the available tools in
the RocketChip generator. We prepared a FPGA system image
using the generated Verilog and ran it on a Xilinx Zynq FPGA.
A sample program is written with 1 billion iterations of function
calls and returns. One version of the code implemented a simple
software version of the shadow stack (softcfi). The software
shadow stack is created as a regular stack in the address space.
During function calls, the return address is simultaneously
placed on the system stack as well as the shadow stack. Another
version instrumented the code with the RoCC CFI instructions
(FIXER). We compiled the baseline (no CFI checks), the softcfi
and FIXER versions using the RISC-V GNU toolchain. The
three versions of the program were run on the system running
on the FPGA. The base code takes 19 seconds to execute,
whereas the softcfi takes 74 seconds. FIXER takes 29 seconds
resulting in ~1.5X overhead over baseline and ~2.55X lower
overhead compared to softcfi. The FPGA on idle draws 370mA
current, while on load (with the program running) draws
420mA current, resulting in 1.13X increase. The corresponding
energy overhead is 3.89X for softcfi and only 1.53X for the
FIXER (60.52% improvement). The FIXER RoCC module
incurs only 2.9% area overhead over the vanilla RocketChip
without RoCC.

We evaluated FIXER performance by enforcing it on RISC-
V architecture benchmarks. The benchmarks are modified to
create three versions for comparison: (i) baseline with no CFI
enforcement, (ii) softcfi with the software-based CFI
enforcement, and (iii) FIXER with RoCC based CFI protection.
We ensured that the benchmark code remains the same across

all the three versions except the CFI enforcement code. We
compiled the benchmarks with the RISC-V GNU toolchain
without compiler optimizations and ran the compiled binaries
on the Zynq FPGA. Fig. 17 show the evaluation results for
backward-edge FIXER. The instruction overheads are shown in
Table V. With the backward-edge protection, the execution
time overhead with softcfi is ~18% on average across the six
benchmarks compared to 1.5% with FIXER. The softcfi
increases the CPI (cycles per instruction) by 4.6% over the
baseline, while the FIXER increases the CPI by only 0.5%.
With the forward-edge protection, the execution time overhead
with softcfi is ~2% on average across the six benchmarks
compared to 0.61% with FIXER and CPI reduces 0.4% on
average, which is negligible.

VI. LIMITATIONS AND OPPORTUNITIES

A. PUFCanary
PUF design decisions: We have implemented a simplified

version of PUF. The security of the design is dependent on the
number of CRPs that the PUF can generate. A smaller PUF with
limited CRPs can lead to duplicate canaries, potentially
allowing the attacker to guess the canary for different addresses.
To get around this security limitation, the output of the XOR
gate can be combined with the original address and hashed to
generate a 64-bit canary. For higher security, a larger SRAM
PUF can be used for a 1:1 address-to-canary mapping at the cost
of area and power overheads. To optimize the overhead, we can
down-size the SRAM footprint, however, this can cause read
disturb failures during query. It has been shown in literature that
PUFs can be used to reliably generate random numbers by
targeted NBTI aging [47]. If raw SRAM PUF responses are not
uniformly random, PUF responses can be transformed to high-
entropy random values by fuzzy extraction [51]. This may add
to the performance overhead if the PUF is queried frequently.
Cryptographic engines in processors often provide hardware
PUFs and TRNGs which can be reused in the Canary Engine.
Our proposed technique is not limited by the choice of the PUF
used, and is also applicable to other PUF flavors e.g., arbiter
PUF [37], flip-flop PUF [39], etc. MRAM/STTRAM PUFs [49-
50] that guarantee uniform randomness may also be used to
eliminate the need for post-processing. In our SRAM PUF, we
have a synchronous interface between the core and the Canary
Engine, which contributes to some of its performance overhead.
In practical implementations, the Canary Engine does not need
to be stateless and can be pipelined to improve performance.

Canary validation decisions: In our design, we have
validated all the canaries in a function stack frame after every
write to a buffer. Although more complex and performance
intensive, it can detect data-oriented attacks proactively.
However, the canaries can also be validated all at once in the
function epilogue to reduce design complexity at the cost of
attack detection when the function returns. It is possible that a
non-control data attack may succeed before detection in this
case. Control-flow bending attacks using a buffer overflow

(a) (b)

Fig. 17. RISC-V benchmark evaluation for backward-edge protection w.r.t.
(a) execution time (number of cycles), and (b) effective CPI.

TABLE V. Benchmark Instruction Overheads
 Backward-edge Improvement over softcfi

rsort 1.000019X 0.0126%
median 1.000305X 0.2310%
qsort 1.00434X 3.1770%
vvadd 1.000622X 0.5080%

multiply 1.008037X 5.7140%
dhrystone 1.068607X 32.7930%

0

1

2

rsort median qsort vvadd multiply dhrystone

Execution Time

baseline softcfi FIXER

1.6

2.4

3.2

rsort median qsort vvadd multiply dhrystone

CPI

baseline softcfi FIXER

Authorized licensed use limited to: Penn State University. Downloaded on June 22,2020 at 19:42:38 UTC from IEEE Xplore. Restrictions apply.

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2984407, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

vulnerability can only be detected if the control-data is used
after the validation of the corrupted canary takes place. If the
canaries are validated after the control data is used to bend the
control flow, the attack may still succeed.

Heap/bss protection: In this work, we have targeted the
protection of stack only, however the design can be extended
for heap and bss protection by expanding the PUF challenge set
for the larger address space.

Buffer overread protection: PUFCanary can only detect
buffer overwrites and not overreads. This leaves the system
open to memory disclosure and can potentially leak the
canaries. However, since all the canaries are random and
unique, disclosure of one canary may not provide the adversary
enough opportunities to launch a control-flow or data-flow
attack unless there is a buffer-overflow and a buffer-overread
vulnerability on the same or nearby buffers. This is possible, for
example, in a loop which contains a buffer vulnerable to both
overread and overwrite. If, due to a memory disclosure attack
at that location, the adversary learns the canary, he can reuse
that canary for the same location for the overflow attack. Aside
from this scenario, the adversary cannot reuse the same canary
found from disclosure to attack a different buffer, since they are
protected by different canary words. However, in case of a
smaller PUF design with repeated canaries, it may be easier for
an adversary to reuse canaries in case of memory disclosures.

Data-oriented attacks: PUFCanary can detect data-oriented
attacks that originate from a buffer overflow vulnerability.
However, other data-oriented attacks that originate from
memory disclosures, format-string vulnerabilities or integer
overflows cannot be detected by PUFCanary.

B. FIXER
Multi-process protection: Our implementation of FIXER

enforces protection for a single process only. For a
simultaneous multi-process protection, the FIXER design can
be expanded to accommodate multiple shadow stacks and
policy memories for different processes. A round-robin
scheduler on the FIXER module can assign the shadow stacks
and policy memories to each process based on the process ID.

Tamper protection: The FIXER module on the FPGA also
needs to be protected from tampering or data leaks. The current
RocketChip implementation allows the entire code containing
custom RoCC instructions to be run with supervisor privileges.
This can be restricted via system calls so that RoCC instructions
are first verified and then run with supervisor privileges.

Buffer overread protection: It should be noted that FIXER
is still vulnerable to buffer over-reads. Similar to HAFIX and
NILE, FIXER can not enforce security if the adversary can
modify binary to skip the custom instructions.

VII. CONCLUSION
We presented randomized stack canaries for fine grained

buffer overflow detection. Our unique PUF based approach
allows multiple canaries to be placed in the stack frame,
providing a lightweight, yet secure way of detecting buffer

overflow vulnerabilities. We also presented FIXER, a more
performance-friendly low-power reconfigurable CFI security
architecture to implement a shadow stack and a policy memory
in a RISC-V coprocessor for uninterrupted program flow.
FIXER provides fast and efficient CFI checking whereas
PUFCanary provides better protection against overflow
vulnerabilities at the cost of design complexity and slight
performance loss. Simulation results using RocketChip show
the effectiveness of our approach.

REFERENCES
[1] Abadi et al. "Control-flow integrity." In Proc. ACM CCS, 2005.
[2] Team, PaX. "PaX address space layout randomization (ASLR), 2003."

URL: https://pax. grsecurity. net/docs/aslr.txt
[3] Data Execution Prevention, https://msdn.microsoft.com/en-

us/library/windows/desktop/aa366553(v=vs.85).aspx
[4] Cowan et al. "StackGuard: automatic adaptive detection and prevention

of buffer-overflow attacks." In SSYM, 1998.
[5] Castro et al. "Securing software by enforcing data-flow integrity." OSDI,

2006.
[6] Dhawan et al. "Architectural support for software-defined metadata

processing." SIGARCH Computer Arch News, 2015.
[7] Song et al., "HDFI: Hardware-Assisted Data-Flow Isolation," IEEE

Symposium on Security and Privacy (SP), 2016.
[8] R. Pappu, “Physical one-way functions," PhD thesis, Massachusetts

Institute of Technology, 2001.
[9] Asanovic et. al, “The Rocket Chip Generator”, technical report,

www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
[10] www.extremetech.com/extreme/184828-intel-unveils-new-xeon-chip-

with-integrated-fpga-touts-20x-performance-boost
[11] Delshadtehrani et al. "Nile: A Programmable Monitoring Coprocessor,"

in IEEE Computer Architecture Letters, 2018.
[12] Park et al. "Microarchitectural Protection Against Stack-Based Buffer

Overflow Attacks." IEEE Micro, 2006.
[13] Nishiyama et al. "SecureC: control-flow protection against general buffer

overflow attack," COMPSAC, 2005.
[14] Sinnadurai et al. "Transparent runtime shadow stack: Protection against

malicious return address modifications," 2008.
[15] Zeitouni et al. “ATRIUM: runtime attestation resilient under memory

attacks.” ICCAD 2017.
[16] Iwainsky et al. "Compiler Supported Sampling through Minimalistic

Instrumentation," ICPPW, 2014.
[17] Pappas et al. "Transparent ROP exploit mitigation using indirect branch

tracing." In USENIX SEC, 2013.
[18] Cheng et al. "ROPecker: A Generic and Practical Approach For

Defending Against ROP Attack." NDSS Symposium 2014.
[19] Alves et al. "TrustZone: Integrated hardware and software security."

ARM white paper, 2004.
[20] McKeen et al. "Innovative instructions and software model for isolated

execution." In HASP@ ISCA, 2013.
[21] Intel: Control-Flow Enforcement Technology Review, 2016.
[22] Ramakesavan et al. "Intel memory protection extensions (intel mpx)

enabling guide," 2015.
[23] Yoo et al. "Performance evaluation of Intel® transactional

synchronization extensions for high-performance computing." SC-Intl
Conf for HPC, Networking, Storage and Analysis. 2013.

[24] Kasikci et al. "Failure sketching: a technique for automated root cause
diagnosis of in-production failures." In SOSP, 2015.

[25] Dhawan et al. "Architectural support for software-defined metadata
processing." SIGARCH Computer Arch News, 2015.

[26] Wang et al. "Hypersafe: A lightweight approach to provide lifetime
hypervisor control-flow integrity." In IEEE S&P, 2010.

[27] Davi et al. "HAFIX: hardware-assisted flow integrity extension." in DAC,
2015.

Authorized licensed use limited to: Penn State University. Downloaded on June 22,2020 at 19:42:38 UTC from IEEE Xplore. Restrictions apply.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366553(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366553(v=vs.85).aspx

0278-0070 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2020.2984407, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

[28] Jin et al. "Hardware control flow integrity." The Continuing Arms Race.
ACM and Morgan & Claypool, 2018.

[29] Ge et al. “GRIFFIN: Guarding Control Flows Using Intel Processor
Trace” In ASPLOS, 2017.

[30] Arias et al. "HA2lloc: Hardware-Assisted Secure Allocator." in HASP,
2017.

[31] Song et al., "HDFI: Hardware-Assisted Data-Flow Isolation," IEEE
Symposium on Security and Privacy (SP), 2016.

[32] Bresch et al. "A red team blue team approach towards a secure processor
design with hardware shadow stack," IVSW, 2017.

[33] Bresch et al. "Stack Redundancy to Thwart Return Oriented Programming
in Embedded Systems," in IEEE ESL, 2018.

[34] Panis et al. "Scaleable shadow stack for a configurable DSP concept," in
IWSOC, 2003.

[35] Ming et al. "Shadow Stack Scratch-Pad-Memory for Low Power SoC," in
IEEE Intl Symposium on Embedded Computing, 2008.

[36] Bachrach et al., "Chisel: Constructing hardware in a Scala embedded
language," In DAC, 2012.

[37] Lim et al, "Extracting secret keys from integrated circuits." IEEE Trans.
on VLSI Sys., vol 13, no. 10 (2005).

[38] G. E. Suh, S. Devadas, Physical unclonable functions for device
authentication and secret key generation," DAC, 2007.

[39] Zheng et al, "ScanPUF: robust ultralow-overhead PUF using scan chain,"
ASP-DAC, 2013.

[40] Petrie et al, “A noise-based IC RNG for applications in cryptography,”
IEEE Trans. Circuits Syst. I, vol. 47, no. 5, pp. 615–621, May 2000.

[41] Sunar et al, “A provably secure TRNG with built-in tolerance to active
attacks,” IEEE Trans. Comput., vol. 56, no. 1, pp. 109–119, Jan. 2007.

[42] Brederlow et al, “A low-power TRNG using random telegraph noise of
single oxide-traps,” in IEEE ISSCC Dig. Tech. Papers, 2006.

[43] Schellekens et al, “FPGA vendor agnostic TRNG,” in Proc. 16th Int.
IEEE Conf. Field Programmable Logic and Applications, 2006.

[44] Kinniment et al, “Design of an on-chip random number generator using
metastability,” in Proc. ESSCIRC, 2002, pp. 595–598.

[45] Yasuda et al, “Physical RNG based on MOS structure after soft
breakdown,” IEEE J. Solid-State Circuits, vol. 39, no. 8, 2004.

[46] Wilander et al, "A Comparison of Publicly Available Tools for Dynamic
Buffer Overflow Prevention." in NDSS. Vol. 3. 2003.

[47] Mathew et al., "16.2 A 0.19pJ/b PVT-variation-tolerant hybrid physically
unclonable function circuit for 100% stable secure key generation in
22nm CMOS," in ISSCC, 2014.

[48] Nyman et al. “HardScope: Hardening Embedded Systems Against Data-
Oriented Attacks”, in DAC 2019.

[49] X. Zhang et al., "A novel PUF based on cell error rate distribution of STT-
RAM," 2016 21st Asia and South Pacific Design Automation Conference
(ASP-DAC), Macau, 2016, pp. 342-347.

[50] Das et al., "MRAM PUF: A Novel Geometry Based Magnetic PUF With
Integrated CMOS," in IEEE Transactions on Nanotechnology, vol. 14,
no. 3, pp. 436-443, May 2015.

[51] Suzuki et al., "Efficient Fuzzy Extractors Based on Ternary Debiasing
Method for Biased Physically Unclonable Functions," in IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 2,
pp. 616-629, Feb. 2019.

Authorized licensed use limited to: Penn State University. Downloaded on June 22,2020 at 19:42:38 UTC from IEEE Xplore. Restrictions apply.

