
1

PolyScope: Multi-Policy Access Control Analysis
to Triage Android Scoped Storage

Yu-Tsung Lee, Haining Chen, William Enck, Hayawardh Vijayakumar, Ninghui Li, Zhiyun Qian,
Giuseppe Petracca and Trent Jaeger, IEEE Senior Member

Abstract—Android’s filesystem access control is its foundation for system integrity. It combines mandatory (e.g., SELinux) and
discretionary (e.g., Unix permissions) access control with other specialized access controls (e.g., Android permissions), aiming to
protect Android/OEM services from third-party applications. However, OEMs often introduce vulnerabilities when they add
market-differentiating features because they fail to correctly reconfigure this complex combination of policies. In this paper, we present
the POLYSCOPE tool, which triages the combination of Android filesystem access control policies to find the authorized operations that
may be exploited by adversaries to escalate their privileges, called attack operations. Critically, POLYSCOPE accounts for how
adversaries may modify permissions for themselves and/or their victims to uncover latent attack operations. We demonstrate the
effectiveness of POLYSCOPE by assessing the impact of the recently introduced Scoped Storage defense for Android, showing that
extending POLYSCOPE to analyze a new policy can be done independently if the new policy only restricts permissions, which is the
case for Scoped Storage. We apply POLYSCOPE to three Google and five OEM Android releases, finding that Scoped Storage reduces
the number of attack operations possible on external storage resources by over 50%. However, we also find two previously unknown
vulnerabilities because OEMs only adopt Scoped Storage partially, limiting its benefit. Thus, we show how to use POLYSCOPE to
assess an ideal scenario where all apps are compliant to Scoped Storage, which can reduce the number of untrusted parties that can
access attack operations by over 65% on OEM systems. As a result, we find that POLYSCOPE can help Android OEMs triage complex
access control policies to identify the specific attack operations worthy of further examination.

Index Terms—Access control, Access control policy analysis, Mobile security, Android security

F

1 INTRODUCTION

ANDROID, the dominant mobile OS worldwide [41],
powers a wide range of devices. Ensuring platform

integrity and customizable functionality is crucial as An-
droid integrates further into daily lives. Filesystem access
control in Android serves as a key defense for providing
such assurances to vendors and users.

Because Android allows its users to run untrusted, third-

• Yu-Tsung Lee and Trent Jaeger are with Penn State University.
E-mail: yxl74@psu.edu,trj1@psu.edu

• Haining Chen is with Google.
E-mail: hainingc@google.com

• William Enck is with North Carolina State University.
E-mail:whenck@ncsu.edu

• Hayawardh Vijayakumar is with Samsung Research North America.
E-mail:h.vijayakuma@samsung.com

• Ninghui Li is with Purdue University.
E-mail:ninghui@cs.purdue.edu

• Zhiyun Qian is with UC Riverside.
E-mail:zhiyunq@cs.ucr.edu

• Giuseppe Petracca’s work was done when he was a student at Penn State.
E-mail:petracca.giuseppe@gmail.com

We would like to thank our anonymous reviewers for the invaluable guidance
on revision of this paper and insightful feedback. This research was spon-
sored by the U.S. Army Combat Capabilities Development Command Army
Research Laboratory and was accomplished under Cooperative Agreement
Number W911NF-13-2- 0045 (ARL Cyber Security CRA) and National
Science Foundation grants CNS-1816282. Any views, opinions, findings,
and conclusions or recommendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the NSF and should not be
interpreted as representing the official policies, either expressed or implied, of
the Combat Capabilities Development Command Army Research Laboratory
of the U.S. government. The U.S. government is authorized to reproduce and
distribute reprints for government purposes notwithstanding any copyright
notation here on.

party apps, access control methods have been applied ag-
gressively to try to protect platform integrity from these
apps. Android systems enforce a combination of discre-
tionary access control (DAC) (e.g., Unix permissions) and
mandatory access control (MAC) (e.g., SEAndroid [40])
along with specialized access controls (e.g., Android permis-
sions). Unlike DAC, which allows users and their processes
to modify the permission assignments to the objects that
they own, MAC enables system distributors (i.e., Google or
OEMs) to define an immutable access control policy that
confines processes to a fixed set of permissions, even if
they are compromised. In addition, Android permissions
allow users to grant permissions to apps, also providing a
discretionary means for users to modify permissions1.

However, even with SEAndroid MAC, Android contin-
ues to experience filesystem vulnerabilities. For example,
Checkpoint [30] reports how an untrusted application can
abuse write permission to Android’s external storage to
maliciously replace a victim application’s library files before
it installs them, which is an example of a file squatting
attack. In addition, a vulnerability in the ContactsProvider
allows untrusted applications to open/delete/insert files
in unauthorized locations by providing maliciously crafted
URIs [14], e.g., to an adversary-controlled symbolic link ref-
erencing an unauthorized file in an example of link traversal
attack. Researchers have shown that these two classes of
attacks are possible when an adversary is authorized to
write filesystem resources used by a victim [49].

1. For more details about MAC and DAC enforcement in Android,
please refer to Section 5.1 of the paper by Lee et al. [27].

2

To detect filesystem vulnerabilities, researchers have pro-
posed applying automated access control policy analysis
techniques [22, 38] to Android systems [13, 50, 51, 1]. These
analyses convert individual policy rules into information
flows, which help identify secrecy (e.g., data leakage) and
integrity problems (e.g., use of untrusted executables). Re-
cent advances include computing information flows for
combined MAC and DAC policies [7], as well as incorporat-
ing Linux capabilities [19]. However, detecting authorized
information flows based on existing access control poli-
cies alone is insufficient to detect attacks for two reasons.
First, such techniques may overlook certain attacks, like the
Checkpoint [30] and ContactsProvider [14] attacks, as they
fail to capture how adversaries can exploit the inherent flex-
ibility in Unix and Android permission systems to broaden
their privileges as well as those of their victims. Second,
these techniques may also generate numerous false positives
by not assessing whether the identified information flows
can genuinely be exploited to launch attacks, e.g., consider-
ing the system configurations.

To address these limitations, we developed a novel ac-
cess control policy analysis tool, called POLYSCOPE [27],
that triages Android access control policies to identify the
specific attack operations that adversaries are authorized to
launch. In this paper, we show how the POLYSCOPE design
addresses three key issues in multi-policy access control
analysis to triage recent Android 11 and 12 policies. First,
the POLYSCOPE design leverages the insight that access con-
trol policies whose decisions are combined via intersection
can be analyzed independently [52], enabling the addition
of new policy models without impacting others. Second,
POLYSCOPE accounts for how adversaries may exploit dis-
cretionary elements in Android access control to expand the
permissions available to themselves and/or victims, which
we call permission expansion. By accounting for permission
expansion, POLYSCOPE can detect attacks that are missed by
analyses that use policies as configured. Third, POLYSCOPE
reasons about how permissions may be exploited in attacks
to convert unsafe data flows computed by past systems [23]
into specific attack operations that can really be performed.

To demonstrate the effectiveness of POLYSCOPE to triage
Android systems for filesystem vulnerabilities, we investi-
gate the impact of the recently introduced Scoped Storage
access control defense [16, 26]. Android uses a separate
filesystem partition for many dynamically processed ap-
plications files, including media and application updates,
called the external storage partition for historical reasons,
but this filesystem has been the source of many exploits,
including Checkpoint vulnerability [30]. We show how
POLYSCOPE enables the independent addition of the Scoped
Storage policy model to the existing combination of Android
access control models to assess research questions about
the impact of this defense using eight freshly installed
Android releases: three Google Android versions and five
OEM Android versions. POLYSCOPE shows that Scoped
Storage reduces the number of possible attack operations
in external storage across Google and OEM systems by over
50%. However, on OEM devices, POLYSCOPE shows that a
small number of “legacy apps” that are not compliant with
Scoped Storage are authorized for many attack operations,
even two previously unknown vulnerabilities. We show

Adversary

Target
File

1

Modify

Symbolic
Link

2
Create

Victim

3

Pathname

Read

Resolve

ab

Fig. 1. ContactsProvider Vulnerability: (1) Adversary provides path-
name to victim (as URI) to (2) lure the victim to an adversary-created
symbolic link (a) that (3) the victim resolves to the target file enabling
the adversary to modify the file indirectly through the victim (b).

how to use POLYSCOPE to evaluate a what-if scenario where
all apps are compliant with Scoped Storage, finding that
this scenario reduces the number of attack operations by 12-
28% across versions, but reduces the number of adversaries
that could launch such attack operations drastically (over
65% for the OEM devices). POLYSCOPE is available as open
source on Github2. We have reported all vulnerabilities.

This paper makes the following contributions:
• We present the POLYSCOPE analysis tool to triage Android

filesystem access control policies, accounting for permis-
sion expansion and specialized controls in Android systems.
POLYSCOPE reduces Android’s access control policies
to the set of attack operations that adversaries are
authorized to launch.

• We extend POLYSCOPE to compute attack operations ac-
counting for the newly added Scoped Storage defense. We
show how POLYSCOPE can be extended to reason about
Scoped Storage and other restrictive access control poli-
cies independently.

• We use POLYSCOPE to triage eight Google and OEM An-
droid releases to assess the effectiveness of Scoped Storage
quantitatively. We find that Scoped Storage reduces the
number of attack operations significantly (54-71%), but
Scoped Storage is not fully employed, preventing more
reduction (12-28%) and exposing two vulnerabilities.

2 MOTIVATION

In this section, we motivate the goals of our work by
using an example to show the conditions when filesystem
vulnerabilities may occur and then we outline our goal of
assessing the impact of Scoped Storage to reduce attacks in
external storage on Android devices.

2.1 An Example Vulnerability
A recent vulnerability discovered in Android services using
the ContactsProvider allows untrusted apps to gain access
to privileged files [14]. The ContactsProvider enables ser-
vices to retrieve files on behalf of apps by a URI specifying
the location of a file. An untrusted app may lure a service’s
ContactsProvider into using a maliciously crafted URI that
resolves to a symbolic link created by the untrusted app.
Through this symbolic link, the untrusted app can access
any file to which the service is authorized, which may
include some privileged files. This is an example of a link
traversal attack.

Figure 1 shows exploitation of the vulnerability. The
adversary sends a request URI (Pathname in Figure 1) to the

2. POLYSCOPE Repository: http://github.com/yxl74/PolyScope

http://github.com/yxl74/PolyScope

3

victim (service running ContactsProvider) 1 that directs
the victim to a symbolic link created by the adversary a .
When the victim uses its read permission to the symbolic
link 2 , the operating system resolves the link 3 to return
access to the target file. This vulnerability may enable the
adversary to leak, modify, and delete the target file b to
which the adversary normally lacks access.

This vulnerability occurred because adversaries of the
service running ContactsProvider have the permission to
create a symbolic link in a directory to which the service
also has access. The file squatting attack found by Check-
point [30] that is described in the Introduction is caused
by the same conditions, although in this case the adversary
creates a file instead of a symbolic link in step a .

2.2 The Android External Storage Problem

Filesystem vulnerablities have been a particular problem
in the external storage partitions3 of Android systems. The
Android external storage partition provides a filesystem for
apps to store application-specific data.

As users may benefit from the ability of multiple apps to
access the same data (e.g., to edit photos and other media
generated by other apps), Android provides the ability for
multiple apps to share access to external storage. However,
researchers have shown that vulnerabilities are caused when
multiple mutually untrusting subjects can modify the same
directory [49], and many vulnerabilities have been found in
external storage, such as the Checkpoint vulnerability [30].

To address these concerns, Android 10 introduced an
experimental defense mechanism called Scoped Storage to
restrict app access to external storage [26]. Scoped Storage
classifies external storage into package-specific private and
shared directories, each with restricted access rights. Private
directories can only be accessed exclusively by the asso-
ciated app. By default, owners of files and directories in
shared directories have full read and write access. However,
obtaining write access to objects in shared directories owned
by other apps requires either a specific Android permission
limited to approved packages or explicit user consent. For
a more detailed explanation of how the Scoped Storage
defense works, please refer to Section 6.1.

In this paper, we address the question of how to extend
access control policy analysis to determine the effectiveness
of Scoped Storage in mitigating filesystem vulnerabilities.

An additional challenge arises due to the fact that not
all apps will adopt the Scoped Storage defense. Some apps
may still operate using earlier defenses, now referred to as
legacy storage. Apps utilizing legacy storage have the ability
to write to files belonging to other apps and may allow
other apps to write to their own files, potentially introducing
vulnerabilities. Therefore, we also evaluate the impact of
legacy storage on the security of the external storage.

3 BACKGROUND

We describe access control policy analysis methods and
describe limitations in current analysis techniques.

3. The external storage partition originally reflected a separate stor-
age device (e.g., SD card), but modern Android systems now host the
external storage partition on device storage.

3.1 Access Control Policy Analysis
Access control policy analysis [22, 38] involves computing
authorized information flows between subjects and objects
based on a system’s access control policies. An access control
policy authorizes an information flow from a subject to an object
if the subject is allowed to perform a write-like operation
that modifies the object, and it authorizes an information flow
from an object to a subject if the subject is allowed to perform
a read-like operation that uses the object’s data (e.g., read
or execute). Certain operations can be both read-like and
write-like, enabling bidirectional information flow.

However, modern Android systems typically have a
large number of access control rules, resulting in a multi-
tude of authorized information flows. To address this, re-
searchers have developed access control analyses to identify
secrecy [7, 13, 50, 51, 1] and integrity problems [24, 8].
The vulnerability discussed in Section 2.1 exemplifies an
integrity problem, where an adversary controls a filesystem
resource used by a victim to carry out the attack.

To detect integrity problems, access control analyses
draw inspiration from integrity models, such as Biba in-
tegrity [2], to identify information flows from adversary
processes to victim processes. These information flows, re-
ferred to as integrity violations (IVs), are formally defined
as tuples consisting of the resource, adversary, and victim.
An IV occurs when the access control policy permits an
information flow from the adversary to the resource (i.e., the
adversary is authorized to perform a write-like operation on
the resource) and an information flow from the resource to
the victim (i.e., the victim is authorized to perform a read-
like operation on the resource).

3.2 Limitations of Current Techniques
Access control policy analyses attempt to solve three main
problems to help identify vulnerabilities, but current ap-
proaches suffer from key limitations on each problem.

The first problem is to characterize subjects and ob-
jects properly given multiple access control policies. Re-
searchers have recently proposed techniques to reason about
MAC and DAC policies in combination [7, 19], but they have
not considered how to compose subjects and objects from
multiple policies systematically. Making matters worse, the
new access control policy added by Scoped Storage defense
differs significantly from existing Android MAC and DAC
policies, further complicating the accurate characterization
of subjects and objects across multiple policy models.

The second problem in using access control policy anal-
ysis is to identify the permissions that adversaries could
control to launch attacks comprehensively. A problem is
that adversaries may exploit the flexibility in policy models
like DAC and Android permissions to add permissions
that create more integrity violations. Adversaries may either
obtain additional Android permissions from unsuspecting
users or may grant permissions to objects they ”own” to
potential victims to lure them into attacks. Researchers have
previously identified problems caused by DAC policy flex-
ibility [18, 29] that limit its ability to prevent unauthorized
access. While in theory MAC policies could be configured to
prevent changes in DAC policies from allowing new attack
operations, MAC policies often allow such changes to avoid
denying desired functionality.

4

Access
Control
Policies

Step 1: Identify
System Subjects

and Objects
Section 5.1

Step 2: Compute
Permission
Expansion
Section 5.2

Step 4: Compute
Attack

Operations
Section 5.4

Step 3: Compute
Integrity

Violations
Section 5.3

Policies

Subjects
and Objects

Expanded
 Policy

Per-Program
Adversaries

Integrity
Violations

System
Configurations

Attack
Operations

Integrity
Violation Rules

Attack
Operation Rules

Vulnerability
Testing
When Victim

Uses IV, Apply
Attack Operation

Vulnerabilities

Labeling
Policy

Adversary
Model

Manual/Dynamic AnalysisPolyScope—Static Access Control Policy Analysis

Fig. 2. POLYSCOPE Logical Flow: POLYSCOPE construct subjects/objects based on labeling policy (Step 1), permission expansion by those
adversaries (Step 2), the integrity violations to which adversaries are authorized (Step 3), and the attack operations adversaries may perform
to launch attacks (Step 4) as test cases for vulnerability testing.

The third problem is to compute the operations that
an adversary may be authorized to employ to launch
attacks, which we call attack operations. Once we know that
an adversary has been authorized permissions that create
an integrity violation, a question is how an adversary may
exploit those permissions to launch attacks. While integrity
violations are a necessary precondition for attacks, adver-
saries must be able to perform the operations necessary to
launch attacks. Android systems prevent attack operations
in some cases, such as by prohibiting the use of symbolic
links in external storage.

4 POLYSCOPE OVERVIEW
In this paper, we present an Android access control analysis
tool, called POLYSCOPE, that computes the set of authorized
attack operations for an Android system while overcoming
the limitations described above. POLYSCOPE triages the ac-
cess control policies and system configurations for the particular
system under test and produces a set of attack operations that
should be vetted in vulnerability testing.

Figure 2 shows POLYSCOPE’s approach, where the two
user (analyst) inputs, Android access control policies and
Android system configurations, are highlighted in bold4.
The sources of other inputs are described below.

In Step 1, POLYSCOPE maps processes and filesystem re-
sources to unique subjects and objects for the access control
policies using a labeling policy. Since Android access control
combines policies in a restrictive manner (i.e., all policies
must authorize an operation), labeling can be done inde-
pendently for each policy model, which makes it straightfor-
ward to extend Android access control with Scoped Storage
as described in Section 6.1. In Step 2, POLYSCOPE deter-
mines the permissions that may be associated with subject
and object labels by modeling how each subject’s adver-
saries may expand the permissions available to themselves
and their victims by exploiting the flexibility in Android
and DAC access control policies, as described in Section 6.2.
Adversary models are also chosen once for the combination
of policies, where we show the adversary model we use for
Android systems in the Threat Model in Section 5. In Step
3, POLYSCOPE uses these expanded permissions to compute
integrity violations based on integrity violation rules defined
in Section 6.3. In Step 4, POLYSCOPE uses these integrity
violations to compute the attack operations possible using
attack operation rules that reference additional system configu-
rations as defined in Section 6.4. These rule sets are defined
by POLYSCOPE and are independent of the policy model.

4. The specific inputs are described in ”Data Collection” in Section 7.

Adversary

Target
File

1File-IV

Binding
(Hard or Soft

Link)

2

Binding-IV

Victim
3

Pathname-IV

Read

Resolve

Fig. 3. Integrity Violation (IV) Classes: (1) File-IVs grant adversaries
direct access to modify files that victims use; (2) Binding-IVs grant
adversaries the ability to modify name resolution of file names; and
(3) Pathname-IVs enable adversaries to lure victims to the part of the
filesystem they can modify.

Attack operations computed in Step 4 identify all the
operations that adversaries are capable of performing to
modify resources to launch attacks. Using the computed
attack operations, an analyst can perform vulnerability test-
ing on victim applications either manually or preferably
using dynamic analysis. In Section 7, we describe a basic
dynamic analysis analysis method to detect victim use of
resources that can be modified by attack operations, from
which we find two new vulnerabilities from subsequent
manual testing in Section 8.5.

5 THREAT MODEL
In this paper, we assume that adversaries may modify any
part of the filesystem to which they are authorized by
the combination of Android access control policies, which
POLYSCOPE computes as integrity violations. In addition,
we assume that adversaries will perform any operation to
launch attacks on integrity violations that are possible given
the system configuration, called attack operations. In this
section, we examine the specific types of integrity violations
and attack operations we consider as threats in this paper.

Based on the example in Figure 1, we show the three
classes of integrity violations (IVs) we consider in devel-
oping POLYSCOPE in Figure 3 on filesystem access, cov-
ering a wide variety of vulnerabilities including confused
deputy [17] and time-of-check-to-time-of-use (TOCTTOU)
vulnerabilities [31, 3]. Related to Figure 1, we show these
integrity violation classes in Figure 3. First, file-IVs allow
adversaries to modify target files that are authorized to vic-
tims directly 1 , possibly leading victims to unexpected use
of adversary-controlled data. File-IVs may be distinguished
further by whether the victim can read (read-IVs), write
(write-IVs), and/or execute (exec-IVs) the IV file. Second,
binding-IVs enable adversaries to redirect victims to target
files during name resolution 2 , causing victims to operate

5

on files chosen by adversaries. Third, pathname-IVs enable
adversaries to lure victims to an adversary-controlled part
of the filesystem using an adversary-supplied pathname 3 ,
which is the integrity violation exploited in the example
vulnerability of Section 2.1.

For each integrity violation found, we assume that an
adversary may attempt any possible attack operation. File-
IV attack operations simply modify the resource awaiting use
(read, write, or execute) by the victim. Binding-IV attack
operations direct the victim to a resource chosen by the
adversary, using link traversal or file squatting attacks. A
link traversal attack directs a victim to access a resource
to which the adversary is not authorized. A file squatting
attack plants an adversary-controlled resource that a victim
may use. Pathname-IV attack operations lure a victim who
processes adversary-controlled pathnames (e.g., URLs via
IPCs) to an adversary-controlled binding to exploit a link
traversal, which we call a luring traversal.

In developing POLYSCOPE, we assume trust in some
components of Android systems. First, we assume that
the Android operating system operates correctly, including
enforcement of its access control policies and system con-
figurations. For example, we trust the Android operating
system to satisfy the reference monitor concept [21]. Second,
our assumptions about trust among user-space processes is
determined by Google’s Process Privilege Levels shown in
Table 1. A subject trusts services/apps at its privilege level
or higher. Other subjects are adversarial. We have shown
how to validate that the Android policy is consistent with
the trust implied by these privilege levels [27].

6 POLYSCOPE DESIGN
In this section, we examine the design challenges in com-
puting attack operations for Android systems. In particular,
we focus on four key steps outlined in the POLYSCOPE
overview in Section 4.

6.1 Identify Subjects and Objects
The first step is to identify the subjects and objects in the
system based on the combination of access control policies.
Access control determines when a process may perform an
operation on a system resource. However, access control
policies are typically expressed in terms of identifiers for
subjects and objects (e.g., user IDs and group IDs), rather
than individual processes and resources, to enable access
control decisions to be made as the system’s processes
and resources evolve dynamically. The mapping of access
control identifiers to system processes and resources forms
a labeling policy. Since Android uses a combination of access
control policies, a question is how to determine the combi-
nation of identifiers (i.e., the labeling policy) that constitute
subjects and objects for this combination of policies.

Researchers have previously found it useful to iden-
tify combinations of policies that are either restrictive or
authoritative [52]. A composition of policies is said to be
restrictive when any policy can deny access (i.e., the au-
thorized permissions are the intersection of each policy’s
permissions). On the other hand, a combination of policies is
said to be authoritative if any policy may grant a permission,
even if it is denied by another policy (i.e., the authorized
permissions are the union of each’s authorized permissions).
In either case, the subjects and objects for each policy can

be determined independently and the resultant permissions
are a simple composition (e.g., intersection or union) of the
permissions assigned to the individual policies (i.e., between
each policies’ subjects and objects).

We find that the combination of Android access control
policies is restrictive. Android requires that all policies must
authorize an operation for it to be permitted. As a result, we
can simply extend the subjects and objects in POLYSCOPE
by specifying the Scoped Storage subjects and objects iden-
tifiers independently from the other Android policies.

The subject and object identifiers used by POLYSCOPE
for the Android access control policies, other than Scoped
Storage, are as follows5.

• SELinux Type Enforcement (TE): Subjects and objects
are assigned TE labels.

• SELinux Multilevel Security (MLS): Subjects and ob-
jects are assigned MLS category sets.

• UNIX Discretionary Access Control (DAC): Subjects
are assigned DAC User ID and a set of DAC groups
(i.e., an owner Group ID and supplemental group IDs).
Objects are assigned an DAC UID and DAC GID for its
owner.

The Scoped Storage defense (see Section 2.2) has been
designed to control access to each app’s files in the An-
droid external storage partition. Recall that Scoped Stor-
age separates app-specific storage into private and shared
directories. Private directories may only ever be accessed
by the owning app, but other apps may gain access to
shared directories through Android permissions or user
consent. The apps may obtain read (only) access to any
shared directories through the READ_EXTERNAL_STORAGE
(REX) Android permission. Write access may be obtained
in two ways. First, an app may gain write access to files
in a shared directory by obtaining user consent through
the Android APIs including MediaStore, Storage Access
Framework (SAF) and Photo Picker. Second, apps that are
vetted prior to publication in the Google Play Store are
eligible to obtain the MANAGE_EXTERNAL_STORAGE (MES)
permission that grants them read and write access to all
resources in shared and legacy directories, but not private
app directories.

For compatibility purposes, some apps may be declared
as legacy apps, which basically means that these apps use
the access controls that predate Scoped Storage. Legacy
apps may gain read and write access to any package’s
shared directories using the WRITE_EXTERNAL_STORAGE
(WEX, deprecated since Android 11) permission. In ad-
dition, legacy apps are allowed to place files in the root
directory of external storage, which is shared among legacy
apps and other system services. This root directory is not
accessible to apps compliant with Scoped Storage without
the MES permission.

As a result, the Scoped Storage access control policy gov-
erns access for each app based on its identity (i.e. package
name), its Android Permissions, and whether it complies
with Scoped Storage. Specifically, the subjects and objects of
the Scoped Storage policy are defined below.

5. For details justifying these choices, see the original POLYSCOPE
paper [27].

6

TABLE 1
Google’s Process Privilege Levels [15]

Process Level1 Level Membership Requirements

Root Process (T5) Process running with UID root (e.g., MAC labels kernel and init)
System Process (T4) Process running with UID system (e.g., MAC label system server)
Service Process (T3) AOSP core service providers (e.g., MAC labels bluetooth and mediaserver)

Trusted Application Process (T2) AOSP default and vendor apps (e.g., MAC labels platform_app and priv_app)
Untrusted Application Process (T1) Third-party applications (e.g., MAC label untrusted_app)

Isolated Process (T0) Processes that are expected to receive adversarial inputs (e.g., MAC label webview)
1 Listing types of processes based on their privilege level, from high to low with root processes being most privileged (T5) and isolated processes being the

least privileged (T0). We group T0 and T1 together calling the resultant level T1 in the evaluation in Section 8.

• Scoped Storage Subject: Each subject is defined as a
combination of: (1) an owner identity (i.e., app package
name); (2) whether the app opts for Scoped Storage (i.e.,
is a legacy or Scoped Storage subject); and (3) the app’s
Android permissions (i.e., REX and MES for Scoped
Storage subjects and REX and WEX for legacy subjects).

• Scoped Storage Object: Each object is defined by: (1)
its owner (i.e., package name) and (2) its containing
directory type (i.e., private or shared or legacy).

Given the Scoped Storage subject and object definitions,
we summarize the Scoped Storage access rules in Table 2.
Only the owner of a private directory can access those
objects, except through IPC sharing6. Scoped Storage sub-
jects can access objects they own in the shared directory by
default, but need the REX permission to read objects owned
by other subjects. Scoped Storage subjects with the MES
permission can access all objects in the shared and legacy
directories. Legacy (non-Scoped) subjects can read and write
all objects in the shared and legacy directories with the WEX
permission 7.

Because access control policies in Android are restric-
tive, we can add the subject and object definitions for
Scoped Storage independently from other policies. In anal-
ysis, POLYSCOPE only needs to intersect the outcome of the
authorization using the Scoped Storage policy with that of
the MAC (TE and MLS) and DAC authorization results to
determine which subjects can access an object.
6.2 Compute Permission Expansion
A key difficulty for OEMs is predicting which resources
may be accessible to adversaries and victims to derive attack
operations accurately. A problem is that while MAC policies
are essentially fixed (i.e., between software updates), DAC
permissions may be modified by adversaries to increase the
attack operations that they could execute. We identify two
ways that adversaries may modify permission assignments
on Android systems: (1) adversaries may obtain Android
permissions that augment their own DAC permissions,
which we call adversary permission expansion, and (2) adver-
saries may delegate DAC permissions for objects that they
own to potential victims, which we call victim permission
expansion. We describe how these two forms of permission
expansion manifest in Android and examine the expansion
allowed for Scoped Storage and legacy adversaries.
Adversary Permission Expansion: In Android systems,
some Android permissions are implemented using DAC

6. Sharing through Android ContentProvider requires programs to
actively share their files (i.e., passing file descriptors to opened files), so
we leave the potential threat of active sharing as future work.

7. Granting an app the WEX permission also grants the REX permis-
sion for reading. All legacy apps we have reviewed have requested the
WEX permission.

groups. As described above, a process is associated with a
single UID and GID, but also an arbitrarily large set of sup-
plementary groups that enable further ”group” permissions.
Thus, when a user grants an Android permission associated
with one or more DAC groups to an app, there is a direct
expansion of that app’s permissions in terms of its DAC
permissions. Since the MAC policies often allow apps to
gain privileges associated with Android permissions, these
new DAC permissions may grant privileges that enable
attacks. For POLYSCOPE, we assume that subjects can obtain
all of their ”normal” Android permissions and are granted
all of their ”dangerous” permissions by users for analysis,
as described in the previous section. Scoped Storage adds
another kind of adversary permission expansion by allow-
ing apps to declare themselves as legacy apps. The legacy
flag grants write privilege to files in multiple locations of
external storage and greatly boosts an adversary’s capability
to launch attacks. One of the vulnerability case studies we
highlight in Section 8.5 exploits the use of the legacy flag for
adversary permission expansion.

Victim Permission Expansion: Researchers have long
known that allowing adversaries to administer DAC per-
missions for their own objects can present difficulties in
predicting possible permission assignments. Researchers
proved that the safety problem of predicting whether a partic-
ular unsafe permission will ever be granted to a particular
subject in a typical DAC protection system is undecidable
in the general case [18]. As a result, researchers explored
alternative DAC models within which the safety problem
could be solved, such as the take-grant model [28], the typed
access matrix [36], and policy constraints [42]. However,
adversaries may still grant victims their permissions

Using the ability to manage DAC permissions to ob-
jects they own, adversaries can grant permissions to their
resources to victims, expanding the set of resources that
victims may be lured to use. In many cases, victims have
MAC permissions that grant them access to adversary di-
rectories, but vendors use DAC permissions to block access.
However, when adversaries own these directories, they can
simply grant the removed permissions to potential victims.

Scoped Storage Impact on Permission Expansion: Scoped
Storage permits two kinds of adversary permission expan-
sion. First, apps that can obtain the MES permission can
modify any file in a shared or legacy directory of external
storage. Fortunately, Google must vet any app before it can
even request that permission, but even some vetted apps
only have a T1 Google privilege level (see Table 1), exposing
some risks. Thus, we assume any subjects requesting the
MES permission must have been vetted for that permission.

Second, apps can request write access to files from users

7

TABLE 2
Subject to Object Access in Scoped Storage

Subject Type1 Private Objects Shared Objects Legacy Objects

Owner Scoped Subjects R/W R/W No Access
Other Scoped Subjects No Access R with REX No Access

Other Scoped Subjects with MES No Access R/W R/W
Other Legacy Subjects No Access R with REX, RW with WEX R with REX, RW with WEX

1 Owner Scoped Subject is a subject whose package name matches the package name the objects. Other Scoped/Legacy Subjects refer to any subject
whose package name does not match that of the objects.

(i.e., request user consent). While users may grant access
to any file in a shared directory, in general, the impact of
Scoped Storage is largely bypassed for resources in shared
directories if that is done comprehensively. In this work,
we do not apply user consent of access to individual files
in shared directories to permission expansion. Studying
possible risks of such user consent is future work.

For pre-Scoped Storage systems, we assume that victims
can expand permissions (i.e., perform adversary expan-
sion) to obtain the REX/WEX permissions since most apps
need access to shared folders in external storage. However,
for post-Scoped storage systems, victims no longer need
to declare REX/WEX to access their own files stored in
external storage. Adversaries cannot cause any form of
victim permission expansion because they cannot authorize
REX/WEX to the victim programs. Outside of external stor-
age, both types of permission expansion threats still remain.

6.3 Compute Integrity Violations
We show how to compute integrity violations for file-IVs,
binding-IVs, and pathname-IVs defined in Section 5.
Computing File Integrity Violations: A file integrity vio-
lation occurs when a victim subject has permission to use
(i.e., read, write, or execute) a file object that an adversary
subject also has permission to modify. In practice, many
subjects read file objects that their adversaries may write
(read-IVs). However, the risks increase when a subject
executes (exec-IVs) or modifies such files (write-IVs).
For exec-IVs, executing input from an adversary allows the
adversary to control the victim’s executable code. In the
case of write-IVs, if a subject writes to a file object that its
adversaries can also write to, the adversaries may be able to
undo or replace valid content.
{read|write|exec}(file, victim) && // victim can access file,
adv-expand(file, adversary) && // but adv-expanded perms
write(file, adversary) // enables to modify file

-->
{read|write|exec}-IV(file, victim, adversary)

This rule determines whether the victim is autho-
rized by the combination of access control policies for
reading, writing, or executing file objects, using the
{read|write|exec} predicate. The rule accounts for the
adversary’s expansion of their own permissions, as indi-
cated by the predicate adv-expand. If the adversary also
has write permission to the file object (write predicate),
then the associated integrity violation is created.
Computing Binding Integrity Violations: A binding in-
tegrity violation occurs when a subject may use a binding
object that adversaries can modify in resolving a file path-
name.
use(binding, victim) && // victim can use binding,
adv-expand(file, adversary) && // but adv-expanded perms
write(binding, adversary) // enable to modify binding

-->
binding-IV(binding, victim, adversary)

This rule parallels the rule for file-IVs, except that this
rule applies to a victim having the permission to use a
binding object in name resolution (use predicate).
Computing Pathname Integrity Violations: Pathname in-
tegrity violations are binding integrity violations that are
possible when a subject uses input from an adversary to
build a file pathnames used in name resolution. First, adver-
saries must be authorized to communicate with the victim.
Second, through their input, adversaries can lure victims to
any bindings they choose, enabling them to expand the IVs
available for exploitation by victim permission expansion.
write(ipc, adv, vic) && // may send IPCs to victim
vic-expand(binding, adv, vic) && // and expand victim perms
binding-IV(binding, vic, adv) // to lure victim

-->
pathname-IV(binding, vic, adv)

Adversaries must be granted write privilege to com-
municate to the victim, as defined in the write predicate.
Android services may use Binder IPCs, and we further limit
write to use IPCs that communicate URLs for Android
services. The adversary can use victim expansion to increase
the set of bindings the victim is authorized to use by
vic-expand. If that binding object meets the requirements
of a binding-IV (see above), then a pathname-IV is also
possible for this victim.

6.4 Compute Attack Operations
We define how POLYSCOPE computes attack operations
from the integrity violations produced in the last section and
the relevant system configurations. We identify four types of
attack operations that an adversary could use to exploit the
three types of integrity violations: (1) file modification for
file IVs; (2) file squatting for binding-IVs; (3) link traversal
for binding-IVs; and (4) luring traversal for pathname-IVs.
File Modification Attacks: For read/write/exec IVs, the
attack operation is to modify the objects involved in each
IV. However, Android uses some read-only filesystems, so
not all files to which adversaries have write privilege are
really modifiable. Thus, the rule for file modification opera-
tions additionally checks whether the file is in a writable
filesystem.
{read|write|exec}-IV(file, victim, adversary) &&
fs-writable(file) // file's filesystem is writable

-->
file-mod(file, victim, adversary)

File Squatting Attack: In a file squatting attack, adversaries
plant files that they expect that the victim will access. The
adversary grants access to the victim to allow the victim to
use the adversary-controlled file. This attack operation gives
the adversary control of the content of a file that the victim
will use. To perform a file squatting attack operation, the

8

adversary must really be able to write to the directory to
plant the file. Thus, the rule for file squatting operations is
essentially the same as for file modification, but applies to
binding-IVs.
binding-IV(binding, victim, adversary) &&
fs-writable(binding) // binding's filesystem is writable

-->
file-squat(binding, victim, adversary)

In this rule, we assume that the adversary predicts the
filenames used by the victim. In the future, we will explore
extending the rule to account for that capability.
Link Traversal: A link traversal attack is implemented by
planting a symbolic link at a binding modifiable by the ad-
versary, as described in Section 2.1. However, Android also
uses some filesystem configurations that prohibit symbolic
links, so not all bindings to which adversaries have write
privilege and are in writable filesystems allow the creation
of the symbolic links necessary to perform link traversals.
Thus, the rule for link traversal operations extends the rule
for file squatting to account for this additional requirement.
binding-IV(binding, victim, adversary) &&
fs-writable(binding) // binding's filesystem is writable
symlink(binding) && // and allows symlinks

-->
link-traversal(binding, victim, adversary)

Luring Traversal: An adversary may lure a victim to a bind-
ing controlled by the adversary to launch an attack opera-
tion. However, the Android FileProvider class can prevent
such attacks. Specifically, the FileProvider class requires that
clients open files themselves and provide the FileProvider
with the resultant file descriptor. Since the clients open the
file, they perform any name resolution, so the potential
victim is no longer prone to pathname vulnerabilities. Thus,
the rule for luring traversal operations extends the rule for
link traversal for pathname-IVs by requiring the absence of
any FileProvider class usage. OEMs still have many services
and privileged apps that do not employ the FileProvider
class, leaving opportunities for pathname-IVs to be attacked.
pathname-IV(binding, victim, adversary) &&
fs-writable(binding) && // binding's filesystem is writable
symlink(binding) && // and allows symlinks
no-file-provider(victim) // victim does not use FileProvider

-->
luring-traversal(binding, file, victim, adversary)

While it is possible that the victim has implemented
an extra defense in Android middleware (e.g., Customized
Android Permission) to prevent IPCs, we do not yet account
for these defenses. Including these defenses is future work.

7 IMPLEMENTATION

The POLYSCOPE tool is implemented fully in Python in
about 3300 SLOC and is compatible with Android version
5.0 and above. The POLYSCOPE implementation is shown in
Figure 4. First, POLYSCOPE extracts access control policies
and system configurations automatically in a Data Collec-
tion phase. Then, POLYSCOPE’s Main phase identifies all the
subjects and objects as described in Section 6.1, determines
the per-subject adversaries according to the Google Process
Privilege Levels in Table 1, and expands subject permissions
as described in Section 6.2. Next, POLYSCOPE Workers com-
putes IVs as described in Sections 3.1 and 6.4, respectively.
We are able to parallelize these steps per object which has a
significant performance impact, as described in Section 8.6.

Additional implementation details are the same as for the
original POLYSCOPE tool [27].

Data Collection: POLYSCOPE has a variety of data col-
lection scripts to collect access control polices (i.e., MAC,
DAC, Android permissions, and Scoped Storage) and sys-
tem configurations (i.e., filesystem settings and FileProvider
use) to provide inputs to POLYSCOPE. The methods are
relatively straightforward for accessible files and processes,
as described previously [27]. However, POLYSCOPE scripts
are not authorized to access all files, particularly those
owned by root, so we run these scripts on rooted phones.
Recent work by Hernandez et al. [19] is able to extract
MAC policy and part of DAC configuration from Android
firmware images without rooting devices. However, this
approach cannot extract all files located in some directories
like /data. As shown in Table 1 of their paper [19], about
75% of the files’ DAC configuration in /data cannot be
retrieved, which we extract with our scripts.

Data collection for Scoped Storage requires collecting
access control information for each package and Scoped
Storage directory. To collect packages and their Android per-
missions, POLYSCOPE queries the PackageManager service
for all the APKs on the device. Then, POLYSCOPE parses
the Android manifest files for the extracted APKs to obtain
the permission mapping. For Scoped Storage directories,
POLYSCOPE extracts the Scoped Storage database file owned
by MediaProvider to retrieve the owner of each external
storage resource by package name. POLYSCOPE collects the
relevant program configurations (i.e., whether the victim
includes a recommended defense, the FileProvider class) by
reverse engineering the application’s APK package to detect
the presence of the FileProvider class.

POLYSCOPE Main: This POLYSCOPE component controls the
steps in the POLYSCOPE analysis. As shown in Figure 4,
the POLYSCOPE Main component runs three computations
in series to identify subjects and objects and expand per-
missions, as described in Sections 6.1 and 6.2, respectively.
The most difficult step is to map the subjects between MAC
(labels), DAC (UIDs/GIDs), and Scoped Storage (packages)
policies. To find the mapping between UIDs and packages,
POLYSCOPE parses the package.list file. However, we
found that some package name-to-UID mappings are not
one-to-one, as we expected and saw for MAC-to-DAC map-
pings, as multiple package names can be mapped to the
same UID. In this case, POLYSCOPE over-approximates the
mapping by assigning the union of all the package names
that map to this UID for the subject.

POLYSCOPE Workers: Using the set of subjects, their ad-
versaries, and objects, POLYSCOPE can now compute the
attack operations. The POLYSCOPE implementation decom-
poses this computation into discrete components that can
be parallelized, as shown in Figure 4. First, workers com-
pute the subjects that can read (i.e., read and execute) and
write each object. This computation run per policy model
(DAC, MAC, Scoped Storage) and the results per object are
intersected. Given the readers and writers for each object
and policy model, the IVs for each object can be computed
in parallel, one object per worker to roughly balance the
load per worker. Finally, the attack operations that applyfor
each object’s IVs can be computed in parallel as well. We

9

Data Collection

Extract MAC,
DAC, and Scoped
Storage PoliciesRooted

Android
Device

PolyScope Main

1. Map Policy Model IDs
for MAC, DAC, Scoped
Policies
2. Identify Subjects and
Objects and Per-Subject
Adversaries
3. Expand Permissions for
Subjects

PolyScope Workers

Access
Control
Policies

System
Configurations

Subjects and
Objects

Per-Subject
Adversaries

Attack
Operations

Integrity Violation and
Attack Operation Rules

Labeling and
Adversary Models

Compute Readers
for Each Object

Compute Writers
for Each Object

Compute IVs from
Readers, Writers,
and Adversaries

Compute Attack
Operations from

IVs Found

Extract APK and
File System

Configurations

Fig. 4. POLYSCOPE Implementation: POLYSCOPE collects inputs from rooted Android devices to identify subjects and objects. IVs and attack
operations are computed in parallel per object by POLYSCOPE workers.

validated the attack operations found can be performed and
found no discrepancies.
Testing for Vulnerabilities: The ultimate goal is to de-
termine whether the victim is vulnerable to any of the
attack operations. However, a key challenge is to determine
whether and when a victim may actually access a resource
associated with an attack operation. Just because a potential
victim may be authorized to use a resource, does not mean
it ever uses that resource. The major challenge is to drive the
victim subjects’ programs to cause all file usage operations,
akin to fuzz testing. Developing a fuzz testing approach
for file operations is outside the scope of this paper, so we
simply drive programs with available tools: (1) Android Ex-
erciser Monkey; (2) Compatibility Testing Suite (CTS); and
(3) Chizpurfle [20]. We use the Android Exerciser Monkey
and CTS to emulate normal phone usage, and Chizpurfle to
drive Android system services. With this approach, we are
able to find the vulnerabilities described in Section 8.5 man-
ually. We discuss the challenges in automating vulnerability
testing in Section 9.
8 EVALUATION
In this section, we focus on measuring the impact of the
Scoped Storage defense on threats to Android systems. Note
that we evaluated POLYSCOPE against prior systems [19]
in our previous paper [27]. Here, we apply the updated
POLYSCOPE tool described in this paper to six fresh installs
of Android releases that employ Scoped Storage8 (version
11.0 and above) and two fresh installs of Android releases
that do not employ Scoped Storage (version 9.0).

We explore the following research questions:
• RQ1: What fraction of the total number of threats in

Android systems occur in external storage before and
after the addition of Scoped Storage?

• RQ2: How does Scoped Storage impact the types of
integrity violations and attack operations that may be
attempted in external storage?

• RQ3: How many of the threats in external storage are
due to legacy apps?

• RQ4: How many attack operations and attackers could
be removed if all legacy apps are converted to Scoped
Storage apps?

We first examine the distributions of IVs and attack
operations within systems at-large and for external storage
only (RQ1-RQ2). These analyses show that Scoped Storage
has reduced the number of attack operations in external
storage, particularly by removing victim expansion and by
removing squatting attacks. However, we find that many

8. Oneplus8T is a relatively new phone that does not have any pre-
Scoped Storage firmware available

victims remain threatened because of the use of legacy apps
(RQ3). To assess the ideal impact of Scoped Storage, we
evaluate the hypothetical case where all apps are compliant
with Scoped Storage (RQ4). We also examine two vulnera-
bilities found in external storage using POLYSCOPE and the
performance of access control analysis using POLYSCOPE in
Sections 8.5 and 8.6, respectively.

8.1 Effects of Scoped Storage
RQ1: What fraction of the total number of threats in Android
systems occur in external storage before and after the addition of
Scoped Storage? Table 3 displays the integrity violation (IVs)
and attack operation (Attack Ops) counts for the eight An-
droid systems, where two systems (Pixel3a 9.0 and Galaxy
S20 9.0) do not use Scoped Storage. Table 3 compares the
total counts to the counts in external storage only. Note that
the IV counts (IVs) are a sum of the number of objects that
may be used to attack each victim, as described in Table 3.

The first two rows in Table 3 show the IV and attack
operation counts for the whole system, showing that the
number of attack operations tends to be slightly greater than
the number of IVs for the system at large, although slightly
lower for OnePlus systems. The next two rows in Table 3
show the IV and attack operation counts for external storage
alone. For external storage, the number of attack operations
is always less than the number of IVs, due to the lack
symbolic links in external storage, which predates Scoped
Storage, and the reduction in squatting attacks, which we
show using POLYSCOPE in Section 8.2.

Examining Table 3 from left to right, we see that the IV
and attack operation counts of the pre-Scoped systems (i.e.,
Pixel3a 9.0 and Galaxy S20 9.0) were much higher than their
respective counterparts (i.e., other Google devices and OEM
devices, respectively). POLYSCOPE shows that this reduction
is largely because Scoped Storage eliminates victim expan-
sion (see Section 6.2), as described in Section 8.2.

However, we see the reduction in the fraction of IVs
and attack operations differs between Google and OEM de-
vices. For OEM devices, while the reduction in the number
of IVs and attack operations is significant (i.e., from pre-
Scoped Storage Galaxy S20 9.0 to Samsung and Oneplus
versions 11.0 and 12.0), these counts remain much greater
than for Google devices. We use POLYSCOPE to assess how
the greater use of legacy apps (i.e., apps not compliant
with Scoped Storage) in these OEM devices increases these
counts (see Section 8.3) and the impact if all apps would be
compliant with Scoped Storage (see Section 8.4).

8.2 Reasons Scoped Storage Reduces Threats
RQ2: How does Scoped Storage impact the types of integrity
violations and attack operations that may be attempted in external

10

TABLE 3
Summary of Integrity Violations (IVs) and Attack Operations Total and in External Storage across Vendor Releases

Google Devices OEM Devices
Pixel3a 9.0 Pixel3a 11.0 Pixel3a 12.0 Galaxy S20 9.0 Galaxy S20 11.0 Galaxy S20 12.0 Oneplus8T 11.0 Oneplus8T 12.0

Total IVs 2,124 1,334 1,480 31,489 12,713 6,808 11,987 14,704
Total Attack Ops 2,512 1,628 1,794 36,258 15,414 8,465 11,540 14,135

Ext IVs 1,021 (48%) 260 (19%) 374 (25%) 12,679 (40%) 3,713 (29%) 2,288 (34%) 4,365 (36%) 5,532 (38%)
Ext Attack Ops 527 (21%) 241 (14%) 219 (12%) 11,336 (31%) 3,219 (21%) 1,906 (23%) 3,929 (34%) 4,454 (32%)

IVs =
∑V

v |IVobj(v)|, where IVobj(v) returns the set of objects in the IVs for a victim v ∈ V as computed per Section 6.3.
Attack Ops =

∑IVs
iv |OP (iv)|, where OP (iv) returns the set of attack operations for an integrity violation iv ∈ IVs computed per Section 6.4.

Ext IVs (Attack Ops) are IVs (Attack Ops) whose objects are located in an external storage partition.

TABLE 4
Integrity Violations (IVs) by IV Type in Total and in External Storage across Vendor Releases

Google Devices OEM Devices
Pixel3a 9.0 Pixel3a 11.0 Pixel3a 12.0 Galaxy S20 9.0 Galaxy S20 11.0 Galaxy S20 12.0 Oneplus8T 11.0 Oneplus8T 12.0

Total File IVs (Read/Write) 750/149 632/164 713/154 13,248/7,213 6,281/4,186 3,036/1,797 5,865/3,415 7,248/4,681
Total Dir IVs (Pathname/Binding) 1,674/314 702/195 767/389 18,241/6,713 6,432/4,768 3,772/2,667 6,122/2,196 7,420/2,687

Ext File IVs (Read/Write) 308/149 202/132 187/111 6,569/4,384 2,758/2,080 1,503/1,049 2,944/977 3,879/1,293
Ext Dir IVs (Pathname/Binding) 713/219 58/58 187/187 6,110/4,767 955/955 785/785 1,421/1,421 1,653/1,653

IVs =
∑V

v |IVobj(v)|, where IVobj(v) returns the set of objects in the IVs for a victim v ∈ V as computed per Section 6.3.
Ext IVs are IVs whose objects are located in an external storage partition

TABLE 5
Attack Operations by Type in Total and in External Storage across Vendor Releases

Google Devices OEM Devices
Pixel3a 9.0 Pixel3a 11.0 Pixel3a 12.0 Galaxy S20 9.0 Galaxy S20 11.0 Galaxy S20 12.0 Oneplus8T 11.0 Oneplus8T 12.0

Modification Attacks 750 632 713 13,248 6,281 3,036 5,865 7,284
Squat Attacks 314 195 389 6,713 4,768 2,667 2,196 2,687

Ext Modification Attacks 308 202 187 6,569 2,758 1,503 2,944 3,879
Ext Squat Attacks 219 39 32 4,767 461 403 985 575

Squat Attacks Prevented 0 19 155 0 454 382 436 1,078
Attack Ops =

∑IVs
iv |OP (iv)|, where OP (iv) returns the set of attack operations for an integrity violation iv ∈ IVs computed per Section 6.4.

Ext Attack Ops are Attack Ops whose objects are located in an external storage partition.

storage? In this section, we show how POLYSCOPE enables
us to explain the reasons for any reductions in threats due
to Scoped Storage from Table 3. Rows 1-2 in Table 4 show
the total IV counts for the eight Android systems in Table 3
broken down for file objects (read-IVs and write-IVs) and
directories (pathname-IVs and binding-IVs). Note that the
write-IVs are a subset of the read-IVs and the binding-IVs
are a subset of the pathname-IVs9 Rows 3-4 in Table 4 show
the same information, but for external storage only.

We can see in Table 4 that the number of IVs for both files
and directories are significantly reduced when compared to
the pre-Scoped Storage systems (i.e., Pixel3a 9.0 and Galaxy
S20 9.0). This shows that access control decisions, such as the
deprecation of the WEX permission and more limited use of
the REX permission reduce threats. However, an even more
obvious impact is shown in row 4, where the IV counts are
the same for pathname-IVs and binding-IVs. This is caused
because adversaries cannot change the permissions of other
apps, i.e., victim expansion as described in Section 6.2 is no
longer possible in Scoped Storage systems.

Table 5 shows the counts for the modification attack
and squat attack operations described in Section 6.4 in total
and for external storage only10. Once again the counts for
attack operations in external storage is significantly lower
in Scoped Storage systems than pre-Scoped Storage systems
(Pixel3a 9.0 and Galaxy S20 9.0). Modification attacks are
reduced because the number of file IVs has been reduced as
discussed above. In addition, the number of squat attacks
have been reduced because Scoped Storage prevents vic-

9. The definition of binding-IVs implies that they are a subset of the
pathname-IVs, but the write-IVs happen to be a subset of the read-IVs
because victims always have read permission when they have write
permission in the systems we examined.

10. We do not show link traversal and luring traversal attack op-
erations, which require symbolic links that have been banished from
external storage since prior to Scoped Storage.

tims from accessing adversary-created files by default (i.e.,
without REX or MES permission). In row 5 of Table 5, we
show the count of the number of binding-IVs that cannot be
converted into squat attacks because the victims lack REX or
MES permissions to access adversary-controlled directories.
As a result, recent vulnerabilities, such as the Man-in-the-
Disk [30] that leverage squat attack operations, are no longer
possible by default in Scoped Storage releases.
8.3 Problems with Legacy Applications
RQ3: How many of the threats in external storage are due to
legacy apps? Table 6 shows a comparison of IVs (i.e., broken
down further into victim subject and object counts) created
by apps that are compliant with Scoped Storage and those
that are not, which are called legacy apps. Here, we see
that a modest number of pre-installed legacy apps across
vendors (row 1) causes over twice the number of subjects
to become potential victims (i.e., have at least one IV due
to a legacy app) of attacks (row 2) due to nearly twice the
number of object (row 3) than for compliant apps (rows
4-6). This is not surprising since the access permissions of
legacy apps is similar to Scoped Storage apps with MES
Android permission. But, when applying Scoped Storage,
the MES Android permission is only granted to applications
that have been vetted by Google, which limits the number
of third-party apps that may obtain that permission and
presumably improves the trust in such apps.
8.4 Fully-Enforced Scoped Storage
RQ4: How many attack operations and adversaries could be
removed if all legacy apps are converted to Scoped Storage apps?
To measure how well Scoped Storage could potentially work
to reduce attack operations, we move objects in legacy loca-
tions into the shared folders protected by Scoped Storage
(e.g., ownership info tracked by MediaProvider). Since the
WRITE EXTERNAL STORAGE permission has been dep-
recated beginning with Android 11, only file owners have

11

write access to the files in shared folders. Then, we assume
legacy flags are removed and perform POLYSCOPE analysis
to compute attack operations on external storage only. The
analysis results are shown in Table 7, where the row 1 is the
original attack operation count for external storage and row
2 is the attack operation count for external storage after the
procedures described above, and rows 3 and row 4 count
the corresponding changes in the number of adversaries.

We see that the number of attack operations decreases
12%-28%, but the number of adversaries decreases more
significantly: at least 36% for Google devices and at least
65% for all other OEM devices. This suggests that the
level of decrease in attack operations does not reflect the
corresponding reduction in the number of adversaries. We
observe that the remaining adversaries are file management
apps given MES and REX permissions in Scoped Storage,
which conflicts with their low privilege classification under
the Google Privilege Levels [15] in Table 1. It is future work
to assess whether permissions should be refined further to
reduce attack operations or additional privilege levels need
to be added to accommodate such apps.

8.5 Vulnerability Case Studies

Using the attack operations computed by POLYSCOPE, we
manually identified two previously unknown vulnerabil-
ities that we describe below as well as other resources
that face significant risks. We have ethically reported these
vulnerabilities.

Replace Over-the-Air Updates: We found a new vulnera-
bility in the Oneplus 8T system running Android 11 release.
We found that Oneplus temporarily stores an OTA update
file in a hidden folder located in the root directory of
external storage (i.e., accessible to legacy apps). We found
that untrusted applications that request the legacy apps can
observe the OTA download and replace the OTA update
file before installation takes place. This could potentially
grant root privilege to attackers with a properly engineered
OTA update file. POLYSCOPE further identified many other
objects stored in legacy location vulnerable to adversarial
legacy apps. These files include configuration files, log files,
cache files, and cookies. We did not fully explore how
these attack operations can be exploited, but it is extremely
dangerous for privileged apps to store their data files in
locations accessible to legacy apps. The above vulnerability
shows the danger of legacy apps, and how OEMs may not
use external storage correctly in the face of legacy apps.

Malicious Code Execution: We found potential vulnerabil-
ity related to the Quick App feature that is widely used by
major Chinese OEMs including Huawei, Lenovo, Oneplus
and Xiaomi. Quick App is a lightweight framework that
allows users to access simple services (i.e., weather, taxi,
payment) without installing heavyweight APKs. One of
the most used features is gaming, where users can start
playing with one simple click. On the Oneplus 8T Android
11 device we tested, POLYSCOPE found that the Quick App
framework stores executable files in a hidden folder located
in a legacy location, where malicious legacy apps can easily
squat. The Quick App framework is a highly privileged
victim running as a pre-installed platform app. We did
not fully evaluate how much damage we can done to the

Fig. 5. POLYSCOPE Analysis Performance

system, but we are able to cause the Quick App service to
restart by corrupting the game files.

8.6 POLYSCOPE Analysis Performance
We measured the performance of POLYSCOPE in analyz-
ing the six Android releases supporting Scoped Storage.
The overhead was measured on a Mac M1 Pro (10 cores)
with 16GB of RAM. We measure the performance of the
POLYSCOPE Main and Workers to compute attack opera-
tions as described in Section 7.

Unlike the original POLYSCOPE tool [27], we use a
multi-process implementation to leverage parallelism for
POLYSCOPE Workers, as described in Section 7. Initially, we
divided the objects among the workers evenly, but we found
that this results in an unbalanced load as some objects have
many more readers and writers than others. As a result, we
assign the objects one at a time to workers, which tends to
balance the load.

Figure 5 shows the performance results. We measure
the performance of POLYSCOPE’s analysis using 1 to 64
processes. We can see that performance benefits significantly
as we increase the number of processes, from over 6,000s for
a single process to a maximum of 524s for 64 processes for
the six Android systems.

9 DISCUSSION

Limitations of POLYSCOPE: We identify three limitations
of the current POLYSCOPE tool: (1) POLYSCOPE requires a
rooted phone to collect filesystem data; (2) POLYSCOPE can-
not always determine the mapping among multiple access
control policies for all subjects; (3) POLYSCOPE cannot con-
firm vulnerabilities from attack operations automatically.

Without rooting the phone, we cannot gather DAC in-
formation from privileged directories such as /system.
Recently, Hernandez et al. [19] proposed BigMAC, which
includes a technique to extract accurate DAC configuration
data from these privileged directories (∼95%). However,
we found that BigMAC cannot extract files effectively from
some directories, such as /data, as described under Data
Collection in Section 7. We will explore methods to achieve
complete recovery in future work.

Another limitation of POLYSCOPE is that we cannot map
all processes to complete subjects as defined in Section 6.1.
The main problem is to connect the package name and UID
from the package list (see Section 7 for POLYSCOPE Main)
to the MAC label/MLS category. Recall that the mapping
between UID and MAC label is determined by running the
program [7], but not all packages listed can be run, as some

12

TABLE 6
Number of Apps and Their Victims (for Attack Operations) for Scoped-Apps vs. Legacy-Apps

Google Devices OEM Devices
Pixel3a 11.0 Pixel3a 12.0 Galaxy S20 11.0 Galaxy S20 12.0 Oneplus8T 11.0 Oneplus8T 12.0

Legacy-App Count 11 18 44 44 23 22
Victims of Legacy-Apps1 141 254 280 286 275 293

Object Count 6 4 44 24 53 57
Scoped-App Count 106 252 230 205 222 215

Victims of Scoped-Apps2 69 124 120 125 113 108
Object Count 4 2 12 10 31 33

Unit: Subject Count
1 Number of unique victims with IVs where an adversary is a legacy app.
2 Numbers of unique victims with IVs where an adversary is a compliant app

TABLE 7
Attack Operation Comparison between Current Systems and Fully Enforced Scoped Storage

Google Devices OEM Devices
Pixel3a 11.0 Pixel3a 12.0 Galaxy S20 11.0 Galaxy S20 12.0 Oneplus8T 11.0 Oneplus8T 12.0

Ext-Storage Attack Operations 241 219 3,219 1,906 3,929 4,454
Full-Scoped Attack Operations1 173(-28%) 166(-24%) 2,831(-12%) 1,620(-15%) 3,222(-18%) 3,564(-20%)

Ext-Storage Adversaries 25 22 62 57 61 63
Full-Scoped Adversaries2 16 (-36%) 9(-59%) 18(-70%) 18(-68%) 21(-65%) 16(-74%)

1 Fully enforced Scoped Storage attack operation count
2 Numbers of unique attackers after Scoped Storage is fully enforced

have abstract names. We compare the number of entries
in the package list to the number of unique subjects we
compute per system. For Google devices, the count is the
same, but for OEM devices up to 10% of the package list
entries are unmapped (for Samsung Galaxy 11.0 and 12.0).
We will explore how to complete this mapping in the future.

Finally, POLYSCOPE lacks a systematic way to test the
victims for vulnerabilities to the attack operations found.
There are two problems to address. First, we need to know
when a victim may use a resource that is associated with an
attack operation. This is difficult to determine statically. The
STING system [49] provides passive runtime monitoring of
processes for use of bindings that could be used to perform
file squatting and link traversal attacks using DAC policies,
so such a runtime monitoring approach could be extended
to utilize attack operations generated by POLYSCOPE. Sec-
ond, once we know when a victim may be threatened by an
attack operation, we need to generate test cases that could
exploit the victim. Current fuzzing techniques [20] do not
target these types of attack operations. Runtime monitoring
techniques [49, 46] and similar techniques for assessing use
of Android intents [1] generate simple test cases, enabling
detection of unprotected cases. We aim to generate test cases
that account for the conditional checks in the program fully.
Limitation of Scoped Storage: In terms of Scoped Storage,
most of the security problems are caused by OEMs not
following the safe guidance or using the legacy flag as
shown in Section 8.3. We expect the problem to ease and
disappear when Scoped Storage is fully enforced. However,
attack operations caused by third party application with
MES shown in Section 8.4 will still exist and we believe
that a more fine-grained permission control is needed. Po-
tential methods include new data access API specifically
for MES apps or new resources protection technique for
all applications. An intermediate solution will be limiting
MES permission usage while apps are in the background, or
notify users when apps are using MES.

10 RELATED WORK
Researchers have long been aware of the three types of
integrity violations listed in Section 5, but have encountered
difficulties in defending vulnerabilities associated with such
violations. Various mechanisms have been proposed to pre-
vent attacks during name resolution, including defenses

against binding and pathname vulnerabilities. These de-
fenses have often focused on TOCTTOU attacks [31, 3,
11]. Some defenses are implemented as program or library
extensions [9, 34, 10, 43], while others are implemented
as kernel extensions [25, 35, 6, 33, 44, 45]. The methods
overlap, with some enforcing invariants on file access [9,
25, 45, 34, 35, 44], some enforcing namespace invariants [6,
33], and some aiming for ”safe” access methods [10, 43].
In general, program defenses have been limited by their
lack of insight into the system state, while system defenses
have been limited by their lack of side-information about
the program’s intent [5].

The main defense for preventing filesystem vulnerabili-
ties is access control. If the access control policies prevent an
adversary from accessing the filesystem resources that en-
able attack operations, then the system is free of associated
vulnerabilities. However, the discretionary access control
(DAC) policies commonly used do not enable prediction
of whether a subject may obtain an unauthorized permis-
sion [18], so techniques to restrict DAC [28, 36, 42] and
apply mandatory access control (MAC) enforcement [12,
2] were then explored, culminating in MAC enforcement
systems, such as Linux Security Modules [52] employed
by SELinux [37] and AppArmor [32]. Researchers then
proposed MAC enforcement for Android systems [53, 4], so
a version of SELinux [37] targeting Android was developed,
called Security Enhanced (SE) Android [40]. However, the
attack operations we find in this paper abuse available
MAC enforcement. While these techniques have been de-
veloped to limit the permissions available to individual
system calls [39, 48], such techniques need policy analysis
to determine the policies to enforce.

Researchers have proposed using access control policy
analysis to identify misconfigurations that may lead to vul-
nerabilities [22, 38], but traditionally, access control policy
analysis methods only reason about one policy, such as a
mandatory access control (MAC) policy [38, 24, 8, 47] or
an Android permission policy [13, 50, 51]. However, based
on the research challenges above, we must consider the
combination of the access control policies employed on the
system to compute attack operations accurately. Chen et
al. [7] were the first work that we are aware of to combine
MAC and DAC policies in access control policy analysis.
Hernandez et al. [19] further extended their analysis to

13

include MAC, DAC and Linux capabilities. However, both
of these techniques compute data flows, which are much
more numerous than integrity violations.

11 CONCLUSIONS
Android employs filesystem access controls for platform
integrity. Our paper introduces POLYSCOPE for triaging
filesystem vulnerabilities using a blend of mandatory
and discretionary access control policies. We also exam-
ine specialized controls like Android permissions and the
newly implemented Scoped Storage defense. We extended
POLYSCOPE to analyze Scoped Storage in tandem with
existing policies. Applying POLYSCOPE to eight Android
releases revealed that Scoped Storage reduces the attack
surface effectively. However, legacy apps still introduce
vulnerabilities. OEMs should prioritize making privileged
apps Scoped Storage-compliant.

REFERENCES

[1] Yousra Aafer, Nan Zhang, Zhongwen Zhang, Xiao
Zhang, Kai Chen, XiaoFeng Wang, Xiaoyong Zhou,
Wenliang Du, and Michael Grace. Hare Hunting in
the Wild Android: A Study on the Threat of Hanging
Attribute References. In Proceedings of the 22nd ACM
Conference on Computer and Communications Security,
pages 1248–1259, 2015.

[2] Kenneth Biba. Integrity Considerations for Secure
Computer Systems. Technical report MTR-3153,
MITRE, April 1977.

[3] Matt Bishop and Michael Dilger. Checking for race
conditions in file accesses. Computer Systems, 9(2),
Spring 1996.

[4] Sven Bugiel, Lucas Davi, Alexandra Dmitrienko,
Thomas Fischer, Ahmad-Reza Sadeghi, and Bhargava
Shastry. Towards Taming Privilege-Escalation Attacks
on Android. In Proceedings of the 19th Network and
Distributed System Security Symposium(NDSS), 2012.

[5] Xiang Cai, Yuwei Gui, and Rob Johnson. Exploiting
Unix File-System Races via Algorithmic Complexity
Attacks. In IEEE Statistical Signal Processing Workshop,
2009.

[6] Suresh Chari, Shai Halevi, and Wietse Venema. Where
Do You Want to Go Today? Escalating Privileges
by Pathname Manipulation. In Proceedings of the
17th Network and Distributed System Security Sympo-
sium(NDSS), 2010.

[7] Haining Chen, Ninghui Li, William Enck, Yousra
Aafer, and Xiangyu Zhang. Analysis of SEAndroid
Policies: Combining MAC and DAC in Android. In
Proceedings of the Annual Computer Security Applications
Conference (ACSAC), 2017.

[8] Hong Chen, Ninghui Li, and Ziqing Mao. Analyzing
and Comparing the Protection Quality of Security
Enhanced Operating Systems. In Proceedings of the
16th Network and Distributed System Security Sympo-
sium(NDSS), pages 11–16, 2009.

[9] Crispin Cowan, Steve Beattie, Chris Wright, and Greg
Kroah-hartman. RaceGuard: Kernel Protection from
Temporary File Race Vulnerabilities. In Proceedings
of the 10th conference on USENIX Security Symposium,
2001.

[10] Drew Dean and Alan Hu. Fixing Races for Fun and
Profit. In Proceedings of the 13th conference on USENIX
Security Symposium, 2004.

[11] Shaoyong Du, Xin Liu, Guoqing Lai, and Xiangyang
Luo. Watch out for race condition attacks when using
android external storage. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS ’22, pages 891–904, Los Angeles,
CA, USA, 2022. URL: https : / / doi . org / 10 . 1145 /
3548606.3560666.

[12] Bell Elliott and Leonard La Padula. Secure Com-
puter System: Unified Exposition and Multics Inter-
pretation. Technical report ESD-TR-75-306, Deputy for
Command and Management Systems, HQ Electronic
Systems Division (AFSC), March 1976.

[13] William Enck, Machigar Ongtang, and Patrick Mc-
Daniel. On Lightweight Mobile Phone Application
Certification. In Proceedings of the 16th ACM Conference
on Computer and Communications Security, pages 235–
245, 2009.

[14] Google. Android Security Bulletin-July 2022. July
2022.

[15] Google. Security Updates and Resources. 2022. URL:
https : / / source . android . com / docs / security /
overview / updates - resources # process types. Ac-
cessed Dec. 10, 2022.

[16] Google. Storage Updates in Android 11. URL: https :
//developer.android.com/preview/privacy/storage.
Accessed June 2022.

[17] Norm Hardy. The Confused Deputy: or Why Capabil-
ities Might Have Been Invented. ACM Special Interest
Group in Operating Systems, Operation System Review,
22(4), 1988. ISSN: 0163-5980.

[18] Michael Harrison, Walter Ruzzo, and Jeffrey Ullman.
Protection in Operating Systems. Communications of
ACM, August 1976.

[19] Grant Hernandez, Dave Jing Tian, Anurag Swarnim
Yadav, Byron J Williams, and Kevin RB Butler.
BigMAC: Fine-Grained Policy Analysis of Android
Firmware. In Proceedings of the USENIX Security Sym-
posium, 2020.

[20] Antonio Ken Iannillo, Roberto Natella, Domenico
Cotroneo, and Cristina Nita-Rotaru. Chizpurfle: A
Gray-box Android Fuzzer for Vendor Service Cus-
tomizations. In Software Reliability Engineering (ISSRE),
IEEE 28th International Symposium, pages 1–11, 2017.

[21] Trent Jaeger. Reference monitor. In Henk C. A. van
Tilborg and Sushil Jajodia, editors, Encyclopedia of
Cryptography and Security, 2nd Ed, pages 1038–1040.
Springer, 2011.

[22] Trent Jaeger, Antony Edwards, and Xiaolan Zhang.
Managing Access Control Policies Using Access Con-
trol Spaces. In Proceedings of the Seventh ACM Sympo-
sium on Access Control Models and Technologies, pages 3–
12, New York, NY, USA, 2002.

[23] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang. An-
alyzing integrity protection in the SELinux example
policy. In Proceedings of the 12th USENIX Security Symp.
August 2003.

[24] Trent Jaeger, Reiner Sailer, and Xiaolan Zhang. An-
alyzing Integrity Protection in the SELinux Example
Policy. In Proceedings of the 12th USENIX Security
Symposium, 2003.

https://doi.org/10.1145/3548606.3560666
https://doi.org/10.1145/3548606.3560666
https://source.android.com/docs/security/overview/updates-resources#process_types
https://source.android.com/docs/security/overview/updates-resources#process_types
https://developer.android.com/preview/privacy/storage
https://developer.android.com/preview/privacy/storage

14

[25] Kyung-suk Lee and Steve J. Chapin. Detection of File-
based Race Conditions. International Journal of Informa-
tion Security, 2005.

[26] Yu-Tsung Lee, Haining Chen, and Trent Jaeger. De-
mystifying Android’s Scoped Storage Defense. IEEE
Security & Privacy, 19(5), 2021.

[27] Yu-Tsung Lee, William Enck, Haining Chen,
Hayawardh Vijayakumar, Ninghui Li, Daimeng
Wang, Zhiyun Qian, Giuseppe Petracca, and
Trent Jaeger. PolyScope: Multi-policy access control
analysis to compute authorized attack operations in
Android systems. In Proceedings of the 30th USENIX
Security Symposium, August 2021.

[28] Richard Lipton and Lawrence Snyder. A Linear Time
Algorithm for Deciding Security. In Proceedings of the
17th Annual Symposium on Foundations of Computer
Science, 1976.

[29] Peter Loscocco et al. The Inevitability of Failure: The
Flawed Assumption of Security in Modern Comput-
ing Environments. In Proceedings of the 21st National
Information Systems Security Conference, pages 303–314,
1998.

[30] Slava Makkaveev. Man-in-the-Disk:Android Apps Ex-
posed via External Storage. February 2019. URL: https:
//research.checkpoint.com/2018/androids-man-in-
the-disk/.

[31] W. S. McPhee. Operating System Integrity in OS/VS2.
IBM System Journal, 13:230–252, 3, September 1974.

[32] Novell. AppArmor Linux Application Security. http:
//www.novell.com/linux/security/apparmor/.

[33] OpenWall Project - Information Security Software for
Open Environments. http : / / www. openwall . com/,
2008.

[34] Jongwoon Park, Gunhee Lee, Sangha Lee, and Dong-
kyoo Kim. RPS: An Extension of Reference Monitor
to Prevent Race-Attacks. In Advances in Multimedia
Information Processing, 2004.

[35] Calton Pu and Jinpeng Wei. Modeling and Preventing
TOCTTOU Vulnerabilities in Unix-style Filesystems.
In IEEE International Symposium of System Engineering,
2006.

[36] Ravi Sandhu. The Typed Access Matrix Model. In
Proceedings of the 1992 IEEE Symposium on Security and
Privacy, 1992.

[37] SELinux. -. URL: https://github.com/SELinuxProject.
(Accessed Dec 2022).

[38] SETools. URL: https : / / github . com /
TresysTechnology/setools. Accessed Dec 2022.

[39] Umesh Shankar, Trent Jaeger, and Reiner Sailer. To-
ward Automated Information-Flow Integrity Verifica-
tion for Security-Critical Applications. In Proceedings
of the 2006 Network and Distributed System Security
Symposium (NDSS), 2006.

[40] Stephen Smalley and Robert Craig. Security Enhanced
(SE) Android: Bringing Flexible MAC to Android. In
Proceedings of the 20th Network and Distributed Systems
Symposium (NDSS), 2013.

[41] StatCounter. OS Market Share. March 2020. URL:
https://gs.statcounter.com/os-market-share.

[42] Jonathon Tidswell and Trent Jaeger. An access con-
trol model for simplifying constraint expression. In
Proceedings of the 7th ACM Conference on Computer and
Communications Security, 2000.

[43] Dan Tsafrir, Tomer Hertz, David Wagner, and Dilma
Da Silva. Portably Solving File TOCTTOU Races with
Hardness Amplification. In USENIX Conference on File
and Storage Technologies, 2008.

[44] Eugene Tsyrklevich and Bennet Yee. Dynamic De-
tection and Prevention of Race Conditions in File
Accesses. In USENIX Security Symposium, 2003.

[45] Prem Uppuluri, Uday Joshi, and Arnab Ray. Prevent-
ing Race Condition Attacks on Filesystems. In ACM
Symposium on Applied Computing, 2005.

[46] Hayawardh Vijayakumar, Xinyang Ge, Mathias Payer,
and Trent Jaeger. Jigsaw: Protecting Resource Access
by Inferring Programmer Expectations. In Proceedings
of the 23rd USENIX Security Symposium, August 2014.

[47] Hayawardh Vijayakumar, Guruprasad Jakka, Sandra
Rueda, Joshua Schiffman, and Trent Jaeger. Integrity
Walls: Finding Attack Surfaces from Mandatory Ac-
cess Control Policies. In Proceedings of the 7th ACM
Symposium on Information, Computer and Communica-
tions Security, pages 75–76, 2012.

[48] Hayawardh Vijayakumar, Joshua Schiffman, and
Trent Jaeger. Process Firewall: Protecting Processes
During Resource Access. In Proceedings of the Eighth
European Conference on Computer Systems, 2013.

[49] Hayawardh Vijayakumar, Joshua Schiffman, and
Trent Jaeger. STING: Finding Name Resolution Vul-
nerabilities in Programs. In 21st USENIX Security Sym-
posium, 2012.

[50] Ruowen Wang, Ahmed M. Azab, William Enck,
Ninghui Li, Peng Ning, Xun Chen, Wenbo Shen, and
Yueqiang Cheng. SPOKE: Scalable Knowledge Collec-
tion and Attack Surface Analysis of Access Control
Policy for Security Enhanced Android. In Proceedings
of the ACM Asia Conference on Computer and Communi-
cations Security (ASIACCS), 2017.

[51] Ruowen Wang, William Enck, Douglas Reeves, Xin-
wen Zhang, Peng Ning, Dingbang Xu, Wu Zhou, and
Ahmed M. Azab. EASEAndroid: Automatic Policy
Analysis and Refinement for Security Enhanced An-
droid via Large-scale Semi-supervised Learning. In
Proceedings of the 24th USENIX Conference on Security
Symposium, pages 351–366, 2015.

[52] Chris Wright, Crispin Cowan, and James Morris.
Linux Security Modules: General Security Support
for the Linux Kernel. In USENIX Security Symposium,
2002.

[53] Liang Xie, Xinwen Zhang, Ashwin Chaugule, Trent
Jaeger, and Sencun Zhu. Designing System-Level De-
fenses against Cellphone Malware. In 28th IEEE Sym-
posium on Reliable Distributed Systems (SRDS), 2009.

https://research.checkpoint.com/2018/androids-man-in-the-disk/
https://research.checkpoint.com/2018/androids-man-in-the-disk/
https://research.checkpoint.com/2018/androids-man-in-the-disk/
http://www.novell.com/linux/security/apparmor/
http://www.novell.com/linux/security/apparmor/
http://www.openwall.com/
https://github.com/SELinuxProject
https://github.com/TresysTechnology/setools
https://github.com/TresysTechnology/setools
https://gs.statcounter.com/os-market-share

	Introduction
	Motivation
	An Example Vulnerability
	The Android External Storage Problem

	Background
	Access Control Policy Analysis
	Limitations of Current Techniques

	PolyScope Overview
	Threat Model
	PolyScope Design
	Identify Subjects and Objects
	Compute Permission Expansion
	Compute Integrity Violations
	Compute Attack Operations

	Implementation
	Evaluation
	Effects of Scoped Storage
	Reasons Scoped Storage Reduces Threats
	Problems with Legacy Applications
	Fully-Enforced Scoped Storage
	Vulnerability Case Studies
	PolyScope Analysis Performance

	Discussion
	Related Work
	Conclusions

