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1. INTRODUCTION

In access control, there is a natural conflict between specifying access rights (i.e.,
the operations that system subjects can perform) and ensuring system safety (i.e.,
that no subject has a permission that compromises the system’s security goals).
While we typically think of an access control model in terms of specifying access
rights, ensuring that a policy does not compromise system security by granting a
right that should not be authorized is the ultimate goal.

Traditionally, safety requirements are implicit in the model: the closed-world
assumption states that all rights that are not assigned are unsafe. While this is
theoretically plausible, it is not effective in practice. Many access control models use
aggregation (e.g., groups) and indirection (e.g., roles, attributes, and inheritance)
to reduce the effort of policy expression, but these models make it more difficult to
determine the actual rights that a policy makes available to a subject, or even a role.
As a result, explicit safety specification is often supported. For example, role-based
access control (RBAC) models [16; 35] include constraints for safety expression,
and there has been a significant amount of work on constraint expression in access
control models [1; 6; 13; 21].

Note that problems also occur in models where safety is implicit. In these models,
the problem is how to express exceptions to the basic policy. For the Bell-LaPadula
model, in certain cases, subjects must be able to “write down” to transfer informa-
tion between secrecy classes. In this case, the model is not expressive enough to
handle some necessary assignments, so some exceptional specifications are needed.
Ad hoc downgraders were created to solve this problem, but only so many of these
can be used before their complexity becomes an issue.

Given that some form of safety specification is necessary, the question that we
pose is whether an approach can be found to manage the complexity of access
control policies containing access rights and safety specifications. In particular,
we want to enable system administrators to understand the conflict between access
rights and safety specification and provide a means for resolving these conflicts while
preserving the maintainability of the specification. Toward this end, we start with
the notion of an access control space, the set of all possible permission assignments
of a subject (or role). There are three natural subspaces: the permissible subspace
(i.e., those assignments known to be allowed), the prohibited subspace (i.e., those
assignments known to be prohibited), and the unknown subspace (i.e., the ones for
which assignment is neither permitted nor prohibited). Ideally, these three sub-
spaces should partition the access control space and the unknown subspace should
be minimal, but in practice, subspaces are not disjoint and the unknown subspace
is large. Overlapping subspaces, such as the subspace containing assignments that
are both permissible and prohibited, cause the system administrator to refine and
complicate the policy and constraints. Often, these conflicts are caused by a few
statements, so we propose an approach to handle these conflicts that does not re-
quire modification of constraints and policy. By defining semantically meaningful
spaces that aggregate assignments, the effort to handle conflicts may be manageable
in many cases.

We have developed a tool, called Gokyo, that computes the various subspaces
given an access control policy and its constraints. We examine how this tool can
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assist a system administrator in visualizing and reducing the unknown subspace
and in managing conflicts to access control policies using an example policy for an
Apache web server system. This example demonstrates the basic features of the
Gokyo tool. To demonstrate the utility of such an approach on complete policies,
we examine the Apache web server policy in the context of the SELinux example
policy [33]. We are able to load the entire SELinux example policy into Gokyo
and perform our desired analysis. For our analysis, we define integrity constraints
on the Apache administrator and find a moderate number of conflicts that can
be addressed independently using Gokyo. Completing the access control space
definition is more difficult for the SELinux example policy because of the number
of new object types, but we demonstrate that it is useful to examine unknowns in
the context of the object types that are already associated with Apache subjects.

The remainder of the paper is structured as follows. In Section 2, we outline the
access control spaces problem. In Section 3, we describe our approach to solving
this problem by identifying conflicts and describing how they are managed. In
Section 4, we describe the Gokyo system which develops and enables analysis of
the access control space. In Section 5, we examine a policy for an Apache web
server system in detail using Gokyo. In Section 6, we examine the Apache web
server policy in the context of the SELinux example policy. Note that this policy
has significant differences from the first Apache example. In Section 7, we conclude
and describe future work.

2. THE POLICY MANAGEMENT PROBLEM
2.1 Background

Access control is the problem of determining the operations (e.g., read and write)
that subjects (e.g., users and services) can perform on objects (e.g., files and net-
work connections). A particular access control specification instance (or policy) is
called a configuration. A correct configuration (i.e., when no subject can obtain
an unauthorized right) is said to be safe [19]. Further, an effective configuration
enforces least privilege, whereby subjects have only the rights that are necessary
for the current tasks.

System administrators express safety requirements using a safety specification,
typically called constraints. Whereas a configuration states the operations that
can be performed, constraints state the configuration assignments that are not
permissible 1. As verification of the safety property for a general access control
model (e.g., Lampson access matrix and others like role-based access control) is
undecidable [19], the safety of each configuration is checked against the constraints.

The addition of a safety specification greatly complicates an access control policy
for three reasons: (1) constraint expressions are more complex than access control
expressions, in general; (2) constraint expressions are not fail-safe; and (3) con-
straints can introduce conflicts with the access rights specification.

First, since a constraint must prevent permission assignments on objects that
are not known a priori, predicate calculus is required to express constraints in
general. Typically, a propositional calculus is sufficient to express the access rights,

IWhile it is also possible to use constraints for stating required assignments, we use a different
term, obligations, for these types of constraints.
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so the addition of constraints requires a more complex expression language for the
access control model. While researchers have tried to devise useful, simpler safety
languages [1; 21] for RBAC models, these languages are still more complex than
those for permission assignment.

Second, constraints themselves are not fail-safe. Since constraints only prohibit
assignments, a missing constraint may result in a safety violation. That is, an
assignment can be made that would violate safety if a constraint is missing.

Lastly, when we have expressions for both the rights permitted and the rights
precluded, we have introduced the possibility of conflicts. While some general
approaches for handling conflicts have been proposed [17; 23], typically some degree
of policy refinement is necessary. The task of refining the constraints and access
rights to resolve these conflicts makes both expressions more complex.

As a result, the interaction between assignments (i.e., permissions granted) and
constraints (i.e., permission assignments precluded) is difficult to understand, such
that constraint specification is prone to error. Since a missing or incorrectly-
specified constraint can result in a safety violation, errors in constraint specification
are significant security problems. Further, constraint conflicts cause error-prone re-
finement of assignments and constraints which makes the problem of managing
access control specifications all the more difficult. We aim to develop an approach
by which we can understand the balance between assignments and constraints,
and we can manage the refinement of assignments and constraints to express our
security goals while limiting the complexity of the overall expression.

2.2 Related Work

This paper is not about access control models or constraint models per se, but it
is about the interaction between access control models and constraint models. The
issue then is to understand the scope of access control and constraint modeling, un-
derstand the issues in their interaction, and understand how these can be reasoned
about.

Since Harrison, Ruzzo, and Ullman’s seminal work on showing that safety is
undecidable for access matrix models [19] much work was done to determine rea-
sonable models and limitations under which safety is decidable and tractable [2;
3; 4; 37]. However, the limitations of such models proved to be too restrictive or
too complex to maintain, so constraints emerged as the most desirable approach to
manage safety. Recently, Koch et al. [26] revisited safety algorithms. They propose
an approach in which safety is decidable in their graphical model if each graph rule
either deletes or adds graph structure, but not both. This approach also presumes
that the configuration graph is fixed. The addition of new objects and permissions
may result in extensions that require reanalysis. Further, we are concerned with
mistakes by system administrators because they can modify policies in arbitrary
ways. In this case, such safety analyses are useless.

Several access control models support the expression of policy via positive and
negative permissions (e.g., OODBMSs [25] and operating systems [39]). In these
models, each positive assignment may imply multiple permissions (e.g., access to all
objects in a hierarchy). Negative permissions express exceptions to these implicit
assignments. Systems have a variety of ways of resolving conflicts between the
positive and negative permissions. In Windows 2000 [39], negative permissions are
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expressed prior to positive permissions because the first match takes precedence.
However, in general, the idea is that the negative permissions take precedence to
limit a broad positive assignment.

We view negative permissions as part of the configuration expression rather than
as constraints. This is because negative permissions in combination with positive
permissions express access rights, not safety requirements. Nonetheless, the notion
that negative permissions express exceptions to the access control policy is a useful
one. In this paper, access control specifications and constraints may conflict, but
these conflicts may be indicative of exceptions to these general specifications. Thus,
associating the appropriate conflict resolution to the conflict may be more effective
than modifying the general constraint or access control specifications.

Access control models have used explicit constraints at least since 1991 [38; 40].
The seminal role-based access control proposal included constraints [34], and a pro-
posal for a constraint model appeared not long after [13]. Since constraints define
relationships that must hold for all subjects and permissions, even those that have
not yet been defined, they must be expressed using a predicate logic in general.
Several models now include conditions limiting the use of permissions expressed in
predicate logic [6; 11; 28]. Because it is more difficult for system administrators
to write and maintain predicate logic constraints, other researchers have proposed
constraint formalisms based on graphs [21; 27; 32], simplified languages [1; 21],
and for specific types of constraints, such as separation of duty [15] or temporal
properties [5; 24]. The role-based access control standard proposes inclusion of
constraints for separation of duty [16]. For policy analysis, we need to support the
types of constraints that system administrators would express for safety require-
ments. We prefer simplified constraint expression supported by a graphical model,
both of which are supported by our graphical constraint model [21].

When specifications conflict, they must be resolved to make the policy unam-
biguous. Ferrari and Thuraisingham have identified that several conflict resolution
strategies may be useful depending on the domain [17]. Typically, one policy is cho-
sen for all conflicts, such as denials take precedence [23], and the types of conflicts
are limited, such as only those between positive and negative permissions. In this
paper, we examine conflicts in the context of permission management, so a wider
variety of conflicts are relevant as described in Section 3. Also, we enable different
conflict resolution strategies for the same class of conflicts.

Recently, a few efforts have been initiated to develop tools to help system ad-
ministrators manage access control specifications [14; 41]. Typically, these tools
enable system administrators to query the state of the access control relationships
(e.g., can subject s perform permission p?). While such tools certainly will help,
the query space can be too large to comprehend via low-level queries. Recently, Li
et al. [29] has examined algorithms for proving security properties, such as bounded
safety (i.e., can the set of principals that can access a resource be bounded by a
given set of principals), in Trust Management languages. They have shown that
polynomial algorithms for such properties exist in most cases. Such analysis exam-
ines the effect of delegation and the attainable rights, whereas we are interested in
the impact of the rights assignment using complex models on meeting higher level
security goals.

Bertino et. al. [9] propose a model by which the comparison of different access
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Fig. 1. An ideal access control space: the prohibited space prevents assignment, the permitted
space permits assignment, and whether an assignment should be allowed in the unknown space is
not known.

control models is possible (e.g., for expressive power). In order to represent a
wide variety of access control models, a generic representation of access control
specification is developed. This model includes a general model of constraints in
predicate logic. We expect that we could also use this framework as a basis for the
analyses discussed in this paper.

2.3 Access Control Spaces

Figure 1 gives an optimistic view of the relationship between constraints and access
control configurations. An access control space represents the permission assign-
ment state of a subject. It contains all permissions divided into subspaces based on
the assignments and constraints of the policy. An access control space tells us all
the permissions that a particular subject could be assigned and all the permissions
that that subject is prohibited from being assigned 2. We define two initial sub-
spaces: (1) the specified permission subspace contains the permission assignments
in the current configuration and (2) the prohibited permission subspace contains
the permission assignments precluded by the constraints.

We interpret the access control space conservatively: just because an assignment
exists in the configuration does not mean that it should exist, similarly, just because
an assignment does not exist does not mean that it should not. System adminis-
trators are not infallible, so it is possible that some assignments do not satisfy the
safety policy and that the access control policy is incomplete. Because of this inter-
pretation, we define a permissible subspace for the set of assignments that may be
made, including those that are not yet specified. The set of assignments explicitly
expressed in the model are specified. Generally, the permissible and prohibited as-

2We can also define a permission-centric access control space in which the possible subjects for a
permission can be identified.
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Fig. 2. A realistic access control space: sometimes the specified space conflicts with the prohibited
space and the unknown space.

signments do not fully define the access control space, so there is a region in which
the assignment status is unknown. For completeness, a subset of the permissible
assignments are also obligated, required for correct operation of the system.

Definition 1. An access control space for an entity E € RU S, where R and S
are the set of roles and subjects, respectively, consists of a set of named permission
sets P; that imply authorization semantics for E. These permission sets are:

—Specified Permissions: those permissions assigned to £

—Permissible Permissions: those permissions whose assignment to E is known
to be permissible

—Prohibited Permissions: those permissions whose assignment to E would vi-
olate safety (i.e., the unauthorized permissions)

—Obligated Permissions: those permissions whose assignment to E is required

—Unknown Permissions: those permissions that are neither permissible nor
prohibited for E

In this optimistic view of Figure 1, the specified assignments that comprise the
access control configuration are a subset of the permissible assignments and a su-
perset of the obligated assignments. The combination of permissible and prohibited
assignments reduces the number of unknown assignments. When all unknowns are
eliminated, the policy is said to be complete for that space. Typically, the permis-
sible and specified assignments are roughly the same, but subjects have a means
to reduce their specified rights to enforce least privilege (e.g., by domain transi-
tions [7]).

Unfortunately, this optimistic view is often far from the actual situation. A more
realistic depiction is shown in Figure 2. Permissible assignments are rarely defined,
so we often have a significant overlap between the specified assignments and the
unknown assignments (large, middle, solid area). Since the authorization semantics
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for permissible and unknowns subspaces are different, grant and unknown, respec-
tively, it is not clear how to handle the permissions that fall into the intersection.
We define subspaces that result from the intersection of subspaces with different au-
thorization semantics as conflicting subspaces. In Figure 2 all conflicting subspaces
are shown as hashed regions. The list of conflicting subspace types is provided in
Section 3.4.

Definition 2. A conflicting subspace P;_; for an entity E € RU S is the in-
tersection of two subspaces ¢ and j that imply conflicting authorization semantics
(i-e., multiple of grant, unknown, or deny).

The key problem is that an access control specification and constraints often re-
sult in subject-permission relationships whose authorization semantics cannot be
determined without further modification of the policy. This presents two problems
for system administrators: (1) that system administrators often do not have suf-
ficient information to handle proposed assignments in the unknown subspace and
(2) that system administrators often must resort to complex policy modifications
to resolve conflicts. On the first point, we believe that a tool that can derive the
unknown subspace for the system administrators will enable them to manage and
reduce it to prevent misguided assignments in the future. On the second point, we
believe that many conflicts are caused by exceptions to general access control prop-
erties. Rather than destroying a nice general expression, we would rather address
small numbers of conflicts for what they are: exceptions. If there are a small num-
ber of conflicts, administrators should be able to easily manage them. Regardless,
making conflict management explicit enables administrators to balance conflict res-
olution with policy specification. The following two examples demonstrate some of
the intuitive reasoning behind these ideas.

2.4 Example: Health Care System

The application of access control to health care to enforce legal access requirements
is common, so we briefly discuss its access control space. Much effort has been spent
trying to fully describe the access control assignments in a hospital, however, the
dynamic nature of a hospital makes it very difficult to express these assignments
completely. Emergencies demand that doctors who may not normally be permitted
to see a patient’s records be allowed to see these records in order to save the patient’s
life. There is not time to update the access rights to the patient’s data.

Example 1. In this example, a doctor has the following access control space:

—Prohibited: hospital administration data (e.g., building plans)

—Specified, Permissible, and Obligated: all the patient records for the doc-
tor’s patients

—Unknown: all patient record neither permissible nor prohibited

The most practical solution that we are aware of is to permit a doctor to access
other patients’ records (i.e., the unknown subspace) upon request by the doctor.
The system audits the use of permissions in the unknown subspace [30]. In this
case, the unknown space of doctors’ assignments remains large, but a doctor may
override the system to access these permissions, but such access is audited. Given
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Fig. 3. View of a web server architecture; the administrator sets up a server that handles web
requests and forwards script processing to one of the script servers.

the social constraints on doctors and the penalties that they could face for the abuse
of information (e.g., loss of a lucrative career), such an approach seems practical.

The importance of this example is that the semantics of a subspace sometimes
identifies the appropriate security approach directly. Thus, additional access control
specification beyond specifying the resolution is not necessary.

2.5 Example: Web Server System

A second example, one that we will investigate further in this paper, is that of a
web server system. This example is shown in Figure 3. As subjects, we have a set
of administrators, a web server, script servers, and system users. The administra-
tors load the web server system, including the web server, the system scripts, and
system web pages, and can initiate the web server. The web server receives user
requests, authorizes them, and serves the appropriate web pages. When the web
page references a CGI script, the appropriate script server is notified to execute the
script. Scripts also may access local files. Given that there are user and system
scripts, we define two different script servers, one for each type of script. Users
can make HTTP requests and create their own web pages and scripts (may be two
different sets of users).

Example 2. In this example, a web server has the following access control space:
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—Specified and Permissible: permissions necessary for Apache web server to
execute as determined by the system administrator, given that scripts are read
and executed outside the web server

—Prohibited: read and execute permission to objects that can be modified by
lower integrity subjects (e.g., users and other applications)

—Unknown: Remaining permissions are unspecified with respect to the web server

What we have found, and discuss in much more detail in Sections 5 and 6, is that
some conflicts arise between the safety policy (i.e., prohibited permissions defined
by constraints) and the specified assignments. In some cases, only a small number
of permission assignments are responsible for these conflicts.

Unlike the health care example, there may be conflicts between the prohibited
and specified permissions. In general, we can partition the conflicting subspace into
those permissions that are permitted and those that are allowed. However, the use
of other security mechanisms may result in a finer partitioning. Further, it may be
possible to automatically identify partitions and their resolution based on domain
information. For example, access to low integrity log files may always be permitted.
If the number of partitions can be automatically managed, then policy complexity
can be better managed.

The importance of this example is that conflicting subspaces may sometimes
require further partitioning. If the number of conflict classes in the partition is
small enough, these resolutions may be handled as exceptions. Thus, additional
access control specification beyond specifying the resolution is still not necessary.

3. THE ACCESS CONTROL SPACES APPROACH

We propose an approach to managing access control spaces as follows. First, we
specify the access control assignments to create a configuration. This defines the
specified subspace. This may be augmented with a permissible subspace, or we can
choose to assume that the permissible and specified subspaces are equivalent. Next,
we develop constraints to define the safety requirements. Unless the access control
space is quite simple, it is likely that conflicts between the prohibited subspace and
the permissible subspace will appear. Further, it is also likely that a significant
portion of the unknown subspace will still remain. In addition to the possibility of
refining the specification to remove conflicts or extending the specification to further
reduce the unknown space, the authorization semantics can be attached directly to
the conflicting subspaces. Like the health care example, we can specify a resolution
that includes additional processing, such as allowing the right and auditing its use.
Finally, a conflicting subspace can be further partitioned by additional semantic
information, such as the basis for the conflict. Conflict resolution can be expressed
per partition, if the number of partitions is not excessive.

In this section, we define the formal representation for the concepts used in the
access control spaces model. In Section 4, we detail how the access control spaces
approach is implemented by these concepts.

3.1 Access Control Model

Below we define the fundamental access control model used to express configura-
tions and constraints (based on our graph-based access control model [21]).
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Definition 3. An access control model for access control spaces consists of the
following concepts:

—Entities
—Subjects: s € S
—Roles: r € R
—Permissions: p € P

—Assignment Functions
—Subjects: S(x), where z € SURU P
—Roles: R(x), where z € SURU P
— Permissions: P(z), wherez € SURUP

—Subspace Functions
—Specified: Y (), where x as above and Y € {S, R, P}
—Permissible: Yy,(z), where x as above and Y € {S, R, P}
—Obligated: Y,(z), where z as above and Y € {S, R, P}
—Prohibited: Y.(x), where x as above and Y € {S, R, P}
— Unknown: Y,(z), where & as above and Y € {S, R, P}

—Propagations for all subspace functions

—Subject sets: S(s) = s|UV((si # s) € S(s))S(s:)

—Permissions sets: P(p) = pUV((pi # p) € P(p))P(p;)

—Inherited roles: Rir) = r JV((r; # ) € Rr))Rr;)

—Role’s permissions: P(r) = P(r)JV(r; € R(r))P(r;)

—Subject’s permissions: P(s) = P(s)|JV((s; # s) where s € S(s;))P(s;) U(Vr; €
R(s))P(ri)

—Role’s subjects: S(r) = S(r) |JV(riwherer € R(r;))S(r;)

—Permission’s subjects: S(p) = S(p) UV((p; # p) wherep € P(p;))S(p;) J(Vr; €
R(p))S(rs)

—Subject’s roles: R(s) = R(s)|JV((s; # s) where s € S(s;))R(s;)

—Permission’s roles: R(p) = R(p) UV ((pi # p) where p € P(p;))R(p;)

—Constraints

—ux > y, where z and y are sets (e.g., defined by subspace functions) and > is a
constraint type

The model consists of three main concepts: subjects, roles, and permissions.
These correspond to the same concepts in a role-based access control (RBAC)
sense, although we can map many other models onto this representation, such as
the extended Type Enforcement (TE) model [12] used by SELinux [33].

Each entity in the model can be assigned to one of the other entities. As is
traditional in RBAC, subjects and permissions can be assigned to roles. For a
particular role r € R, the set of subjects assigned to it and permissions assigned
to it are S(r) and P(r), respectively. S(r) is a function that returns the subjects
of role r, and P(r) is a function that returns the permissions of role 7. Roles can
be arranged in a hierarchy, such that R(r) defines the roles whose permissions are
inherited by role r.

Functions for subjects (S(z)), permissions (P(z)), and roles (R(z)) identify the
subjects, permissions, and roles associated with entity z. Entity z may be either a
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roles, and subjects assigned to these entities, respectively)

subject, permission, or role itself. For example, permissions can be assigned directly
to subjects (P(s)).

Entities may also represent sets. The set of subjects represented by s are defined
by S(s). The use is similar for permissions (P(p)). Subject sets collect subjects,
but the permissions and roles assigned to a subject set flow to its members. A
subject set defines the assignments to all members of that set. This means that a
role assigned to a subject is not assigned to a subject set, but a role assigned to a
subject set (and all its permissions) is assigned to each of its members. Likewise,
permission sets collect permissions, but subjects and roles assigned to a permission
set flow to its members.

The function R(r) represents role inheritance rather than a role set. As described,
permissions propagate to senior roles (i.e., senior roles inherit permissions), but
subjects propagate to junior roles (i.e., junior roles can be accessed by subjects
assigned to the senior roles).

The actual relationships between individual subjects, roles, and permissions that
result from explicit assignments are the result of the propagation of these assign-
ments. For example, if a subject is assigned to a role, the permissions assigned to
that role are propagated to the subject. For example, the permissions authorized
for a subject are the union of: (1) the permission sets assigned directly to that
subject; (2) the permissions assigned to subject sets to which this subject belongs;
(3) the permissions assigned to the roles to which the subject is assigned; and (4)
the permissions assigned to the roles that are inherited by the roles assigned to the
subject.

Example 3. Figure 4 shows an example of an access control specification using
this model. Subject sl has values S(s1) = s1, R(sl) = r2, and P(sl1) = P(r2).
That is, s1 represents one subject, s1, and is assigned to one role, r2. Since the only
route from propagation of permissions is through 72, s1’s permissions are defined by
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P(r2). The value of P(r2) = P(p6) and, since p6 is a permission set its permissions
are P(p6) = P(p4) U P(p5). Since p5 is an permission set as well, its permissions
can be further decomposed.

A role aggregate function is also used to describe sets of roles Rggq(z) (not
shown in the model description). Subjects and permissions from all roles in a
role aggregate are collected into that aggregate. That is the flow of subjects and
permissions goes from individual members to the aggregate for a role aggregate.
This differs from subject and permission sets. Role aggregates are mainly used in
constraints. Subject and permission aggregates have not been defined yet.

In addition to the specified permissions, each entity also represents the other sub-
space relationships. For the permission relationships of a role, we refer to: P,(r)
(obligated), Ppy(r) (permissible), P.(r) (prohibited or constrained), and P,(r) (un-
known). P,(r) and P.(r) are derived from obligatory and prohibiting constraints,
respectively. P,(r) is often assumed to be the same as P(r) although we are looking
into alternative ways to derive this set. We describe how P,(r) is derived in the
Section 3.3. Such functions are also defined for subjects. The inverse functions
for permissions (e.g., S:(p) for the prohibited subjects of a permissions p) are also
defined, although we do not use any constraints on subjects in our examples.

3.2 Constraint Model

For expressing constraints in this model, we also use a set-based approach [21]. In
general, constraints are expressed in terms of two sets and a comparator function,
set; D sete, where < represents some comparator function. Such comparators
are set operations, such as disjointness (i.e., null intersection, represented by the
symbol 1), cardinality of intersection, subset relations, etc.

Example 4. A disjoint constraint x L y means that no member of set x may
be a member of set y. For example, P(rl) L P(r2) means that the permissions of
role rl may not intersect with the permissions of role r2.

Example 5. We define a constraint type for integrity. An integrity constraint
z || y where x € RUS and y € RU S means that the set of read and execute
permissions of £ must not refer to any objects to which y has write permissions.

Because constraints can represent complex relationships (e.g., violated if two of
the elements match), we store constraints in constraint instances that consist of a
constraint test (e.g., disjoint) and a set of constrained values to be tested.

When constraints are verified, the values in the constraint instance are tested
against the values in a set with different authorization semantics. For example,
when we test the prohibited and specified permissions for conflicts, we compare the
values in the specified set against the test values for the constraint.

The constraint test depends on the constraint comparator. For example, disjoint-
ness is violated if the constraint instance’s values intersect with the test set values.
A “not subset” constraint is violated if all the members of the constraint instance’s
values are in the test set.

The constraint instances also support the combination of constraints, such as
or’ing two constraint tests together. Such constraints have not been necessary for
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our examples thusfar. Constraints are and’ed by default.

Example 6. For Example 4, two constraint instances are created, both with
a disjointness test and with the following values : (1) P(rl) is the value of the
constraint instance assigned to P.(r2) and (2) P(r2) is the value of the constraint
instance assigned to P,.(r1).

Example 7. For Example 5, two constraint instance are created, both use the
disjointness test but with the following values: (1) P.(z) is assigned a permission
with all read and execute operations for each object type written by y and (2)
P.(y) is assigned a permission with all write operations for each object type read
or executed by .

3.3 Unknown Subspaces

An unknown subspace consists of all elements that are neither in the permissible
nor in the prohibited spaces. Logically, we union the permissible and prohibited
spaces, and compute the set difference between the entire space and this union.

Example 8. In Example 1, we discuss the doctor’s access control spaces in a
health care scenario. The doctor is permitted to access any of his patient data, but
prohibited from accessing hospital administration data. The unknown subspace
for a doctor in this case is the set of permissions that are neither his patient nor
hospital administration permissions.

Since the model uses predicates for constraints and obligations, the computation
for the unknown subspace is not that simple in general.

Definition 4. An unknown subspace X, (y) where X € {S,R,P} and y € SU
R U P consists of the members z € X such that: (1) z ¢ X,(y) where p indicates
the permissible subspace and (2) the assignment of z to a subspace X, (y) would
not result in the violation of a constraint (i.e., assignment to a conflicting subspace,
see Definition 4).

For each member of the X, we find whether it is assigned in the permissible
subspace of the target y or whether its assignment to the target would result in
the violation of a constraint. Thus, if X refers to permissions and y refers to an
instance of a role, the unknown subspace consists of the permissions that are neither
in: (1) the permissible permission space for that role nor (2) result in a constraint
violation if added to that role. Because the constraints may require complex tests,
we must check whether the permission violates any constraint, rather than simply
adding it to a constraint (see Section 4.2.1 for the algorithm). For each prohibited
set, it may be easier to compute the permissions that may violate that set than
check against the prohibited set. This has not been the case for disjointness and
integrity constraints.

Example 9. In Example 2, the web server needs certain permissions to execute,
but we want to protect the integrity of the web server process (e.g., by running low
integrity scripts in low-integrity script servers). In general, any permission assign-
ments that may compromise the integrity of the web server (i.e., write to objects
that the web server reads or executes) are prohibited. However, the permission as-
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signments that may compromise integrity depend on the permissions that the web
server uses. Thus, a permission assignment is unknown either if: (1) it is not per-
missible or (2) would not cause an integrity violation given the current permission
assignments to the web server.

For a particular configuration the set of all permissions, P, is finite, so it can
be enumerated. In this case, a permission for each possible right of each object
type can be created. Aggregation of objects into object types greatly simplifies
this process because: (1) it obviously reduces the number of permissions and (2)
it makes the number of permissions constant even as new objects are being added
or removed. Ultimately, the number of permissions that must be examined in an
unknowns analysis is on the order of the number of object types by the number
of operations per object type (i.e., this is type-dependent). Thus, it is possible
for this number to become relatively large (over 8000 for examining the Apache
administrator in the SELinux example policy in Linux 2.4.16), so doing unknowns
analysis over a subset of the complete access control space is also made possible.

3.4 Conflicting Subspaces

Initially, there may not be any constraints, so by examination of the unknown space
we can determine which constraints seem appropriate for reducing the unknown
subspace. Initially, these constraints will be coarse-grained because we want to
eliminate a large number of unknowns and we will tend to over-generalize the
constraints. Thus, such constraint specification may result in conflicts between the
set, of permissible assignments and prohibited assignments.

Definition 5. A conflict between two subspaces, X;(y) and X;(y), occurs if the
assignment of a £ € X to one set violates a constraint in the other set. If there is
a conflict, the element 2 € X belongs to the conflicting subspace X;_;(y).

Definition 5 defines when an assignment causes a conflict, and hence, what a con-
flicting subspace is. Examining role permissions, the conflicting subspace P,_.(r)
is defined by the permissible assignments of P,(r) that violate constraints in the
prohibited subspace P.(r).

Example 10. In Example 9, we state that permissions that would not cause an
integrity violation are prohibited. By the definition of the integrity constraint in
Example 7, using low and high as the low and high integrity entities, respectively,
P.(low) contains write permissions to the objects that are read or executed in
P,(high). Pp_.(low) then consists of the intersection of P,(low) and P,(low) as
defined.

We list the different types of conflicting subspaces:

(1) Unknown-Specified: If an assignment is in the unknown subspace, then it is
unclear whether such an assignment should be permitted in the configuration.
If it is allowed, it is also unclear what should be done when the permission
is used. In the health care example, such an assignment is permitted for the
doctor role, but the permission’s use is audited.

(2) Prohibited-Permissible: Often an overly general constraint results in iden-
tifying assignments that are both permissible and prohibited. We must either
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revise the specification or determine whether the exception is permissible or
prohibited.

(3) Prohibited-Specified: Same as prohibited-permissible.

(4) Unknown-Obligated: If an assignment is obligated, but is not necessarily
permissible, then it is possible that the obligation constraint is too general. Like
above, such exceptions must be resolved either by revising the specification or
determining whether the exception is really obligated.

(5) Not Specified-Obligated: The same as unknown-obligated.

Historically, such conflicts are addressed by modifying the constraints or assign-
ments until the conflict is removed. However, in examining a configuration as an
access control space, we see that an alternative is to define semantics on how to
handle the conflicting subspaces instead.

For each conflicting subspace, we can attach resolution semantics for describing
how these ambiguous assignments may be handled. The basic resolutions that we
have used thusfar include: (1) allow; (2) allow and audit; (3) deny; and (4) deny
and audit. We also envision intrusion detection analysis, system monitoring, and
input sanitization as further options for resolution. These options may require
post-processing hooks (e.g., to sanitize the results of a read operation).

It may not be possible to attach a single resolution semantics to an entire con-
flicting subspace. In these cases, the conflicting subspace must be decomposed into
partitions representing equivalence classes based on the implied conflict resolution.
Finer-grained decomposition that aids in the management of conflicting cases is
also acceptable. For example, system administrators may find it easier to handle
all conflicts due to a particular assignment in a group.

In the access control spaces model, we assign a handler that defines the con-
flict resolution to each partition in the conflicting subspace. If there are n par-
titions for conflicting subspace P,_.(r), then, for each partition i < n, a handler
handler(Py—.(r),i) is defined. Thus, in the case where all the members of the
conflict set are handled the same way, as in the health care example, only a sin-
gle handler is necessary for the entire conflicting subspace (allow and audit). For
the web server example, a handler is defined for each partition of conflicts. If the
number of partitions is small enough, these conflicting partitions can be handled
explicitly as exceptions.

Although the subspaces vary for each configuration, it is important to note that
not all configuration changes require re-analysis of the access control spaces. Only
those configuration changes that impact the partitions of the conflicting subspaces
need to be considered. This occurs when new elements are added to the conflicting
spaces.

4. ACCESS CONTROL SPACE SYSTEM

We have built a prototype system called Gokyo that enables us to develop and
analyze the access control spaces [22]. The origin of the name is two-fold: (1) Gokyo
Ri is a mountain near Everest that symbolizes incremental improvement towards
the peak and (2) Gokyo Kumite is a form of judo that consists of predetermined
offensive and defensive strategies that symbolizes the iterative process of analyzing
and refining access control policies. The name represents our philosophy that access
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control policies should be incrementally developed like programs and be verifiable
against criteria like program testing.

4.1 Implementing the Graphical Model

Using Gokyo, we define access control policies in a graphical access control model
from which access control spaces are generated and analyzed. The graphical access
control model corresponds to the access control model presented in Section 3.1
and describes policies as shown in Figure 4. Permissions, roles, and subjects are
represented by graph nodes. Note that objects are represented by permissions with
no rights. In general, a node represents a set, so it is possible to build set-hierarchies
consisting of sets of individual permissions, roles, and subjects.

Each graph node stores the subspace functions listed in the access control model.
These list the permissions, roles, and subjects assigned to this node for each access
control subspace. In addition to this information, permission nodes also store the
object class (i.e., datatype) and operations permitted by the permission.

Graph edges represent assignments between two nodes. Like the variety of nodes,
there are also a variety of assignments: subject and permission assignments to roles,
subject and permission sets, role inheritance, and constraints. Further, permissions
and subjects may be assigned directly to one another. Values are propagated along
assignments as discussed in the previous section.

Gokyo stores relationships by reference. For example, when p6 is assigned to r2
in Figure 4, a reference to the set of permissions of p6 is assigned to P(r2), and
a reference to the set of roles in 72 is stored in R(p6). Thus, the sets of subjects,
roles, and permissions assigned to a node are represented as trees of reference sets.
For example, the set of permissions assigned to s1 (P(sl)) is a tree rooted at
P(r2), followed by child P(p6), children {P(p4), P(p5)}, and the children of p5 are
{P(pl), P(p2), P(p3)}. Representing sets by reference reduces the memory usage
of the model and keeps the model consistent across all nodes even when changes
occur. Cyclical reference propagation cannot be supported, but an assignment that
leads to a cyclical reference is an error in the model.

Further, the trees of assignments store the path of assignments that led to the
resultant relationship. For example, the path of assignments that resulted in p1
being assigned to sI is p! (assigned to self), ps, p6, r2, and sl. Each reference
set also stores the origin of the definition (for nodes) or assignment in the input.
That is, there is an definition statement in the policy for s1 and p1, and assignment
statements in the policy for assignments between p! and p5, p5 and pé6, p6 and r2,
and r2 and sI. For the SELinux policy, we store the line number of the definition
or assignment statements in policy.conf.

As discussed in Section 3.2, we use a binary constraint model.

Definition 6. The Gokyo data structure for a constraint instance is:

—mnodel: one node in the binary constraint

—node2: other node in the binary constraint

—comparel: select the set from nodel

—compare2: select the set from node2

—op: constraint operator that defines how constraint is initialized and verified
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The constraint includes the two nodes in the binary constraint, the means for
computing the two sets to compare, and the constraint operator that defines the
comparison. At present, we only have constraints that represent prohibited as-
signment, but we expect that a similar representation will apply for obligated as-
signments. Also, our current constraints only compare the permissions of various
nodes. Thus, the compare values identify the appropriate permission sets, typically
the specified permissions, P(x). In principle, it is also possible to describe compare
values that filter the set of permissions, such as the permissions for a subset of
object types. At present, these filters have not been necessary.

Recall that the prohibited assignments store a set of constraint instances, one
for each constraint applied to the node. The op field represents the constraint. It
contains two functions. First, the init function computes the constrained values of
this instance. For the constraint in Figure 4, the permission tree assigned to r1 is
the constrained set for 2 and vice versa. Second, the verify function specifies the
constraint test. Thus, new constraints can be created by defining new constraint
objects and their init and verify functions.

4.2 Constructing Access Control Spaces

Gokyo computes the unknown subspace and the following conflict spaces for each
subject and role: unknown-specified, permissible-prohibited, specified-prohibited,
and obligated-unknown.

4.2.1 Computing the Unknown Subspace. For the unknown subspace of any role,
we start by computing all the base permissions in the space (i.e., the permissions
with one operation permitted). For each object type, we create a permission for
each individual operation. This suffices for unknowns analysis because we want
to know which individual rights have not been assigned, not which combination of
rights.

For these base permissions, we test whether they are assigned to the permissible
subspace by finding whether a permissible permission assignment for the target role
subsumes the permission. If so, the base permission is known and it is removed from
the test set. To improve performance, we compare only those permissions referring
to the same datatype. Thus, the algorithm cost is bounded by the product of the
number data types and the number of operations of the data types. Of course,
we need not generate all unknowns each time. For example, most of the Apache
objects are files.

For each of the remaining base permissions, we must verify that the addition
of this permission to the role does not cause a constraint violation. Thus, each
base permission is added to the permissible permissions of the role temporarily
and the relevant constraints are checked. In this case, again only the constrained
permissions of the same data type need to be checked.

4.2.2 Computing Conflicting Subspaces. Computing conflicting subspaces typi-
cally involves comparing the assigned set (permissible, specified, or unknown) to
the constraint instances in the constrained sets (prohibited or obligated). For the
unknown-specified conflict set, there are no constraints, so the conflicting subspace
is derived by a simple intersection.

For testing an assigned set against a constraint instance, the verify function of
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Access Control Spaces

Specified
Role r2 Perm p6
Perms

Perm p4 ‘

Prohibited
Role r1 Perm p3
. Perms
Subject 1

Conflict Spaces

Handler: allow

S-P Conflict
. Perm p3
Partition 1
S-P Conflict
Partition 2

Fig. 5. One possible Gokyo access control analysis graph. Permission p3 is assigned to both the
specified and prohibited spaces by the paths shown, so the analysis places it in the conflicting
subspace. This permission assignment is allowed by specifying that its partition resolution is
allow.

Specified
Prohibited
Perms

the constraint is called to execute the constraint-specific test on the assigned set
and constraint values. Disjoint comparison is simply an intersection of the two
sets. This is also the case with integrity comparison. Cardinality tests require
some number of constrained values to appear in the assigned set.

We found that computing conflict spaces using trees of assignments made the
algorithms more complex because we may have to generate new intermediate trees
upon partial matches, so when we compute spaces we flatten any trees used into a
single set. We store the assignment paths in the flattened set members, so that we
can find the assignment path that led to the conflict.

Upon the detection of a conflict, Gokyo collects the conflicting assignment and
information necessary to identify the reason for the conflict: (1) the node with
the violated constraint; (2) the violated constraint; and (3) the assignments in the
constraint that resulted in the violation. The assignments in the constraint that
resulted in the violation are constraint-specific.

4.3 Analyzing Conflict Spaces

We have not yet spent much time on an interface, but we would expect that
Gokyo will be integrated with a graph drawing tool to draw the access control
spaces, including the conflicting subspaces. Figure 5 shows our vision for graphical
analysis of an access control space. For subject sI using the same policy presented
above in Figure 4, we show two subspaces, prohibited permissions and specified
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permissions, and their conflict space. The subspaces are connected to the nodes
through which the assignments occurred, so that we can see how p& came to be
assigned to both the specified and prohibited sets. The system administrator can
then determine whether any further partitions of the conflicting subspace is nec-
essary and what the resolutions should be. In Figure 5, we show 2 conflict parti-
tions, although p& is the only permission in the conflicting subspace, so no further
partitioning is really necessary. The conflicting subspace partition is assigned a
resolution (i.e., handler) that allows use of the conflicting permissions. While the
system administrator can refine the constraints and/or assignments to resolve the
conflict, handling the conflicting subspaces explicitly is often easier.

Given graphs such as this generated from the Gokyo output, system administra-
tors can: (1) evaluate the completeness of the access control policy; (2) determine
how to resolve conflicts; and (3) even estimate the complexity of the access con-
trol specification. First, the number and percentage of unknown assignments for
an access control space can be computed for any space. Rather than listing each
member of the unknown subspace, Gokyo can also provide summary information:
the percentage of the space that is unknown and the percent coverage for object
types to which permissions are assigned. Other summary information is possible,
such as the unknown percentages for each object type. The system administrator
can then determine whether the access control space is sufficiently covered by the
specification.

Second, the system administrators determine whether to reduce conflict spaces
by policy change or to manage them as conflicting subspaces. Policy changes are the
traditional way of resolving conflicts. Of course, misguided changes may actually
create new conflicts, and Gokyo can identify these by comparing the elements of
the previous and current conflict spaces. Management of conflicting subspaces
requires assigning conflicts to partitions and assigning handlers. If partitioning
and resolution is only necessary for a small number of cases or can be automated,
then this approach is often less effort. Since Gokyo does not enforce access control
policies, the specification of resolutions is simply stored by Gokyo. This policy
must be compiled into lower level representations usable by authorization modules.

Lastly, we believe that estimating the complexity of an access control model is
necessary to maintain it, so we examine ways that Gokyo can estimate the complex-
ity of the current policy representation. We have not seen much work on estimating
access control policy complexity, but we have examined some possible options [20],
aiming mostly at the complexity of using different concepts for specification. Ex-
plicit identification of the unknown subspace gives us another option. Given the
number of specifications expressed (s) and the fraction of the access control space
that is known on average for each subject and role (c¢), Gokyo estimates the num-
ber of specifications that would be necessary to completely specify the space as
s/c. The number of expressions includes the nodes, assignments, constraints, and
conflict resolutions defined. This estimate assumes that the current granularity of
specification will remain constant until the specification is complete, which may
not be possible. However, such a metric will tell administrators when effect of
these specifications decreases, which is a likely indication of an increase in manage-
ment complexity. Also, this estimate assumes that the complexity of the individual
statements is the same.
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5. WEB SERVER EXAMPLE

In this section, we summarize an analysis of an Apache web server system policy
using Gokyo. We have derived this policy from input from the SELinux policy for
the Apache subsystem for Linux 2.4.16 [31].

5.1 Web Server Policy

A basic policy for a web server system is defined in Table 1. The specified as-
signments are expressed in a TE model. Roles in the Gokyo model represent the
assignments between subject types and permissions. We will subsequently refer to
them as subject types.

While this is a fairly simple policy, it is still not easy to determine whether the
current policy is safe (i.e., prevents a subject from obtaining an unauthorized right).
In particular, the web server (httpd_t) and administrator (admin_t) 3 read and
write data from a variety of less trusted subjects, such as the user (users_t) and
user scripts (user_script_t). Also, it is unclear whether any future administrative
changes may be made and whether they will violate safety.

To verify that the policy is safe, we define a set of constraints in Table 2. These
are an initial set of constraints that we may expand or refine as we go along.
We define disjoint (i.e., null intersection) constraints on the permissions between:
(1) the two script servers and (2) the administrator and the user and its scripts.
Further, we want to ensure the integrity of our system data and executables, so we
state integrity constraints between: (1) the administrator and the users, the scripts,
and the web server; (2) the web server and the users and user scripts; and (3) the
system scripts and the users and user scripts. An integrity constraint enforces Biba-
style integrity semantics [10] and is interpreted as a disjoint constraint between the
information the lower integrity subject type can write and the information that the
higher integrity subject type can read. The formal description of this constraint is
provided in Example 5 of Section 3.2.

5.2 Analysis Process

The goal of this analysis is to determine a set of constraints that: (1) implement
safety effectively with a manageable number of exceptions and (2) remove the un-
known area between the prohibited permission assignments and the permissible
permission assignments. As a starting point, we assume that the specified permis-
sion assignments are the same as the permissible permission assignments. Since the
specified permissions are the only ones that we know are intended to be permitted,
this is a reasonable initial assumption. As we develop the access control space,
we may find other permissions whose assignment would be permissible and some
specified permissions that are not permissible.

If the specified assignments for each subject type do not violate the constraints
and the unknown area is eliminated, then we have a complete access control space.
Thus, all future administrative operations would be enforced relative to safety pol-
icy, so all future assignments are safe with respect to that policy.

3This subject type is called httpd_admin t in the SELinux policy and Section 6. Since all the
discussion in this section refers to Apache, we will truncate the subject type name in this Section.
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|| Object Types Description Subject Types | Perms ||
httpd_user_content_t User web pages users_t crw
httpd_t T
httpd_user_script_t User script files users_t crw
user_script_t X
httpd_user_htaccess_t | User access files users_t crw
httpd_t T
httpd_user script_r_t User script read files users_t crw
user_script_t r
httpd_user_script_rw_t | User script read/write files | users_t crw
user_script_t W
httpd_user_script_a_t User script append files users_t crw
user_script_t a
httpd_sys_content_t System web pages admin_t crw
httpd_t r
httpd_sys_script_t System script files admin_t crw
sys-script_t X
httpd_sys_htaccess_t System access files admin_t crw
httpd_t r
httpd_sys_script_r_t Sys script read files admin_t crw
sys-script_t r
httpd_sys_script _rw_t Sys script read/write files admin ¢ crw
sys_script_t ™wW
httpd_sys_script_a_t Sys script append files admin_t crw
sys_script_t a
httpd_exec_t Web server executable file | admin_t CIXW
httpd_config_t Web server config files admin_t crw
httpd._t r
httpd_log files_t Application logs admin_t cr
httpd_t a
user_script_t a
sys_script_t a
httpd_modules_t ‘Web server libraries admin_t crw
httpd_t X
script_interpreter_t Script interpreter admin ¢ CcIrw
user_script_t X
sys_script_t X
lib_t System-wide libraries admin _t crw
httpd_t rx
user_script_t X
sys_script_t X

Table 1.

Web server file system permission assignments. Permissions are: (1) c for create; (2) r
for read; (3) w for write; (4) o for append; and (5) z for execute.
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|| Node 1 Node 2 | Type | Aspect ||
user_script_t | sys_script_t disjoint | perms
admin_t user_script_t | disjoint | perms
admin_t users_t disjoint | perms
admin_t httpd-t integrity | perms
admin_t users_t integrity | perms
admin_t user_script_t | integrity | perms
admin_t Sys-_script_t integrity | perms
httpd_t user_script_t | integrity | perms
httpd_t users_t integrity | perms
sys-script_t user_script_t | integrity | perms
sys_script_t users_t integrity | perms

Table 2. Initial web server policy constraints.

|| Subject Type | Object Type | Perms | Constraint ||

|| admin_t | httpd_log files_t | r | admin-web integrity ||
admin_t httpd_sys_script_a_t crw admin-sys script integrity
admin_t httpd_sys_script_rw_t crw admin-sys script integrity
httpd-t httpd_user_content_t r web-user integrity
httpd_t httpd_user_htaccess_t r web-user integrity

Table 3. Violated permission assignments for subject types (double lines separate partitions).

Based on the initial assignments and constraints, Table 3 shows the initial con-
straint violations based on the algorithm described in Section 4.2.2. There are only
five unique constraint violations (the reciprocal assignment of write permissions to
the lower integrity subject types also show up as violations) that can be aggregated
into three partitions: (1) read and write system script data files; (2) view the logs
written by lower integrity subjects; and (3) use user-generated data. Using the
access control spaces approach, resolution semantics permitting these operations
can be added to the conflicting subspace consisting of these conflicts. Access to log
data would be allowed. Access to system script data may be allowed, but audited.
Access for the web server to access user data must be allowed, but probably perhaps
some kind of sanitization is necessary.

The alternative would be to refine our integrity constraints to state that a certain
set of permissions are not integrity violations. This requires that we define sets of
permissions to perform integrity checks over that do not include those “upgraded
permissions.” While this can certainly be done, it makes the policy expression more
complex and hides the fact that these are integrity violations that are acceptable.

Table 4 summarizes the unknown permission assignments based on the algorithm
in Section 4.2.1. We identify two anomalous cases. First, every subject type can be
assigned the ability to execute data. While this is an unlikely assignment, it would
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|| Subject Type | Object Type Perms ||
users_t all data b'd
system programs rx
user script data a
user_script_t | all data
system programs rx
user script data a
user script appends | crwx
Sys_script_t system data rx
system programs rx
user data a
admin_t script data xa
system data xa
system programs
user data a
httpd_t script data xa
system data xa
system programs rxa
user data a

Table 4. Unknown assignment summary.

be an invalid one. To eliminate this unknown we need to add a constraint on the
execute privileges of these files. To create such a constraint, we aggregate the data
file object types (httpd_*_content_t,httpd_*_htaccess_t,httpd_log_files_t,
and httpd_*_script_*_t) into a new object type data_files, create an execute
permission for this sets, and assign a disjoint constraint between this permission
set and all subject types. Second, the higher integrity subject types can write to
user data. Since the system administrators create inputs for everyone, writing a
secrecy constraint does not seem correct. However, we do not see a reason that
administrators can append to user script data, so it should be constrained. To
create this constraint, we create an aggregate object type for the user data types
(httpd_user_*_t), create a write permission for this aggregate, and set a disjoint
constraint between this permission and the system subjects, system administra-
tors, web servers, and system scripts. These constraints successfully remove these
anomalies without adding any new violations.

We also compute the complexity of this specification using our metric. For the
initial specification, s = 63 (with 5 constraint violations), ¢ = 0.598, and s/c =
105.3. That is, given 58 specifications and 5 conflicts for an access control space
that is 59.8% known, we estimate that 105 specifications are necessary before the
space can be complete. When we add the new constraints described above, we
increase the percent known to 79.3%. A few permissions for user processes to
append user files and system processes to modify system files remain, but these can
probably be added to the permissible space. The specification was complicated by
the additional aggregates and constraints, so s = 88. Thus, the resultant complexity
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increases to 111. However, if we use a single constraint to prevent execution of data
(there are currently 5, one for each role), then the complexity drops to 84/.793 =
106. In this case, we can reduce the unknowns without significantly increasing the
policies complexity.

6. SELINUX ANALYSIS

The previous example demonstrates the access control space approach and the use
of the Gokyo tool to implement this approach. This initial experiment shows that
understanding a policy’s access control spaces can be useful in deriving constraints
and resolving conflicts without complex constraint modification. That example is
somewhat contrived in that we derived the policy from an informal description using
our own policy model. Also, the Apache policy is limited in scope. For example, we
do not consider system initialization, authentication, and the other programs that
may be running with the Apache server. In this section, we focus on demonstrating
the general applicability of the access control space approach by applying it to a
broader policy.

We examine the example policy of the Security-Enhanced Linux (SELinux) sys-
tem [33], in particular the December 10, 2001 release of SELinux for Linux 2.4.16.
We continue to examine more recent versions of the SELinux example policy with
Gokyo, but this analysis provides the basic approach. In this analysis, we parse
the entire SELinux example policy into the access control space model and use
the Gokyo tool to determine whether the Apache administrator subject is pro-
tected with respect to Biba integrity requirements [10]. This examination includes
all SELinux subject types, not just Apache subject types. Management of the
SELinux example policy will be a significant test for the Gokyo tool as the policy is
both large (over 500K of text when pre-processed) and complex (consisting of many
concepts). Since the access control spaces approach depends on understanding all
permission assignments, application to the SELinux example policy will indeed be
a challenge.

The SELinux example policy is not guaranteed to implement a secure system, but
it is simply an example built-up from input from several sources that is intended
as a starting point. In order to develop an effective security policy, the system
administrators must define a security target and specify a policy that enforces
that target. Developing and proving the security of a complete security target is a
larger undertaking than can be reported here, so we focus on verifying Biba integrity
confinement [10] of the Apache administrator subject type (httpd_admin_t) within
the context of the entire SELinux example policy. To achieve this, we define a simple
integrity hierarchy consisting of three levels: system trusted subjects (high), Apache
administrator (medium), and others (low). This means that processes running at
the Apache administrator subject type may only read or execute an object if it
can be written only by processes running a subject type in the high or medium
integrity class. As in the previous analysis, some conflicts, such as log files in the
case above, may be identified and represented explicitly in the access control space
model. Note that we do not consider the impact of the Apache administrator on the
integrity of the system trusted subjects. This would need to be done in a complete
examination.

We break integrity verification down into the following steps:
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|| Statement | SELinuz Objects | ACS Objects ||
type $x, $y1, $y2, ... | type $x has $y1, $y2, ... role $x has subrole $y1, $y2, ...
as type attributes OR perms of type $x are
aggregated into $y1, $y2, ...
allow $x Sy $z type $x can perform $z role $x assigned to perms
on type $y (obj type $y and ops $z)
neverallow $x $y $z type $x cannot perform $z disjoint constraint assigned
on type $y from role $x to perms
(obj type $y and ops $z)
neverallow —$x $y $z | types # $x cannot perform $z disjoint constraint assigned
on type $y from role set —$x to perms
(obj type $y and ops $z)
neverallow $x -8y $z | types $x cannot perform $z disjoint constraint assigned
on types # $y from role set $x to perms
(obj type -8y and ops $z)

Table 5. Key SELinux statement transformations to the access control space (ACS) model.

—Verify that no untrusted non-Apache subject type can write an Apache object
(Apache independence).

—Verify that no untrusted non-Apache subject type can write any object that the
Apache administrator can read or execute (Apache-SELinux integrity).

—Verify the integrity relationships between the Apache administrator and the
Apache subject types (internal Apache integrity).

—Examine complete definition of the Apache administrator policy to prevent acci-
dental assignment of other unsafe operations (complete Apache specification).

First, we identify the other subject types that can modify Apache objects. We
then determine whether any of these subject types are of lower integrity than the
Apache administrator. If so, then the integrity of the Apache system can be com-
promised. Next, we examine the other objects used by the Apache administrator to
determine whether any of these objects can be written by untrusted subject types.
In this case, we expect that other subject types can modify system objects that
are used by Apache, so it is a question of limiting the trusted computing base that
Apache depends on. We then look within the SELinux example Apache policy, as
we did in Section 5, to resolve any integrity conflicts within the SELinux version
of the Apache policy. This policy does differ in significant ways from the example
policy we defined above. Lastly, we examine how we would approach complete
definition of the Apache administrator access control space to reduce the likelihood
of erroneous assignments in the future.

6.1 SELinux Policy Model Overview

The first step in computing the access control spaces in the SELinux example policy
is to transform it into the access control space model. Definition of the SELinux
policy model is available elsewhere [36], so we focus on the objects relevant to the
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succeeding discussion here. Table 5 shows a list of the key SELinux specification
statements and their transformations into the access control space model. Recall
from Section 5 that the access control spaces model was used to represent SELinux
subject types as roles, and SELinux object types are combined with rights into
permissions.

The type statement defines SELinux types, but does not explicitly distinguish
between subject types and objects types (as is typical for TE). Thus, each type
is an object type, and we must determine which types are also subject types. We
define a subject type as a type to which at least one permission is assigned. Also,
the type statement assigns type attributes to types. If a subject type or object type
has a type attribute, then all assignments to that type attribute apply to the type.
For subject types, all the permissions and preclusions assigned to its attributes are
assigned to the subject type. Therefore, a type attribute can be represented as
a subrole of each subject type role for which it is an attribute. For object types,
type attributes enable assignment of all permissions of that object type, so a type
attribute for an object type is represented by a permission set.

Since objects are mapped to one object type and subjects have one only subject
type at a time, it is not necessary to represent individual subjects and objects for
an integrity analysis.

The allow statement assigns permissions to subject types or type attributes.
Since these are both represented by roles, an allow assigns a set of permissions to
a role. In SELinux, the same object type may be associated with different data
types, called classes. For example, the object type httpd_config_t is applied
to both files and directories. Thus, SELinux permissions are defined by a triple of
object type or type attribute, class, and operations.

The neverallow statements define simple disjoint constraints. The specified
subject type is prohibited from being assigned any of the permissions defined by
the object type and operations. SELinux uses these in its policy compilation process
to verify some safety properties for the policy. Since the Gokyo access control model
has disjoint constraints already, neverallow statements are mapped to these.

The SELinux policy model also has domain transitions, roles that limit these
transitions, and their own general constraint language. For this integrity analysis,
we are concerned that particular subject types can affect others, not whether they
can be obtained from particular subject types. Thus, we do not consider domain
transitions in this analysis. Roles are an SELinux concept that limits the set of
subject types that a user can obtain. This is also not relevant to this analysis.
Lastly, SELinux also has its own generic constraint language in which a small
number of constraints are defined. The constraints defined in the SELinux example
policy limit transitions and labeling which do not impact our analysis. For this
analysis, we use our constraint language instead [21].

Parsing the SELinux example policy, including an additional definition of a new
type attribute httpd_file_t on Apache files, into the access control space model
implemented by Gokyo results in 345 roles (subject types and type attributes), 8346
permissions, 340 constraints, and 20933 assignments among them.
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6.2 Verifying Apache Independence

Verifying Apache independence means that no non-Apache subject type, except
some trusted subject types, may be permitted to write Apache objects. To test
this we wrote the following SELinux statement:

neverallow “{httpd_domain} httpd_files_t:{file lnk_file fifo_file
sock_file} {create write setattr append rename relabeltol};

This statement says that no subject type, except those that have the httpd_domain
attribute set (i.e., Apache subject types) are allowed to perform any write actions
or label any Apache object type files, as indicated by the httpd_files_t attribute.

As described in fourth entry of Table 5, a role set consisting of all the roles
that lack the attribute httpd_domain is created (not_httpd_domain). Also, a
permission set representing the permissions described is created that aggregates
the permissions for each of the classes. A disjoint constraint is created for this
permission set and the permissible permissions of the not_httpd_domain role set.

Conflict identification involves finding subject type assignments of permissions
in the disjoint set. Since there are many subjects in the role set, permissions in the
permission set, and often many subjects share the same conflict (e.g., because the
conflicting permission assignment is to a large number of subjects at once), Gokyo
provides a view of the conflicts. Possible views include: (1) the subjects that have
conflicts; (2) the permissions that result in conflicts; (3) the subjects that conflict
with a particular permission; and (4) the permissions that conflict with a particular
subject. Gokyo currently provides the second view, as this enables us to examine
the permission conflicts that need resolution. This view shows all the permissions
involved in conflicts, but not all the subject types that are involved. Thus, multiple
iterations may be necessary to resolve the conflicts completely.

A verification of the conflicting subspace between the specified and prohibited
subspaces of the Apache subject types using Gokyo tool shows none of the con-
strained access types are assigned in the policy. Thus, the integrity of the Apache
system is not impacted by the permissions that non-Apache subject types have to
Apache objects.

6.3 Verifying Apache-SELinux Integrity

In this case, we must ensure that all writes to SELinux objects (i.e., non-Apache
objects) that Apache reads are performed by a subject type that is a member of
the system’s trusted computing base (TCB). We begin by setting a simple integrity
constraint between httpd_admin_t and all non-TCB subject types, as in Table 2.
Such a constraint is implemented in Gokyo as disjoint constraint between the set of
read permissions of the httpd_admin_t and the write permissions of an aggregate
role we call the non-TCB set. The problem is that we don’t know which SELinux
subject types are part of the system’s trusted computing base. To address this
problem, we perform the integrity analysis, see which subject types conflict, then
remove those that are found to be part of the TCB from the non-TCB set. Initially,
we also exclude other Apache subject types from the non-TCB set, as we discuss
the integrity issues with respect to Apache subject types in Section 6.4.

While this initial analysis results in a large number of violations, we found that we
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|| Subject Type || Purpose ||
sysadm_t System Administrator
sysadm._su_t System Administrator
init_t System Initialization (Init process)
initrc_t System Initialization (Initrc scripts)
kernel t System Initialization (Process 0)
runinit_t SELinux Initialization
fsadm _t File System Administrator
passwd_t Authentication
local login_t Authentication

remote_login_t || Authentication

sshd login _t Authentication

sshd_t Authentication
rlogind_t Authentication

ipsec_t Secure Communication
newrole_t SELinux Authentication

Table 6. Base trusted computing base (TCB) subject types relative to the Apache administrator
domain httpd_admin_t.

could categorize the conflicting subject types. We found three categories that were
useful in the analysis: (1) trusted subject types; (2) optional application subject
types; and (3) non-TCB subject types. For each integrity conflict, we examine the
subject type involved in the conflict. If we can verify that the subject type is a
trusted subject type in the UNIX system, then we can remove this subject type
from the non-TCB subject type set. In order to maintain a minimal TCB, we
would like to keep this set as small as possible, so we limit this set to subject types
necessary for essential processing. Those subject types that perform non-essential
services are assigned to the optional application subject types. The idea is that if an
application is optional for an Apache system, it can be excluded from the system.
Thus, its integrity impact is removed. Lastly, the remaining, required subject types
comprise the non-TCB subject types. For the Apache example, these are mainly
user subject types. Integrity conflicts with the users are real problems that we need
to resolve. Note that many of the subject types in the system will not be classified
as they do not have a unique conflict with the Apache administrator.

In Table 6, we list the set of trusted conflicting subject types that are obviously
part of the system TCB. These consist of initialization and authentication services
in the Linux system. While not all these forms of authentication may be required
for the Apache system, we list all in the table. 15 subject types are listed altogether.

In Table 7, we list the other system subjects that must also be trusted to preserve
the integrity of the Apache administrator. There are 20 of these subject types in
the system. A case can probably be made for the removal of some of these services,
but we are being conservative in this list. Ultimately, we expect that the number
of system subject types (base and other) that comprise a current SELinux TCB
would be around 25-30 for httpd_admin_t.
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Subject Type Subject Type | Subject Type ||

mount_t rped_t ipchains_t
automount_t ypbind_t pump_t

getty_t klogd_t sysadm _ssh_t
syslogd_t depmod_t ifconfig_t
system_crond_t | crond_t sysadm_crontab_t
hwclock_t sound_t named_t
modprobe_t logrotate_t

Table 7. Other system subject types that must be trusted to preserve the integrity of the Apache
administrator domain httpd_admin_t.

Subject Type

Subject Type Subject Type ||

insmod._t rmmod.t xfs_t
user_xserver_t user_mail ¢ sysadm _mail ¢
sysadm netscape_t | sysadm xserver_t | user_su_t
sysadm _Ipr_t ping_t sysadm _gph_t
gdm_t user_gph_t utempter_t
ftpd_t sendmail t lpd_t
cardmgr_t gpm_t apmd_t

atd_t

Table 8. Optional SELinux subject types that conflict with the integrity of the Apache admin-
istrator domain httpd_admin_t, but should be excluded from the system.

In Table 8, we list the set of subject types that conflict with the integrity of the
Apache administrator, but may be removed from an Apache system. There are 22
of these subject types bringing the total number of conflicting subject types to 57.
This is out of the 339 SELinux subject types in the example policy.

The SELinux policy is modular in that policies for different daemons and ap-
plications are written in separate files. Therefore, the removal of optional subject
types can be achieved by removing these files. Note that the important fact is that
these subject types conflict with our target system, the Apache administrator, and
this not expressed anywhere. In fact, removing the files may give a false sense of
security, because another administrator may add a conflicting subject type later.
One solution that is more permanent is to define conflicting subject types, that is,
subject types that should never be run together on the same system. In this case,
even if the policy files for a conflict service where accidentally added, the conflict
would be recognized. Neither Gokyo nor the SELinux policy enables definition of
such information at present. The notion of conflicting roles in Ahn and Sandhu [1]
does not represent this concept either.

The remaining conflicts are shown in Table 9. There are four shared regular file
and directory types, tmp_t, tmpfs_t, writeable_t, and user_home_t, and three
shared device file types, devtty_t, null_device_t, and console_device_t. Also,
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|| Object Type Write Assigned to | Resolution ||
tmp_t every domain Deny read
writeable_t every domain Deny read
tmpfs_t every domain Deny read
null_device_t every domain Allow read
console_device_t every domain Allow read
devtty_t every domain Allow read

|| user_home_t | user_t | Deny read or audit ||
user_tty_device_t | user_t Change
user_tty_devpts_t | user_t Change

Table 9. These are the remaining permissions that conflict with the integrity of the Apache
administrator (double lines separate partitions)

there are two tty file types: user_tty_device_t, and user_tty_devpts_t. We
find that the user_home_t and the other regular file types do not correspond, so
four partitions are created, as indicated in Table 9.

Currently, we create the partitions manually, but some automated support would
seem possible. The conflicting domain indicates a partition between those permis-
sions assigned to every domain and those assigned to users. A second partition is
between device-specific files and others. Further exploration is necessary to deter-
mine the general effectiveness of automated support for partitioning.

For the regular file types, we deny read to invalidate the allowed rights in
prohibited-specified space for these files and directories. For example, Apache only
writes to /tmp, so we can make the read rights that cause the integrity conflict
invalid. A shared /tmp has been a security problem in UNIX for a long time, so
in general, a per-subject /tmp would be the preferred system solution. It seems
unlikely that the Apache administrator needs to read the writeable_t or tmpfs_t
files. Only /usr/lib/locale/*/LC_x is assigned to writeable_t and no files are
assigned to tmpfs_t.

For the device files, null_device_t and devtty_t refer to public read-write
devices, /dev/null and /dev/tty, respectively. These can be aggregated into a
partition that is allowed in the prohibited-specified conflict space. The permission
expressed for /dev/console in this version of SELinux needs to be fixed to be more
restrictive (just accessible trusted system domains, as a comment in the policy file
indicates).

Lastly, the policy includes permissions to access user tty’s, so users can transition
to administrators (with the proper authentication) in the same shell. If a user can
control an administrator’s tty, attacks are possible, however (e.g., by changing the
tty’s input buffer). Policy change is ultimately the preferred option, and this was
done in later versions of the SELinux example policy. A new concept called type
change was introduced which transforms the object type of an object upon access
by specified subject types. Thus, when an Apache administrator accesses a user
tty, the object type of the tty is change to one accessible only to administrators.

Lastly, the Apache administrator also has read access to the entire home directory
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|| Object Type | Conflict Domain Resolution ||
httpd_user_content_t | user domains Deny read or change
httpd_user_script_*_t | user domains Deny read or change
httpd_sys_content_t httpd_sys_script_process_t | Allow audit
httpd_sys_script_t httpd_sys_script_process_t | Allow audit
httpd_sys_script_* t httpd_sys_script_process_t | Allow audit
user_tty_device_t user domains Change
user_tty_devpts_t user domains Change
httpd_ log files_t all Allow
var_run_t httpd_t Allow
var_t httpd_t Allow

Table 10. These are the Apache permission assignments that conflict with the integrity of the
Apache administrator and the resolution of these conflicts (double lines separate partitions).

of the user. This is handy, but potentially dangerous. Auditing is necessary at a
minimum.

6.4 Verifying Apache Integrity

The Apache policy provided in the SELinux example policy [18] differs in some
significant ways from the policy presented in Section 5. In this section, we examine
the changes made in the policy relative to the Apache administrator only, and
discuss how these changes can be addressed using the access control spaces model.

The Apache integrity conflicts are listed in Table 10. Once again there are four
partitions within the conflicting subspace: (1) the administrator can access user
data; (2) the administrator can access system scripts and content; (3) the adminis-
trator is susceptible to tty compromise (via user_t which we examine in the context
of Apache); and (4) the administrator can access system status files, such as the
Apache log.

In general, administrator access to user data is a convenience. The system admin-
istrator may be able to handle this data securely, but the breadth of its potential
use is a concern. We would prefer to deny read permission to this data.

It is not strictly necessary for the Apache administrators to read or modify the
system content and scripts either. Undoubtedly, having these rights this makes
some tasks, such as debugging, much easier. It could be argued that system scripts
are high integrity, but this significantly increases the amount of information that
we must trust. Auditing access to these scripts seems the most appropriate com-
promise.

Permissions are granted to the Apache administrator for the user tty’s, and these
tty’s can also be controlled by Apache user subject types. This is effectively the
same conflict as the one discussed in Section 6.3.

Lastly, permissions to logging files (/var/log/ for var_log_t) and httpd_log_files_t
and some system Apache files (/var for var_t) are granted to both the Apache dae-
mon and Apache administrator. Permissions for logging can be allowed also, so they
may be placed in the same partition.
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6.5 Completing the Apache Specification

The unknowns analysis for the SELinux example policy is complicated by the sev-
eral issues. First, the SELinux example policy consists of many more object types
and permissions than the policy presented in Section 5. Second, for this reason, it
does not, appear tractable to do an unknowns analysis on the entire access control
space of the SELinux example policy. On the other hand, the analysis in Section 5
only considered the policy definitions of the Apache system and yielded some use-
ful results. Third, because the SELinux example policy for Apache is somewhat
different, we must revise our approach for resolving unknowns.

For the unknowns analysis, we again focus on the httpd_admin_t. A practical
approach to unknowns analysis is to focus on a subspace in the access control space
for which we want as complete a specification as possible. We find two possible
practical definitions of such a subspace for the httpd_admin_t: (1) the Apache
object permissions as in Section 5 and (2) all permissions to object types for which
the Apache administrator has at least one permission. Since the second subsumes
the first, we choose to examine the second subspace in this section.

This task involves creating a permission for each possible object type, class,
and operation assigned to the Apache administrator. This is a large number of
permissions (8359), but the number is bound by the product of the number of
types, classes, and operations. The last two are fixed for the system (29 classes and
no more than 22 operations per class), but the number of types varies somewhat
depending on the Apache policy granularity. There are 363 types in the SELinux
example policy, so it seems clear that limiting the scope of unknowns analysis by
object type is necessary.

An initial unknowns analysis, shows that for 101 assignments the Apache admin-
istrator access control space is 39% specified: 5087 unknowns out of 8359 permis-
sions for Apache administrator object types. The s/c estimate is 258 = 101/.39.
Interestingly, an unknowns analysis for just the Apache file permissions shows that
73% of file permissions are specified, much greater than the 60% or so in Section 5.
Thus, the unknowns increase is due to permissions on non-Apache object types and
object types that are not files. From this, we conclude that a great deal more study
is required to eliminate unknowns than in the first analysis. However, unlike conflict
analysis, unknowns analysis is something that has some resilience across different
security targets. Thus, it is not unreasonable for policy experts to provide a lot of
support on unknowns analysis, per policy area, and the system administrators can
fine tune these requirements, particularly if the constraints to reduce unknowns are
as simple as the general policy constraints.

First, we examine removal of Apache administrator unknowns in the Apache part
of the SELinux example policy. In Section 5, we added two constraints to further
define the access control space by removing unknowns: (1) remove Apache admin-
istrator write access to user objects and (2) remove execute access to data objects.
Since the SELinux policy permits the Apache administrator to write user objects,
these permissions are no longer unknown. Thus, the first constraint no longer ap-
plies. Application of the second constraint only removes about 30 permissions from
the unknown set. While this increases the percentage of Apache file permissions
known to 77%, it has a negligible effect on the overall unknowns.
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|| Node 1 Node 2 | Type | Aspect ||
httpd_admin t | non_admins integrity | perms
httpd_admin_t | apache_data exec disjoint | perms
httpd_admin_t | apache_dirs extend disjoint | perms
httpd_-admin_t | sysadmonly files write disjoint | perms

httpd_-admin_t | sysadmonly Ink files write disjoint | perms

httpd_-admin_t | sysadmonly sock_ files write | disjoint | perms

httpd_-admin_t | sysadmonly filo_files write disjoint | perms

Table 11. Additional constraints to reduce unknown space.

The addition of permissions to prevent the creation of additional directories in
the Apache policy file tree also had little effect on reducing the overall number of
unknowns. Such a constraint presumes that the Apache file tree is fixed, such that
only files may be added or removed.

Since the main cause of unknowns in the Apache administrator specification
is the permissions assigned to non-Apache object types, we examined reduction
of these unknowns. One reasonable-sounding restriction was to remove write ac-
cess from the Apache administrator to the system administrator objects. Presum-
ably, the SELinux object type, sysadmfile, has been defined to indicate such files.
We define a disjoint constraint whereby the Apache administrator cannot perform
write (write, append, create, relabelto, link, mounton), delete (unlink, relabel-
from, rename) or some other operations (quotaon, swapon) on object types with
the sysadmfile attribute. This tremendously reduces the number of unknowns to
2091 and increases the known fraction to slightly over 75%. Unfortunately, this
constraint creates a large number of conflicts. Several Apache object types are
assigned the sysadmfile attribute.

Since only 18 of the 224 types with the sysadmfile attribute are Apache object
types, we define a new type attribute sysadmonlyfile and assign it to all the
non-Apache and non-user object types (186 object types in all). The result is
no constraint violations, but a significant reduction in unknowns. The number of
remaining unknowns is 2456 which yields a known fraction of slightly over 70%.
Given the 107 assignments to the httpd_admin_t subject type, the s/c estimate
is 151. This is a marked improvement from the s/c of 258 that we started with.
To reduce the unknown space further, examination of individual services and their
relationship to Apache is probably required.

Ultimately, the access control space definition consists of 15 new Gokyo con-
straints (the integrity constraints of Table 2 and the constraints in Table 11) and
one SELinux constraint (see Section 6.2). The definition of this policy and the ad-
ditional 8 conflict resolution partitions (listed in Tables 9 and 10) are sufficient to
verify the integrity of the Apache administrator and reduce the unknown space of
the Apache administrator policy to less than 30% of the access control space. Given
that the SELinux example policy consists of over 8000 permissions and 20,000 as-
signments, we believe that using access control spaces to tame complex policies is
a useful approach.
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7. CONCLUSIONS

In this paper, we defined the concept of an access control space and investigated
how it may be useful in managing access control policies. An access control space
represents the permission assignment state of a particular subject or role. We
showed that we can categorize permissions into subspaces that have meaningful
semantics. For example, the set of permissions explicitly assigned to a subject
defines its specified subspace, and constraints define the prohibited subspace. In
analyzing these subspaces we identified two problems: (1) often a significant portion
of the access control space has unknown assignment semantics meaning that it is
not defined whether an assignment in this space should be permitted or not and
(2) often high-level assignments and constraints that are easily understood result
in conflicts where permissions are both specified and prohibited.

To solve these problems, we have developed a tool, called Gokyo, that enables def-
inition and analysis of access control spaces. To solve the first problem, Gokyo com-
putes the unknown subspace, so that system administrators can see the ambiguous
region and provide additional specification. Examining the unknown region enables
us to add constraints that focus on the underspecified areas of policy that we may
not normally consider. To solve the second problem, we enable conflicting spaces to
be annotated with handling semantics, so that the access control policy can remain
simple while handling the conflicts explicitly as exceptions. We found five excep-
tions in the web server policy, and rather than modifying our specification and/or
constraints, we simply classified them as exceptions to which we permitted access.
For the SELinux example policy, we found 19 conflicts in the entire policy relative
to integrity verification for the Apache administrator. These are aggregated into
eight partitions for which resolution handlers can be applied. Also, we were able
to define 70% of the total access control space, and 77% of the Apache file space
by defining additional constraints. Using the access control spaces approach, we
used a small number of simple constraints and resolutions to verify the Apache
administrator integrity and greatly reduce the ambiguity of the SELinux example
policy.

In the future, we would like to integrate Gokyo with an existing authorization
module, so that we can reflect the analysis into real authorization decisions.
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