
Security Namespace : Making Linux Security
Frameworks Available to Containers

Yuqiong Sun
Symantec Research Labs

David Safford
GE Global Research

Mimi Zohar
IBM Research

Dimitrios Pendarakis
IBM Research

Zhongshu Gu
IBM Research

Trent Jaeger
Pennsylvania State University

Abstract

Lightweight virtualization (i.e., containers) offers a vir-
tual host environment for applications without the need
for a separate kernel, enabling better resource utiliza-
tion and improved efficiency. However, the shared ker-
nel also prevents containers from taking advantage of se-
curity features that are available to traditional VMs and
hosts. Containers cannot apply local policies to gov-
ern integrity measurement, code execution, mandatory
access control, etc. to prevent application-specific se-
curity problems. Changes have been proposed to make
kernel security mechanisms available to containers, but
such changes are often adhoc and expose the challenges
of trusting containers to make security decisions without
compromising host system or other containers. In this
paper, we propose security namespaces, a kernel abstrac-
tion that enables containers to have an autonomous con-
trol over their security. The security namespace relaxes
the global and mandatory assumption of kernel security
frameworks, thus enabling containers to independently
define security policies and apply them to a limited scope
of processes. To preserve security, we propose a routing
mechanism that can dynamically dispatch an operation
to a set of containers whose security might be affected
by the operation, therefore ensuring the security decision
made by one container cannot compromise the host or
other containers. We demonstrate security namespace by
developing namespaces for integrity measurement and
mandatory access control in the Linux kernel for use by
Docker containers. Results show that security names-
paces can effectively mitigate security problems within
containers (e.g., malicious code execution) with less than
0.7% additional latency to system call and almost identi-
cal application throughput. As a result, security names-
paces enable containers to obtain autonomous control
over their security without compromising the security of
other containers or the host system.

1 Introduction

Lightweight virtualization (i.e., containers) offers a vir-
tual host environment for applications without the need
for a separate kernel, enabling better resource utiliza-
tion and improved efficiency. It is broadly used in com-
putation scenarios where a dense deployment and fast
spin-up speed is required, such as microservice archi-
tecture [39] and serverless computation (e.g., Amazon
Lambda [26]). Many commercial cloud vendors [23, 20,
1] have adopted the technology.

The key difference between containers and traditional
VMs is that containers share the same kernel. While this
enables better resource utilization, it also prevents con-
tainers from taking advantage of security features in ker-
nel that are available to traditional VMs or hosts. Con-
tainers cannot apply local security policies to govern in-
tegrity measurement, code execution, mandatory access
control, etc. to prevent application specific security prob-
lems. Instead, they have to rely on a global policy spec-
ified by the host system admin, who often has different
security interests (i.e., protect the host system) and does
not have enough insight about the security needs of indi-
vidual containers. As a result, containers often run with-
out any protection [34, 40].

Previous efforts of making kernel security frameworks
available to containers are often adhoc and expose the
challenges of trusting containers to make security deci-
sions without compromising host system or other con-
tainers. For example, a kernel patch [24] to Integrity
Measurement Architecture (IMA) [53] suggested that the
IMA measurement list can be extended with a container
ID, such that during integrity attestation the measure-
ments will become separable based on containers. As
another example, AppArmor and Tomoyo introduced the
concept of profile and policy namespace [49, 44] to allow
certain processes to run under a policy different from the
rest of the system. These changes, however, only made
limited kernel security features available to containers,

and they all rely on the system owner to specify a global
policy, leaving containers no real freedom in enforcing
an autonomous security.

In this paper, we explore approaches to make kernel
security frameworks available to containers. Due to the
diversity of kernel security frameworks and their differ-
ent design perspectives and details, it is extremely dif-
ficult to reach a generic design that can cover all ker-
nel security frameworks in a single step. Instead, this
paper explores an initial step, by making two concrete
kernel security frameworks available to containers, to in-
vestigate the common challenges and approaches behind.
Hopefully, the results have enough generality to guide
other kernel security frameworks and eventually lead to a
generic design. In studying the two popular kernel secu-
rity frameworks, namely IMA [53] for integrity and Ap-
pArmor [41] for mandatory access control, we make the
following observations: first, we find that the common
challenge for containers to obtain autonomous security
control is the implicit global and mandatory assumptions
that kernel security frameworks often make. Kernel se-
curity frameworks are designed to be global—they con-
trol all processes running on the system. They are also
designed to be mandatory—only the owner of the system
may apply a security policy. However, autonomous se-
curity control requires relaxation of both assumptions. A
container need to apply local security policies to control
a subset of processes running on the system (i.e., pro-
cesses in the container). Relaxing these assumptions in-
volves security risks. Our second insight is that we can
relax the global and mandatory assumptions in a secure
way by checking if the autonomous security control of
a container may compromise the security of other con-
tainers or the host system. We do this by inferring from
containers’ security expectation towards an operation.

Leveraging these insights, we propose the design of
security namespaces, kernel abstractions that enable con-
tainers to utilize kernel security frameworks to apply au-
tonomous security control. Security namespace virtual-
izes kernel security frameworks into virtual instances,
one per container. Each virtual instance applies inde-
pendent security policies to control containerized pro-
cesses and maintains their independent security states.
To ensure that the relaxation does not compromise any
principal’s security (i.e., other containers or the host sys-
tem), an Operation Router is inserted before the virtual
instances mediating an operation. The Operation Router
decides the set of virtual instances whose security might
be affected by an operation and routes the operation to
those virtual instance for mediation. After each virtual
instance makes an independent security decision, the de-
cisions are intersected. A specific challenge is that vir-
tual instances may make conflicting security decisions.
A Policy Engine is added to detect such conflicts and in-

form the container owners of potential conflicts before
they load their security policies.

We evaluate our design by developing two concrete in-
stances of security namespace, one for IMA and one for
AppArmor. Results show that leveraging the namespace
abstractions, containers (e.g., Docker and LXC) can ex-
ercise the full functionality of IMA and AppArmor and
apply autonomous security control, much like a VM or
host system. Specifically, we show that the IMA names-
pace enables containers to independently measure and
appraise files that are loaded into the container, with-
out violating any of the host system’s integrity policy.
For AppArmor namespace, we show that it enables con-
tainers to enforce two policy profiles simultaneously, one
protects the host system and another protects the con-
tainerized application, which was not possible as dis-
cussed in Ubuntu LXC documentation [34]. We evaluate
the performance of both namespace abstractions. Results
show that security namespaces introduce less than 0.7%
latency overhead to system calls in a typical container
cloud use case (i.e., no nested namespaces) and an al-
most identical throughput for containerized applications.

In summary, we make the following contributions.

• Through studying IMA and AppArmor, we inves-
tigate the common challenges and approaches be-
hind making kernel security frameworks available
to containers.

• We develop two concrete security namespace ab-
stractions, one for IMA and another for AppArmor,
which enables autonomous security control for con-
tainers while preserving security.

• We show that widely used container systems (e.g.,
Docker and LXC) can easily adopt the IMA and
AppArmor security namespace abstractions to exer-
cise full functionality of kernel security frameworks
with modest overhead.

2 Background
In this section, we first describe the namespace concept
in the Linux kernel and how it is adopted by container.
We then discuss security frameworks in Linux kernel.

2.1 Namespace and Container
The Linux namespace abstraction provides isolation for
various system resources. According to Linux man
page [31]:

A namespace wraps a global system resource
in an abstraction that makes it appear to the
processes within the namespace that they have
their own isolated instance of the global re-
source. Changes to the global resource are
visible to other processes that are members of

Table 1: Namespaces in Linux kernel.

Namespace Constant Isolates
IPC CLONE NEWIPC System V IPC, POSIX message queues

Network CLONE NEWNET Network devices, stacks, ports, etc.
Mount CLONE NEWNS Mount points

PID CLONE NEWPID Process IDs
User CLONE NEWUSER User and group IDs
UTS CLONE NEWUTS Hostname and NIS domain name

Apache running in
the container

Docker Daemon

clone(CLONE_NEWIPC | CLONE_NEWNET |
CLONE_NEWPID | CLONE_NEWUTS | CLONE_NEWNEWNS)

hostname setup
rootfs setup
pivot root

mount /dev, /proc, /sys
IP, firewall setup
execve(Apache2)

Daemon continue running
in the native system

Figure 1: Creating a Docker container.

the namespace, but are invisible to other pro-
cesses.

We use mount namespace as an example. Without
mount namespace enabled, processes running within a
Linux OS share the same filesystems. Any change to
the filesystems made by one process is visible to the oth-
ers. To provide filesystem isolation across processes, ch-
root [6] was first introduced but then found to be vulner-
able to a number of attacks [7, 8]. As a more principled
approach, Linux kernel introduced the mount namespace
abstraction to isolate mount points that can be seen by
the processes. A mount namespace restricts the filesys-
tem view to a process by creating separate copies of
vfs mount points. Thus, processes running in different
mount namespaces could only operate over their own
mount points. To date, six namespace abstractions (Ta-
ble 1) have been introduced into the Linux kernel.

Container [56] is an OS-level virtualization technol-
ogy. By leveraging the namespace abstractions (together
with other kernel mechanisms, e.g., Cgroups, SecComp),
a container can create an isolated runtime environment
for a set of processes. Well-known container implemen-
tations include Docker [13], LXC [33], and LXD [35].
Figure 1 illustrates the procedure of creating a Docker
container. It starts from launching a daemon process
(e.g., dockerd) on the native host system. The daemon
process forks itself (i.e., via clone), specifying that the

newly forked process will run in different namespaces
from the native for isolation. The forked process then
properly sets up the namespaces that it runs in (e.g.,
mounting a different root, setting up its IP address, fire-
walls, etc.) and executes a target program (i.e., via ex-
ecve). The target program then starts running in an en-
vironment isolated from other containers and the native
system. The isolation is achieved by using the names-
pace abstractions. When forking a new process, the clone
system call accepts different flags to indicate that the
child process should run in none, one or several types of
new namespaces. Containers often leverage all six types
of namespaces at the same time, in order to create a fully
isolated environment.

2.2 Kernel Security Frameworks

To protect the system and applications running atop,
Linux kernel features many security frameworks. Some
of these frameworks are upstreamed to the Linux
kernel, such as Linux integrity subsystem [53, 30],
SELinux [42], and AppArmor [41]. Some remain as re-
search proposals [43, 63, 2, 28]. Although differing in
security goals, these frameworks share a similar design.
In general, these security frameworks rely on ”hooks”
added into the kernel to intercept security critical oper-
ations (e.g., accessing inodes) from a process. Such se-
curity critical operations are passed to a security module
where decisions (i.e., allow or deny) are made based on
security policies.

2.2.1 Linux Integrity Subsystem

The Linux integrity subsystem, also known as the In-
tegrity Measurement Architecture (IMA) [53], is de-
signed to thwart attacks against the unexpected changes
to files, particularly executable, on a Linux system.
IMA achieves this by measuring files that may affect
the integrity of the system. Working with a secure co-
processor such as TPM, IMA could securely store the
measurements and then report them to a remote party
as a trustworthy proof of the overall integrity status of
the system (i.e., attestation). For example, a bank server
could leverage IMA to attest its integrity to its users, en-
abling the users to bootstrap trust before operating over
their accounts. In addition to attestation, IMA can also
enforce the integrity of a system by specifying which
files could be loaded. IMA does so by appraising files
against ”good” values (e.g., checksums or signatures)
specified by system owners. In the above example, a
bank would benefit from IMA to maintain a tightly con-
trolled environment of its servers and enforce that only
approved code could be run.

3 Motivation
In this section, we discuss the need for containers to have
autonomous security control, and the fundamental chal-
lenges of achieving it.

3.1 Autonomous Security Control
As more critical applications are deployed in containers,
container owners want to utilize kernel security frame-
works to govern integrity measurement, code execution,
mandatory access control, etc. to prevent application
specific security problems. Ideally, such security control
should be autonomous, similar to when their applications
were deployed on VMs or hosts.

Unfortunately, it is difficult to achieve the autonomy
by directly using existing kernel security frameworks. As
an example, consider a containerized bank service de-
ployed on a public cloud. The service owner wants to
control the integrity of the service by ensuring that crit-
ical service components such as service code, libraries
and configurations are not modified. However, she can-
not use IMA to do so. First, the bank service could not
attest its integrity using IMA. The reason is that IMA,
as an in-kernel security mechanism, tracks the integrity
of the entire system. Consequently, measurements from
different containers (and the host system) are mixed to-
gether and cannot be accessed independently. Second,
the bank service cannot control what code or data can
be loaded into the container. Since IMA only allows a
single policy maker (in this case, the cloud vendor that
controls the host system), individual containers cannot
decide what files to measure nor what would be good
measurements for those files.

We argue that achieving the autonomous security con-
trol is fundamentally difficult because security frame-
works in Linux kernel are designed to be global and
mandatory. Security frameworks are global in a sense
that they control all processes running on a kernel. In
addition, security states (e.g., IMA measurements) are
stored centrally for the global system. Security frame-
works are mandatory in a sense that only the owner of
the system (i.e., system admin) is authorized to specify
a policy. Other principals on the system (i.e., container
owners) are not allowed to make security decisions.

Enabling containers to have autonomous security con-
trol, however, requires relaxation of both the global and
mandatory assumption of security frameworks. Security
frameworks need to exercise their control over a limited
scope of processes specified by the container owner and
security states need to be maintained and accessed sep-
arately; this relaxes the global assumption of security
frameworks. Container owners will independently apply
security policies and together participate in the process
of security decision making; this relaxes the mandatory
assumption of security frameworks.

P0

NSnative NS1 NS2

fork
new ns

fork fork
new ns

P1 P2 P3

Figure 2: A strawman design of security namespace.

3.2 Security Namespace
To achieve the autonomous security control, one idea
is to design a security namespace abstraction, similar
to how other global resources are isolated/virtualized in
Linux. However, unlike other resource namespaces, se-
curity namespace needs to relax the global and manda-
tory assumption which the security of the system often
rests upon. Thus, if naively designed, it could introduce
security loopholes into the system, invalidating the se-
curity offered by security frameworks. In this section,
we first introduce a strawman design of security names-
pace that mimics the design of resource namespaces, and
present two attack examples.

Strawman design. Analogous to other resource names-
paces, a security namespace has to make it appear to the
processes within the namespace that they have their own
isolated instances of kernel security framework. An in-
tuitive design is thus to virtualize kernel security frame-
works (i.e., by replicating code and data structures) into
virtual instances. Each virtual instance becomes a secu-
rity namespace: it is associated with a group of processes
and it makes security decisions over those processes in-
dependently. For example, as shown in Figure 2, process
P0 runs in native security namespace NSnative. It creates
a new security namespace NS1 and forks itself (i.e., via
clone with CLONE NEW flag set). The child process P1
now runs in NS1. P1 further forks itself in the same secu-
rity namespace and P2 further forks P3 in a new security
namespace. In this case, the strawman design assigns se-
curity control of P0 to NSnative, control of P1 and P2 to
NS1, and control of P2 to NS2. The owner of NSnative,
NS1 and NS2 will independently apply security policies.

While such design achieves autonomous security con-
trol in a straightforward way, it introduces two attacks:

Attack Example 1. Consider an example where the se-
curity namespaces NSnative and NS1 under discussion are
IMA namespaces. Assume the owner of the native sys-
tem wants to prove the integrity of the native system by
using NSnative to measure and record all the code that has
been executed on the system (Figure 3a). Such measure-
ments serve as an evidence for remote parties to boot-
strap trust into the native system. However, a malicious
subject P may fork itself into a new IMA namespace NS1
and then execute a malware inside of it (Figure 3b). In

P Malicious
Code

Measurement
List

clone
CLONE_NEWIMA

exec

native

(a) IMA measures code
loaded in native

(b) IMA measures code
loaded in namespace

P Malicious
Code

execP1

Measurement
List native

Measurement
List ns

ns

System is Attacked ! System is OK !

Integrity Attestation Integrity Attestation

Figure 3: An attack in the strawman design. A re-
mote verifier may be tricked into believing the system
is of sufficient integrity to use even though a malware
was once loaded on the system.

this case, the measurements of the malware are stored
onto the measurement list of NS1, which will be deleted
after the namespace exits, leaving no traces behind. In-
tegrity attestation of the native system, in this case, will
cause a remote party to believe that the system is of suf-
ficient integrity to use, despite the fact that the malware
was once executed on the system.

In this example, P managed to execute a malware
without leaving a footprint on the system, due to that the
native security namespace NSnative no longer controls P1,
and the security namespace NS1 that controls P1 is cre-
ated and controlled by adversary. This example demon-
strates that, in a security namespace design, if the global
assumption of a security framework is relaxed in a naive
way, adversary may leverage that fact to circumvent sys-
tem policy.

Attack Example 2. A container associated with security
namespace NS1 shares a file f with another container as-
sociated with a different security namespace NS2. The
file is of high integrity to NS1, and thus is shared in a
read-only way. However, since NS2 has security control
over processes running in the second container, it can
make f read-write to its processes. As a result, when
processes from NS1 reads f , they read in low integrity
input even though they expect the file to be maintained
at high integrity. In this example, NS2 managed to let
processes in NS1 take low integrity input by specifying a
policy different from what was expected by NS1. Worse,
since processes in NS1 mistakenly believe that the file
is still at high integrity, most likely they will not take
countermeasures that could otherwise protect themselves
(e.g., by checking file hash before reading it). Previous
researches [22, 60] also show that, when two or more
principals try to make security decisions independently,
the inconsistencies between them may open additional
attack channels. This example demonstrates that, in a

security namespace design, if mandatory assumption of
security framework is relaxed in a naive way (e.g., by
allowing two or more principals to apply security poli-
cies freely), adversary may leverage that fact to launch
attacks.

3.3 Goals
The high level goal of this paper is to investigate the
design of security namespace that enables containers to
have autonomous security control. However, in doing so,
the security of the system should not be compromised.
Due to the diversity of kernel security frameworks and
their different design perspectives and details, the design
can hardly be generic. But we try to abstract the com-
monness by studying two commonly used kernel security
frameworks, namely IMA and AppArmor, and hopefully
it may provide useful guidance for other kernel security
frameworks and eventually lead to a generic design.

Autonomous Security Control. By autonomous secu-
rity control, we mean that individual security names-
paces can govern their own security. Specifically, we
would like our design to have the following three prop-
erties:

• The processes associated with a security namespace
will be under security control of that namespace1.

• The principal who owns a security namespace can
define security policy for that namespace, indepen-
dently from other security namespaces and the na-
tive system.

• Security states (e.g., logs, alerts, measurements and
etc.) are maintained and accessed independently.

Security. By security we mean that when there are two
or more principals on the system (including the native),
one principal cannot leverage the security namespace
abstraction to compromise the security of another princi-
pal. Here the principals refer to parties with independent
security interests and policies (i.e., container owners and
native system owner) but share the same kernel. The se-
curity of a principal refers to the security requirements
of the principal, expressed by his or her security policy.
In other words, our design should not satisfy a princi-
pal’s security requirements at the cost of another princi-
pal. Only when all principals’ security requirements are
satisfied we say that the overall system is secure.

The strawman design satisfies the autonomous secu-
rity control, but fails to meet the security requirements.
The focus of this paper is thus to investigate the design
of security namespace abstraction that can achieve au-
tonomous security control without violating security, and

1It does not necessarily mean that the processes will only be under
security control of that namespace.

S

Security
Namespace1

Policy1

.

States1

Security
Namespacen

Policyn

Statesn

Security
Namespace2

Policy2

States2

..

Deny

Allow

Deny

Kernel SpaceUser Space

system
call

Policy1

Policy2

Policyn

Policy
Engine…

Figure 4: Design overview. A subject’s operation
is routed to security namespaces who may have an
opinion about the operation. Each involved security
namespace independently makes a security decision,
and the operation is allowed if all involved security
namespaces allow the operation.

above attack examples show that how to relax the global
and mandatory assumption of security frameworks rep-
resents a control point in the tussle.

3.4 Security Model
In this work, we assume the trustworthiness of the ker-
nel. The security frameworks and their namespace im-
plementations reside in kernel space and they can be
trusted to enforce the security policies specified by their
owners. We do not trust any userspace processes, priv-
ileged or unprivileged, on native or in container. They
are targets of confinements of security namespaces. In
practice, there are often certain userspace processes re-
sponsible for loading security policies into the kernel.
Such processes are not trusted as well. The kernel en-
sures the integrity of the policies being loaded by either
attesting policy integrity to the policy maker or accepting
only policies with valid maker signature. In addition, we
do not assume mutual trust among principals on a sys-
tem. It is the design goal of security namespace abstrac-
tion to prevent one principal from abusing the abstraction
to compromise security of another principal.

In this paper, we do not aim to provide an unified
abstraction for all kernel security frameworks. Instead,
each kernel security framework will have its own security
namespace abstraction. We leave it for the future work
to provide an unified abstraction and functions such as
stacking [32]. In addition, although we examine the chal-
lenges in applying the design to SELinux (Section 9), we
do not claim that the design is already generic. We leave
it for the future work to further study the generality of the
design and apply it to other kernel security frameworks.
Side channel attacks are also out of scope of this paper.

4 Solution Overview
The strawman design shown in Figure 2 provides
a straightforward way for containers to achieve au-

tonomous security control. However, the way it re-
laxes the global and mandatory assumption only consid-
ers a single principal’s security interest (i.e., the security
namespace that is associated with the process), therefore
potentially violating the security of other principals on
the system. We argue that when relaxing the global and
mandatory assumption of security frameworks, we have
to account for the security expectations of all principals
on the system. Only in this way, we can ensure that the
autonomous security control of one principal does not
come at the cost of another principal. This boils down to
two security invariant that we believe must be maintained
when global and mandatory assumption are relaxed:

• Given an operation from a process, all security
namespaces that have an opinion about the opera-
tion (i.e., expressed via its security policy) should
be made aware of the operation.

• Only if all security namespaces that have an opinion
about the operation allows the operation will the op-
eration be allowed by the system.

The first invariant addresses the concern of relaxing
the global assumption of security frameworks. Although
a security namespace no longer sees every operation on
the system, it should be able to see all operations that
may affect its security. The second invariant addresses
the concern of relaxing the mandatory assumption of se-
curity frameworks. Every security namespace that is af-
fected by an operation can apply policies over the oper-
ation. However, only if all policies allow the operation
will the operation be allowed by the system.

Based on this insight, we propose a security names-
pace abstraction design that is secure, by augmenting
the strawman design with a routing based mechanism,
as shown in Figure 4.

First, as in the strawman design, we virtualized a
security framework into virtual instances. Each vir-
tual instance becomes a security namespace and controls
a group of processes associated with it (e.g., security
namespace1 to security namespacen in Figure 4). Each
security namespace shares the same code base in kernel,
but independently enforce its own security policies and
maintains independent data structures for security states.
Conceptually, they are isolated from each other.

Second, we added a component named Operation
Router to the standard operation mediation process of
security frameworks in kernel. When a process per-
forms an operation (i.e., system call), the operation is
first sent to the Operation Router. Based on the opera-
tion, the Operation Router decides which security names-
paces should be made aware of the operation. The key
challenge in this step is to ensure that every security

namespace whose security might be affected by an op-
eration is made aware of the operation; this underpins
security while allowing relaxation of the global assump-
tion of security frameworks. The router then routes the
operation to those security namespaces. Each security
namespace makes their security decisions independently.

After each security namespaces made their security
decisions, a final decision is made by the system, tak-
ing into consideration of all those security decisions. To
relax mandatory assumption in a secure way, we took a
conservative approach which intersects (i.e., apply AND
operator) all those security decisions. Thus, only if all
security namespaces that were made aware of the opera-
tion allow an operation will it be allowed by the system.

Finally, we added a component named Policy Engine
that detects and identifies policy conflicts among secu-
rity namespaces at policy load time. Policy conflicts
result in different security decisions at runtime, where
an operation allowed by one security namespace is de-
nied by another. Since a security namespace cannot (and
should not) inspect security states of another, debugging
the cause of the denial becomes a problem. This is par-
ticularly problematic for the container cloud case since
the container owners do not want containerized applica-
tions to encounter any unexpected runtime resource ac-
cess errors. Therefore we designed the policy engine to
detect and identify policy conflicts at policy load time
and inform the namespace owner the potential conflicts.
The policy owner may decide to revise her security pol-
icy to avoid conflicts, or continue to use the system but
be aware of the potential runtime denials, or change to a
new system where there is no conflicts.

5 Operation Router
The Operation Router identifies the set of security
namespaces that may have an opinion about an opera-
tion and routes the operation to those security names-
paces. To decide which security namespace may have
an opinion about an operation, we leverage a simple in-
sight: a security namespace may have an opinion about
an operation if by not routing the operation to the secu-
rity namespace, the two security assumptions, global and
mandatory, might be broken for the security namespace.
Since an operation can be written as an authorization tu-
ple (s, o, op), we discuss from subject’s and object’s per-
spective separately.

5.1 A Subject’s Perspective
Security framework makes an implicit assumption about
its globalness: it controls all subjects on a system that
are stemmed from the very first subject that it sees. For
native system, this means all subjects forked from init
(i.e., PID 1). For a security namespace, this means all
the subjects forked from the first subject of the security

namespace. The attack example shown in Figure 3 oc-
curs due to that it breaks this implicit assumption. P1 is
a descendant of P. However, by assigning security con-
trol of P1 to a new security namespace, security names-
pace NSNative no longer confines P1, therefore breaking
the implicit global assumption of NSNative.

Therefore, a security namespace would have an opin-
ion about an operation if, by removing the operation, the
implicit global assumption of the security namespace is
broken. To achieve autonomous security control, a sub-
ject is under direct control of the security namespace that
it is associated with. However, at the same time, since the
subject stems from other subjects that may be associated
with other security namespaces, those security names-
paces also implicitly assume control of the subject. If
an operation involving the subject is not routed to those
security namespaces, their global assumptions are bro-
ken therefore compromising their security. As a result,
the Operation Router needs to account for the subject’s
perspective by not only route an operation to the security
namespace that the subject is associated with, but also
all security namespaces that the direct ancestors of the
subject are associated with.

5.2 An Object’s Perspective
Security policy is often a whitelist, enumerating allowed
operations from subjects over objects. The manda-
tory assumption of a security framework implies that,
other than those allowed operations, no other operations
should be performed over the objects2. In other words, a
security namespace implicitly assumes a complete (and
autonomous) control over the objects that it may access.
The attack example 2 shown in Section 3.2 occurs due to
that it breaks this mandatory assumption. In the attack,
security namespace NS1 assumes high integrity of file f
by ensuring that the file is read only to all its subjects.
However, due to the file is also accessible to another
security namespace NS2, NS2 may allow its subjects to
write to f in arbitrary way. Therefore, when subjects
from NS1 access the file, security of NS1 is compromised
without NS1 is being aware of.

Due to the assumption of complete control over ob-
jects, a security namespace may have an opinion about
an operation even if the subject of the operation is not
under its control. Only in this way can a security names-
pace ensure that there are no unexpected operations over
the objects that its subjects may ever access. As a result,
theoretically, the Operation Router needs to account for
the object’s perspective by routing an operation to all se-
curity namespaces whose subjects may ever access the
object of the operation to ensure that all their security

2Mandatory assumption also implies that subjects should not per-
form any additional operations that are not allowed by the policy. But
it is already covered by the subject’s perspective.

expectations are met.
To decide if an object may ever be accessed by sub-

jects of a security namespace, the Operation Router
leverages the resource visibility defined by the resource
namespaces (e.g., mount, network and etc.). The re-
source namespaces define the visibility of subjects to ob-
jects. As long as an object is visible to subjects of a se-
curity namespace, it may be accessed by those subjects.

5.3 Shared Objects and Authority
Since security namespaces implicitly assume complete
control over objects that they may access, ideally each
security namespace is coupled with its own resource
namespaces therefore having its own isolated sets of ob-
jects. However, in practice, certain objects can be ac-
cessed by multiple security namespaces. For example,
the /proc and /sys filesystems and the objects on
them are often shared among different containers on a
host. Such sharing may lead to two practical issues.
First, due to the whitelist nature of security policy, a se-
curity namespace allows only its own operations over the
object and naturally denies operations from other secu-
rity namespaces that share access to the object. This re-
sults in an unusable system. Second, if the Operation
Router routes one security namespace’s operation to an-
other security namespace due to that they share access to
an object, it may become a privacy breach. For example,
a container may not want its operation over /proc to be
known to another container.

To address this practical concern, we have to adjust
policy language of existing security frameworks to make
the implicit mandatory assumption explicit. We intro-
duce two new decorators to the policy language, author-
ity and external. In a security policy, if a security names-
pace declares authority over an object, its policy over the
object becomes mandatory—all the operations over the
object, either from subjects associated with the security
namespace or other security namespaces, will be routed
to the security namespace for mediation. In contrast, if a
security namespace does not have authority declared for
an object in its security policy, the policy over the object
will only be locally effective, meaning that the security
namespace will not be able to control how subjects from
other security namespaces access the object. The goal
of the authority decorator is to let security namespaces
explicitly declare their mandatory assumption.

The external decorator is used along with the authority
decorator. When a security namespace declares author-
ity over an object, it may define security policies for sub-
jects that are invisible to the security namespace (i.e., as-
sociated with other security namespaces). Such invisible
subjects are decorated with keyword external in the secu-
rity policy. A security namespace will assign access per-
missions to external decorated subjects just like its own

P0 P1 P2 P3

NSnative NS1 NS2

Figure 5: Security namespace graph.

subjects, but all external decorated subjects will have the
same permissions because they are indistinguishable to
the security namespace. For example, when protecting
a read-only file using a lattice policy, a security names-
pace can assign invisible subjects with integrity label {a}
and the file with integrity label {a, b} to ensure read-
onlyness. However, label {a} will be universal for all
the invisible subjects of the security namespace, because
from the security namespace’s perspective, those sub-
jects are invisible therefore indistinguishable.

To prevent a security namespace from arbitrarily
declaring authority therefore launching denial of service
attacks to other security namespaces, the ability to de-
clare authority is tightly controlled by the system. We
use a capability-like model where the ability to declare
authority over an object is treated like a capability. When
an object is created, the security namespace that creates
the object is granted the capability. It may use the ca-
pability, by declaring the authority in its security policy,
or delegate the capability to other security namespaces.
In practice, the delegation often happens between parent
and child security namespaces.

5.4 Routing Algorithm
Combining the two perspectives and the practical con-
straint, we can then define a routing algorithm for the Op-
eration Router that meets our goal: given an operation,
all security namespaces that may have an opinion about
an operation are made aware of the operation. The algo-
rithm is constructed around two data structures, namely
a security namespace graph and an object authority table
which are maintained and updated in the kernel while
new security namespaces are being created and security
policies are being loaded.

A security namespace graph is a graph that main-
tains the <subject↔ namespace> and <namespace↔
namespace> mappings. It has two types of vertices as
shown in Figure 5. One type of vertices are the subjects
and another type of vertices are the security namespaces.
An undirected edge connects the two. Between secu-
rity namespace vertices, there is a directed edge, pointing

Input: subject s and object o, security namespace graph G, object
authority table T
Output: set of security namespaces Φ

1: Φ←native . Native is the ancestor for any security namespace
2: n←CURRENT(s, G) . Get the namespace that s is associated with
3: while n 6= native do . Recursively add all n’s ancestors
4: Φ←Φ∪n
5: n←GET PARENT(n, G)
6: Φ←Φ∪AUTHORITY(o, T) . Get namespaces that declared

authority over o
7: return Φ

Figure 6: An algorithm for routing an operation to
security namespaces who may have an opinion about
the operation.

from the child to its direct parent3. The security names-
pace graph captures the subject’s perspective when the
Operation Router routes an operation.

Another data structure is the object authority table.
An object authority table maintains the mapping between
an object to the corresponding security namespaces that
have the capability to declare authority over the object. It
also maintains the information of whether or not the se-
curity namespace actually declared the authority in its se-
curity policy. The object authority table is updated when
a new object (e.g., inode) is created within the kernel and
when new authority delegation happens. The object au-
thority table helps capture the object’s perspective under
the practical constraint when the Operation Router routes
and operation.

Using these two data structures, we define the routing
algorithm as shown in Figure 6. The algorithm takes as
input the subject and object of an operation, and produces
a set of security namespaces that need to be made aware
of the operation. At the high level, the algorithm works
as the follows: it first recursively add the current security
namespace that the subject runs in and all its ancestors
security namespaces (down to the native) into the output
set. Then it finds all the security namespaces that hold
authority over the object and adds them to the output set.

6 Policy Engine
The goal of Policy Engine is to detect policy conflicts
at policy load time. Policy conflicts would result in dif-
ferent security decisions, where an operation allowed by
a security namespace is denied by another. Such denial
often cannot be debugged at runtime, as security names-
paces are isolated from each other. This may affect the
practical usability of the security namespace abstraction,
considering a containerized application can fail unex-
pectedly. To address this concern, our insight is to move

3The parent and child relationship is defined with respect to the
subjects. If subjects of a security namespace are forked from subjects
of another security namespace, then the two security namespace has a
parent and child relationship.

S

NSp NSc
(Policy—>Allow)(Policy—>Deny)

S

NS1 NS2
(Policy—>Allow)(Authority)

(Policy—>Deny)

S

NS1
(Policy—>Allow)

NS2

S

NS1 NS2
(Declare Authority
without capability)

(Policy—>Allow) (Authority)
(Policy—>Deny)

(a) Parent-Child Conflict (b) Global-Local Conflict

(c) Lack of Authority (d) Environment does not meet expectation

Figure 7: Four types of policy conflicts. Existing and
new security namespaces are separated by the dashed
line. Conflicting policies are marked in red.

the conflict detection to policy load time and inform re-
spective parties of the potential conflicts. The conflicting
party may revise her security policy to avoid conflicts, or
continue using the system but be aware of the potential
conflicts, or abort using the system as the system cannot
meet her expectations. The Policy Engine detects two
types of conflicts: DoS conflicts and expectation con-
flicts. We discuss them separately in this section.

6.1 DoS Conflicts
When a security namespace loads its security policy, if
its subjects might be denied of performing an operation
by other security namespaces on the system, we call it
denial of service conflicts (DoS conflicts). The name
comes from the fact that the operation will be eventu-
ally denied (after intersecting all security decisions) even
though policy of the security namespace explicitly allows
the operation.

There are two types of DoS conflicts, corresponding
to the subject’s and object’s perspective of the operation
routing. The first type is the ancestor-descendant con-
flict, where a descendant security namespace’s policy vi-
olates its ancestors’, as shown in Figure 7(a). Recall from
Section 5.1, a subject is under control of its own secu-
rity namespace and all its ancestors. Thus a DoS conflict
may arise if the descendant loads a policy that allows an
operation but its ancestors would deny it. The second
type of conflict is the global-local conflict, where a secu-
rity namespace’s security policy violates an authoritative
one, as shown in Figure 7(b). In this case, a security
namespace loads a policy that allows an operation over
an object (i.e., local), but the operation would be denied
by other security namespaces that hold authority over the
object (i.e., global).

The Policy Engine detects DoS conflicts using a con-
flict detection algorithm, as shown in Figure 8. At a high

Input: set of existing security policies S, new security policy s
Output: set of conflicting rules Φ

1: Φ← /0
2: S′←ROUTING ALG(S) . Set of policies that need to be

considered
3: Po←PERMISSIONS(S′) . Projected permissions of S′

4: Pn←PERMISSIONS(s) . Projected permissions of s
5: if Pn 6⊆ Po then
6: Φ←CONFLICTING RULES(Po, Pn)
7: return Φ

Figure 8: An algorithm for detecting DoS conflicts.

level, the algorithm takes as input the security policies of
existing security namespaces and the new one, and try to
identify if the newly loaded security policy would intro-
duce additional access permissions for the subjects. Such
additional permissions are the root cause of an operation
being allowed by the new security namespace, but denied
by others. Specifically, the algorithm first computes the
set of security namespaces whose security policies need
to be considered. This is based on the routing algorithm
discussed in previous section. Next, by analyzing the
policies, the algorithm computes two projected permis-
sion sets of each and every subject associated with the
new security namespace4, one based on security policies
of existing security namespaces and another based on the
newly loaded policy. The permission set of the new secu-
rity policy should always be a subset of the existing se-
curity policies, to ensure that no additional permissions
are introduced.

When conflicts are detected, the owner of a security
namespace are given two choices. She may revise her
security policy to avoid the conflicts, or loading the se-
curity policy anyway with the risk of her operations be-
ing denied unexpectedly. However, we should note that
even in the second case, she only risks DoS but no com-
promise of security as any operation denied by her own
policy will not be executed by the system.

6.2 Expectation Conflicts
When a security namespace loads its security policy,
if the policy could deny operations from other security
namespaces, we call it expectation conflicts. Expecta-
tion conflicts may lead to unexpected operation denials
to existing security namespaces, so the system will refuse
to load a security policy that may cause expectation con-
flicts. As its name suggests, the expectation conflicts rep-
resent that the existing system cannot possibly meet the
security expectation of a new security namespace, there-
fore the owner of the new namespace should either revise
her policy, or abort using the system.

4This is a projection, as at the policy load time, there is often no sub-
ject or only a single subject of that security namespace actually created
on the system, depending on who loads the security policy.

In practice, there are two types of expectation con-
flicts, both of which can be easily detected by the Policy
Engine using the object authority table. The first type of
expectation conflicts is shown in Figure 7(c), where in its
security policy a security namespace declares authority
over an object but it does not have the capability to de-
clare the authority. In this case, the Policy Engine would
refuse to load the policy and render a lack of authority
error. This delivers an explicit message to the owner
of the security namespace that the system cannot meet
her security expectation, and she shall not run with the
false impression of security (e.g., a security namespace
believes a file is read-only file, but it is actually writable
to other security namespaces). The second type of expec-
tation conflicts is shown in Figure 7(d), where a security
namespace has the capability and declares authority over
an object. However, its policy over the object conflicts
with policies of existing security namespaces on the sys-
tem (i.e., it would deny an operation which was already
allowed by others). In this case, the Policy Engine would
refuse to load the policy as well, since loading the policy
may cause unexpected operation denials of other secu-
rity namespaces. Here the authority represents a right to
claim mandatory security over an object, but not a right
to override security decisions of others.

7 Implementation
To demonstrate our design, we implemented security
namespace abstractions for two widely used kernel se-
curity frameworks, IMA and AppArmor. The modifica-
tion to kernel is ∼1.1K and ∼1.5K LOC, respectively.
The IMA namespace implementation is already open
sourced5 and under review by the kernel community.

7.1 IMA namespace

Operation Router. IMA protects the integrity of a sys-
tem by measuring and appraising what subjects on a sys-
tem may read or execute. It has a narrow focus on the
subject’s perspective of access control. This simplifies
the implementation of the Operation Router. When a
subject reads or executes a file, the Operation Router
simply routes the operation to the IMA namespace asso-
ciated with the subject, and all its ancestor IMA names-
paces up to the native.

Measuring Files. Conceptually, each IMA namespace
would measure a file independently. However, this can
be both expensive (i.e., calculating hash of a file mul-
tiple times) and unnecessary. Instead, we re-used the
measurement cache in our implementation and make it
a global data structure shared by all the IMA names-
paces. After the first IMA namespace calculates a mea-

5https://git.kernel.org/pub/scm/linux/kernel/git/zohar/linux-
integrity.git/log/?h=next-namespacing-experimental

surement of the file, the measurement is put on a global
measurement cache. Subsequent IMA namespaces will
check with the cache to detect the presence of the mea-
surement and only calculate if it is not present. However,
each IMA namespace would still maintain its own mea-
surement list and independently decide whether or not
to include the measurement on its list. To some extent,
we did not fully virtualize IMA. Instead, we only virtu-
alized the data structures and interfaces that are exposed
to userspace to make it appear that they have their own
isolated instance of IMA.

File Appraisal and Policy Engine. IMA appraisal
prevents unauthorized file from being read or executed
by validating file signatures against pre-installed certifi-
cates. The certificates are traditionally specified by the
system admin and are stored on the ima keyring6. To
support appraisal, we need to first separate ima keyring
such that each IMA namespace can install their own set
of certificates to validate files independently. But un-
fortunately, the existing kernel keyring subsystem does
not support namespace abstraction. As a workaround,
we implemented a dynamic keyring renaming mecha-
nism. The idea is to allocate a keyring with a different
name (randomly generated) in the kernel every time an
IMA namespace is created. This keyring is associated
with the namespace for its entire life cycle. The names-
pace owner can thus load and update certificates for his
namespace using this keyring. To prevent one names-
pace from updating the keyring of another namespace,
we rely on the access control mechanisms in keyring sub-
system. A cleaner way to implement this is to provide a
namespace abstraction for the kernel keyring subsystem,
which is an ongoing effort of a working group. We will
integrate it with IMA namespace once it is done. Af-
ter separating the ima keyring, each IMA namespaces
could independently load its certificates. The certificates
are essentially whitelist policies deciding which file can
be read or executed by the namespace. To detect policy
conflicts at load time, the Policy Engine simply checks
if is the certificates loaded by a security namespace is a
subset of existing security namespaces.

7.2 AppArmor Namespace

Operation Router. AppArmor implements the targeted
security MAC policy, which tries to confine privileged
subjects on a system. Its original focus is the subject. To
extend it with an object’s perspective, we made two mod-
ifications. First, each AppArmor namespace is assigned
with a base profile. In the base profile, a security names-
pace can declare authority over objects. Other profiles
in the namespace will inherit the base profile. Second,
we implemented a handler function in the kernel to de-

6Keyring is a kernel subsystem for retaining and caching keys.

tect any changes to the base profile so that the Operation
Router can be notified to parse the base profile and up-
date its object authority table accordingly.

Pathname Collision. In AppArmor, subjects and
objects are identified using their pathnames. This
becomes problematic when an AppArmor names-
pace needs to differentiate subjects or objects in
different namespaces. One way to address this is to
use absolute pathnames (e.g., /sbin/dhclient and
/var/lib/docker/instance-001/sbin/dhclient).
The downside of this approach is, however, there may
not always exist a valid absolute pathname. In our imple-
mentation, we leveraged the built-in profile namespace
primitive of AppArmor policy. A profile namespace
provides scoping for the pathnames. By creating a
profile namespace per AppArmor namespace and as-
signing it an identifier, we therefore enable AppArmor
namespaces to specify a policy using the combination of
profile namespace identifier and the relative pathnames
in the profile.

Policy Engine. We construct our Policy Engine based on
the extended Hybrid Finite Automata (eHFA) [16] of Ap-
pArmor. The Policy Engine first identifies the set of pol-
icy profiles (including the base profiles) that may be asso-
ciated with the same subject. Then taking these profiles
as input, the Policy Engine tries to construct eHFA. Dur-
ing this process, the Policy Engine will sort and merges
rules from profiles, and detect conflicts if there are any.

7.3 Filesystem Interfaces
Both IMA and AppArmor accepts policies and exports
security states through securityfs interface. Ideally,
each security namespace should be able to mount its own
securityfs. However, currently this is not allowed
by the kernel. As a temporary fix, we used the proc
filesystem instead. The idea is to place the security states
and policy files that correspond to a security namespace
under the directories of the processes that run within that
namespace. We are working with the kernel community
to fix the permission issue for mounting securityfs
(e.g., using jump link).

7.4 Using Security Namespace
In order for userspace program to create an IMA or
AppArmor namespace, we extended the clone and un-
share system call. Taking clone system call for ex-
ample, we added a new constant CLONE NEWIMA and
CLONE NEWAPPARMOR that userspace program can
specify along with other namespace constants7. The re-
sult is that kernel will clone the process and run it within

7There are some debates in kernel community whether or not con-
stants for security namespaces should be on their own. This may affect
the interface in future.

the new IMA or AppArmor namespace. The changes to
userspace program are minimal. In fact, to make IMA
and AppArmor available to Docker, we extended the lib-
container [29] by introducing less than 20 LOC.

8 Evaluation
In this section, we evaluate IMA and AppArmor names-
paces from their security effectiveness and performance.

8.1 Security Effectiveness
8.1.1 IMA Namespace

We evaluate the security effectiveness of IMA names-
pace from two perspectives: autonomous security con-
trol and security. To evaluate autonomous security con-
trol, we emulate a security setting identical to most com-
mercial container clouds where container host applies a
very lenient integrity policy (i.e., allow any immutable
files to be run within the containers). Containers, on
the other hand, apply a strict integrity policy using IMA
namespace (i.e., only code signed by container owner
may run in container). We created three types of mali-
cious code that an attacker may run within a container,
i.e., code that was not signed, code signed with unknown
key, and modified code with an invalid signature. The
IMA namespace of container successfully prevents all of
them from running. In addition, the individual measure-
ment list of IMA namespace enables the container to at-
test its integrity to a remote party independently. This
experiment demonstrates that IMA namespace enables
containers to have their autonomous integrity control, in-
dependent from the integrity policy that host system ap-
plies.

The second experiment evaluates security, by demon-
strating that containers cannot leverage IMA namespace
to violate the integrity policy of the host. In this experi-
ment, we emulate a scenario where the host system wants
to apply certain integrity control over its containers (e.g.,
prevent container from hosting malware by allowing only
code signed by Ubuntu to run). Containers, on the other
hand, try to break it by allowing anything to run in its
IMA namespace. In this case, the Policy Engine suc-
cessfully detects the DoS conflict, and if the container
continues loading the policy, code in container that is not
signed by Ubuntu is prevented from being run by the na-
tive IMA namespace. This experiment shows that despite
enabling autonomous security control, IMA namespace
will not compromise the integrity of any principal.

Conflict Analysis. IMA supports two sets of security
policies: one for measurement that determines which
files to measure, and one for appraisal that determines the
right measurements for each file. The measurement pol-
icy only affects which files each individual IMA names-
pace will measure, therefore there are no conflicts intro-

Table 2: Enforcing both system and container profiles
over applications.

Application Profile Conflicting Rules
Apache2 /proc/[pid]/attr/current rw

NTP /dev/pps[0-9]* rw
firefox /proc/ r
chrome /proc/ r

MySQL, Perl, PHP5
OpenSSL, Samba, Ruby, Python

Subversion, BitTorrent, Bash None
dhclient, dnsmasq, Squid

OpenLDAP(slapd), nmbd, Tor

duced because each IMA namespace has its independent
measurement list. In other words, integrity attestation of
individual containers are conflict-free. The appraisal pol-
icy may introduce conflicts since a measurement ”good”
for one IMA namespace may not be ”good” for another,
as evidenced by above examples.

To avoid appraisal policy conflicts, container owners
will have to ensure that the files they allow to load in
containers are a subset of the files allowed by the host
system. This, in our implementation, means that the cer-
tificates that a container owner may load on her ima
keyring will be a subset of the certificates that the host
system owner loads on the host system’s ima keyring.
In practice, conflicts are not common since container
clouds tend to have a lenient integrity policy (e.g., allow
any executable to run within container). However, in a
case where a container cloud does have certain integrity
requirements over containers, the cloud vendor will have
to explicitly inform its users of what they can or cannot
run inside their containers (i.e., by revealing the list of
host certificates), in order to assist container owners to
avoid conflicts.

8.1.2 AppArmor Namespace

According to the official Ubuntu LXC documenta-
tion [34]:

Programs in a container cannot be further
confined — for instance, MySQL runs under
the container profile (protecting the host) but
will not be able to enter the MySQL profile (to
protect the container).

We thus evaluate the security effectiveness of the Ap-
pArmor namespace by showing that container owners
can leverage AppArmor namespace to further confine
their applications (i.e., have autonomous security con-
trol), just like running applications within a VM or di-
rectly on the native system.

We selected 20 programs that have default AppAr-
mor profiles in Ubuntu and run them in a container 8.

8There are ∼70 programs that have default AppArmor pro-

Containers apply these profiles in an AppArmor names-
pace to protect their containerized applications. The na-
tive system applies lxc-start, lxc-default and
docker-default profiles(also shipped as a default
in Ubuntu) in the native AppArmor namespace, in or-
der to protect the host system from accidental or inten-
tional misuse of privileges inside the container. Running
them together, we evaluate whether or not the AppArmor
namespace indeed enables autonomous security control
for container, by protecting the containerized application
and the host at the same time. Results are shown in Ta-
ble 2. As shown in the table, except 4 programs (Apache,
ntp, firefox and chrome), the application profiles of the
other 16 programs can be directly applied to the con-
tainer on top of the host system profile. This demon-
strates that our AppArmor namespace enables containers
to have autonomous security control, independent from
the host system. For the four programs, the Policy En-
gine yields DoS conflicting rules, which means that op-
erations of these programs might be denied by the host
profile even if they are allowed by the application pro-
file. This demonstrates that 1) containers may not lever-
age AppArmor namespace to compromise the host, as
these conflicting operation will eventually be denied by
the system, and 2) our Policy Engine can inform the con-
tainer at policy load time such that containers will not
run into unexpected runtime resource access errors.

Conflict Analysis. We found that policy conflicts of-
ten involve operations over filesystems that are shared
across containers (e.g., /proc, /dev, /sys). The reason is
that these filesystems have been historically used as an
interface between kernel and userspace for exchanging
information. On one hand, some information on those
filesystems are security sensitive—they may break iso-
lation between containers[19]. Therefore, host system
needs to apply a security policy to govern their access.
In fact, for the default AppArmor container host profiles,
majority of the rules (∼60%) are for governing access to
these shared filesystems. On the other hand, applications
often need to access information on those filesystems, so
such access is allowed by their AppArmor application
profile. The challenge is, however, both host’s and appli-
cation’s profile are often coarse grained (e.g., ”/proc r”
for firefox). The coarse granularity of policy may be due
to the large amount of information on those filesystems,
but it creates conflicts.

To avoid conflicts, one way is to fine tune security
policies, at both application side and container host side.
For example, it seems not to make much sense for firefox
to require read access to all files under /proc in order to

files in Ubuntu. They are either part of the distribution or the
apparmor-profiles package. We selected 20 that are mostly of-
ten seen running in containers.

Table 3: Latency for IMA and AppArmor namespace
to mediate mmap system call.

mmap(µs) IMA (stdev) AppArmor (stdev) slowdown
No security 1.08 (0.01) 1.08 (0.01)

Native 1.26 (0.01) 1.38 (0.01)
Native + 1NS 1.26 (0.01) 1.39 (0.02) 0.7%
Native + 2 NS 1.27 (0.01) 1.39 (0.02) 0.8%
Native + 5 NS 1.27 (0.01) 1.41 (0.02) 2.2%

Native + 10 NS 1.28 (0.01) 1.43 (0.02) 3.5%

function. Instead, the application developer, or the con-
tainer owner, should fine tune the AppArmor policies for
their applications to enforce a least privilege. The same
applies to container host policies as well. Currently, the
AppArmor policies enforced by container hosts are less
well understood—it is not thoroughly clear which files
under shared filesystems are required by applications at
runtime and whether or not they might lead to attacks
that can break container isolation. Instead, AppArmor
host policies are often revised or extended only after an
attack is reported. Ideally, we can design a better con-
tainer host security policy by examining each and every
file under these shared filesystems and fine tune it to fit
the application9, but this can be an extremely challeng-
ing task given the large amount of information stored on
those shared filesystems and the diversified requirements
from the containerized applications.

A more principled way to avoid conflicts is to avoid
sharing. One such proposal is to design new namespaces
for other types of resources that are currently shared
across host and containers. For example, the device
namespace proposal [12] can help resolve the conflicts
of NTP in Table 2. As an orthogonal work, we are also
investigating if it is possible to use multi-layered filesys-
tem to conceal sharing of /proc, or at least reduce the
exposure of files under the shared filesystems.

8.2 Performance
We examine the performance of IMA and AppArmor
namespace by measuring 1) the latency for namespaces
to mediate system calls and 2) throughput of container-
ized applications. Our testbed is a Dell M620 server with
2.4Ghz CPU and 64GB memory, installed with Ubuntu
16.10. The kernel version in test is 4.8.0.

Table 3 shows our latency result. We measured com-
mon system calls that are mediated by IMA and AppAr-
mor (e.g., mmap, read, execve, write), but due to
space constraint, only mmap is shown. We evaluated the
system call latency from various settings, ranging from
no security framework to only the native system to native
system plus 10 other security namespaces (i.e., a system
call is routed to the native system and 10 other security

9Docker already provides some container host AppArmor profiles
fine tuned towards specific applications such as Nginx [14].

	10000

	15000

	20000

	25000

	0 	50 	100 	150 	200

Re
qu

es
ts
	p
er
	se

co
nd

#	of	concurrent	clients

with	app	profile	enforced
w/o	app	profile	enforced

Figure 9: Throughput of containerized Apache with
and w/o application AppArmor profile enforced.

namespaces at the same time). Results show that security
namespace introduces about 0.7% overhead in the one
namespace scenario (the most typical scenario for con-
tainer cloud) and at most 3.5% overhead even when there
are 10 security namespaces in presence. Slowdown for
read is similar to mmap. For execve and write, the
slowdown is even less obvious due execve and write
themselves take longer time to finish. The overhead
is almost linear as the number of security namespaces
grow10, because in our current implementation we used
a sequential routing to avoid intrusive modifications to
the kernel (i.e., system calls are routed sequentially to all
affected security namespaces). In theory, since security
namespaces are isolated from each other, their mediation
of system call can be paralleled leveraging multi-core to
minimize the overhead. However, for small number of
security namespaces (e.g., one or two), our experience
suggests that the added complexity of synchronization
can often outweigh the mediation latency.

We also evaluated the macro performance of AppAr-
mor namespace by measuring the throughput of a con-
tainerized Apache with and without a default AppArmor
profile(on top of a host profile). The result is shown
in Figure 9. In the experiment, one host runs a sin-
gle Docker container containing the Apache and another
host runs client sending HTTP requests. As shown in the
figure, the throughput is almost identical, since 1) only
few of Apache’s system calls are actually mediated by
AppArmor and 2) latency for single system call media-
tion is very small as shown above. As a result, we be-
lieve our security namespace implementation is practical
for the container cloud use case.

10Here the number of security namespaces is not referring to the total
number of security namespaces on a system, but rather the number of
security namespaces that the Operation Router routes to.

9 SELinux and Beyond
By investigating IMA and AppArmor, we hope the
lessons we learned can help guide future namespace
abstractions for other kernel security frameworks, and
eventually lead to a generic and unified security names-
pace design for all kernel security frameworks. There-
fore, in this section we examine challenges in applying
the design proposed in this paper to SELinux.

SELinux adopts the type enforcement model to en-
force least privilege and multi-level security on a system.
SELinux has two features that challenge security names-
pace designs. The first is the filesystem labeling where a
system admin assigns security labels to files (i.e., by set-
ting the extended attributes of files on filesystems). The
second is the label transition where subject labels may be
changed upon executing new program.

We found the most challenging part of developing a
SELinux namespace abstraction is the filesystem label-
ing, because container filesystems may be loaded dy-
namically. One possible approach is to have the host
system admin to label all the files on a system (i.e., in-
cluding files within containers). Each SELinux names-
pace will independently enforce its policy, but its policy
must be specified using those labels pre-defined by the
host system admin. This approach, however, does not
work well in practice. For example, current SELinux
policy assigns all subjects in a container with label
svirt lxc net t and all objects in a container with
label svirt sandbox file t. Such coarse granular-
ity defeats the purpose of have an SELinux namespace in
the first place, since now each SELinux namespace has
to work with only one subject label and object label, pre-
venting them from specifying any fine grained security
policies.

A more practical approach is to enable SELinux
namespaces to independently label filesystems. This
means, however, each file may be associated with
multiple security labels, depending on how many
SELinux namespaces are in control of the file. The
kernel will have to maintain the mappings between
SELinux namespaces and their views of the se-
curity labels and present different security labels
accordingly during enforcement. As an example, an
web server running in a container can be attached
with two labels, native:svirt lxc net t
| container:httpd t. The label
svirt lxc net t is used by the host system
during enforcement of the host’s SELinux policy and
the label httpd t is used by the container during
enforcement of the container’s SELinux policy.

This approach requires dynamic manipulation of se-
curity attributes associated with files during runtime. In
addition, files will have multiple SELinux security at-
tributes associated with them. There has been pushback

from the kernel community. One reason is that by allow-
ing runtime manipulation of security attributes without
reboot and multiple security attributes at the same time,
it may add additional complexity that admins may fail
to handle properly. A consensus has yet to be reached
within the community.

Since SELinux assigns labels to both subjects and ob-
jects, it naturally enables a definition of security from
the perspective of both subject and object. Therefore,
for enforcement we envision our routing algorithm can
be applied without much modification since it already
takes into consideration of both perspectives. One thing
to note here is that label transition is also part of the sub-
ject’s perspective, therefore when a subject wants to tran-
sition into a new label (e.g., on execution of a binary),
not only the SELinux namespace that the subject is asso-
ciated with should be made aware of the transition, but
also all the parent SELinux namespaces.

10 Related Work

VM, Library OS and Container. Virtual machine [66,
58] enables mutually distrusting parties to securely share
the same hardware platform therefore becoming one pri-
mary success story of the cloud era. However, despite
a number of research proposals [17, 21, 62, 64], perfor-
mance of VM is still not satisfying—it incurs a relatively
high spin-up latency and low density [18, 65, 37, 57]. A
more efficient solution is the library OS [3, 15, 36, 45].
However, library OS often suffers from compatibility
issues for applications running inside and turning a
legacy OS into a library OS is a non-trivial task. Con-
tainer [56, 38] is considered to be an alternative. Con-
tainers incurs lower overhead than VM, and allows full
compatibility for applications running inside. There are
two types of containers, system container and applica-
tion container. A system container [33, 35, 61] wraps
an entire OS into a container, providing system admins
and developers an environment similar to traditional vir-
tualization. In contrast, an application container [13, 52]
contains a single application, allowing the application to
be developed, distributed and deployed in a simple man-
ner. Work presented in this paper can be applied to pro-
tect both types of containers.

Container Security. There are a number of security is-
sues identified for container systems. First, the container
management program (e.g., docker daemon) often runs
as a privileged daemon on a system, making it an ap-
pealing target for privilege escalation [47, 46, 48] and
confused deputy attacks [67]. To address these concerns,
solutions were proposed to enhance container manage-
ment program with authority check [67] and run it with
reduced privilege. Second, the container ecosystem of-
ten relies on a public image repository, which can often

be leveraged by adversaries to spread malware or launch
attacks (similar to issues of VM image repository [4]).
Systems such as Clair [9] and DCT [10] were proposed to
scan container images for vulnerabilities and/or malware
before they are uploaded to the public repository. Third,
a number of attacks were found that may break the iso-
lation of containers [55, 50, 51, 25]. To improve the iso-
lation, multiple security mechanisms were adopted such
as user namespace [59], seccomp [54] and capability [5].
This paper complements above lines of research by pro-
viding kernel security features as a usable function to
containers, allowing containers to address their internal
threats, much like what a VM or host can do. There is
also another line of research aiming to improve the virtu-
alization of container systems. For example, the device
namespace abstraction [11] virtualizes physical devices
on a system. The time namespace [27] abstraction pro-
vides virtualized clocks for containers. Security names-
pace abstraction follows this line of research. But instead
of time and device, the resource it tries to virtualize are
kernel security frameworks.

Virtualizing Linux Security Frameworks. There are
existing works that try to make Linux security frame-
works useful for container systems. For example, a ker-
nel patch [24] for IMA suggested that the IMA measure-
ment list is extended with a container ID, such that during
integrity attestation, the measurements will become sep-
arable based on containers. As another example, AppAr-
mor and Tomoyo introduced the concept of profile and
policy namespace respectively [49, 44]. The goal is to al-
low certain processes to run under a policy different from
the rest of the system. However, these modifications are
often adhoc; they do not provide full functionality of ker-
nel security frameworks to container, and they still rely
on a centralized authority (i.e., system owner) to spec-
ify a global policy, leaving containers no true freedom
in enforcing their security independently11. In contrast,
this works provides a truly decentralized way to allow
containers to exercise full functionality of kernel security
frameworks. Another line of research is to develop new
kernel security frameworks that are stackable and appli-
cation customizable. For example, Landlock LSM [28]
enables userspace applications such as containers to cus-
tomize their kernel security control. However, they still
need to properly handle conflicts when an application is
under control of multiple principals on a system, and the
policy interfaces are often less familiar and more com-
plex (e.g., eBPF programs) than existing kernel security
frameworks.

11Contemporary to this work, AppArmor is refining its profile
namespace to make it more useful to container alike scenarios. How-
ever, it is still under heavy development.

11 Conclusion
In this paper, we presented security namespaces, a ker-
nel abstraction that makes kernel security frameworks
available to containers. We first identify the fundamen-
tal challenge of enabling containers to have autonomous
security control—the global and mandatory assumptions
made by the kernel security frameworks. We then de-
velop a novel routing based mechanism that allows the
relaxation of these two assumptions without having one
container comprising other containers or the host system.
To evaluate our design, we built two concrete namespace
abstractions for kernel security frameworks, namely the
IMA namespace and AppArmor namespace. We show
that they allow containers to exercise full functionality
of IMA and AppArmor with a modest overhead.

Acknowledgment
The authors thank the following people for their com-
ments and technical contributions: Stefan Berger and
Mehmet Kayaalp for work on the IMA namespace im-
plementation; Justin Cormack; the anonymous review-
ers; and our shepherd Devdatta Akhawe for their insight-
ful feedback on the paper.

References
[1] AWS Elastic Container Service. https://aws.amazon.

com/ecs/.

[2] BATES, A., TIAN, D., BUTLER, K. R. B., AND MOYER, T.
Trustworthy whole-system provenance for the linux kernel. In
Proceedings of the 24th USENIX Conference on Security Sympo-
sium (Berkeley, CA, USA, 2015), SEC’15, USENIX Association,
pp. 319–334.

[3] BAUMANN, A., LEE, D., FONSECA, P., GLENDENNING, L.,
LORCH, J. R., BOND, B., OLINSKY, R., AND HUNT, G. C.
Composing os extensions safely and efficiently with bascule.
In Proceedings of the 8th ACM European Conference on Com-
puter Systems (New York, NY, USA, 2013), EuroSys ’13, ACM,
pp. 239–252.

[4] BUGIEL, S., NÜRNBERGER, S., PÖPPELMANN, T., SADEGHI,
A., AND SCHNEIDER, T. AmazonIA: When elasticity snaps
back. In Proc. ACM CCS’11.

[5] Linux Capabilities. http://man7.org/linux/man-
pages/man7/capabilities.7.html/.

[6] Change Root. http://man7.org/linux/man-pages/
man2/chroot.2.html/.

[7] Break out of chroot jail. https://web.archive.org/
web/20160127150916/http://www.bpfh.net/
simes/computing/chroot-break.html/.

[8] Is chroot a security feature? https://access.redhat.
com/blogs/766093/posts/1975883/.

[9] Docker Vulnerabilities Scan. https://github.com/
coreos/clair/.

[10] Content Trust in Docker. https://docs.docker.com/
engine/security/trust/content_trust/.

[11] Device Namespace. https://lwn.net/Articles/
564854/.

[12] Device Namespace. https://lwn.net/Articles/
564854/.

[13] Docker. https://www.docker.com/.

[14] AppArmor profile for Nginx running in Docker. https:
//github.com/docker/docker.github.io/blob/
master/engine/security/apparmor.md.

[15] DOUCEUR, J. R., ELSON, J., HOWELL, J., AND LORCH, J. R.
Leveraging legacy code to deploy desktop applications on the
web. In Proceedings of the 8th USENIX Conference on Oper-
ating Systems Design and Implementation (Berkeley, CA, USA,
2008), OSDI’08, USENIX Association, pp. 339–354.

[16] Extened Hybrid Finite Automata (eHFA). http://wiki.
apparmor.net/index.php/TechnicalDoc_HFA.

[17] EIRAKU, H., SHINJO, Y., PU, C., KOH, Y., AND KATO, K. Fast
networking with socket-outsourcing in hosted virtual machine en-
vironments. In Proceedings of the 2009 ACM Symposium on Ap-
plied Computing (New York, NY, USA, 2009), SAC ’09, ACM,
pp. 310–317.

[18] FELTER, W., FERREIRA, A., RAJAMONY, R., AND RUBIO, J.
An updated performance comparison of virtual machines and
linux containers. In 2015 IEEE International Symposium on
Performance Analysis of Systems and Software, ISPASS 2015,
Philadelphia, PA, USA, March 29-31, 2015 (2015), pp. 171–172.

[19] GAO, X., GU, Z., KAYAALP, M., PENDARAKIS, D., AND
WANG, H. Containerleaks: Emerging security threats of infor-
mation leakages in container clouds. In 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks,
DSN 2017, Denver, CO, USA, June 26-29, 2017 (2017), pp. 237–
248.

[20] Google Kubernetes. https://cloud.google.com/
kubernetes-engine/.

[21] GUPTA, D., LEE, S., VRABLE, M., SAVAGE, S., SNOEREN,
A. C., VARGHESE, G., VOELKER, G. M., AND VAHDAT, A.
Difference engine: Harnessing memory redundancy in virtual
machines. Commun. ACM 53, 10 (Oct. 2010), 85–93.

[22] HAYAWARDH VIJAYAKUMAR AND JOSHUA SCHIFFMAN AND
TRENT JAEGER. STING: Finding Name Resolution Vulnerabil-
ities in Programs. In Proceedings of the 21st USENIX Security
Symposium (USENIX Security 2012) (August 2012). [acceptance
rate: 19.4% (43/222)].

[23] IBM Cloud Container Service. https://www.ibm.com/
cloud/container-service.

[24] Composite Identifier Field Support for IMA. https:
//sourceforge.net/p/linux-ima/mailman/
message/32844753/.

[25] CVE-2015-3627. http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2015-3627.

[26] Amazon Lambda. https://aws.amazon.com/lambda/.

[27] LAMPS, J., NICOL, D. M., AND CAESAR, M. Timekeeper: A
lightweight virtual time system for linux. In Proceedings of the
2Nd ACM SIGSIM Conference on Principles of Advanced Dis-
crete Simulation (New York, NY, USA, 2014), SIGSIM PADS
’14, ACM, pp. 179–186.

[28] Landlock LSM. https://lwn.net/Articles/
698226/.

[29] Open Containers. https://github.com/
opencontainers/runc/.

[30] Linux Integrity Subsystem. https://sourceforge.net/
p/linux-ima/wiki/Home/.

[31] Linux Namespaces. http://man7.org/linux/man-
pages/man7/namespaces.7.html/.

[32] LSM Stacking. https://lwn.net/Articles/635771/.

[33] LXC Linux Containers. https://linuxcontainers.
org/lxc/introduction/.

[34] LXC - Official Ubuntu Documentation. https://help.
ubuntu.com/lts/serverguide/lxc.html#lxc-
apparmor/.

[35] LXD Linux Containers. https://linuxcontainers.
org/lxd/introduction/.

[36] MADHAVAPEDDY, A., MORTIER, R., ROTSOS, C., SCOTT, D.,
SINGH, B., GAZAGNAIRE, T., SMITH, S., HAND, S., AND
CROWCROFT, J. Unikernels: Library operating systems for the
cloud. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Oper-
ating Systems (New York, NY, USA, 2013), ASPLOS ’13, ACM,
pp. 461–472.

[37] MATTHEWS, J. N., HU, W., HAPUARACHCHI, M., DE-
SHANE, T., DIMATOS, D., HAMILTON, G., MCCABE, M., AND
OWENS, J. Quantifying the performance isolation properties of
virtualization systems. In Proceedings of the 2007 Workshop on
Experimental Computer Science (New York, NY, USA, 2007),
ExpCS ’07, ACM.

[38] MERKEL, D. Docker: Lightweight linux containers for con-
sistent development and deployment. Linux J. 2014, 239 (Mar.
2014).

[39] Microservice Architecture. http://microservices.io/
patterns/microservices.html.

[40] Linux Container Security. https://mjg59.dreamwidth.
org/33170.html.

[41] AppArmor Linux application security. http://www.
novell.com/linux/security/apparmor/, 2008.

[42] Security-enhanced linux. http://www.nsa.gov/
selinux.

[43] POHLY, D. J., MCLAUGHLIN, S., MCDANIEL, P., AND BUT-
LER, K. Hi-fi: Collecting high-fidelity whole-system prove-
nance. In Proceedings of the 28th Annual Computer Security
Applications Conference (New York, NY, USA, 2012), ACSAC
’12, ACM, pp. 259–268.

[44] Tomoyo Policy Namespace. https://tomoyo.osdn.jp/
2.5/chapter-14.html.en/.

[45] PORTER, D. E., BOYD-WICKIZER, S., HOWELL, J., OLINSKY,
R., AND HUNT, G. C. Rethinking the library os from the top
down. In Proceedings of the Sixteenth International Conference
on Architectural Support for Programming Languages and Op-
erating Systems (New York, NY, USA, 2011), ASPLOS XVI,
ACM, pp. 291–304.

[46] CVE-2014-6407. http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-6407.

[47] CVE-2014-9357. http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2014-9357.

[48] CVE-2015-3631. http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2015-3631.

[49] AppArmor Profile Namespace. http://wiki.apparmor.
net/index.php/AppArmor_Core_Policy_
Reference#Profile_names_and_attachment_
specifications/.

[50] Docker ptrace Attack. https://lkml.org/lkml/2015/
6/13/191/.

[51] LXC SYS RAWIO Abuse. https://bugs.launchpad.
net/ubuntu/+source/lxc/+bug/1511197/.

[52] rkt-CoreOS. https://coreos.com/rkt/.

[53] SAILER, R., ZHANG, X., JAEGER, T., AND VAN DOORN, L.
Design and implementation of a tcg-based integrity measurement
architecture. In Proceedings of the 13th Conference on USENIX
Security Symposium - Volume 13 (Berkeley, CA, USA, 2004),
SSYM’04, USENIX Association, pp. 16–16.

[54] Linux seccomp. http://man7.org/linux/man-pages/
man2/seccomp.2.html/.

[55] Docker Shocker Attack. http://www.openwall.com/
lists/oss-security/2014/06/18/4/.

[56] SOLTESZ, S., PÖTZL, H., FIUCZYNSKI, M. E., BAVIER, A.,
AND PETERSON, L. Container-based operating system virtual-
ization: A scalable, high-performance alternative to hypervisors.
In Proceedings of the 2Nd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2007 (New York, NY, USA, 2007),
EuroSys ’07, ACM, pp. 275–287.

[57] SOLTESZ, S., PÖTZL, H., FIUCZYNSKI, M. E., BAVIER, A.,
AND PETERSON, L. Container-based operating system virtual-
ization: A scalable, high-performance alternative to hypervisors.
In Proceedings of the 2Nd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2007 (New York, NY, USA, 2007),
EuroSys ’07, ACM, pp. 275–287.

[58] SUGERMAN, J., VENKITACHALAM, G., AND LIM, B.-H. Vir-
tualizing I/O devices on VMware Workstation’s hosted virtual
machine monitor. In Proceedings of the 2002 USENIX Annual
Technical Conference (2001), pp. 1–14.

[59] User Namespace. http://man7.org/linux/man-
pages/man7/user_namespaces.7.html/.

[60] VIJAYAKUMAR, H., GE, X., PAYER, M., AND JAEGER, T. JIG-
SAW: Protecting resource access by inferring programmer expec-
tations. In Proceedings of the 23rd USENIX Security Symposium
(2014).

[61] Linux-VServer. http://www.linux-vserver.org/
Welcome_to_Linux-VServer.org/.

[62] WALDSPURGER, C. A. Memory resource management in
vmware esx server. SIGOPS Oper. Syst. Rev. 36, SI (Dec. 2002),
181–194.

[63] WATSON, R. N. M., ANDERSON, J., LAURIE, B., AND KEN-
NAWAY, K. Capsicum: Practical capabilities for unix. In Pro-
ceedings of the 19th USENIX Conference on Security (Berkeley,
CA, USA, 2010), USENIX Security’10, USENIX Association,
pp. 3–3.

[64] WHITAKER, A., SHAW, M., AND GRIBBLE, S. D. Scale and
performance in the denali isolation kernel. SIGOPS Oper. Syst.
Rev. 36, SI (Dec. 2002), 195–209.

[65] XAVIER, M. G., NEVES, M. V., ROSSI, F. D., FERRETO, T. C.,
LANGE, T., AND DE ROSE, C. A. F. Performance evaluation
of container-based virtualization for high performance comput-
ing environments. In Proceedings of the 2013 21st Euromicro
International Conference on Parallel, Distributed, and Network-
Based Processing (Washington, DC, USA, 2013), PDP ’13, IEEE
Computer Society, pp. 233–240.

[66] Xen Community. Available at http://xen.xensource.
com/, 2008.

[67] ZHANG, M., MARINO, D., AND EFSTATHOPOULOS, P. Harbor-
master: Policy enforcement for containers. In 7th IEEE Interna-
tional Conference on Cloud Computing Technology and Science,
CloudCom 2015, Vancouver, BC, Canada, November 30 - Dec. 3,
2015 (2015), IEEE, pp. 355–362.

