
Analyzing Integrity Protection in the SELinux ExamplePolicy

TrentJaeger ReinerSailer XiaolanZhang
IBM T. J. WatsonResearch Center

Hawthorne, NY10532USA
Email:

�
jaegert,sailer,cxzhang� @us.ibm.com

Abstract

In this paper, we presentan approachfor analyzing
the integrity protectionin theSELinuxexamplepolicy.
The SELinux examplepolicy is intendedas an exam-
plefrom whichadministratorscustomizeto createapol-
icy for their site’s securitygoals,but the complexity of
the modelandsizeof the policy make this quite com-
plex. Our aim is to provide anaccesscontrolmodelto
expresssitesecuritygoalsandresolve themagainstthe
SELinux policy. Ultimately, we aim to definea mini-
mal trustedcomputingbase(TCB) that satisfiesClark-
Wilson integrity, by first testingfor themorerestrictive
Bibaintegrity policy andresolvingconflictsusingClark-
Wilson semantics.Our policy analysistool, Gokyo, im-
plementsthe following approach:(1) it representsthe
SELinux examplepolicy andour integrity goals;(2) it
identifiesconflictsbetweenthem;(3) it estimatestheres-
olutionsto theseconflicts;and(4) providesinformation
for decidingupona resolution. Using Gokyo, we de-
riveaproposalfor aminimalTCB for SELinuxincludes
30 subjecttypes,and we identify the work remaining
to ensurethat TCB is integrity-protected.Our analysis
is performedon theSELinuxexamplepolicy for Linux
2.4.19.

1 Intr oduction

A goalfor many yearshasbeeneffectivemandatoryac-
cesscontrol (MAC) for UNIX systems. By an effec-
tive MAC system,we envision that systemadministra-
torscandefineaccesscontrolpoliciesthatguaranteesite
securitygoalswhile enablingthe convenientexecution
of applications.Early MAC policies,suchasthe Bell-
LaPadulasecrecy policy [2] andtheBiba integrity pol-
icy [4], definedclearsecuritygoals,but weretoorestric-
tivefor convenientusefor UNIX applications.Commer-
cial operatingsystemsthat wereextendedto meetOr-
angeBook B1 (i.e., MAC plusotherfeatures)werenot
broadly applied(i.e., mainly aimedat governmentin-

stallations).Recenteffortsat MAC systemsuseflexible
accesscontrol modelsto achieve convenientuse(e.g.,
DTOS,Flask[17, 21], etc.),but demonstratingthatpar-
ticular security goals have beenmet is more difficult
(and thesesystemshave not beenwidely usedeither).
Flexible accesscontrol modelstypically result in more
complex policies,so it is moredifficult to determineif
thesepolicieshave thedesiredeffect.

The recent addition of the Linux Security Modules
(LSM) framework [22] enablesthe MAC enforcement
for theLinux kernel. TheLSM framework is designed
to beagnosticto theMAC approach,andit hasbeende-
signedto supportmoduleswith flexible MAC models.
The mostcomprehensive andflexible modulefor LSM
is the SELinux module[18]. While SELinux supports
a varietyof policy modelsitself, anextendedTypeEn-
forcement(TE) model[5] is usedfor mostpolicy devel-
opment. An examplepolicy is underdevelopmentthat
consistsof a setof UNIX serviceandapplicationpoli-
cies that eachaim to ensureeffective operationwhile
preventingsecurityvulnerabilities.Theexamplepolicy
doesnotdefineasecuresystem,but servesasabasisfor
developinga securesystemoncethe securitygoalsare
defined.TheextendedTE modelis rathercomplex (i.e.,
consistsof alargenumberof concepts)andtheSELinux
examplepolicy is large(e.g.,50,000+policy statements
in thepolicy.conf for Linux 2.4.19),socustomiza-
tion of theSELinuxexamplepolicy to apolicy thatguar-
anteessatisfactionof systemsecuritygoalsis anarduous
anderror-pronetask.

While the useof a simpleraccesscontrol modelmight
make it easierto ensurethat security goals are met,
we believe that this would result in applicationsfail-
ing to run conveniently, andultimately, the circumven-
tion of thesesecurity goals. The comprehensive na-
tureof theSELinuxpolicy modelenablesflexible trade-
off betweenapplicationandsecuritygoals. For exam-
ple, the SELinuxexamplepolicy itself is developedby
proposingapplicationpoliciesandrefining thembased
on the policy violations that may be generated.Thus,

the SELinux examplepolicy itself is a direct result of
makingthesetrade-offs.

The questionis whether a manageableset of effec-
tive security goals can be describedand verified for
SELinux policies. Obviously, it is highly unlikely that
the SELinux examplepolicy adheresto a simplehigh-
level policy, such as the two-level integrity model of
LOMAC [9]. However, the policy may be sufficiently
closeto sucha policy thattheconflictscanbemanaged
(i.e., eithera smallnumberor a smallnumberof equiv-
alenceclasses).If so, thenverificationmaybepossible
by verifying the generalgoalsand using ad hoc tech-
niquesto resolve theconflicts. We have found that this
approachholds somepromisefor applicationpolicies,
in particularthe Apacheadministrator[12], but do not
know whetherthis canwork for the trustedcomputing
base(TCB) subjectsin theSELinuxpolicy. Obviously,
if we cannotprove that the TCB is integrity-protected,
its systemcannotbeconsideredsecure.

In this paper, we proposea near-minimal TCB for
SELinux systemsand examinehow to verify that this
TCB is integrity-protected. First, we define integrity
relationshipsbetweenthe TCB subjecttypesand less
trustedsystemand applicationsubjecttypes. Second,
we input theseconstraintsinto our policy analysistool,
called Gokyo [12], and identify integrity conflicts be-
tweentheTCB andthesystem.TheGokyo tool enables
flexible expressionof conflict setsandtheir resolution,
soournext goalis to determinewhatresolutionsappear
feasiblefor TCB integrity conflicts. Using Gokyo, we
classifyconflicts into classesbasedon their likely res-
olution. Sincemost resolutionsdependon ad hoc in-
formation, it is still a manualprocessto completethe
analysis.UsingGokyo, we identify a minimal TCB for
theSELinuxexamplepolicy of 30subjecttypes,half of
which areinfrequently-usedadministrationsubjects.To
usethis TCB, 5 sanitizationproblemsmustbe solved,
but we believe that mostcanbe addressedin practice,
including the useof Gokyo itself to managethe broad
file accessrights currently grantedto trustedsubjects.
Ultimately, Gokyo is useful in identifying problemsin
meetingsecuritygoals,classifyingtheseproblems,and
providing informationfor resolvingthem.

Thepaperis structuredasfollows. In Section2, we ex-
aminethe SELinux extendedType Enforcementmodel
and outline our site securitygoals for that model, in-
tegrity protectionof a minimal trustedcomputingbase.
In Section3 wedescribeourapproachto resolvingapol-
icy againstourintegrity protectionrequirements.In Sec-
tion 4, we detail the implementationof our analysisus-
ing Gokyo andpresentouranalysisresults.In Section5,

wepresentrelatedwork, andweconcludein Section6.

2 SELinux Security Goals

2.1 SELinux Policy Model

While SELinuxsupportsa varietyof accesscontrolpol-
icy models[21], the main focusof SELinux policy de-
velopmenthasbeenanextendedTypeEnforcement(TE)
model [1, 5, 20]. In this section,we provide a brief
overview of theSELinuxpolicy modelconcepts,focus-
ing only on theconceptsthatarerelevantto theanalysis
thatwe perform.A numberof otherconceptsarerepre-
sentedin theSELinuxextendedTE model,suchasroles
andidentitydescriptors,thatwedonotcoverhere.A de-
taileddescriptionof theSELinuxpolicy modelis given
elsewhere[20].

The traditional TE model hassubjecttypes(e.g., pro-
cesses)andobjecttypes(e.g.,files,sockets,etc.),andac-
cesscontrolis representedby thepermissionsof thesub-
jecttypesto theobjecttypes.In SELinux,thedistinction
betweensubjectandobjecttypeshasbeendropped,so
thereis only onesetof typesthat areobject typesand
mayalsoactassubjecttypes.

TheSELinuxextendedTE modelis shown in Figure1.
All objectsarelabeledwith a type. All objectsareanin-
stanceof a particularclass(i.e.,datatype)whichhasits
own setof operations. A permissionassociatesa type,a
class,andanoperationset(asubsetof theclass’sopera-
tions).Thus,permissionsassociatedwith SELinuxtypes
can be appliedindependentlyto differentclasses.For
example,differentrightscanbegrantedto a user’s files
thanto their directories.In fact,sincetheobjectsareof
differentclasses,they have differentoperations.Should
theadministratorwant to give differentaccessrights to
two objectsof the sameclass,then theseobjectsmust
belongto differenttypes.

Permissionfor a (subject)typeto performoperationson
a(n) (object) type are grantedby the allow statement.
Any elementof the permissionrelationshipcanbe ex-
pressedusingthis statement,so the expressionof least
privilegerightsis possible.Thedontauditstatementpro-
vides a variation on the basicpermissionassignment.
A combinationof allow statementsresult in a union of
the rights specified,whereasa combinationof dontau-
dit statementson thesametypepair andclassareinter-
sected.

In addition, the extendedTE model also has type at-

Operation Set

Class

Object

instance-of

label

dontaudit(intersection)

Type

Type

(Object)

(Subject)

auditallow or allow (union)

Permission

Figure1: SELinuxextendedTypeEnforcement(TE) policy modelbasics.

tributesthat representa set of types(i.e., all the types
with thatattributeassigned).Type attributesenableas-
signmentto multipletypesata time. For example,aper-
missioncanbe assignedto eachsubjecttype with that
attributeor asubjectcanbeassignedpermissionto each
objecttypewith thatattribute.

Containmentis enforcedby limiting thepermissionsac-
cessibleto a subjecttype(asdescribedabove), limiting
the relabelingof object types,andlimiting the domain
transitionsthatcanbemadeby a subjecttype. Relabel
rights are controlledin SELinux by limiting accessto
relabelfromandrelabeltooperations.As thenamesin-
dicate,relabeltoenablesobjectsto be relabeledto that
typeandrelabelfromenablesobjectsof aparticulartype
to berelabeled.

Domaintransitionscanoccurwhena subjecttype exe-
cutesa new program.Again, SELinuxdefinesanoper-
ation, calledtransition, to performthesetransitions.A
subjecttypemusthaveatransitionpermissionfor there-
sultantsubjecttypein ordertoaffectadomaintransition.

The SELinux modelalsohasstatementsfor typetran-
sition and typechange. Type transitionstatementsare
usedby SELinux to automaticallycomputetransitions,
but arenot necessaryfor control(i.e., transitionpermis-
sionsarealwaysnecessary).Typechangestatementsal-
ter the type of an object upon accessby the specified
subjecttype. Suchstatementsareusefulwhena system
administratorlogins in usinga user’s tty. Type change
statementstransitiontheobjecttypeof thetty to prevent
usersfrom alteringinput.

In orderto simplify the taskof expressingpolicies,the

SELinuxextendedTE modelalsoincludesa largenum-
ber of macrosfor expressingsetsof policy statements
that commonlyoccurtogether. We do not examinethe
policy macrosin detailbecausepolicy analysisrequires
us to understandthe policy at the level of the type en-
forcementmodel statements(i.e., which subjecttypes
canperformwhichoperationsonwhichobjecttypes).

2.2 SELinux ExamplePolicy

The SELinux communityis working jointly on the de-
velopmentof UNIX applicationpolicies whosecom-
position is called the SELinux examplepolicy. The
SELinux examplepolicy doesnot definea securesys-
tem, but is intendedas input to the developmentof a
custompolicy for eachsite’s securitygoals,commonly
calleda securitytarget. Unfortunately, customizationis
not simply compositionof the policiesfor the applica-
tionsof interest.Theapplicationpoliciesthemselvesare
somewhatspecializedto theenvironmentin which they
weredeveloped,andinteractionsbetweenthepoliciesof
multipleapplicationsmayleadto vulnerabilities.In gen-
eral, thecompositionof policiesthat areprovensecure
maynot resultin a securesystem.

The task of customizationis further complicatedby
the size of the examplepolicy and the complexity of
the extendedTE modeldescribedin Section2.1. The
SELinux examplepolicy for Linux 2.4.19consistsof
over50,000policy statements(i.e., theprocessedmacro
statementsin policy.conf). Accordingto our anal-
ysis,this specificationrepresentsover700subjecttypes
and 100,000permissionassignments.We believe that
size and complexity of the SELinux example policy

make it impractical to expect that typical administra-
torscancustomizeit to ensureprotectionof their trusted
computingbase(TCB) andto satisfytheirsite’ssecurity
goalson thisTCB. This mayseemobviousto someand
may seeminsufficiently justified to others,but we will
describea moredetailedargumenton why we believe
this in Section2.3.

Despitethis, we areconvincedthat theSELinuxexam-
ple policy is valuableto building securesystems,for
thesetwo reasonsprimarily: (1) it providesa flexible
enoughrepresentationto capturethepermissionsneces-
saryfor UNIX applicationsto executeconvenientlyand
(2) it providesacomprehensivedefinitionof a reference
monitor for UNIX. First, the SELinux examplepolicy
is developedper applicationin a mannerthat identifies
a supersetof thepermissionsrequiredto runanapplica-
tion convenientlywhile possiblymeetingaparticularse-
curity target.Whattypically happensis thataproposalis
madefor anapplicationpolicy, thenthis policy is tested
by thecommunitywhenthey usetheapplication.Since
SELinux reportsauthorizationfailures(i.e., the lack of
a permissionrequested),it is mucheasierto determine
thatinsufficientpermissionswereassignedthanwhether
a securityvulnerability is created.Thus,a verifiedpro-
posalfor leastprivilegepermissionsfor eachapplication
is representedby theSELinuxpolicy. Whatwe needis
a betterway to testwhetherour securitygoalsaresatis-
fied,suchthatconflictscanbeidentifiedandaddressed.

Second,theSELinuxexamplepolicy is acomprehensive
representationof UNIX accesscontrol. The SELinux
model aims to comprehensively control accessto all
classes(i.e., kernel data types) that may be operated
uponby auser-level Linux process.Thereare29classes
definedin theSELinuxexamplepolicy. Eachclasshas
its own set of operationsthat are intendedto capture
all the relevantsubtletiesin accessingandmodifying a
class. Given the scopeof the SELinux examplepolicy
at thisgranularity, theSELinuxexamplepolicy provides
aspreciseandcomprehensivea repositoryof UNIX ap-
plicationaccesscontrol informationasexiststoday. We
needto leveragethis repositoryin thedevelopmentand
refinementof securitygoals,but provide suchleverage
throughhigher-level conceptsthatenableeffectiveman-
agement.

2.3 SELinux Security

Unlike early MAC modelslike Bell-LaPadula[2] and
Biba [4], a TE modeldoesnotexplicitly indicatethese-
curity goalsof the policy. Thus,the policy implies the
securitygoalsof the system. For a TE system,more

likeanaccessmatrix,weonly learnthatcertainsubjects
canonly performcertainoperationson certainobjects.
Thesecuritygoalsof thepolicy arenot representedat a
higher-level thanthis.

TheSELinuxmodelprovidesanapproachby which se-
crecy andintegrity propertiesmaybeachievedwith least
privilegepermissionsandcontainmentof services[16].
Thesystemadministratorscreatea policy thatis restric-
tive with respectto grantingrights that violate secrecy
andintegrity propertiesandwe usethenotionsof least
privilegeandcontainmentto minimize thedamagedue
to compromiseswheretheseoccur.

Fromourperspective,theintegrity of theTCB is theba-
sis of security, so that is the focusof our analysis. In
general,it is preferableto have a “minimal” TCB. The
smallerthe TCB, the easierit is to verify the compo-
nents.However, if theminimalTCB subjectsaredepen-
dentonothersubjects,thentheseothersubjectsmustbe
addedto theTCB or dependenciesmustberemoved. In
this paper, we will identify dependenciesanddetermine
how to resolve themto keepourTCB assmallasis fea-
sible.

Sincewe arestriving for a minimal TCB, we do not as-
sumea two-level integrity system(systemanduser)as
in LOMAC [9], but ratherwe startwith the most fun-
damentalsystemservicesandtry to determinehow the
integrity of thesecanbeenforced.Applicationsmayfur-
therdependonothersubjects.For example,Apachede-
pendson othersystemservicesandtheApacheadmin-
istrator. We believe theseare at two distinct integrity
levels [13]. In this paper, we examineonly explicitly
examinetheTCB andnon-TCBboundary.

Further, we notethat thebenefitsof leastprivilegeper-
missionsandcontainmentarenot relevantto theprotec-
tion of theTCB. SincetheTCB subjecttypescanlegiti-
matelytransitionto any othersubjecttype,containment
is not possiblefor theTCB subjects.Therefore,the fo-
cusis on theintegrity of theseservices.

Figure 2 shows the SELinux example policy’s type
transition hierarchy for our proposedTCB subject
types1. kernel_t is theprimordialsubjecttypein the
SELinux system.It transitionsto init_t which then
canstarta variety of services.Key to our analysisare
the administrative (e.g.,sysadm_t, load_policy,
setfiles_t, etc.) and authenticationsubjecttypes
(e.g.,sshd_t, local_login_t, etc.) thatdetermine
thebasisfor securitydecisionsin SELinux. We alsoin-

1This hierarchyis generatedby the transitionpermissionsheldby
eachof thesesubjecttypes.

Authentication Initialization Administration

kernel_t

init_tgetty_t

local_login_t sshd_t initrc_t

sysadm_t

mount_t inetd_t

setfiles_t load_policy_tbootloader_t

Figure2: SELinuxExamplePolicy’s typetransitionhierarchyfor ourproposedTCB subjecttypes.

cludeinitrc_t andinetd_t becausetheseservices
initiatemany of theservicesin a UNIX system.

Of course,thereare lots of otherservicesuponwhich
the correctexecutionof applicationsis necessary(over
80 identifiedfor theApacheadministrator[13]), but we
chosethis proposalfor a minimal TCB basedprimarily
ontheearlyappearanceof theseservicesin thetypetran-
sition hierarchyandthe amountof transition“f an-out.”
Bothof thesefeaturesindicatethatvulnerabilitiesin that
subjecttypewill bedifficult to contain.

While this TCB representsa small numberof subject
types,the complexity of their interactionswith the rest
of thesystemin theSELinuxpolicy makesmanualver-
ification impractical. First, each subject type is in-
cluded in around500 to over 1000 policy statements
in policy.conf. Manualexaminationof this many
statementsalone is impractical, but thesestatements
mustbe comparedto the other thousandsto determine
whetherasignificantconflictexists.Automatedtoolsare
necessaryto representthe securitygoals,identify con-
flicts,andprovideasmuchsupportaspossibletoconflict
resolution.

2.4 Integrity Requirements

The goal of our analysisis to protect the integrity of
our trustedcomputingbase(TCB), so we needto de-
fine morepreciselywhat we meanby this. Traditional
policies for integrity protection include Biba [4] and
Clark-Wilson [6]. The Biba integrity property is ful-
filled if all thehigher-integrity processesdo not depend
onlower-integrity processesin any manner. Thisimplies
thata high integrity processcannotreadlower-integrity
data,executelower-integrity programs,or otherwiseob-
tain lower-integrity datain any othermanner. As a re-
sult,aprocesscannotwrite dataaboveits integrity level.
Therefore,if high and low integrity processeswrite to

thesamefile, thenit mustbea low integrity file. Obvi-
ously, thehigh integrity processcannolongerreadfrom
thisfile andmaintainBiba integrity.

Of course,UNIX applicationsdo not obey a strict Biba
integrity. Often higher-integrity processesread input
generatedby lower integrity processes,but in many
casesit is assumedthatthey canhandlethis input. When
they cannot,we often identify this asa vulnerability in
the supposedlyhigh-integrity program2. The Clark-
Wilson integrity model attemptsto capture this no-
tion. In theClark-Wilsonmodel,constraineddataitems
(CDIs) are high-integrity data that are processedonly
by certifiedtransformationprocedures(TPs).However,
TPsmayalsoprocessunconstraineddataitems(UDIs).
Thisis similarto highintegrity programsprocessinglow
integrity data.TheClark-Wilsonmodelalsoincludesin-
tegrity verificationprocedures(IVPs)thatcanbeusedto
verify theintegrity of CDIsatparticulartimes.

The Clark-Wilson model is basedpartly on certifica-
tion of the components(IVPs and TPs) and partly on
their enforcementof particularproperties. We do not
addresscertificationhere,but we examinetheplausibil-
ity of meetingClark-Wilson enforcementrequirements
usingSELinux(paraphrasedfrom theClark-Wilson pa-
per[6]):

� E1: EachTP operateson a particularlist of CDIs
andCDIsareonly manipulatedby a TP.

� E2: The systemmustmaintaina list of subjects,
TPs, and the CDIs thoseTPs may reference,and
only thosereferencesarepermitted.

� E3: The systemmustauthenticatethe identity of
eachuserthatattemptsto executeaTP.

2Of course,theuseof somany rootservicesgiveshasgivenafalse
impressionof theintegrity of many programs.

� E4: Thelist of TPsandIVPs canonly bechanged
by a subjectpermitted to certify thoseTPs and
IVPs.

SELinux identifiesobject types, and thus, the objects
manipulatedby programsasstatedin E1. However, it
doesnot distinguishbetweenCDIs andUDIs. Thus,we
know whetherCDIs areonly processedby TPs,nor do
weknow whichsubjectsareTPs,asrequiredby E2. The
satisfactionof E3mustbeprovidedby theauthentication
infrastructurein a dependablemanner(i.e., usingTPs).
Themandatorynatureof SELinuxpoliciesimplicitly en-
forceE4.

Thus, our task is to identify the TPs that define the
SELinux examplepolicy’s TCB (to satisfyE2). Since
we want to ensurethe integrity of our TCB, the only
CDIs arethoseprocessedby theTCB subjects.As a re-
sult,weonly needto ensuretheintegrity of these.How-
ever, theTCB mayoperateon UDIs, sowe needto dis-
tinguishbetweenUDIsandCDIs. Thus,wewill perform
thefollowing tasks:(1) proposeTCB subjects;(2) iden-
tify possiblelow-integrity UDIs (i.e., datawhosevalue
may dependon somelow-integrity subject);(3) deter-
minewhetherthesearetrueUDIs; and(4) resolvecases
wherewesuspectthataCDI is processedby anon-TCB
subject(i.e.,asubjectthatis notexecutinga TP).

Sincetheidentificationof theuseof low-integrity datais
essentiallyBiba,weperformaBibaanalysisonourpro-
posedTCB relative to theSELinuxexamplepolicy. We
thenperformanalysesto classifypossibleUDIs based
on thepossibleresolutionsto theintegrity issue.

2.5 Low-Integrity Data

We first distinguishbetweentwo typesof dependencies
on low-integrity data that violatesBiba: (1) read in-
tegrity violationsand(2) read-writeintegrity violations.
Thedifferenceis that, in thesecondcase,writesby our
TCB mayberevisedby a lower integrity process.While
this is not strictly an issuein Clark-Wilson (i.e., these
datamaybeUDIs),wearenotcomfortablewith thepos-
sibility that a TCB subjectwrite UDI data. Thus, we
alwaysclassify read-writeintegrity violationsas likely
CDIs.

If webelievedataarelikely to beCDIs,thenwehavethe
followingoptionsto resolvetheconflicts:(1) trustingthe
low-integrity subject(i.e.,addit to theTCB); (2)exclude
the low-integrity subject;(3) excludetheconflictedob-
ject type;(4) policy override;and(5) changethepolicy.

It is possibleto extendtheproposedTCB, but sincewe
wantto keeptheTCB minimalandtheadditionof more
subjecttypeswill probablyintroducemoreconstraints,
this is a low priority option.

We can exclude either the conflicting object type or
the low-integrity subjecttype from the systemto re-
solve an integrity conflict. Sincewe areanalyzingthe
SELinuxexamplepolicy to createa securitytarget,it is
perfectly reasonableto remove subjectthat causesig-
nificant integrity issuesthat we do not trust. For ex-
ample,insmod_t installsmodulesinto thekernel,but
for a high integrity systemwewill compilethemodules
into the kernel. Thus,integrity conflictscausedby this
servicecanbe ignored. The exclusionof object types
maybelessplausiblegiventhat theobjectmaybenec-
essaryfor correctprocessing,but therearesomecases
wherethis makes sense. For example,we can elimi-
nateintegrity conflictsif weprecludeobjectsof thetype
removable_device_twhichmaybeacceptablefor
a securesystem.

Lastly, we canchangethe policy by addingoverriding
statements(e.g.,denying theviolating reador write) or
by modifying the SELinux examplepolicy itself. We
have found that handlingintegrity violationsasexcep-
tionsor definingspecialhandlingfor conflictingassign-
mentswith commonsemanticsarebotheffective in re-
ducingtheneedto expressevenmorecomplex andfine-
grainedpolicies[12]. Modifying theSELinuxexample
policy is a lastresort:it is complex enough.

If webelievedataarelikely to beUDIs, wemayassume
that the TP is protectedor protectsitself by sanitizing
its UDI inputs. Certificationmay dependon receiving
only specificinputs, in practice,so providing external
sanitizationmayalsobeanoption.Wemayalsoidentify
theneedfor othersecurityprocessing,suchasauditing
andintrusiondetection,uponuseof UDIs. We seethis
simplyasanotheralternative to denials.

3 AnalysisApproach

Thebasicapproachto evaluatingtheproposedTCB for
the SELinux examplepolicy is as follows. First, we
identify Biba integrity violationsbetweentheTCB sub-
ject typesandthe restof the SELinux examplepolicy.
Second,wetry to classifyourconflictsbasedonthecon-
ceptssuchas the type of integrity violation (i.e., read
or read-write),the proposedintegrity of the conflicting
subjecttype(i.e.,highor low), andthelikelihoodof ex-
clusion(i.e., of objecttype or subjecttype). Third, we

perform somemanualanalysisto determinethe likely
solutionandseeif theseresultscorrelatewith theclas-
sifications. This includesoutlining implementationsto
supporttheseclassifications,particularlywheresaniti-
zationor policy modificationis thechoice.

3.1 Gokyo Policy AnalysisTool

We have built a policy analysistool calledGokyo that
is designedto identify andenableresolutionof conflict-
ing policy specifications[12, 13]. Thegeneralconcept
that Gokyo enforcesis safety. A policy specification
is said to be safeif no subjectcanobtainan unautho-
rizedpermission[10]. If we take policy administration
into account,then any permissioncan be assignedto
any subjecttypeby theadministratorin a policy suchas
TE. Therefore,we needanadditionalspecificationcon-
cept, typically calledconstraints, to expressthe safety
requirementson the administratorsto ensurethat our
policy meetsourgoals.

Gokyo implementsan approachcalled accesscontrol
spaceswhereby semanticallymeaningful permission
setsare identifiedandhandlingcanbe associatedwith
eachsetindependently. While therearea varietyof se-
manticallymeaningfulpermissionsets,the mostcom-
monto considerare:(1) thoseassignedto asubjecttype;
(2) thoseprecludedfrom a subjecttypeby a constraint;
and(3) thepermissionswhoseassignmentor preclusion
statusis unknown. The overlappingregions of these
setsalsoform subspaces,so we canconsiderthesetof
permissionsthat are both assignedand precluded. Of
course,thesesetscanbefurtherdecomposedto provide
moreeffectivecontrol.For example,wemaydeny all in-
tegrity conflicts,exceptlog writes,which we allow, and
inputfrom network objects,whichwesanitizeandaudit.

Thegeneralideais thatby identifying semanticsto the
subspacesit maybepossibleto attachhandlingseman-
tics with the entire subspace.This would permit ad-
ministratorsto keepthe basic,simpler constraintsthat
largely work and specify only the additionalhandling
semantics.We have found that theApacheadministra-
tor policy for SELinux2.4.16largely adheresto a Biba
integrity model, suchthat 19 conflicting casescan be
handledaseightaccesscontrolspaces[13].

Gokyo representspoliciesusinga graphicalaccesscon-
trol modelshown by examplein Figure3. Permissions
(i.e., objecttypesandthepermittedoperations),subject
types,andsubjectsarerepresentedby graphnodes. In
additionto this information,permissionnodesalsostore
theobjectclass(i.e.,datatype)andoperationspermitted

by thepermission.Notethatobjecttypesarerepresented
by permissionswith no rights. In general,a noderepre-
sentsa set,so it is possibleto build set-hierarchiescon-
sisting of aggregationsof individual permissions,sub-
ject types,andsubjects.

Example 1 Figure3 shows an exampleof an access
control specificationusing this model. Subject ��� has
values���	�
����
���� , ���	�
����
���� , and ����������
��������
� .
Thatis, ��� representsonesubject,�
� , andis assignedto
onesubjecttype, ��� . Sincetheonly routefrom propaga-
tion of permissionsis through ��� , �
� ’s permissionsare
definedby ��������� . The valueof �������
��
����! #"$� and,
since %" is an aggregateits permissionsare ���! %"��&

���! #'$�)(*���! ,+
� . Since %+ is an aggregateas well, its
permissionscanbefurtherdecomposed.

For expressingconstraintsin this model,we alsousea
set-basedapproach[11]. In general,constraintsareex-
pressedin termsof two setsanda comparatorfunction,
��-�.0/)1�23��-�.54 , where1	2 representssomecomparatorfunc-
tion. Suchcomparatorsaresetoperations,suchasdis-
jointness(i.e., null intersection),cardinalityof intersec-
tion, subsetrelations,etc.

Example 2 We definea constrainttype for integrity.
An integrity constraint687:9 where6<;<�=(>� and 9>;
��(�� meansthatthesetof readandexecutepermissions
of 6 mustnot refer to any objectsto which 9 haswrite
permissions.

For eachsubjecttype, Gokyo storesthe assignedper-
missionsandtheprohibitedpermissions.Theprohibited
permissionsarethepermissionswhoseassignmentto the
subjectwould result in the violation of a constraint,so
thesepermissionsare representedin termsof the con-
straint 3. Further, Gokyo identifiesthe accesscontrol
spaceconsistingof theintersectionbetweentheassigned
andprohibitedspaces.It is thisspacewhereconflict res-
olution is necessary.

3.2 Identifying Integrity Conflicts

Returning to the problem of analyzingour proposed
TCB, the SELinux example policy representsthe as-
signedpermissions.We addBiba integrity constraints

3Detailsarebeyondthescopeof thispaper. SeethedetailedGokyo
writeup[13].

P

Role r2

Role r3

r: r2
s: s1

p: r2 perms

p:

s: s2
r:

p: p6 perms
r: r2
s: s1

p: r1 perms, r2 perms
r: r1, r2, r3

p: p3
r: r1, p5 roles
s: r1 subjs,

s:

Role r1
p: p3
r: r1
s:

p: p2
r: p5 roles
s: p5 subjs

p5 subjs

p: p1
r: p5 roles
s: p5 subjs

p: p1, p2, p3, p5
r: p6 roles
s: p6 subjs

p: p4, p5 perms, p6
r: r2
s: r2 subjs

Legend
assignment

aggregation

constraint

inheritance

s: subjects

r: roles

p: perms

attributes

Subject s1

Subject s2

Perm p3

Perm p4

Perm p5

Perm p6

Perm p1

Perm p2

p: p4
r: p4 roles
s: p4 subjs

Figure3: Exampleaccesscontrolrepresentation(thefields“p:”, “r:”, “s:” referto thepermissions,subjecttypes,and
subjectsassignedto theseentities,respectively)

betweeneachof ourTCBsubjecttypesandall othersub-
ject typesin Gokyo. Thatis, for eachTCB subjecttype,
we adda constraintthat it cannotapply a read/execute
operation(i.e., an operationinvolving input of datato
thesubjecttype’sprocesses)to any objecttypeandclass
combinationthat is written by any othersubjecttypein
the system. Note that this constraintis more restric-
tive even thanour original proposal,but understanding
whichsubjecttypesactuallyhave integrity relationships
maybeusefulin resolvingconflicts.

Gokyo implements this constraint by computing
read/executepermissionsfor eachobjecttypeandclass
combinationwrittenby theothersubjecttypes.This set
of readpermissionsis the set of permissionsthat the
TCB subjecttype may not read. When the constraint
is tested,if theTCB subjecttypehasaread/executeper-
missionthatintersectsoneof theprecludedpermissions
thena constraintviolation is generated.In somecases,
a singleallow statementmayresultin severalconstraint
violations. This canoccurwhenanallow is madeon a
type attribute ratherthana type directly. For example,
accessto reada varietyof network input is theresultof
a single allow statement.Suchassignmentsare prop-
agatedto eachobject type that hasthis type attribute.
Gokyo showsonly theuniqueassignmentsthatresultin
violations,but canprint all the individual violationsto
a file. In our results,we will alsofocuson the unique
assignmentmainly.

3.3 ClassifyingConflicts

Oncethe conflicting subspacefor a TCB subjecttype
is generated,we could choosea handlerfor this sub-
space. In general,Gokyo permitsoverriding the con-
flict by grantingor denying thesubspace.However, both
grantsanddenialscanbeaugmentedby arbitraryanaly-
siscoderangingfrom audit to complex intrusiondetec-
tion. Thus,if the integrity conflictsthatwe find areall
representative of the samesituationwe could choosea
singleapproachto handlingthem.

In Section2.4 lists five approachesfor dealingwith in-
tegrity conflicts that are summarizedin Table 1. The
problemis to determinewhich integrity conflictsimply
whichresolutions;theSELinuxexamplepolicy doesnot
provide any further input explicitly. To addressthis we
classify conflicts in a mannerthat doesnot unequivo-
cally identify theresolution,but doesidentify thepossi-
bleresolutions.First,membersof theTCB subjecttypes
may be trustedwriters, so if the subjecttype of an in-
tegrity conflict is a TCB subjecttype thenall handling
optionsarepossible.Further, somesubjecttypesmaybe
candidatesto be addedto the TCB. Subjecttypeswith
a significantnumberof conflictsshouldbe considered.
We usethe heuristicthat subjecttypeswith an average
of greaterthanoneconflictperTCB typearecandidates
for trustedtypes.

Second,we proposethat theanalysisalsoincludea se-
curity targetdefinitionthatspecifiestherequiredsubject
types. Ratherthan requiring that the systemadminis-
tratorsenumerateall subjecttypesindividually, we can
usethe type transitionhierarchyto estimatethe set of

Class Description

TCB or Candidate Trustedsubjecttypes
ExcludeType Typecanbeexcludedfrom securesystemwith thisTCB
Sanitize A sanitizedreadmaybeusedto protectTCB
Denial Denialof conflictingrightscanbeusedto protectTCB
Modify Policy Policy mustbeeditedto protectTCB

Table1: Classificationsfor TCB integrity conflicts.

typesrequiredasall subjecttypesthatmaytransitionto
a requiredsubjecttype. Typeattributesor otherseman-
tically meaningfulidentifierscanbeusedto identify de-
siredsubjecttypesets.If a subjecttypedoesnot belong
to thesetof requiredsubjecttypesit canbeconsidered
for exclusionandtheotherremaininghandlingmethods.

Identifying object typesthat may be excludedis more
difficult. If wearetooambitious,wemayremoveanob-
ject typethatis really neededby thesystem.In general,
when we exclude a subjecttype, we may remove ob-
ject typesdependon the existenceof this subjecttype.
For example, if we remove X windows subjecttypes,
we no longerneedX windows object types. This may
prevent integrity violationsfor TCB subjecttypeswith
broadrights,suchasthesystemadministrators.Thede-
pendency of asubjecttypeontheavailability of particu-
lar objecttypesis not currentlyidentified.All we know
aretheoperationsthatcanbeperformed.A conservative
approximationis theobjecttypesfor which objectscan
only be createdby the excludedsubjecttype. Without
thesubjecttype,objectsof this typewould not exist in
thesystem.We have to accountfor all possiblewaysof
makingobjectsof this objecttype, includingrelabeling
(specificallyrelabeltopermission).

Third, someBiba integrity violations involve reading
low integrity that the subjecttype canactuallyhandle,
suchas requestsfor operations.The Clark-Wilson in-
tegrity policy accountsfor theseby allowing transfor-
mationprocesses(TPs)to operatelow integrity data(un-
constraineddataitemsor UDIs) andevenconvert them
to high integrity data(constraineddataitemsor CDIs).
We refer to the ability to correctlyfunction given UDI
input assanitizationof this input. In Clark-Wilson,TPs
mustbecertifiedto performtheirtasks.Weidentifyboth
whereTPsrequiresanitizationandwherethey musthan-
dleCDIsproperly. Our initial assumptionis thatall data
usedby TCB subjecttypesareCDIs,but somedatamay
bedowngradedto UDIs andusedvia sanitization.

Recall the distinctionbetweenreadintegrity andread-
write integrity violations. We statethat readintegrity

violationsmaybesanitized,but read-writeintegrity con-
flicts havenopossibilityof sanitization(i.e.,datawritten
by aTCB subjecttypeis alwaysa CDI, in Clark-Wilson
terms). Recallthat read-writeintegrity violationsmean
that the subjecttype writes andreadsdatathat can be
modifiedby a lower integrity subjecttype. Depending
on synchronization,a lower integrity subjecttype may
beableto changeanobjectsasthehigherintegrity sub-
jecttypeis writing them.While sanitizationmaybepos-
siblein general,weflagtheseviolationsasbeingbeyond
sanitization.

Fourth, the read-writeintegrity violationsareclassified
for adhoc denialof rights. In many cases,morerights
areassignedthanarereallynecessaryfor theapplication,
which is a problemof leastprivilege. In somecases,it
may be sufficient andsimpler to simply deny the con-
flicting rights. Gokyo enablespartitioningof conflicts,
and assigningindependenthandling to eachpartition.
Therefore,it is possibleto simply denial theserights
without furthermodifying theSELinuxexamplepolicy.
Application-specificexaminationis necessaryto deter-
mineif thesedenialsarereallypossible.

Lastly, if we find thatthepermissionassignmentis nec-
essaryfor theconvenientexecutionof a requiredappli-
cation, then modificationof the policy is the only re-
mainingoption.

3.4 Manual Analysis

Manual analysisinvolves starting at the highestlevel
handlingmethodanddeterminingwhetherit canactu-
ally beapplied.If not,thenthesubsequentmethodsmust
beconsidered.

Identifying trustedwriters andexcludedwriters canbe
doneautomatically, so themaineffort hereis on deter-
mining whethersanitizationis possibleandidentifying
thesanitizationmethod.This is a fairly adhocprocess,
soweexamineit relativeto our integrity analysisresults
in Section4.

If sanitizationis not possible,thenexpressinga denial
for thisexceptionor policy modificationsaretheremain-
ing options. Both of thesemust be donemanuallyat
present.

4 Integrity Analysis

In this section,we useGokyo to analyzeour proposed
TCB to identify the integrity conflicts,classifyaccord-
ing to bestpossibleresolution,andchoosethelikely res-
olution. Thelikely resolutionis chosenbasedonmanual
analysisof theconflict. Thekey resultsaretheresultant
TCB (i.e., doesit needto be expandedandhow?) and
proposedSELinuxpolicy changesneededtoachievethis
TCB.Detaileddiscussionof theGokyo tool itself is pro-
videdelsewhere[13].

4.1 Analysis Implementation

The integrity analysisfor the proposedTCB in Sec-
tion 2.3is performedontheSELinuxexamplepolicy for
Linux 2.4.19. This policy consistsof over 50,000pol-
icy statements4. In Gokyo, the SELinux examplepol-
icy comprisesover700subjecttypesandtypeattributes,
over 40,000individual permissions,and over 100,000
explicit assignmentsbetweensubjecttypesandpermis-
sions.

The integrity of the SELinux systemis representedby
two integrity constraintsbetweenthe set of proposed
TCB subjecttypesandthesetof all othersubjecttypes
asshown in Figure4. To representthis we createtwo
subjecttypes, TCB subjecttypes (high integrity) and
non-TCBsubjecttypes(low integrity), andaggregatethe
subjecttypesinto their respective group. The permis-
sionsassignedto eachsubjecttype nodeareautomati-
cally propagatedto theaggregatesubjecttypes.

Ourintegrity protectiongoalis expressedusingtwo con-
straints:(1) read-integrity constraintand(2) read-write-
integrity constraint.Read-integrity constraintsarevio-
lated if the low integrity subjecthaswrite permission
(i.e., a permissionrepresentingtheability to modify the
datain that SELinux class)to an object type andclass
pair thathigh integrity subjecttypehasreadpermission
to. Read-writeintegrity is violatedif the high-integrity
subjectalsohaswrite permissionto theobjecttypeand
classpair in additionto readpermission.

4Statementcount is taken from the macroexpandedpolicy in
policy.conf.

To implementtheseconstraints,Gokyo assignsthe in-
valid permissionsto the high integrity set. For read-
integrity, Gokyo createsa permissionwith all readper-
missionsassignedfor eachobject type and classpair
that the low integrity subjectcan write. Similarly, for
read-write-integrity, Gokyo createsapermissionwith all
writepermissionsassignedfor eachobjecttypeandclass
pair thatthelow integrity subjectcanwrite. In thiscase,
constraintverificationtakesanintersectionof theinvalid
permissionsand the onesassignedto the TCB subject
types(i.e., differenttypesof constraintsmay have dif-
ferentalgorithms).

Notethatit maybemoreefficientto testthisconstraintin
theoppositemannerby determiningif the low integrity
sethaswrite permissionsto objecttype andclasspairs
that the high integrity subjectcanread. At this point,
weactuallycreatebothintegrity testsets,but weshould
determinewhichis smallerandtestonly thatoneinstead.

Analyzingintegrity protectionis basicallyataskof iden-
tifying all integrity conflictsand classifyingthem into
their bestlegal classification. We have found that the
numberof conflictsthatexist in theentireSELinuxpol-
icy is too large to be effectively consideredtogether.
Fortunately, conflictsare independent.That is, the ex-
istenceof one conflict hasno effect on another. This
meansthataclassificationto eliminateoneconflictcan-
not be undoneby anotherconflict. For example,if we
find thatwe cansanitizetheuseof a particularconflict-
ing permission,the emergenceof a conflict later does
not impactthis sanitization.This is true for all classifi-
cations.Theonecaveatis thatwemayfind thatapartic-
ularsubjectrequiressomany sanitizationsthatit should
betrustedor excluded,but thesecasesarenotexcessive
and easily handled. Usually, we determinewhethera
subjectshouldbe trustedor excludedbeforewe do the
hardwork of figuringouta sanitization.

Theresultis thatwe canconsidertheconflictsin small
groups,and make classificationsbasedon a subsetof
the information. Currently, we useGokyo in a mode
in which it identifiesa single conflict for eachinvalid
permission(i.e., constraint-generated).Sometimes,at-
tribute assignmentsresult in multiple, uniqueconflicts,
but Gokyo only presentstheattribute assignmentonce.
Gokyo generatesa log containingall conflictsand the
assignmentpathsbetweennodesinvolvedin theconflict,
includingtheline numbersin which theassignmentsare
specified.This assistswith the manualanalysisphase.
However, addition metadata,suchas the frequency of
conflictfor aparticularinvalidpermission,wouldalsobe
useful.Thelog of a constraintviolation is shown below
(class.conf is SELinux policy file, kernel.cst

Perm Perm Perm Perm

Integrity Integrity
SubjectsSubjects

... ...

P(H) Read Integrity P(L)

P(H) Read-Write Integrity P(L)

H -- High L -- Low

aggregate aggregate

assign assign assign assign

aggregate aggregate

High High
Type Type Type Type

LowLow

Figure4: Gokyo graphicalpolicy modelimplementationof integrity.

TrustedType ConflictType ObjectType& Op Class Resolution

dpkg t tmpreapert tmp dpkg t:file rw exclude exclude
initrc t many file type:blk/chr/filer sanitize sanitize
initrc t useraddt etc t:file r trust trust
initrc t hwclock t clock device t:chr/blk rw trust trust
initrc t gpm t psauxt:chr rw exclude exclude
initrc t soundt, xdm t sounddevice t:chr rw trust exclude
initrc t httpd adminxserver t framebuf device t:chr rw deny exclude
initrc t many initrc t:fifo rw deny sanitize
kernel t slapdt, squid t, + *:* socket r sanitize sanitize
kernel t dhcpct resolvconf t:file r trust exclude
kernel t dhcpdt var run dhcpdt:file r trust exclude
kernel t quotat file t:file r trust trust
local login t many proc t:file r sanitize sanitize
local login t insmodt local login t:processr exclude exclude
local login t logrotatet local login t:processr trust trust
mount t automountt autofst:dir rw exclude trust
mount t bootloadert, fsadmt fixed disk device t:* rw trust trust
sysadmt usert misc device t:* rw deny excludeobj
sysadmt many sysadmdevpts t/ptyfile:* rw deny change
sysadmt sysadm* t sysadmhomet:* rw deny change/sanitizeonefile
sysadmt sysadm* t sysadmtmp t:file rw exclude change
sysadmt sysadmirc t sysadmirc t:file rw exclude change/sanitize
sysadmt sysadmxserver t sysadmxserver t:shmrw exclude exclude
sysadmt sysadmxauth t sysadmhomexauth t:file rw exclude exclude
sysadmt admin kernel t:systemavc togglerw trust trust
sshdt many sshddevpts t/userpty:*rw deny change

Table2: Integrity conflictsin theinitial TCB proposal.

is ourconstraintfile, andkernel.cfg containsaggre-
gatesubjecttypedefinitions):

On constraint: kernel.cst(25)
Role 151: mount_t
has constraint: "integrity protected"
with node: Role 882: non-mount

Violating Assignments:
Permission 2876: autofs_t:dir 00110000
(1) From: class.conf (60810) Perm 2876:

autofs_t:dir 00110000
(2) to: class.conf (60759) Role 151: mount_t

Violating Preclusions:
Permission 45131: autofs_t:dir 003fffff
(3) From: kernel.cst (25) Role 882: non-mount
(4) to: class.conf (60759) Role 151: mount_t
(5) to: class.conf (0) Perm 42608:

autofs_t:dir 003e1c7e
(6) to: class.conf (60639) Perm 2857:

autofs_t:dir 003e1c7f
(7) to: kernel.cfg (94) Role 148: automount_t
(8) to: kernel.cfg (91) Role 882: non-mount

The violating assignmentsis the permissionassigned
to mount_t whoseintegrity may be violated. Line
(1) indicates where the permissionwas assignedto
mount_t, andline (2) indicateswheremount_t was
identifiedasa subject.Thefile class.conf is a trun-
catedversionof policy.conf for SELinux 2.4.19.
For the violating preclusions, the path for the assign-
ment of the constraint-generatedinvalid permissionis
shown. Line (3) refersto declarationof the aggregate
subjecttype (Gokyo-specific),and line (4) is the same
as line (2). Line (5) refers to the generatedpermis-
sion (no file line numberbecauseit is generated),and
line (6) shows the assignmentof autofs_t permis-
sionsto automount_t. Lines (7) and(8) show that
automount_t is assignedto thenon-TCBaggregate.

For eachconflict, Gokyo estimatesthe classifications
basedon: (1) the numberof subjecttype conflicts(for
trust); (2) whetherthe subject type or object type is
required,seebelow (for excluding subjecttypes); and
(3) whetherthe conflict is read-integrity or read-write-
integrity (for consideringsanitization).Ourproposalfor
removing objecttypesbasedon whethertheobjecttype
is createdby only excludedsubjecttypeshasnot been
implementedyet,soweusetheobjecttypesrequiredby
our focal subjecttype.

For requiredsubjecttypes,weassumedthatthepurpose
of our systemwasto run anApachewebserver. Thus,
we includeall Apachesubjecttypes(i.e., thosestarting
with httpd) andall thosesubjecttypesthat transition
to anApachesubjecttype,directly or indirectly. In ad-
dition to our TCB subjecttypes,we requiredpkg_t
(i.e., the Debianpackagemanager),rlogind, several
usersubjecttypes.Ultimately, wewill choosetoexclude
rlogind, but includeuser_t in the analysis.Users

may be actively involved in script generation(e.g., for
personalpagesin a corporateserver). Becauseso few
otherrequiredsubjecttypesarefoundthis way, we will
addotherslater. Notethatthesetof requiredobjecttypes
includesthetypesaccessibleto theApachesubjecttypes
only.

4.2 AnalysisProcess

Table2 shows the integrity conflictsthat our proposed
TCB haswith the remainingsystemsubjecttypesand
the possibleresolutionsof theseconflicts. The trusted
typefield shows a trustedtype that readsinput written
by anuntrustedtype. Theconflict typefield shows one
or moreof theuntrustedtypesin theconflict. Theobject
type& op field shows theconflictingdataandtherights
of theTCB subjecttype(i.e.,reador read-writeintegrity
conflict). Theclassfield shows theclassificationof the
conflict. The resolutionfield shows the manualresolu-
tion to theconflict.

The integrity conflicts are collectedinto groupsbased
on the trustedtype. First, dpkg_t (debianpackage
management)hasacommonread-writeintegrity conflict
alsobecausetmpreaper (cleanstemporaryfile direc-
tories)is givenbroadfile accessfor cleaningup tempo-
rary files. tmpreaper_t is responsiblefor few viola-
tions,sotheclassificationis exclude. This specification
is consistentwith tmpreaper’s task,so the only two
alternativesareto trustor excludetmpreaper_t. We
manuallychoosethelatter.

Second,initrc_t is involvedin a readintegrity con-
flict thataffectsmosttrustedtypes: it is givenreadac-
cessto all file data in the system. Since it can read
all files, it certainly hasan integrity conflict with the
lower integrity subjects.However, thereadaccessis to
getattr for stat, sothiscanbesanitized.

Third, initrc_t hasseveralotherconflicts.Thenext
two are identified as requiredand seemnecessary, so
weadduseradd_t andhwclock_t areaddedto the
TCB. The next threearenot really necessary(gpm_t
for mouse,sound_t, andxdm_t), sowechooseto ex-
cludethem. TheX window server introducesa number
of otherintegrity issues,somuchmorework isnecessary
to have an X windows systemrunningon an integrity-
protectedTCB. Thus,httpd_admin_xserver_t is
excluded.Lastly, we determinethatread-writeintegrity
accessto initrc_t’s fifo can be sanitizedas neces-
sary. It shouldinvolveonly simplecommunication(e.g.,
on processstart). Notethat this is a manualoverrideof
our intendedrequirements.

Fourth,kernel_t hasseveral integrity conflictswith
receiving network data. This integrity conflict is com-
mon to most servicesin the TCB. Suchinteractionis
necessaryfor convenientexecution,sowe will examine
sanitizationof network communicationin Section4.3.
The otherconflictsareso commonthat the framework
assumesthatthey aretrusted.Manualanalysiskeepson
quota_t (file quotamanagement)in theTCB andex-
cludesdhcpc_t anddhcpd_t.

Fifth, the conflict over accessto /proc is found for
local_login_t. Since this accessis for reading
only, we will aim to sanitizethis access.Next, we as-
sumethatinstallingmodulesis notnecessaryfor ourse-
curesystem,soinsmodmaybeexcluded.Ontheother
hand,logging is an importantprocess,sologrotate
is addedto theTCB.

Sixth, mount_t has conflicts with automount_t,
fsadm_t, andbootloader_t. Although only the
lattertwo arecommonconflicts,all of theseareaddedto
theTCB.

Seventh, there are a variety of conflicts with
sysadm_t. sysadm_t has a conflict over ac-
cessto misc_device_t with usersubjects. These
object types will be excluded. Also, access to
sysadm_devpts_t is shared with many subject
types. Many of thesesubjectsare application-specific
administratorswhich are intended to be of lower
integrity. A differentobject type shouldbe designated
for these. Next, sysadm_t has read-writeintegrity
conflicts with the application-specificadministrators
over the sysadm_home_t. Conflicting accessis
provided to permit lower-integrity administrative pro-
cessesto write to anerrorlog (.xsession-errors).
We recommendbreaking the object type into two
for the higher and lower integrity home objects, so
accessto the latter can be sanitized. Since we have
excluded X windows this object type can also be
excluded in this case. Access to sysadm_tmp_t
and sysadm_irc_t should be changedsimilarly.
Finally, sysadm_t hasconflicts that canbe excluded
for X windows subject types and trusted for admin-
istrative subject types. The following subject types
areaddedto the TCB: ipsec_mgmt_t, apt_t, and
admin_passwd_exec_t. install_menu_t is
excluded.

Lastly, sshd_t hasa read-writeintegrity conflict over
the useof pseudo-terminals.Type changeis usedfor
someto changethesubjecttypeto alower-integrity sub-
ject uponuseof a userpty for sysadm_t, so we pre-
sumethatthisshouldbeaddedfor sshd_t aswell.

After thetrustedtypes,excludedtypes(includingobject
types),andsanitizedaccessesareaddedto their respec-
tive lists, the next iterationof the analysiscanbe per-
formed.After somenumberof iterations,5 in our case,
all theexclusions,sanitizations,andtrustedsubjecttypes
areaccountedfor, andno conflict remainsunclassified.
However, resolvingtheefficacy of sanitizationsandre-
ducefile readpermissions(or at leastmanagingthem)
remain.

4.3 AnalysisFindings

ThebaseTCB for theSELinuxexamplepolicy for sup-
portinganApacheis shown in Table3. Notethattheset
of subjecttypesthatApachemustultimatelydependon
wouldbesomewhatlarger(around50%largergivenour
analysis[13]). Startingwith our original 12 types,we
have found that 30 subjecttypesmustbe trusted. The
correctnessof thisTCB dependsontheresolutionof the
full accessthatthesesubjecthaveto applicationanduser
files which they shouldprobablyrarely access,asdis-
cussedbelow. Also, not all forms of authenticationare
necessaryat once.Ultimately, it is probablypossibleto
reducethissetslightly, but thisprovidesagoodestimate
of mostSELinuxTCBs.

Interestingly, not long after this paperwas submitted,
WayneSalamonindependentlyproposeda“corepolicy”
to theSELinuxcommunity[19]. Theintentof this pro-
posalwas to definea basesystempolicy upon which
any other systempolicies would be derived. Thereis
somenotionof usabilityhereratherthanTCB, asthein-
tent is for basefunctionratherthanbasesecurity. After
somediscussionwith the communityhe settledon 40
policy files (roughly equivalentto 40 subjecttypes)to
comprisea corepolicy. 17 of the subjecttypesin the
TCB arecommonto the two groups.Theonesthatwe
includethatarenot in thecorepolicy proposalareindi-
catedin Table3. Wethink thatmany of thesubjecttypes
in our proposalareTCB subjecttypes,althoughsome
authenticationsubjecttypes,suchassshd_t, andad-
ministrative types,suchassysadm_t anddpkg, are
notnecessarilycore.

As partof the analysis,we identifiedsubjecttypesand
objecttypesfor exclusionfrom oursystem.The25sub-
ject typeswe excludedare listed in Table4. We need
to verify empirically thatsuchservicesarenot actually
necessaryfor an Apachesystemon SELinux,but most
of thesedonotseemcontroversial.

In Table5, we summarizethesanitizationsrequiredfor
our TCB. Notethat in Clark-Wilson terms,thesesaniti-

kernel t* init t initrc t sysadmt* getty t
mount t fsadmt load policy t dpkg t* checkpolicy t
setfilest syslogdt klogd t automountt sshdt*

sshdlogin t* local login t quotat* ldconfig t useraddt
hwclock t* apt t* cardmgrt* ipsecmgmt t* adminpasswdexec t*
bootloadert logrotatet newrole t snmpdt* passwdt*

Table3: Final trustedcomputingbasesubjecttypes(* indicatesnot in proposedSELinuxcorepolicy).

insmodt rlogind t remotelogin t sysadmxserver t xdm t
sysadmxauth t soundt tmpreapert httpd adminxserver t kmod t

lpd t xdm xserver t vmware usert sendmailt procmail t
hotplug t traceroutet updatemodulest gatekeepert smbdt
dhcpct dhcpdt install menut devfsd t gpm t

Table4: Finalexcludedsubjecttypes.

zationsindicatetheunconstraineddataitems(UDIs) that
our TCB’s transformationprocedures(TPs)musthan-
dle. By sanitization,we envision thatSELinuxmodules
canbeannotatedwith sanitizationpoliciesto verify the
format of the inputs. This is a non-trivial endeavor, so
suchaproposalis quitepreliminary. However, suchsan-
itizationservicesontopof averifiedandsimpleintegrity
policy canenablefulfilling of oursecuritygoalswithout
majorpolicy tweaking.

Someof thesesanitizationsarefocusedandcanbehan-
dledasexceptions,but some(thefirst four) have many
instances.Ourimpressionis thatthefifoscanbehandled
becauseeachinstanceservesthesamepurpose.Socket
accessis both extensive in numberof communicators
andvarietyof communications.Significanteffort is re-
quiredto comprehensivelyaddressthese.Mostof thein-
formationin /var and/proc doesnotseemto impact
theprocessingof our trustedsubjects,but moreinvesti-
gationis necessary.

The two conflicts that remainare: (1) betweentrusted
subjecttypesand the pseudo-terminalsthat they share
with userprocessand (2) the permissionassignments
thatpermittrustedsubjectsto accessto all files (thefirst
andlast entriesin Table2). The first conflict is proba-
bly besthandledby a SELinux typechange statement.
Theseareusedto changethetypeof anobjectbasedon
thesubjecttypeof theaccessor. Whenapseudo-terminal
is accessedby a high integrity subject,it getsa high in-
tegrity typeandits previousstateis cleared.

The secondconflict could be addressedby leveraging
Gokyo. Using Gokyo’s conflict spaces,we could de-
clareauditingor intrusiondetectionto beinitiatedwhen

an integrity-conflictedfile objectis accessedby a high-
integrity subject.This would not requirea modification
to the SELinux policy, but a Gokyo conflict spaceas-
signmentwould benecessary[13]. Sucha solutionde-
pendson infrequentuseof conflicting permissions.If
there is frequentuseof someconflicting permissions,
thenalternativemeasuresareneeded.This taskremains
asfuturework.

Note that a SELinux auditallow statementwould not
quite work in this casebecauseit would audit all file
accessesinsteadof the onesthat violate integrity. Of
course,wecouldalwaysmodify theSELinuxpolicy, but
thiswouldtakesignificanteffort andperhapsleadto fur-
therconflicts.

5 RelatedWork

SELinux includestools for policy analysis.neverallow
statementsenablethepolicy designerto expressassign-
mentsthat shouldnot be expressedin the policy. The
checkpolicytool verifiesthatno neverallow statementis
violatedwhen the policy is compiled. Suchstatement
enablethe identificationof conflicts,but any resolution
requireschangingthe SELinux policy directly. These
statementsaresuitablefor expressingcasesthatshould
not ever occur, but they arenot suitablefor expressing
high level securitygoals.

The TresysCorporationhasbeendeveloping tools for
analyzing SELinux policies for over one year [23].
Tresysdefinestools for helping administratorsunder-
standthe SELinux policy (e.g., statementsfor a par-

ObjectType Sanitization

* t:fifo Mainly for usefollowing exec
: socket Must beableto handlenetwork dataor big policy mod
proc t:file Mainly expectedto print this information

sysadmhomet:* Only needto read.xsession-errorslog

Table5: Sanitizedconflictsandbrief analysis.

ticular subjecttype)andhelpingperformadministrative
tasks(e.g.,correctlyaddinga new user).Suchtoolsare
valuablefor the developmentof SELinux policies,but
do not addressthequestionsof whetherthepoliciescan
meetparticularhigh-level goals.

We are aware of work ongoingat MITRE to analyze
SELinuxpoliciesfor morecomplex relationships,such
asreachability[7]. The SELinux examplepolicy is so
large that the theoremproving tools beingusedarenot
efficientenoughfor effectiveanalysisyet.

Accesscontrol policy analysisitself is a fairly recent
areaof work. Bertino et al define a generalframe-
work for representingandreasoningaboutaccesscon-
trol models[3]. The goal here is to comparemodels
(e.g.,for expressivepower)ratherthancomparepolicies
to properties.We believe that their modelis expressive
enoughto do thelatter, however.

Further, Jajodiaet. al. [14] supportconflict resolutionin
their model. In their case,the goal is to find a general
strategy of conflict resolution,not to supportdifferent
strategies.Ferrariet. al. [8] examineconflict resolution
problemsandstrategiesaswell.

6 Conclusions

In this paper, we presentan approachfor analyzingin-
tegrity protectionof the SELinux examplepolicy. The
SELinux module supportsthe recent Linux Security
Modules (LSM) framework for implementingmanda-
tory accesscontrol on the Linux kernel. The SELinux
examplepolicy is undergoing active developmentand
is beingappliedin several installations.Theaim is for
administratorsto take theSELinuxexamplepolicy and
customizeit to their site’s securitygoals.Thisquitedif-
ficult, however, becausethe SELinux policy model is
quitecomplex andtheSELinuxexamplepolicy is large.

Ouraimis to provideanaccesscontrolmodelto express
sitesecuritygoalsandresolvethemagainsttheSELinux

policy. In particular, we wantto identify a minimal sys-
temTCB for the SELinuxexamplepolicy thatsatisfies
Clark-Wilson integrity restrictionsrelative to therestof
thesystem.UNIX systemsarenotdesignedtomeetBiba
integrity, but theClark-Wilsonintegrity policy enablesa
descriptionwherekey datacanbeidentified(thosedata
usedby TCB subjecttypes),andsanitizationof low in-
tegrity datais possible.

We have developeda tool calledGokyo that represents
the SELinux example policy and our integrity goals,
identifiesconflictsbetweenthem,estimatesthe resolu-
tionsto theseconflicts,andprovidesinformationfor de-
ciding upona resolution.Further, Gokyo representsthe
stateof the integrity resolutionwhich couldbeusedby
the accesscontrol module to make authorization,au-
dit, and intrusion detectiondecisions. Using Gokyo,
we found a minimal TCB containing30 subjecttypes
thatmeetsClark-Wilson integrity includingsanitization
requirementsandresolutionof overly broadfile access
rights. More investigationis neededto verify the pro-
posedsanitizationrequirementsanddeterminetheeffec-
tivenessof auditversusrestrictionof file rights,but the
Gokyo’s ability to supporttheanalysisof integrity pro-
tectionis helpful in understandingandmanaginghigher
level securitygoalsoncomplex policies.

Acknowledgements

The authorswould like to thank the anonymousrefer-
eesfor their usefulcomments,andthosepeoplepartici-
patingin theSELinuxcommunity, particularlyStephen
Smalley andRussellCoker.

References

[1] L. Badger, D. F. Sterne,D. L. Sherman,K. M.
Walker, andS.A. Haghighat.A DomainandType
EnforcementUNIX Prototype. In Proceedingsof

the1995USENIXSecuritySymposium, 1995.Also
availablefrom TIS onlinearchives.

[2] D. Bell and L. La Padula. SecureComputer
Systems:MathematicalFoundations(Volume 1).
TechnicalReportESD-TR-73-278,Mitre Corpora-
tion, 1973.

[3] E. Bertino,B. Catania,E. Ferrari,andP. Perlasca.
A logical framework for reasoningabout access
controlmodels.ACM TransactionsonInformation
andSystemSecurity(TISSEC), 5(4),Nov 2002.

[4] K. J.Biba. Integrity considerationsfor securecom-
putersystems.TechnicalReportMTR-3153,Mitre
Corporation,Mitre Corp,BedfordMA, June1975.

[5] W. E. BoebertandR. Y. Kain. A PracticalAlterna-
tive to HierarchicalIntegrity Policies.In Proceed-
ings of the 8?�@ National ComputerSecurityCon-
ference, Gaithersburg,Maryland,1985.

[6] D. D. Clark andD. R. Wilson. A comparisonof
commercialand military computersecuritypoli-
cies. Proceedingsof the 1987 IEEE Symposium
onSecurityandPrivacy, 1987.

[7] A. Herzog. Personalcommunication..November
2002.

[8] E. FerrariandB. Thuraisingham.Securedatabase
systems.In O. Diaz andM. Piattini, editors,Ad-
vancedDatabases:TechnologyandDesign, 2000.

[9] T. Fraser. LOMAC: Low Water-Mark Integrity
Protectionfor COTS Environments. In Proceed-
ingsof the2000IEEE Symposiumon Securityand
Privacy, May 2000.

[10] M. A. Harrison,W. L. Ruzzo,andJ. D. Ullman.
Protectionin operatingsystems.Communications
of theACM, 19(8),August1976.

[11] T. JaegerandJ.E.Tidswell.Practicalsafetyin flex-
ible accesscontrolmodels.ACM Transactionson
Informationand SystemSecurity(TISSEC), 4(2),
May 2001.

[12] T. Jaeger, A. Edwards,andX. Zhang. Managing
accesscontrolpoliciesusingaccesscontrolspaces.
In Proceedingsof the A ?�@ ACM Symposiumon Ac-
cessControl ModelsandTechnologies, June2002.

[13] T. Jaeger, A. Edwards,andX. Zhang.Policy man-
agementusingaccesscontrolspaces.ACM Trans-
actionson Informationand SystemSecurity(TIS-
SEC), to appear.

[14] S. Jajodia,P. Samaratiand V. Subrahmanian.A
Logical Languagefor ExpressingAuthorizations.
Proceedingsof the IEEE Symposiumon Security
andPrivacy, 1997.

[15] P. KargerandR.Schell.Thirty yearslater:Lessons
from the Multics securityevaluation. IBM Tech-
nical Report, RC 22534, Revision 2, September
2002.

[16] P. Loscocco,S. Smalley, P. Muckelbauer, R. Tay-
lor, J. Turner, andJ. Farrell. The inevitability of
failure: Theflawedassumptionof computersecu-
rity in moderncomputingenvironments.Proceed-
ingsof the �B��C ? National InformationSystemsSe-
curity Conference, October1998.

[17] S. Minear. Providing policy control over objects
in a Mach-basedsystem.Proceedingsof theFifth
USENIXSecuritySymposium, 1995.

[18] National Security Agency. Security-Enhanced
Linux (SELinux). http://www.nsa.gov/selinux,
2001.

[19] W. Salamon. Core policy, sec-
ond pass. SELinux mailing list
archives, http://www.nsa.gov/selinux/list-
archive/3941.html,2003.

[20] S. Smalley. Configuring the SELinux pol-
icy. NAI Labs Report #02-007, available at
www.nsa.gov/selinux,June2002.

[21] R. Spencer, S. Smalley, P. Loscocco,M. Hibler,
and J. Lapreau. The Flask securityarchitecture:
Systemsupportfor diversepolicies. Proceedings
of theEighthUSENIXSecuritySymposium, August
1999.

[22] C. Wright, C. Cowan, S. Smalley, J. Morris, and
G.Kroah-Hartman.Linux SecurityModules:Gen-
eralsecuritysupportfor theLinux kernel.Proceed-
ingsof theEleventhUSENIXSecuritySymposium,
August2002.

[23] TresysTechnology. Security-EnhancedLinux re-
search.www.tresys.com/selinux.html,2001.

