Analyzing Integrity Protectionin the SELinux Example Policy

TrentJager ReinerSailer XiaolanZhang
IBM T. J. WatsonReseach Center
Hawthorne NY 10532USA
Email: {jaegert,sailefcxzhang@us.ibm.com

Abstract

In this paper we presentan approachfor analyzing
the integrity protectionin the SELinux examplepolicy.

The SELinux examplepolicy is intendedas an exam-
ple from which administratorgustomizedo createa pol-

icy for their site’s securitygoals,but the compleity of

the model and size of the policy make this quite com-
plex. Ouraim s to provide anaccessontrol modelto

expresssite securitygoalsandresole themagainsthe
SELinux policy. Ultimately, we aim to definea mini-

mal trustedcomputingbase(TCB) that satisfiesClark-

Wilson integrity, by first testingfor the morerestrictve

Bibaintegrity policy andresolvingconflictsusingClark-

Wilson semanticsOur policy analysistool, Gokyo, im-

plementsthe following approach:(1) it representshe
SELinux examplepolicy andour integrity goals;(2) it

identifiesconflictsbetweerthem;(3) it estimatesheres-
olutionsto theseconflicts;and(4) providesinformation
for decidingupon a resolution. Using Gokyo, we de-
riveaproposafor aminimal TCB for SELinuxincludes
30 subjecttypes, and we identify the work remaining
to ensurethat TCB is integrity-protected.Our analysis
is performedon the SELinux examplepolicy for Linux

2.4.19.

1 Intr oduction

A goalfor mary yearshasbeeneffective mandatoryac-
cesscontrol (MAC) for UNIX systems. By an effec-
tive MAC system,we ervision that systemadministra-
torscandefineaccesgontrolpoliciesthatguarantesite
securitygoalswhile enablingthe convenientexecution
of applications.Early MAC policies,suchasthe Bell-
LaPadulasecreg policy [2] andthe Biba integrity pol-
icy [4], definedclearsecuritygoals,but weretoo restric-
tivefor convenientusefor UNIX applicationsCommer
cial operatingsystemshat were extendedto meetOr-
angeBook B1 (i.e., MAC plus otherfeatures)verenot
broadly applied(i.e., mainly aimedat governmentin-

stallations).Recentefforts at MAC systemsuseflexible
accesscontrol modelsto achieve corvenientuse (e.g.,
DTOS,Flask[17, 21], etc.),but demonstratinghat par
ticular security goals have beenmet is more difficult
(andthesesystemshave not beenwidely usedeither).
Flexible accesontrol modelstypically resultin more
comple policies,soit is moredifficult to determineif
thesepolicieshave thedesiredeffect.

The recent addition of the Linux Security Modules
(LSM) framework [22] enableshe MAC enforcement
for the Linux kernel. The LSM framawork is designed
to beagnostido the MAC approachandit hasbeende-
signedto supportmoduleswith flexible MAC models.
The mostcomprehensie andflexible modulefor LSM
is the SELinux module[18]. While SELinux supports
a variety of policy modelsitself, an extendedType En-
forcemen{TE) model[5] is usedfor mostpolicy devel-
opment. An examplepolicy is underdevelopmentthat
consistsof a setof UNIX serviceandapplicationpoli-
ciesthat eachaim to ensureeffective operationwhile
preventingsecurityvulnerabilities. The examplepolicy
doesnotdefinea securesystemput senesasabasisfor
developinga securesystemoncethe securitygoalsare
defined.The extendedTE modelis rathercomple (i.e.,
consistof alargenumberof conceptsandthe SELinux
examplepolicy is large (e.g.,50,000+policy statements
in thepol i cy. conf for Linux 2.4.19),socustomiza-
tion of the SELinuxexamplepolicy to apolicy thatguar
anteesatishctionof systensecuritygoalsis anarduous
anderrorpronetask.

While the useof a simpleraccessontrol modelmight
male it easierto ensurethat security goals are met,
we believe that this would resultin applicationsfail-

ing to run corveniently andultimately, the circumwen-
tion of thesesecurity goals. The comprehensie na-
ture of the SELinuxpolicy modelenabledlexible trade-
off betweenapplicationand securitygoals. For exam-
ple, the SELinux examplepolicy itself is developedby

proposingapplicationpoliciesandrefining thembased
on the policy violationsthat may be generated.Thus,

the SELinux examplepolicy itself is a direct result of
makingthesetrade-ofs.

The questionis whethera manageableset of effec-
tive security goals can be describedand verified for
SELinux policies. Olviously, it is highly unlikely that
the SELinux examplepolicy adherego a simple high-
level policy, such as the two-level integrity model of
LOMAC [9]. However, the policy may be suficiently
closeto sucha policy thatthe conflictscanbe managed
(i.e., eithera smallnumberor a smallnumberof equi-
alenceclasses)lIf so,thenverificationmay be possible
by verifying the generalgoalsand using ad hoc tech-
niguesto resohe the conflicts. We have found thatthis
approachholds somepromisefor applicationpolicies,
in particularthe Apacheadministratof12], but do not
know whetherthis canwork for the trustedcomputing
base(TCB) subjectsn the SELinux policy. Obviously,
if we cannotprove thatthe TCB is integrity-protected,
its systemcannotbe consideredgecure.

In this paper we proposea nearminimal TCB for
SELinux systemsand examine how to verify that this
TCB is integrity-protected. First, we define integrity
relationshipsbetweenthe TCB subjecttypesand less
trustedsystemand applicationsubjecttypes. Second,
we input theseconstraintsnto our policy analysistool,
called Gokyo [12], and identify integrity conflicts be-
tweenthe TCB andthe system.The Gokyo tool enables
flexible expressionof conflict setsandtheir resolution,
soour next goalis to determinevhatresolutionsappear
feasiblefor TCB integrity conflicts. Using Gokyo, we
classify conflictsinto classesdasedon their likely res-
olution. Sincemostresolutionsdependon ad hoc in-
formation, it is still a manualprocessto completethe
analysis.Using Gokyo, we identify a minimal TCB for
the SELinuxexamplepolicy of 30 subjecttypes,half of
which areinfrequently-use@ddministratiorsubjects.To
usethis TCB, 5 sanitizationproblemsmustbe solved,
but we believe that mostcan be addressedh practice,
including the useof Gokyo itself to managethe broad
file accesgights currently grantedto trustedsubjects.
Ultimately, Gokyo is usefulin identifying problemsin
meetingsecuritygoals,classifyingtheseproblems,and
providing informationfor resolvingthem.

The paperis structuredasfollows. In Section2, we ex-
aminethe SELinux extendedType Enforcemenmodel
and outline our site securitygoalsfor that model, in-
tegrity protectionof a minimal trustedcomputingbase.
In Section3 we describeourapproacho resolvingapol-
icy againspurintegrity protectiorrequirementsln Sec-
tion 4, we detailthe implementatiorof our analysisus-
ing Gokyo andpresenburanalysigesults.In Sections,

we presentelatedwork, andwe concludein Section6.

2 SELinux Security Goals
2.1 SELinux Policy Model

While SELinuxsupportsa variety of accessontrolpol-

icy models[21], the mainfocusof SELinux policy de-
velopmenhasbheenanextendedlype Enforcemen{TE)

model [1, 5, 20]. In this section,we provide a brief

overview of the SELinuxpolicy modelconceptsfocus-
ing only onthe conceptghatarerelevantto theanalysis
thatwe perform. A numberof otherconceptsrerepre-
sentedn the SELinuxextendedl E model,suchasroles
andidentity descriptorsthatwe donotcoverhere.A de-

tailed descriptionof the SELinux policy modelis given

elsavhere[20].

The traditional TE model hassubjecttypes(e.g., pro-
cessesandobjecttypes(e.qg. files,soclets,etc.),andac-
cesxontrolis representetly thepermissionsf thesub-
jecttypesto theobjecttypes.ln SELinux,thedistinction
betweensubjectand objecttypeshasbeendropped,so
thereis only onesetof typesthat are objecttypesand
mayalsoactassubjecttypes.

The SELinuxextendedTE modelis shovn in Figurel.

All objectsarelabeledwith atype All objectsareanin-

stanceof a particularclass(i.e., datatype) which hasits

own setof opemations A permissiorassociateatype,a
classandanoperatiorset(a subsedf the classs opera-
tions). Thus,permissiongssociatedith SELinuxtypes
can be appliedindependentiyto differentclasses.For

example,differentrightscanbe grantedto a users files
thanto their directories.In fact, sincethe objectsareof

differentclassesthey have differentoperations Should
the administratomwantto give differentaccessightsto

two objectsof the sameclass,thentheseobjectsmust
belongto differenttypes.

Permissiorfor a (subject)typeto performoperation®n
a(n) (object) type are grantedby the allow statement.
Any elementof the permissionrelationshipcan be ex-
pressedisingthis statementso the expressionof least
privilegerightsis possible. Thedontauditstatemenpro-
vides a variation on the basic permissionassignment.
A combinationof allow statementsesultin a union of
the rights specified,whereasa combinationof dontau-
dit statementsn the sametype pair andclassareinter-
sected.

In addition, the extendedTE model also hastype at-

(Object)
label 7| Type

Class

Object

instance-of

Operation Set

a0

Permission

auditallow or allow (union)

(Subject)
Type

dontaudit(intersection)

Figurel: SELinuxextendedType Enforcemen{TE) policy modelbasics.

tributesthat representa set of types(i.e., all the types
with that attribute assigned).Type attributesenableas-
signmento multipletypesatatime. For example,aper

missioncanbe assignedo eachsubjecttype with that
attribute or a subjectcanbeassignegermissiorto each
objecttypewith thatattribute.

Containments enforcedby limiting the permissionsc-
cessibleto a subjecttype (asdescribedabore), limiting

the relabelingof objecttypes,andlimiting the domain
transitionsthat canbe madeby a subjecttype. Relabel
rights are controlledin SELinux by limiting accesgo

relabelflom andrelabeltooperations.As the namesin-

dicate,relabeltoenablesobjectsto be relabeledto that
typeandrelabelfomenablesbjectsof a particulartype
to berelabeled.

Domaintransitionscanoccurwhena subjecttype exe-
cutesa new program.Again, SELinuxdefinesan oper
ation, calledtransition to performthesetransitions. A
subjectypemusthave atransitionpermissiorfor there-
sultantsubjectypein orderto affectadomaintransition.

The SELinux modelalso hasstatementgor typetran-

sition andtype change. Type transitionstatementsre
usedby SELinuxto automaticallycomputetransitions,
but arenot necessaryor control(i.e., transitionpermis-
sionsarealwaysnecessary)Type changestatementsl-

ter the type of an objectuponaccesshy the specified
subjecttype. Suchstatementsireusefulwhena system
administratofdoginsin usinga users tty. Type change
statementgransitionthe objecttypeof thetty to prevent
userdsfrom alteringinput.

In orderto simplify the taskof expressingpolicies,the

SELinuxextendedT E modelalsoincludesalargenum-
ber of macrosfor expressingsetsof policy statements
thatcommonlyoccurtogether We do not examinethe
policy macrosin detailbecauseolicy analysisrequires
usto understandhe policy at the level of the type en-
forcementmodel statementgi.e., which subjecttypes
canperformwhich operationsn which objecttypes).

2.2 SELinux Example Policy

The SELinux communityis working jointly on the de-

velopmentof UNIX applicationpolicies whose com-

position is called the SELinuxexample policy. The

SELinux examplepolicy doesnot definea securesys-
tem, but is intendedas input to the developmentof a

custompolicy for eachsite’s securitygoals,commonly
calleda securitytarget Unfortunately customizatioris

not simply compositionof the policiesfor the applica-
tionsof interest.Theapplicationpoliciesthemselesare
someavhatspecializedo the environmentin which they

weredevelopedandinteractiondetweerthepoliciesof

multipleapplicationsnayleadto vulnerabilities.In gen-
eral, the compositionof policiesthat are provensecure
may notresultin a securesystem.

The task of customizationis further complicatedby
the size of the example policy and the compleity of
the extendedTE model describedn Section2.1. The
SELinux example policy for Linux 2.4.19 consistsof
over50,000policy statementsi.e., the processednacro
statementé pol i cy. conf). Accordingto our anal-
ysis, this specificatiorrepresentsver 700 subjecttypes
and 100,000permissionassignments.We believe that
size and complity of the SELinux example policy

male it impracticalto expectthat typical administra-
torscancustomizet to ensureprotectionof theirtrusted
computingbase(TCB) andto satisfytheir site’s security
goalson this TCB. This mayseemobviousto someand
may seeminsufficiently justified to others,but we will
describea more detailedargumenton why we believe
thisin Section2.3.

Despitethis, we are corvincedthatthe SELinux exam-
ple policy is valuableto building securesystems,for
thesetwo reasongprimarily: (1) it providesa flexible
enoughrepresentatioto capturethe permissionsmeces-
saryfor UNIX applicationgo executecorvenientlyand
(2) it providesa comprehensie definitionof areference
monitor for UNIX. First, the SELinux examplepolicy
is developedper applicationin a mannerthatidentifies
asupersebf thepermissionsequiredto runanapplica-
tion corvenientlywhile possiblymeetinga particularse-
curity target. Whattypically happenss thataproposals
madefor anapplicationpolicy, thenthis policy is tested
by the communitywhenthey usethe application.Since
SELinux reportsauthorizatiorfailures(i.e., the lack of
a permissionrequested)it is mucheasierto determine
thatinsufficient permissionsvereassignedhanwhether
a securityvulnerabilityis created.Thus,a verified pro-
posalfor leastprivilegepermissiongor eachapplication
is representethy the SELinux policy. Whatwe needis
a betterway to testwhetherour securitygoalsaresatis-
fied, suchthatconflictscanbeidentifiedandaddressed.

Secondthe SELinuxexamplepolicy isacomprehensie
representatiomf UNIX accesscontrol. The SELinux
model aims to comprehensiely control accessto all
classes(i.e., kernel datatypes) that may be operated
uponby auserlevel Linux processThereare29classes
definedin the SELinux examplepolicy. Eachclasshas
its own set of operationsthat are intendedto capture
all therelevantsubtletiesin accessingand modifying a
class. Giventhe scopeof the SELinux examplepolicy
atthis granularity the SELinuxexamplepolicy provides
aspreciseandcomprehensie a repositoryof UNIX ap-
plicationaccesgontrolinformationasexiststoday We
needto leveragethis repositoryin the developmentand
refinementof securitygoals,but provide suchleverage
throughhigherlevel conceptghatenableeffective man-
agement.

2.3 SELinux Security

Unlike early MAC modelslike Bell-LaPadula[2] and
Biba[4], a TE modeldoesnotexplicitly indicatethe se-
curity goalsof the policy. Thus,the policy impliesthe
securitygoalsof the system. For a TE system,more

like anaccessnatrix, we only learnthatcertainsubjects
canonly performcertainoperationson certainobjects.
The securitygoalsof the policy arenotrepresentedt a

higherlevel thanthis.

The SELinuxmodelprovidesanapproachby which se-
creqy andintegrity propertiesnaybeachiezedwith least
privilege permissionsandcontainmenbf serviceq16].

The systemadministratorgreatea policy thatis restric-
tive with respecto grantingrights that violate secreg

andintegrity propertiesandwe usethe notionsof least
privilege andcontainmento minimize the damagedue
to compromisesvheretheseoccur

Fromour perspectie, theintegrity of the TCB is theba-
sis of security sothatis the focusof our analysis. In
generaljt is preferableto have a “minimal” TCB. The
smallerthe TCB, the easierit is to verify the compo-
nents.However, if theminimal TCB subjectsaredepen-
denton othersubjectsthentheseothersubjectanustbe
addedo the TCB or dependenciesiustberemoved. In
this paperwe will identify dependencieanddetermine
how to resole themto keepour TCB assmallasis fea-
sible.

Sincewe arestriving for aminimal TCB, we do notas-
sumea two-level integrity system(systemanduser)as
in LOMAC [9], but ratherwe startwith the mostfun-
damentabkystemservicesandtry to determinehow the
integrity of thesecanbeenforced Applicationsmayfur-
therdependn othersubjects For example,Apachede-
pendson othersystemservicesandthe Apacheadmin-
istrator We believe theseare at two distinct integrity
levels [13]. In this paper we examineonly explicitly
examinethe TCB andnon-TCBboundary

Further we notethatthe benefitsof leastprivilege per
missionsandcontainmenarenotrelevantto the protec-
tion of the TCB. Sincethe TCB subjecttypescanlegiti-
matelytransitionto any othersubjecttype,containment
is not possiblefor the TCB subjects.Therefore the fo-
cusis ontheintegrity of theseservices.

Figure 2 shavs the SELinux example policy’s type
transition hierarchy for our proposed TCB subject
typest. ker nel _t istheprimordialsubjectypein the
SELinuxsystem. It transitionsto i ni t _t which then
canstarta variety of services.Key to our analysisare
the administratve (e.g.,sysadm t, | oad_pol i cy,
setfil es_t, etc.) andauthenticatiorsubjecttypes
(e.g.,sshd_t,l ocal _| ogi n_t, etc.)thatdetermine
the basisfor securitydecisiondn SELinux. We alsoin-

1This hierarchyis generatedy the transitionpermissionsield by
eachof thesesubjecttypes.

Authentication Initialization

kernel_t

Administration

/ getty t ———— init_t

sysadm_t

S

local_login_t sshd_t initrc_t

—\

inetd_t

mount_t

setfiles_t bootloader_t load_policy_t

Figure2: SELinuxExamplePolicy’stypetransitionhierarchyfor our proposedr CB subjecttypes.

cludei ni trc_t andi net d_t becaus¢heseservices
initiate mary of theservicesn aUNIX system.

Of course thereare lots of otherservicesuponwhich
the correctexecutionof applicationsis necessaryover
80 identifiedfor the Apacheadministratof13]), but we
chosethis proposafor a minimal TCB basedprimarily
ontheearlyappearancef theseservicesn thetypetran-
sition hierarchyandthe amountof transition“f an-out!
Both of thesefeaturesndicatethatvulnerabilitiesin that
subjecttypewill bedifficult to contain.

While this TCB representsa small numberof subject
types,the compleity of their interactionswith the rest
of the systemin the SELinuxpolicy makesmanualver-
ification impractical. First, eachsubjecttype is in-
cludedin around500 to over 1000 policy statements
in pol i cy. conf . Manualexaminationof this mary
statementsalone is impractical, but these statements
mustbe comparedo the otherthousandgo determine
whetherasignificantconflictexists. Automatedoolsare
necessaryo representhe securitygoals,identify con-
flicts, andprovideasmuchsupportaspossiblgo conflict
resolution.

2.4 Integrity Requirements

The goal of our analysisis to protectthe integrity of
our trustedcomputingbase(TCB), so we needto de-
fine more preciselywhat we meanby this. Traditional
policies for integrity protectioninclude Biba [4] and
Clark-WilIson [6]. The Biba integrity propertyis ful-
filled if all the higherintegrity processeso notdepend
onlower-integrity processes ary manner Thisimplies
thata high integrity processcannotreadlower-integrity
data,executelower-integrity programspr otherwiseob-
tain lowerintegrity datain ary othermanner As are-
sult,aprocesgannotwrite dataaboveits integrity level.
Therefore,if high andlow integrity processesvrite to

the samefile, thenit mustbe a low integrity file. Obvi-
ously, thehighintegrity processannolongerreadfrom
thisfile andmaintainBiba integrity.

Of course UNIX applicationsdo not obey a strict Biba
integrity. Often higherintegrity processesead input
generatedby lower integrity processeshput in mary
casest is assumedhatthey canhandlethisinput. When
they cannot,we oftenidentify this asa vulnerability in
the supposedlyhigh-integrity program?. The Clark-
Wilson integrity model attemptsto capturethis no-
tion. In the Clark-Wilson model,constaineddataitems
(CDIs) are high-intgyrity datathat are processeanly
by certifiedtransformatiorprocedues(TPs). However,
TPsmayalsoprocessinconstaineddataitems(UDIs).
Thisis similarto highintegrity programsprocessingow
integrity data.The Clark-Wilsonmodelalsoincludesin-
tegrity verificationprocedues(lVPs)thatcanbeusedto
verify theintegrity of CDIs at particulartimes.

The Clark-Wilson model is basedpartly on certifica-
tion of the componentgIVPs and TPs) and partly on
their enforcemenbf particularproperties. We do not
addres<ertificationhere,but we examinethe plausibil-
ity of meetingClark-WiIson enforcementequirements
usingSELinux (paraphrasettom the Clark-Wilson pa-

per[6]):

e E1: EachTP operateson a particularlist of CDIs
andCDls areonly manipulatecdy a TP,

e E2: The systemmustmaintaina list of subjects,
TPs, and the CDlIs thoseTPs may referenceand
only thosereferencesirepermitted.

e E3: The systemmustauthenticatahe identity of
eachuserthatattemptgo executea TP,

20f coursetheuseof somary rootservicegjiveshasgivenafalse
impressiorof theintegrity of mary programs.

e E4: Thelist of TPsandIVPs canonly be changed
by a subjectpermittedto certify those TPs and
IVPs.

SELinux identifies object types, and thus, the objects
manipulatedoy programsas statedin E1. However, it
doesnotdistinguishbetweenCDIs andUDIs. Thus,we
know whetherCDIs areonly processedby TPs,nor do
we know which subjectsare TPs,asrequiredoy E2. The
satishctionof E3mustbeprovidedby theauthentication
infrastructuren a dependablenanner(i.e., using TPs).
Themandatorynatureof SELinuxpoliciesimplicitly en-
force E4.

Thus, our task is to identify the TPs that define the
SELinux examplepolicy’s TCB (to satisfyE2). Since
we want to ensurethe integrity of our TCB, the only
CDls arethoseprocessedby the TCB subjectsAs are-
sult,we only needto ensureheintegrity of these.How-
ever, the TCB may operateon UDIs, sowe needto dis-
tinguishbetweerlJDIs andCDIs. Thus,wewill perform
thefollowing tasks:(1) proposel CB subjects|2) iden-
tify possiblelow-integrity UDIs (i.e., datawhosevalue
may dependon somelow-integrity subject);(3) deter
minewhetherthesearetrue UDIs; and(4) resole cases
wherewe suspecthata CDI is processetty anon-TCB
subject(i.e.,asubjectthatis notexecutinga TP).

Sincetheidentificationof theuseof low-integrity datais
essentiallyBiba, we performa Bibaanalysison our pro-
posedT CB relative to the SELinuxexamplepolicy. We
then perform analysedo classify possibleUDIs based
onthepossibleresolutiongo theintegrity issue.

2.5 Low-Integrity Data

We first distinguishbetweenwo typesof dependencies
on low-integrity datathat violatesBiba: (1) readin-
tegrity violationsand(2) read-writeintegrity violations.
The differenceis that, in the secondcase writes by our
TCB mayberevisedby alower integrity processWhile
this is not strictly anissuein Clark-Wilson (i.e., these
datamaybeUDIs), we arenotcomfortablewith thepos-
sibility thata TCB subjectwrite UDI data. Thus, we
always classify read-writeintegrity violationsaslikely
CDls.

If webelievedataarelikely to beCDls,thenwe havethe
following optionstoresoletheconflicts: (1) trustingthe
low-integrity subject(i.e.,addit tothe TCB); (2) exclude
the low-integrity subject;(3) excludethe conflictedob-
jecttype;(4) policy override;and(5) changehe policy.

It is possibleto extendthe proposedr CB, but sincewe

wantto keepthe TCB minimal andthe additionof more

subjecttypeswill probablyintroducemore constraints,
thisis alow priority option.

We can exclude either the conflicting object type or
the low-integrity subjecttype from the systemto re-
solve an integrity conflict. Sincewe are analyzingthe
SELinuxexamplepolicy to createa securitytarget, it is
perfectly reasonabléo remove subjectthat causesig-
nificant integrity issuesthat we do not trust. For ex-
ample,i nsnod_t installsmodulesinto the kernel,but
for a highintegrity systenmwe will compilethemodules
into the kernel. Thus,integrity conflictscausedy this
servicecan be ignored. The exclusionof objecttypes
may be lessplausiblegiventhatthe objectmay be nec-
essaryfor correctprocessingput thereare somecases
wherethis makes sense. For example,we can elimi-
nateintegrity conflictsif we precludeobjectsof thetype
renovabl e_devi ce_t whichmaybeacceptabldor
asecuresystem.

Lastly, we canchangethe policy by addingoverriding
statementge.g.,derying the violating reador write) or
by modifying the SELinux example policy itself. We
have found that handlingintegrity violationsas excep-
tionsor definingspecialhandlingfor conflictingassign-
mentswith commonsemanticsareboth effective in re-
ducingtheneedto expressevenmorecomplex andfine-
grainedpolicies[12]. Modifying the SELinuxexample
policy is alastresort:it is complex enough.

If we believe dataarelikely to be UDIs, we mayassume
thatthe TP is protectedor protectsitself by sanitizing
its UDI inputs. Certificationmay dependon receving

only specificinputs, in practice,so providing external

sanitizatiormayalsobeanoption. We mayalsoidentify

the needfor othersecurityprocessingsuchasauditing

andintrusiondetection,uponuseof UDIs. We seethis

simply asanothermalternatve to denials.

3 Analysis Approach

The basicapproactto evaluatingthe proposedl CB for
the SELinux example policy is as follows. First, we
identify Biba integrity violationsbetweerthe TCB sub-
ject typesandthe restof the SELinux examplepolicy.
Secondyvetry to classifyour conflictsbasednthecon-
ceptssuchas the type of integrity violation (i.e., read
or read-write),the proposedntegrity of the conflicting
subjecttype (i.e., high or low), andthelik elihoodof ex-
clusion(i.e., of objecttype or subjecttype). Third, we

perform somemanualanalysisto determinethe likely
solutionandseeif theseresultscorrelatewith the clas-
sifications. This includesoutlining implementationgo
supporttheseclassifications particularly where saniti-
zationor policy modificationis thechoice.

3.1 Gokyo Policy Analysis Tool

We have built a policy analysistool called Gokyo that
is designedo identify andenableresolutionof conflict-

ing policy specificationg12, 13]. Thegeneralconcept
that Gokyo enforcesis safety A policy specification
is saidto be safeif no subjectcanobtainan unautho-
rized permission10]. If we take policy administration
into account,then ary permissioncan be assignedo

ary subjecttype by theadministratoin a policy suchas
TE. Thereforewe needan additionalspecificatiorcon-
cept, typically called constaints to expressthe safety
requirementon the administratorsto ensurethat our

policy meetsour goals.

Gokyo implementsan approachcalled accesscontiol
spaceswhereby semantically meaningful permission
setsareidentified and handlingcan be associatedvith
eachsetindependentlyWhile therearea variety of se-
mantically meaningfulpermissionsets,the mostcom-
monto considelare: (1) thoseassignedo asubjectype;
(2) thoseprecludedrom a subjecttype by a constraint;
and(3) the permissionsvhoseassignmenor preclusion
statusis unknonvn. The overlappingregions of these
setsalsoform subspaceso we canconsiderthe setof
permissionghat are both assignedand precluded. Of
coursethesesetscanbe furtherdecomposetb provide
moreeffective control. For example we maydery all in-
tegrity conflicts,exceptlog writes, which we allow, and
inputfrom network objectswhichwe sanitizeandaudit.

The generalideais that by identifying semanticgo the
subspacei may be possibleto attachhandlingseman-
tics with the entire subspace. This would permit ad-
ministratorsto keepthe basic, simpler constraintsthat
largely work and specify only the additionalhandling
semantics.We have found that the Apacheadministra-
tor policy for SELinux2.4.16largely adheredo a Biba
integrity model, suchthat 19 conflicting casescan be
handledaseightaccessontrolspace$13].

Gokyo representpoliciesusinga graphicalacceson-
trol modelshavn by examplein Figure3. Permissions
(i.e., objecttypesandthe permittedoperations)subject
types,andsubjectsarerepresentethy graphnodes. In
additionto thisinformation,permissiomodesalsostore
theobjectclass(i.e., datatypelrndopemtionspermitted

by thepermissionNotethatobjecttypesarerepresented
by permissionsvith norights. In generalanoderepre-
sentsa set,soit is possibleto build set-hierarchieson-
sisting of aggreationsof individual permissionssub-
jecttypes,andsubjects.

Example 1 Figure 3 shavs an exampleof an access
control specificationusing this model. Subjectsl has
valuesS(sl) = s1, R(sl) = r2, andP(sl) = P(r2).

Thatis, s1 representsnesubject,s1, andis assignedo

onesubjecttype,r2. Sincetheonly routefrom propaga-
tion of permissiongs throughr2, s1’s permissionsare
definedby P(r2). Thevalueof P(r2) = P(p6) and,
sincepb is an aggreyateits permissionsare P(p6) =

P(p4) U P(p5). Sincep5 is an aggreyateaswell, its

permissionganbefurtherdecomposed.

For expressingconstraintsn this model,we alsousea
set-base@pproach11]. In generalconstraintsare ex-

pressedn termsof two setsanda comparatofunction,
sety < sety, Wheres representsomecomparatofunc-

tion. Suchcomparatorsare setoperationssuchasdis-

jointnesg(i.e., null intersection) cardinalityof intersec-
tion, subsetelations etc.

Example 2 We definea constrainttype for integrity.
An integrity constraint: || y wherez € RU S andy €
RUS meanghatthesetof readandexecutepermissions
of x mustnot referto ary objectsto which y haswrite
permissions.

For eachsubjecttype, Gokyo storesthe assignedper
missionsandthe prohibitedpermissionsTheprohibited
permissionsrethepermissionsvhoseassignmento the
subjectwould resultin the violation of a constraint,so
thesepermissionsare representedh termsof the con-
straint3. Further Gokyo identifiesthe accesscontrol
spaceconsistingof theintersectiorbetweertheassigned
andprohibitedspacesilt is this spacevhereconflictres-
olutionis necessary

3.2 Identifying Integrity Conflicts

Returningto the problem of analyzingour proposed
TCB, the SELinux example policy representghe as-
signedpermissions.We add Biba integrity constraints

3Detailsarebeyondthescopeof this paper SeethedetailedGokyo
writeup[13].

Legend

—o= agssignment attributes

---» inheritance p: perms

D

constraint r:roles

R —

aggregation

p:
Subjects2 |r:
s:s2
a p: p6 perms
p:r2perms | Rolerzjrr2
Subjectsl |r:r2 sisl

s: subjects

p: rl perms, r2 perms .. v
Role r3 rri, r2,r3
s

p: p4, p5 perms, p6
| Permpé [rr2
S: 12 subjs

p: p4
Perm p4 r: p4 roles
s: p4 subjs

p: pl, p2, p3, p5
Perm p5 r: p6 roles
s: p6 subjs
p:pl
Perm pl r: p5 roles
s: p5 subjs

p:p2
r: p5 roles
s: p5 subjs

p:p3

r:rl, p5 roles

s: 11 subjs,
p5 subjs

Figure3: Exampleaccesgontrolrepresentatiofthefields“p:”, “r:", “s:” referto thepermissionssubjectypes,and

subjectsassignedo theseentities,respectiely)

betweereachof our TCB subjectypesandall othersub-
jecttypesin Gokyo. Thatis, for eachTCB subjecttype,
we adda constraintthatit cannotapply a read/eecute
operation(i.e., an operationinvolving input of datato
thesubjecttype’s processedp ary objecttypeandclass
combinationthatis written by ary othersubjecttypein
the system. Note that this constraintis more restric-
tive eventhanour original proposal,but understanding
which subjecttypesactuallyhave integrity relationships
may be usefulin resolvingconflicts.

Gokyo implements this constraint by computing
read/eecutepermissiongor eachobjecttype andclass
combinationwritten by the othersubjecttypes. This set
of readpermissionds the set of permissionghat the
TCB subjecttype may not read. When the constraint
is testedjf the TCB subjecttype hasaread/eecuteper
missionthatintersectoneof the precludedbermissions
thena constraintviolation is generatedIn somecases,
asingleallow statementayresultin severalconstraint
violations. This canoccurwhenan allow is madeon a
type attribute ratherthana type directly. For example,
accesgo reada variety of network inputis the resultof
a single allow statement. Suchassignmentsre prop-
agatedto eachobjecttype that hasthis type attribute.
Gokyo shaws only theuniqueassignmentthatresultin
violations, but canprint all the individual violationsto
afile. In our results,we will alsofocuson the unique
assignmeninainly.

3.3 Classifying Conflicts

Oncethe conflicting subspacdor a TCB subjecttype
is generatedwe could choosea handlerfor this sub-
space. In general,Gokyo permitsoverriding the con-
flict by grantingor derying thesubspaceHowever, both
grantsanddenialscanbe augmentedby arbitraryanaly-
siscoderangingfrom auditto complex intrusiondetec-
tion. Thus,if the integrity conflictsthatwe find areall

representatie of the samesituationwe could choosea
singleapproacho handlingthem.

In Section2.4 lists five approachesor dealingwith in-
tegrity conflicts that are summarizedn Table1. The
problemis to determinewhich integrity conflictsimply
whichresolutionsthe SELinuxexamplepolicy doesnot
provide ary furtherinput explicitly. To addresghis we
classify conflictsin a mannerthat doesnot unequyvo-
cally identify theresolution but doesidentify the possi-
bleresolutionsFirst, memberof the TCB subjecttypes
may be trustedwriters, soif the subjecttype of anin-
tegrity conflictis a TCB subjecttype thenall handling
optionsarepossible Further somesubjectypesmaybe
candidatego be addedto the TCB. Subjecttypeswith
a significantnumberof conflicts shouldbe considered.
We usethe heuristicthat subjecttypeswith an average
of greatetthanoneconflict per TCB typearecandidates
for trustedtypes.

Secondwe proposethatthe analysisalsoincludea se-
curity targetdefinitionthatspecifiegherequiredsubject
types Ratherthanrequiring that the systemadminis-
tratorsenumerateall subjecttypesindividually, we can
usethe type transition hierarchyto estimatethe set of

| Class | Description |
TCB or Candidate| Trustedsubjecttypes
ExcludeType Typecanbeexcludedfrom securesystemwith this TCB
Sanitize A sanitizedreadmaybeusedto protectTCB
Denial Denialof conflictingrightscanbe usedto protectTCB
Modify Policy Policy mustbeeditedto protectTCB

Tablel: Classificationgor TCB integrity conflicts.

typesrequiredasall subjecttypesthatmaytransitionto
arequiredsubjecttype. Type attributesor otherseman-
tically meaningfulidentifierscanbe usedto identify de-
siredsubjecttype sets.If asubjecttype doesnotbelong
to the setof requiredsubjecttypesit canbe considered
for exclusionandtheotherremaininghandlingmethods.

Identifying objecttypesthat may be excludedis more
difficult. If we aretoo ambitiouswe mayremoveanob-
jecttypethatis really neededy the system.In general,
whenwe exclude a subjecttype, we may remove ob-
ject typesdependon the existenceof this subjecttype.
For example,if we remove X windows subjecttypes,
we no longerneedX windows objecttypes. This may
preventintegrity violationsfor TCB subjecttypeswith
broadrights, suchasthe systemadministratorsThede-
pendenyg of a subjecttypeontheavailability of particu-
lar objecttypesis not currentlyidentified. All we know
aretheoperationghatcanbeperformed A conserative
approximatioris the objecttypesfor which objectscan
only be createdby the excludedsubjecttype. Without
the subjecttype, objectsof this type would not exist in
the system.We have to accounffor all possiblewaysof
makingobjectsof this objecttype, includingrelabeling
(specificallyrelabeltopermission).

Third, someBiba integrity violations involve reading
low integrity that the subjecttype canactually handle,
suchasrequestdor operations. The Clark-Wilson in-
tegrity policy accountsfor theseby allowing transfor
mationprocessefT Ps)to operatdow integrity data(un-
constrainedlataitemsor UDIs) andevencorvertthem
to high integrity data(constrainediataitemsor CDIs).
We refer to the ability to correctly function given UDI
input assanitizationof this input. In Clark-Wilson, TPs
mustbecertifiedto performtheirtasks.We identify both
whereTPsrequiresanitizatiorandwherethey musthan-
dle CDIs properly Ourinitial assumptioris thatall data
usedby TCB subjecttypesareCDIs, but somedatamay
bedowngradedo UDIs andusedvia sanitization.

Recallthe distinction betweenreadintegrity andread-
write integrity violations. We statethat readintegrity

violationsmaybesanitized put read-writeintegrity con-

flicts have no possibilityof sanitization(i.e.,datawritten

by a TCB subjecttypeis alwaysa CDI, in Clark-Wilson

terms). Recallthatread-writeintegrity violationsmean
that the subjecttype writes and readsdatathat can be

modified by a lower integrity subjecttype. Depending
on synchronizationa lower integrity subjecttype may

be ableto changean objectsasthe higherintegrity sub-
jecttypeis writing them.While sanitizatiormaybepos-
siblein generalwe flagtheseviolationsasbeingbeyond

sanitization.

Fourth, the read-writeintegrity violationsare classified
for ad hoc denialof rights. In mary casesmorerights
areassignedhanarereallynecessarfor theapplication,
which is a problemof leastprivilege. In somecasesijt

may be sufficient and simplerto simply dery the con-
flicting rights. Gokyo enablegartitioningof conflicts,
and assigningindependenhandlingto eachpartition.
Therefore,it is possibleto simply denial theserights
without further modifying the SELinuxexamplepolicy.

Application-specificexaminationis necessaryo deter

mineif thesedenialsarereally possible.

Lastly, if we find thatthe permissiorassignmenis nec-
essaryfor the cornvenientexecutionof a requiredappli-
cation, then modificationof the policy is the only re-
mainingoption.

3.4 Manual Analysis

Manual analysisinvolves starting at the highestlevel
handlingmethodand determiningwhetherit canactu-
ally beapplied.If not,thenthesubsequennethodsnust
beconsidered.

Identifying trustedwriters and excludedwriters can be
doneautomatically so the main effort hereis on deter
mining whethersanitizationis possibleandidentifying
the sanitizationmethod.Thisis a fairly adhoc process,
sowe examineit relative to our integrity analysisesults
in Sectiord.

If sanitizationis not possible thenexpressinga denial
for thisexceptionor policy modificationsaretheremain-
ing options. Both of thesemust be donemanuallyat
present.

4 Integrity Analysis

In this section,we useGokyo to analyzeour proposed
TCB to identify the integrity conflicts, classifyaccord-
ing to bestpossibleresolutionandchoosehelikely res-
olution. Thelikely resolutionis choserbasedn manual
analysisof the conflict. The key resultsaretheresultant
TCB (i.e., doesit needto be expandedandhow?) and

proposed&ELinuxpolicy changeseededo achievethis

TCB. Detaileddiscussiorof the Gokyo tool itself is pro-

videdelsavhere[13].

4.1 AnalysisImplementation

The integrity analysisfor the proposedTCB in Sec-
tion 2.3is performedntheSELinuxexamplepolicy for
Linux 2.4.19. This policy consistsof over 50,000pol-
icy statement$. In Gokyo, the SELinux examplepol-
icy comprisesver 700subjecttypesandtypeattributes,
over 40,000individual permissionsand over 100,000
explicit assignmentbetweersubjecttypesand permis-
sions.

The integrity of the SELinux systemis representedby

two integrity constraintsbetweenthe set of proposed
TCB subjecttypesandthe setof all othersubjecttypes
asshawn in Figure4. To representhis we createtwo

subjecttypes, TCB subjecttypes (high integrity) and

non-TCBsubjectypes(low integrity), andaggreyatethe

subjecttypesinto their respectie group. The permis-
sionsassignedo eachsubjecttype nodeare automati-
cally propagatedo the aggreatesubjecttypes.

Ourintegrity protectiongoalis expressedisingtwo con-

straints:(1) read-intgrity constrainand(2) read-write-
integrity constraint. Read-intgrity constraintsare vio-

lated if the low integrity subjecthaswrite permission
(i.e.,apermissiorrepresentinghe ability to modify the
datain that SELinux class)to an objecttype andclass
pair thathigh integrity subjecttype hasreadpermission
to. Read-writeintegrity is violatedif the high-integrity

subjectalsohaswrite permissiorto the objecttype and
classpairin additionto readpermission.

4Statementcount is taken from the macrogpanded policy in
policy. conf.

To implementtheseconstraints Gokyo assignshe in-

valid permissionsto the high integrity set. For read-
integrity, Gokyo createsa permissionwith all readper

missionsassignedfor eachobject type and classpair
that the low integrity subjectcanwrite. Similarly, for

read-write-int@rity, Gokyo creates permissiorwith all

write permissiongassignedor eachobjecttypeandclass
pairthatthelow integrity subjectcanwrite. In this case,
constrainwerificationtakesanintersectiorof theinvalid

permissionsand the onesassignedo the TCB subject
types(i.e., differenttypesof constraintanay have dif-

ferentalgorithms).

Notethatit maybemoreefficientto testthis constrainin
the oppositemannery determiningf thelow integrity
sethaswrite permissiongo objecttype andclasspairs
that the high integrity subjectcanread. At this point,
we actuallycreatebothintegrity testsets but we should
determinavhichis smallerandtestonly thatoneinstead.

Analyzingintegrity protectionis basicallyataskof iden-
tifying all integrity conflicts and classifyingtheminto

their bestlegal classification. We have found that the
numberof conflictsthatexist in theentireSELinuxpol-

icy is too large to be effectively consideredtogether
Fortunately conflictsareindependent.Thatis, the ex-

istenceof one conflict hasno effect on another This
meanghata classificatiorto eliminateoneconflict can-
not be undoneby anotherconflict. For example,if we
find thatwe cansanitizethe useof a particularconflict-

ing permission the emegenceof a conflict later does
notimpactthis sanitization.This is true for all classifi-
cations.Theonecaveatis thatwe mayfind thatapartic-
ular subjectrequiressomary sanitizationghatit should
betrustedor excluded,but thesecasesarenot excessie

and easily handled. Usually, we determinewhethera
subjectshouldbe trustedor excludedbeforewe do the
hardwork of figuring outa sanitization.

The resultis thatwe canconsiderthe conflictsin small
groups,and malke classificationshasedon a subsetof

the information. Currently we use Gokyo in a mode
in which it identifiesa single conflict for eachinvalid

permission(i.e., constraint-generated)jSometimesat-

tribute assignmentsesultin multiple, uniqueconflicts,
but Gokyo only presentghe attribute assignmenonce.
Gokyo generates log containingall conflictsandthe
assignmenpathsbetweemodesdnvolvedin theconflict,

includingtheline numbersn whichtheassignmentare
specified. This assistawith the manualanalysisphase.
However, addition metadatasuchasthe frequeng of

conflictfor aparticularinvalid permissionywould alsobe
useful. Thelog of a constraintviolation is shovn belov

(cl ass. conf is SELinux policy file, ker nel . cst

H -- High
Integrity
Subjects

aggregate

assign

P(H) Read Integrity P(L)

P(H) Read-Write Integrity P(L)

aggregate

assign

aggregate

L --
Integrity
Subjects

Low

assign

aggregate

assign

Figured: Gokyo graphicalpolicy modelimplementatiorof integrity.

| TrustedType | ConflictType | ObjectType& Op | Class | Resolution
dpkgt tmpreapett tmp.dpkgt:file rw exclude exclude
initrc_t mary file_type:blk/chr/filer sanitize sanitize
initrc_t useradd etctfiler trust trust
initrc_t hwclock t clock device_t:chr/blk rw trust trust
initrc_t gpm.t psauxt:chrrw exclude exclude
initrc_t soundt, xdm.t sounddevice_t:chrrw trust exclude
initrc_t httpd.adminxsener-t frameluf_device_t:chrrw dery exclude
initrc_t mary initrc_t:fifo rw dery sanitize
kernelt slapdt, squidt, + ** _socletr sanitize sanitize
kernelt dhcpet resolvconttfile r trust exclude
kernelt dhcpdt var_run.dhcpdt:file r trust exclude
kernelt quotat file_t:file r trust trust
locallogin_t | mary proct:file r sanitize sanitize
locallogin_t | insmodt locallogin_t:process exclude exclude
locallogin_t | logrotatet locallogin_t:process trust trust
mountt automountt autofst:dir rw exclude trust
mountt bootloadert, fsadmt fixed disk device_t:* rw trust trust
sysadmt usert miscdevice_t:* rw dery excludeobj
sysadmt mary sysadmdevpts t/ptyfile:* rw dery change
sysadmt sysadm* _t sysadmhomet:* rw dery change/sanitizenefile
sysadmt sysadm* _t sysadmtmp.t:file rw exclude change
sysadmt sysadmirc_t sysadmirc_t:file rw exclude change/sanitize
sysadmt sysadmxsener._t sysadmxsener_t:shmrw exclude exclude
sysadmt sysadmxautht sysadmhomexautht:file rw | exclude exclude
sysadmt admin kernelt:systemavc_togglerw trust trust
sshdt mary sshddevpts t/userpty:*rw dery change

Table2: Integrity conflictsin theinitial TCB proposal.

is our constrainfile, andker nel . cf g containsaggre-
gatesubjecttypedefinitions):

On constraint: kernel.cst(25)

Rol e 151: nount _t

has constraint: "integrity protected"
with node: Role 882: non-nount

Viol ati ng Assi gnnents:

Permi ssion 2876: autofs_t:dir 00110000

(1) From class.conf (60810) Perm 2876:
autof s_t:dir 00110000

(2) to: class.conf (60759) Role 151: nount_t

Vi ol ati ng Precl usions:
Pernmi ssion 45131: autofs_t:dir 003fffff
(3) From kernel.cst (25) Role 882: non-nount
(4) to: class.conf (60759) Role 151: nount_t
(5) to: class.conf (0) Perm 42608:
autofs_t:dir 003elc7e
(6) to: class.conf (60639) Perm 2857:
autofs_t:dir 003elc7f
(7) to: kernel.cfg (94) Role 148:
(8) to: kernel.cfg (91) Role 882:

aut onount _t
non- mount

The violating assignmentss the permissionassigned
to nount _t whoseintegrity may be violated. Line
(1) indicateswhere the permissionwas assignedto
nmount _t , andline (2) indicateswherenmount _t was
identifiedasa subject.Thefile cl ass. conf isatrun-
catedversionof pol i cy. conf for SELinux 2.4.19.
For the violating preclusions the path for the assign-
ment of the constraint-generateishvalid permissionis
shavn. Line (3) refersto declarationof the aggreyate
subjecttype (Gokyo-specific),and line (4) is the same
asline (2). Line (5) refersto the generatedpermis-
sion (no file line numberbecauset is generated)and
line (6) shaws the assignmentf aut of s_t permis-
sionsto aut onount _t. Lines(7) and(8) shav that
aut onount _t is assignedo thenon-TCBaggreate.

For eachconflict, Gokyo estimatesthe classifications
basedon: (1) the numberof subjecttype conflicts (for
trust); (2) whetherthe subjecttype or object type is
required,seebelav (for excluding subjecttypes); and
(3) whetherthe conflict is read-intgrity or read-write-
integrity (for consideringsanitization).Our proposafor
removing objecttypesbasedn whetherthe objecttype
is createdby only excludedsubjecttypeshasnot been
implemented/et, sowe usethe objecttypesrequiredby
our focal subjecttype.

For requiredsubjecttypes,we assumedhatthe purpose
of our systemwasto run an Apacheweb sener. Thus,
we includeall Apachesubjecttypes(i.e., thosestarting
with ht t pd) andall thosesubjecttypesthattransition
to an Apachesubjecttype, directly or indirectly. In ad-
dition to our TCB subjecttypes, we requiredpkg _t

(i.e., the Debianpackagemanager)r | ogi nd, several
usersubjectypes.Ultimately, wewill chooseo exclude
r1 ogi nd, butincludeuser _t in the analysis.Users

may be actively involvedin script generatione.g., for
personalpagesin a corporatesener). Becauseso few
otherrequiredsubjecttypesarefoundthis way, we will

addotherdater Notethatthesetof requiredobjecttypes
includesthetypesaccessibléo the Apachesubjectypes
only.

4.2 AnalysisProcess

Table 2 shaws the integrity conflictsthat our proposed
TCB haswith the remainingsystemsubjecttypesand

the possibleresolutionsof theseconflicts. The trusted
typefield shavs a trustedtype that readsinput written

by anuntrustedype. The conflicttypefield shavs one
or moreof theuntrustedypesin theconflict. Theobject
type& op field shavsthe conflictingdataandtherights

of the TCB subjecttype(i.e.,reador read-writeintegrity

conflict). Theclassfield shawvs the classificatiorof the

conflict. Theresolutionfield shavs the manualresolu-
tion to theconflict.

The integrity conflicts are collectedinto groupsbased
on the trustedtype. First, dpkg t (debianpackage
management)asacommorread-writeintegrity conflict
alsobecausé npr eaper (cleanstemporaryfile direc-
tories)is givenbroadfile accesdor cleaningup tempo-
rary files. t npr eaper _t isresponsibldor few viola-
tions, sothe classifications exclude This specification
is consistentwith t npr eaper 's task, so the only two
alternatvesareto trustor excludet npr eaper _t. We
manuallychoosehelatter.

Secondj ni trc_t isinvolvedin areadintegrity con-
flict thataffectsmosttrustedtypes: it is givenreadac-
cessto all file datain the system. Sinceit canread
all files, it certainly hasan integrity conflict with the
lower integrity subjects.However, the readaccesss to
get att r for st at , sothiscanbesanitized.

Third, i ni t r c_t hasseveralotherconflicts. The next
two are identified as requiredand seemnecessatyso
weadduser add_t andhwcl ock _t areaddedo the
TCB. The next threeare not really necessarfgpm t
for mousesound_t ,andxdm t), sowechoosdo ex-
cludethem. The X window sener introducesa number
of otherintegrity issuessomuchmorework is necessary
to have an X windows systemrunningon an integrity-
protectedlCB. Thus,ht t pd_admi n_xserver _t is
excluded.Lastly, we determinethatread-writeintegrity
accesgo i ni trc_t’'sfifo canbe sanitizedas neces-
sary It shouldinvolve only simplecommunicatior{e.g.,
on processstart). Notethatthis is a manualoverrideof
ourintendedrequirements.

Fourth, ker nel _t hasseveralintegrity conflictswith
receving network data. This integrity conflict is com-
mon to mostservicesin the TCB. Suchinteractionis
necessaryor cornvenientexecution,sowe will examine
sanitizationof network communicationn Section4.3.
The other conflicts are so commonthat the framewvork
assumethatthey aretrusted.Manualanalysiskeepson
guot a_t (file quotamanagement the TCB andex-
cludesdhcpc_t anddhcpd_t.

Fifth, the conflict over accessgto / pr oc is found for
| ocal | ogin_t. Sincethis accessis for reading
only, we will aim to sanitizethis access.Next, we as-
sumethatinstallingmoduless not necessarjor our se-
curesystemsoi nsnmod maybeexcluded.Ontheother
hand,loggingis animportantprocesssol ogr ot at e
is addedo the TCB.

Sixth, nount _t has conflicts with aut onount _t,
fsadm t, andboot | oader _t. Although only the
lattertwo arecommonconflicts,all of theseareaddedo
the TCB.

Seventh, there are a variety of conflicts with
sysadmt. sysadmt has a conflict over ac-
cessto m sc_devi ce_t with usersubjects. These
object types will be excluded. Also, accessto
sysadm devpts_t is sharedwith mary subject
types. Many of thesesubjectsare application-specific
administratorswhich are intended to be of lower
integrity. A differentobjecttype shouldbe designated
for these. Next, sysadm t hasread-writeintegrity
conflicts with the application-specificadministrators
over the sysadm hone_t. Conflicting accessis
provided to permit lowerintegrity administratve pro-
cesseso write to anerrorlog (. xsessi on- errors).
We recommendbreaking the object type into two
for the higher and lower integrity home objects, so
accessto the latter can be sanitized. Sincewe have
excluded X windows this object type can also be
excluded in this case. Accessto sysadm t np_t
and sysadm_irc_t should be changedsimilarly.
Finally, sysadm t hasconflictsthat canbe excluded
for X windows subjecttypes and trustedfor admin-
istrative subjecttypes. The following subjecttypes
areaddedto the TCB: i psec_ngnt _t,apt _t, and
adm n_passwd_exec_t. install_menu_t is
excluded.

Lastly, sshd_t hasa read-writeintegrity conflict over
the useof pseudo-terminals.Type changeis usedfor
someto changehesubjecttypeto alower-integrity sub-
jectuponuseof a userpty for sysadm t , sowe pre-
sumethatthis shouldbeaddedfor sshd_t aswell.

After thetrustedtypes,excludedtypes(includingobject
types),andsanitizedaccesseareaddedto their respec-
tive lists, the next iteration of the analysiscan be per
formed. After somenumberof iterations 5 in our case,
all theexclusions sanitizationsandtrustedsubjectypes
areaccountedor, andno conflict remainsunclassified.
However, resolvingthe efficacy of sanitizationsandre-
ducefile readpermissiongor at leastmanagingthem)
remain.

4.3 AnalysisFindings

The baseTCB for the SELinuxexamplepolicy for sup-
portinganApacheis shavn in Table3. Notethatthe set
of subjecttypesthat Apachemustultimately dependon

would besomavhatlarger(arounds0%largergivenour

analysis[13]). Startingwith our original 12 types,we

have found that 30 subjecttypesmustbe trusted. The

correctnessf this TCB depend®ntheresolutionof the

full accesshatthesesubjecthaveto applicatioranduser
files which they shouldprobablyrarely accessasdis-

cussedbelan. Also, not all forms of authenticatiorare
necessarat once. Ultimately, it is probablypossibleto

reducehis setslightly, but this providesa goodestimate
of mostSELinuxTCBs.

Interestingly not long after this paperwas submitted,
WayneSalamorindependentlproposedi“core policy”

to the SELinuxcommunity[19]. Theintentof this pro-
posalwas to definea basesystempolicy uponwhich

ary other systempolicieswould be derived. Thereis

somenotionof usabilityhereratherthanTCB, asthein-

tentis for basefunctionratherthanbasesecurity After

somediscussionwith the community he settledon 40
policy files (roughly equivalentto 40 subjecttypes)to

comprisea core policy. 17 of the subjecttypesin the
TCB arecommonto the two groups. The onesthatwe
includethatarenotin the corepolicy proposakreindi-

catedn Table3. We think thatmary of thesubjecttypes
in our proposalare TCB subjecttypes,althoughsome
authenticatiorsubjecttypes,suchassshd_t , andad-
ministratve types,suchassysadm t anddpkg, are
notnecessarilgore.

As part of the analysis,we identified subjecttypesand
objecttypesfor exclusionfrom our system.The 25 sub-
ject typeswe excludedarelisted in Table4. We need
to verify empirically that suchservicesare not actually
necessaryor an Apachesystemon SELinux, but most
of thesedo not seemcontroversial.

In Table5, we summarizehe sanitizationgequiredfor
our TCB. Notethatin Clark-Wilson terms,thesesaniti-

kernelt* init_t initrc_t sysadmt* getty t
mountt fsadmt load policy_t dpkg t* checkpolig_t
setfilest syslogdt klogd.t automountt sshdt*
sshdlogin_t* | locallogin_t quotat* Idconfigt useradd
hwclock t* aptt* cardmgrt* ipsecmgmtt* | adminpasswdexect*
bootloadert logrotatet newrole_t snmpdt* passwdt*

Table3: Finaltrustedcomputingbasesubjecttypes(* indicatesnotin proposedSELinuxcorepolicy).
insmodt rlogind_t remotelogin_t sysadmxsener_t xdm.t
sysadmxautht soundt tmpreapeit httpd.adminxsener_t kmod.t
Ipd_t xdm.xsener_t vmwareusert sendmailt procmailt
hotplugt traceroutet updatemodulest gateleepert smbdt
dhcpct dhcpdt instalLmenut devfsd.t gpm.t

Table4: Final excludedsubjecttypes.

zationsndicatetheunconstrainedataitems(UDIs) that
our TCB’s transformatiornproceduregTPs) must han-
dle. By sanitizationwe ervisionthat SELinuxmodules
canbe annotatedvith sanitizationpoliciesto verify the
formatof theinputs. This is a non-trivial endeaor, so
sucha proposals quitepreliminary However, suchsan-
itizationservicentop of averifiedandsimpleintegrity

policy canenablefulfilling of our securitygoalswithout
major policy tweaking.

Someof thesesanitizationsarefocusedandcanbe han-
dled asexceptions but some(the first four) have mary
instancesOurimpressiors thatthefifos canbehandled
becauseachinstancesenesthe samepurpose.Soclet
accesss both extensve in numberof communicators
andvariety of communications Significanteffort is re-
quiredto comprehensiely addresshese Mostof thein-
formationin / var and/ pr oc doesnotseemnto impact
the processingf our trustedsubjectsbut moreinvesti-
gationis necessary

The two conflictsthat remainare: (1) betweentrusted
subjecttypesandthe pseudo-terminalthat they share
with userprocessand (2) the permissionassignments
thatpermittrustedsubjectgo accesso all files (thefirst
andlastentriesin Table?2). Thefirst conflictis proba-
bly besthandledby a SELinux type change statement.
Theseareusedto changehetype of anobjectbasedn
thesubjectypeof theaccessoMWhenapseudo-terminal
is accessedby a high integrity subject,it getsa highin-
tegrity type andits previousstateis cleared.

The secondconflict could be addressedy leveraging
Gokyo. Using Gokyo’s conflict spaceswe could de-
clareauditingor intrusiondetectiorto beinitiatedwhen

anintegrity-conflictedfile objectis accessetby a high-
integrity subject. This would not requirea modification
to the SELinux policy, but a Gokyo conflict spaceas-
signmentwould be necessary13]. Sucha solutionde-
pendson infrequentuseof conflicting permissions. If
thereis frequentuse of someconflicting permissions,
thenalternatve measuresreneededThis taskremains
asfuturework.

Note that a SELinux auditallow statementwould not
quite work in this casebecauseat would audit all file
accesseisteadof the onesthat violate integrity. Of
coursewe couldalwaysmaodify the SELinuxpolicy, but
thiswouldtake significanteffort andperhapdeadto fur-
therconflicts.

5 RelatedWork

SELinuxincludestoolsfor policy analysis.neverallow
statementgnablethe policy designeito expressassign-
mentsthat shouldnot be expressedn the policy. The
chedpolicytool verifiesthatno neverallow statemenis
violatedwhenthe policy is compiled. Suchstatement
enablethe identificationof conflicts, but any resolution
requireschangingthe SELinux policy directly. These
statementsare suitablefor expressingcaseshat should
not ever occut, but they arenot suitablefor expressing
high level securitygoals.

The TresysCorporationhas beendevelopingtools for
analyzing SELinux policies for over one year [23].
Tresysdefinestools for helping administratorsunder
standthe SELinux policy (e.g., statementdor a par

| ObjectType | Sanitization

*_t:fifo Mainly for usefollowing exec
** _soclet Mustbeableto handlenetwork dataor big policy mod
proct:file Mainly expectedo print thisinformation
sysadmhomet:* | Only needto read.xsession-errorog

Table5: Sanitizedconflictsandbrief analysis.

ticular subjecttype)andhelpingperformadministratve
tasks(e.g.,correctlyaddinga new user). Suchtoolsare
valuablefor the developmentof SELinux policies, but
do notaddresshe questionf whetherthe policiescan
meetparticularhigh-level goals.

We are aware of work ongoingat MITRE to analyze
SELinux policiesfor morecomple relationshipssuch
asreachability[7]. The SELinux examplepolicy is so
large thatthe theoremproving tools beingusedare not
efficientenoughfor effective analysisyet.

Accesscontrol policy analysisitself is a fairly recent
areaof work. Bertino et al define a generalframe-
work for representingandreasoningaboutaccesson-
trol models[3]. The goal hereis to comparemodels
(e.g.,for expressie power) ratherthancompareolicies
to properties.We believe thattheir modelis expressie
enoughto do the latter, however.

Further Jajodiaet. al. [14] supportconflict resolutionin

their model. In their case,the goalis to find a general
stratgyy of conflict resolution,not to supportdifferent
stratgies. Ferrariet. al. [8] examineconflict resolution
problemsandstratgjiesaswell.

6 Conclusions

In this paper we presentan approachor analyzingin-
tegrity protectionof the SELinux examplepolicy. The
SELinux module supportsthe recentLinux Security
Modules (LSM) framework for implementingmanda-
tory accessontrol on the Linux kernel. The SELinux
example policy is undegoing active developmentand
is beingappliedin sereralinstallations. The aim is for
administratorgo take the SELinux examplepolicy and
customizet to their site’s securitygoals.This quite dif-
ficult, however, becausahe SELinux policy modelis
quitecomplex andthe SELinuxexamplepolicy is large.

Ouraimisto provideanaccesgontrolmodelto express
sitesecuritygoalsandresohe themagainsthe SELinux

policy. In particular we wantto identify a minimal sys-
tem TCB for the SELinux examplepolicy that satisfies
Clark-Wilson integrity restrictionsrelative to the restof

thesystem.UNIX systemsrenotdesignedo meetBiba

integrity, but the Clark-Wilsonintegrity policy enablesa

descriptionwherekey datacanbeidentified(thosedata
usedby TCB subjecttypes),andsanitizationof low in-

tegrity datais possible.

We have developeda tool called Gokyo thatrepresents
the SELinux example policy and our integrity goals,
identifiesconflicts betweenthem, estimateghe resolu-
tionsto theseconflicts,andprovidesinformationfor de-
ciding upona resolution.Further Gokyo representshe
stateof the integrity resolutionwhich could be usedby
the accesscontrol moduleto make authorization,au-
dit, and intrusion detectiondecisions. Using Gokyo,
we found a minimal TCB containing30 subjecttypes
that meetsClark-Wilson integrity including sanitization
requirement@ndresolutionof overly broadfile access
rights. More investigationis neededo verify the pro-
posedsanitizatiorrequirementanddetermingheeffec-
tivenesf auditversusrestrictionof file rights, but the
Gokyo's ability to supportthe analysisof integrity pro-
tectionis helpfulin understandingndmanaginchigher
level securitygoalson comple policies.

Acknowledgements

The authorswould like to thankthe anorymousrefer
eesfor their usefulcommentsandthosepeoplepartici-
patingin the SELinuxcommunity particularly Stephen
Smalley andRussellCoker.

References

[1] L. Badger D. F. Sterne,D. L. Sherman,K. M.
Walker, andS. A. Haghighat.A DomainandType
EnforcementUNIX Prototype. In Proceedingf

(2]

(3]

[4]

5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

the 1995USENIXSecuritySymposiupil995.Also
availablefrom TIS onlinearchies.

D. Bell and L. La Padula. SecureComputer
Systems:MathematicalFoundationgVolume 1).
TechnicaReportESD-TR-73-278Mitre Corpora-
tion, 1973.

E. Bertino,B. CataniaE. Ferrari,andP. Perlasca.
A logical framework for reasoningaboutaccess
controlmodels.ACM Transactionn Information
and Systengecurity(TISSEC)5(4), Nov 2002.

K. J.Biba. Integrity considerationfor securecom-
putersystemsTechnicaReportMTR-3153,Mitre
CorporationMitre Corp,BedfordMA, Junel975.

W. E. BoebertandR. Y. Kain. A PracticalAlterna-
tive to Hierarchicallntegrity Policies.In Proceed-
ings of the 8" National ComputerSecurityCon-
ference Gaithershirg, Maryland,1985.

D. D. Clark andD. R. Wilson. A comparisorof

commercialand military computersecurity poli-

cies. Proceeding®f the 1987 IEEE Symposium
on SecurityandPrivacy, 1987.

A. Herzog. Personatommunication..November
2002.

E. FerrariandB. Thuraisingham Securedatabase
systems.In O. Diaz andM. Piattini, editors,Ad-
vancedDatabasesTednolagy and Design 2000.

T. Fraser LOMAC: Low WaterMark Integrity
Protectionfor COTS Ervironments. In Proceed-
ings of the 2000IEEE Symposiunen Securityand
Privacy, May 2000.

M. A. Harrison,W. L. Ruzzo,andJ. D. Uliman.
Protectionin operatingsystems.Communications
of the ACM, 19(8),August1976.

T. JagerandJ.E. Tidswell. Practicakafetyin flex-
ible accessontrol models. ACM Transactionson
Informationand SystenmSecurity(TISSEC) 4(2),
May 2001.

T. Jager, A. Edwards,and X. Zhang. Managing
accesgontrolpoliciesusingaccesgontrolspaces.
In Proceeding®f the 7t* ACM Symposiunon Ac-
cessContmol Modelsand Technolagies June2002.

T. Jager, A. Edwards,andX. Zhang.Policy man-
agementsingaccessontrolspacesACM Trans-
actionson Informationand Systentecurity(TIS-
SEC) to appear

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

S. Jajodia,P. Samaratiand V. Subrahmanian.A

Logical Languagefor ExpressingAuthorizations.
Proceedingsf the IEEE Symposiunon Security
andPrivacy, 1997.

P. KargerandR. Schell. Thirty yeardater: Lessons
from the Multics securityevaluation. IBM Tech-
nical Report, RC 22534, Revision 2, September
2002.

P. Loscocco,S. Smallg, P. Muckelbauer R. Tay-
lor, J. Turner and J. Farrell. The inevitability of
failure: The flawed assumptiorof computersecu-
rity in moderncomputingervironments.Proceed-
ings of the 21%¢ National InformationSystemse-
curity Confeence October1998.

S. Minear Providing policy control over objects
in a Mach-basedystem. Proceedingf the Fifth
USENIXSecuritySymposiunl995.

National Security Ageng/. Security-Enhanced
Linux (SELinux). http://wwwnsa.ge/selinux,
2001.

W. Salamon. Core policy, sec-
ond pass. SELinux mailing list
archies, http://www.nsa.ge/selinux/list-

archive/3941.html2003.

S. Smallsy. Configuring the SELinux pol-
icy. NAI Labs Report #02-007, available at
www.nsa.ge/selinux,June2002.

R. SpencerS. Smallgy, P. Loscocco,M. Hibler,

and J. Lapreau. The Flask securityarchitecture:
Systemsupportfor diversepolicies. Proceedings
oftheEighthUSENIXSecuritySymposiupAugust
1999.

C. Wright, C. Cowan, S. Smallegy, J. Morris, and
G.Kroah-HartmanLinux SecurityModules:Gen-
eralsecuritysupportfor theLinux kernel.Proceed-
ings of the EleventhUSENIXSecuritySymposium
August2002.

TresysTechnology Security-Enhancetinux re-
searchwww.tresys.com/selinux.htn2001.

