
In floating point you have:
- a sign (+ or -), represented by 1 bit
- the exponent, represented by 8 bits
- fraction, represented by 23 bits.

s biased exp. fraction

1 8 bits 23 bits

So altogether you represent a floating point number in 32 bits.

Example number: 25.75 (From slides)

1. Convert number into “hybrid” binary.
Convert 25 into binary => 11001 (not too bad of a conversion)
Convert .75 into binary…here’s a little trick:

So now, .75 in binary is 11. You can fill in zeros after the “11”, so it can be “110”
or “11000”. (Couple examples on this trick at the end of this document)

The total hybrid binary: 11001.110

2. Floating Binary Point- You want the number to be: 1.1001110. So you must
shift the decimal point to always have only one 1 to the left of the decimal.
Ex1: 1110.0001 => 1.1100001 Ex2: 00.111001001 => 1.11001001

.75
x 2
1.50

1. Take the decimal .75
and multiply by 2

2. If you get a 1,
this bit is a 1.
If you get a 0,
this bit is 0.

Trick: Bits:

1

3. Take the decimal part of 1.50
(which is .50) and multiply by 2

.50
x 2
1.00

1

4. When you have 0’s for the
decimal part, you’re done

To make the number 1.1001110, you have to move the decimal place 4 places to
the left. When you do so you need to keep track how many places you moved
which can be represented as 24. (Remember this is binary, that’s why it’s a 24 not
104 [the way to represent decimal shifts in decimal numbers]).

Now its 1.1001110 x 24

3. Floating point representation:

Now you need to fill in the fields.

-Sign- The number initially was positive, so we represent the sign as a 0 for
positive.

-Exponent- The value is 4. But the rule of filling this field is to add 127 to the
initial exponent value. So 4 + 127 = 131.
 131 is now the biased exponent, and just translate it into binary.
 131 => 1000 0011, so we place this binary number into the field

-Fraction- The fraction is all the numbers right of the decimal point. So in
1.1001110, our fraction is 1001110. Since this fraction has 23 bits to represent it,
you just fill in the 0’s. So it would be:

And so the floating point number representation is:
0 10000011 10011100000000000000000

0

exponent fraction sign

0

exponent fraction sign

1000 0011

0

exponent fraction sign

1000 0011 1001 1100 0000 0000 0000 000

Couple examples of the trick:

Example Number: 1.125

Conversion of 1 => 1
Conversion of .125 => 001
“Hybrid” binary => 1.001

Example Number: 2.625

.125
x 2
0.250

1. Take the decimal .125
and multiply by 2

2. If you get a 1,
this bit is a 1.
If you get a 0,
this bit is 0.

Trick: Bits:

0

3. Take the decimal .250
and multiply by 2

.250
x 2
0.500

4. Not all 0’s, so keep going

0

.500
x 2
1.000

5. All 0’s, so you’re done
1

Conversion of 2 => 10
Conversion of .625 => 101
“Hybrid” binary => 10.101

.625
x 2
1.250

1. Take the decimal .625
and multiply by 2

2. If you get a 1,
this bit is a 1.
If you get a 0,
this bit is 0.

Trick: Bits:

1

3. Take the decimal part of 1.250
(which is .250) and multiply by 2

.250
x 2
0.500

4. Not all 0’s, so keep going

0

.500
x 2
1.000

5. All 0’s, so you’re done
1

