CS 153
Design of Operating Systems

Fall 20

Lecture 14: Deadlock
Instructor: Chengyu Song



Deadlock — the deadly embrace!

e Synchronization — we can easily shoot ourselves in
the foot

+ Incorrect use of synchronization can block all processes
+ You have likely been intuitively avoiding this situation already
e (Consider: threads that use multiple critical
sections/need different resources

+ |If one thread tries to access a resource that a second thread
holds, and vice-versa, they can never make progress

e We call this situation deadlock, and we’ll look at:
+ Definition and conditions necessary for deadlock
+ Representation of deadlock conditions
+ Approaches to dealing with deadlock



Deadlock Definition

e Deadlock is a problem that can arise:

+ When threads/processes compete for access to limited resources

+ When threads/processes are incorrectly synchronized

e Definition:
+ Deadlock exists among a set of threads if every thread is waiting
for an event that can be caused only by another thread in the set

Thread 1 Thread 2
lockA->Acquire(); lockB->Acquire();

—> lockB->Acquire(); — lockA->Acquire();




Real example!

DiTjime:F252518
Ifjime:R0%529]




Real example!




Conditions for Deadlock

e Deadlock can exist if and only if the following four
conditions hold simultaneously:

1. Mutual exclusion — At least one resource must be held in a
non-sharable mode

2. Hold and wait — There must be one process holding one
resource and waiting for another resource

3. No preemption — Resources cannot be preempted (critical
sections cannot be aborted externally)

4. Circular wait — There must exist a set of threads [T, T,,
Ts,...,T,] such that T, is waiting for T,, T, for Tj, etc.



Dining Lawyers

Each lawyer needs two chopsticks to eat.
Each grabs chopstick on the right first.



Let's get formal for a minute

e Deadlock can be described using a resource
allocation graph (RAG)

e The RAG consists of a set of vertices E={E;, E,, ..., E.}
of entities and R={R4, R,, ..., R,,} of resources

+ A directed edge from a entity to a resource, E2>R, means
that E; has requested R,

+ A directed edge from a resource to a entity, R—2>E;, means
that R; has been allocated to E;

+ Each resource has a fixed number of units
e If the graph has no cycles, deadlock cannot exist

e If the graph has a cycle, deadlock may exist



RAG Example

A cycle...and
deadlock!

Same cycle...but no
deadlock. Why?



A Simpler Way

e If all resources are single unit and all processes make
single requests, then we can represent the resource

state with a simpler waits-for graph (WFG)

e The WFG consists of a set of vertices E={E;, E,, ...,
E.} of entities

+ Adirected edge E;2E; means that E; has requested a
resource that E; currently holds

e If the graph has no cycles, deadlock cannot exist

e If the graph has a cycle, deadlock exists

10



In Practice

e Resources are usually synchronization primitives

+ Locks, semaphores, ...

e Entities are usually threads, but could also be
processes

11



Dealing with Deadlock

e [here are four approaches for dealing with deadlock:
+ Ignore it — how lucky do you feel?
+ Prevention — make it impossible for deadlock to happen
+ Avoidance - control allocation of resources

+ Detection and Recovery - look for a cycle in dependencies

12



Deadlock Prevention

e Prevention — Ensure that at least one of the necessary
conditions cannot happen

¢ Mutual exclusion
» Make resources sharable (not generally practical)
+ Hold and wait
» Process/thread cannot hold one resource when requesting another
+ Preemption
» OS can preempt resource (costly)
+ Circular wait

» Impose an ordering (hnumbering) on the resources and request them
in order (popular implementation technique)

13



Deadlock Prevention

e One shot allocation: ask for all your resources in one
shot; no more resources can be requested

+ What ingredient does this prevent?

o« Comments?

e Preemption
+ Nice: Give up a resource if what you want is not available

+ Aggressive: steal a resource if what you want is not available

e Hierarchical allocation:
+ Assign resources to classes

+ Can only ask for resources from a higher number class than

what you hold now y



Deadlock Avoidance

e Prevention can be too conservative — can we do
better?
e Avoidance

+ Provide information in advance about what resources will be
needed by processes

+ System only grants resource requests if it knows that
deadlock cannot happen

+ Avoids circular dependencies

e Tough
+ Hard to determine all resources needed in advance

+ Good theoretical problem, not as practical to use

15



Banker's Algorithm

e The Banker’s Algorithm is the classic approach to
deadlock avoidance for resources with multiple units

1. Assign a credit limit to each customer (process)
» Maximum credit claim must be stated in advance

2. Reject any request that leads to a dangerous state

» A dangerous state is one where a sudden request by any
customer for the full credit limit could lead to deadlock

» A recursive reduction procedure recognizes dangerous states

3. In practice, the system must keep resource usage well below
capacity to maintain a resource surplus

» Rarely used in practice due to low resource utilization

16



Possible System States

@dlock
Unsafe ';

Safe




Banker's Algorithm Simplified

UNSAFE

60806668

P>




Detection and Recovery

e Detection and recovery

+ If we don’ t have deadlock prevention or avoidance, then
deadlock may occur

+ Inthis case, we need to detect deadlock and recover from it
e [0 do this, we need two algorithms

+ One to determine whether a deadlock has occurred

+ Another to recover from the deadlock
e Possible, but expensive (time consuming)

+ Implemented in VMS

+ Run detection algorithm when resource request times out

19



Deadlock Detection

e Detection
+ Traverse the resource graph looking for cycles

+ If a cycle is found, preempt resource (force a process to
release)

e EXpensive
+ Many processes and resources to traverse

e Only invoke detection algorithm depending on
+ How often or likely deadlock is

+ How many processes are likely to be affected when it occurs

20



Deadlock Recovery

Once a deadlock is detected, we have two options...

1. Abort processes

+ Abort all deadlocked processes

» Processes need to start over again
+ Abort one process at a time until cycle is eliminated
» System needs to rerun detection after each abort
2. Preempt resources (force their release)
+ Need to select process and resource to preempt
+ Need to rollback process to previous state

+ Need to prevent starvation

21



Deadlock Summary

e Deadlock occurs when threads/processes are waiting
on each other and cannot make progress

+ Cycles in Wait For Graph (WFG)

e Deadlock requires four conditions

+ Mutual exclusion, hold and wait, no resource preemption,
circular wait

e Four approaches to dealing with deadlock:
+ Ignore it — Living life on the edge
+ Prevention — Make one of the four conditions impossible
« Avoidance - Banker’ s Algorithm (control allocation)

+ Detection and Recovery — Look for a cycle, preempt or abort22



