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Abstract—Today, DNS exfiltration attacks are detected by
checking for anomalies present in the traffic, such as unusu-
ally high transmission rates to a single domain and/or DNS
query patterns that are very different from those in benign
queries. While such approaches are seemingly robust, we
show in this paper that our carefully designed and novel DNS
exfiltration attack, DOLOS, that uses a generative adversarial
network (GAN), can guide the encoding of sensitive data in
a manner that both evades these detectors and significantly
speeds up the exfiltration rate compared to prior methods.
At its core, DOLOS divides the exfiltration data into smaller
chunks, and projects each chunk into a representation that
is very similar to benign queries. In addition, DOLOS adap-
tively tunes its exfiltration rate to conform with benign DNS
traffic from the compromised host, and introduces proper
levels of spurious traffic to reduce entropy. Importantly,
DOLOS evades machine learning (ML) based detectors with
no prior knowledge of their architectures or training sets
(i.e., it is a blackbox exfiltration). We perform extensive
evaluations using multiple datasets and also have a real im-
plementation of DOLOS. Our evaluations show that DOLOS
has a 12% detection probability even if 6 out of the 9
state-of-the-art defenses that we consider, are jointly used
to detect exfiltration; if any of today’s baseline exfiltration
techniques try to achieve the same rate as DOLOS in this
setting, they are almost surely detected. If we reduce the
rates of the baselines to achieve even a low albeit slightly
higher detection probability than DOLOS (0.15), we see
that they take 25× longer to achieve the exfiltration. With
the other three defenses, we find that baselines are almost
surely detected while DOLOS remains relatively unaffected
regardless of the rate of exfiltration.

1. Introduction

Attempts to steal sensitive information of interest (e.g.,
credit card details) from compromised hosts is an ongoing
goal of attackers [44], [83]. One technique for stealing
sensitive information is DNS exfiltration [7], wherein ad-
versaries hide and thereby exfiltrate data in DNS queries.
Untill a decade ago, DNS exfiltration was not seen as a
major threat and thus, enterprises had overlooked inspect-
ing DNS traffic in their intrusion detection systems and
firewalls [38]. This seemingly has resulted in an increase
in DNS exfiltration incidents [23] and thus, in stolen
sensitive data from private networks [44]. In light of this,
many enterprises have begun to monitor DNS traffic and
have deployed many recent DNS exfiltration defenses [3],

[64], [74], bringing about the belief that DNS exfiltration
has been effectively curbed. Such defenses mainly rely
on recognizing distinctive patterns in existing/previoius
exfiltration traffic compared to benign DNS queries (e.g.,
entropy of the query, number of capital letters) [3]. In ad-
dition, exfiltration detectors monitor traffic to unexpected
domains and (1) measure the volume of DNS traffic or/and
(2) apply sophisticated information-theoretical approaches
to estimate the amount of exfiltrated data that might be
potentially embedded in the observed stream [73], [74].
Thus, in the absence of a careful tuning of the exfil-
tration rate or when simplistic encoding schemes (e.g.,
Iodine [15]) are used to represent the exfiltration data,
these detectors can easily catch exfiltration attempts. In
this work we ask: is DNS exfiltration viable in spite of
these defenses?
Today’s exfiltration methods. Existing DNS exfiltration
attacks leverage general-purpose encoders (e.g., Base-
32/Base-64) to create DNS queries from sensitive data.
These methods (agnostic to the type of exfiltration data)
transform any arbitrary input data into a specific represen-
tation space to comply with DNS rules (e.g., the limited
character set allowed in DNS queries) [63]. While they
have shown success in the past [44], recently proposed
machine learning (ML)-based defenses can differentiate
these exfiltration attacks from benign queries with high
accuracy [3], [64].
Challenges in the presence of today’s defenses. Even
if an attacker manages to compromise a host (e.g., in an
enterprise via a phishing attack), accomplishing a success-
ful DNS exfiltration attack is not easy. First, an attacker
has no knowledge of the defenses deployed by the victim;
DNS exfiltration detectors can range from signature-based
scanners to much more sophisticated ML-based detectors
[3], [11]. Second, the encoding of the exfiltration data
must allow exfiltration to occur at reasonably high rates
to exploit the data in a timely way. To do so, the encod-
ing must be compact. Beyond this, since detectors often
consider host-specific volumes to detect anomalies, the
attacker’s malware must determine the proper exfiltration
rate that is as high as possible and yet evades detection,
with low runtime complexity.
Our approach. In this paper, we design DOLOS (named
after the Greek spirit of trickery), a stealthy and ef-
ficient black-box DNS exfiltration attack. At its core,
DOLOS has an encoding-decoding framework, which is
built atop a generative adversarial network (GAN). In
brief, by iteratively trying to fool a discriminator neural
network (that continuously learns to distinguish between
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benign and fake queries), the generator learns to map
exfiltrated data to a latent space representation which is
almost indistinguishable from that of benign DNS queries
(and hence, can elude strong state-of-the-art detectors).
Because the discriminator is arguably the best detector,
refining queries towards evading the discriminator makes
the generated encoding extremely effective in blackbox
settings (can fool several of today’s ML based detectors).
Note that formally, a latent space is defined as an ab-
stract, possibly multi-dimensional space that encodes a
meaningful internal representation of externally observed
inputs. To aid fast exfiltration, the mapping (encoding)
is kept as compact as possible, while ensuring that it
is decodable with high accuracy at the attacker’s exter-
nal site. Although DOLOS’s training uses benign traffic
different from that at a compromised host, it learns the
intrinsic patterns of benign DNS queries; thus, its outputs
online are very similar to such queries even when it is
applied to previously unseen exfiltration data. Note that
training a deep-learning-based generator on the host itself
encumbers high computation cost and requires a lot of
training data which is hard to obtain online in a timely
way. DOLOS circumvents this issue by training its models
offline and porting them onto the victim (this approach is
very effective as shown later).

We account for multiple practical constraints, such
as composing the exfiltrated data into small chunks that
adhere to the specifications of DNS queries [63]. DOLOS
also includes a novel rate-tuning module that adjusts the
exfiltration rate, guarantees decodability at the remote the
site (the encoding itself only provides decodability with
high accuracy but no guarantees on its own) and injects
appropriate spurious queries based on observed benign
traffic from the victim; this prevents the attack from being
detected and maximizes the exfiltration efficiency to the
extent possible. Put together, DOLOS achieves stealthy,
efficient, reliable and stable DNS exfiltration in the wild.
Contributions. A summary of our contributions are:
• We design and prototype a novel generative encoding-

decoding framework for stealthy encoding of arbitrary
data, efficiently into DNS queries.

• We include a novel exfiltration-rate-tuning module, that
includes online mechanisms to ensure proper spurious
query injection and reliability in data extraction in con-
junction with the above framework, to design DOLOS, a
stealthy and efficient DNS exfiltration tool for secretly
collecting data from compromised hosts evading several
of today’s defenses.

• We evaluate DOLOS (with datasets and to a limited
extent with a prototype implementation) against 9 state-
of-the-art defenses [3], [9], [11], [34], [39], [53], [64],
[73], [74] and compare its performance with traditional
exfiltration attack baselines. We find that DOLOS expe-
riences a 12 % detection rate even if 6 of the 9 defenses
we consider are jointly used; if the baselines try to
achieve the same rate of exfiltration as DOLOS, they are
almost surely detected by at least one of the defenses.
If their rates are reduced to achieve a 0.15 detection
probability (still slightly higher than that with DOLOS),
we see that they are 25 × slower than DOLOS. With
the other three defenses that require to be trained with
malicious examples of the attack method, the baselines

Figure 1: An example of DNS exfiltration. An attacker embeds
credit card information (in red) in a DNS query destined for
its remote domain, “attacker.com”. The query is routed to “at-
tacker.com” to resolve the IP address of CreditCardInfo, which
enables the attacker to acquire the information.

are almost always detected while DOLOS is almost
never detected regardless of the rate of exfiltration.

2. Background and Threat model

2.1. Background

Malware on a compromised host can exfiltrate stolen
data by embedding the same in DNS queries. Since
DNS resolvers are recursive, such exfiltration queries
are delivered to a primary domain of the attacker (e.g.,
attacker.com). An example of DNS exfiltration is
shown in Fig. 1, where credit card information is extracted
from a victim. DNS exfiltration allows opportunistically
accessed data to be streamed over a long period with-
out interruption or detection. Importantly, being a critical
service, DNS cannot be completely blocked by admin-
istrators [4]. In contrast, protocols like ftp and HTTP
may be blocked/restricted [13], [19]. For example, Frame-
Pos, a malware targeting networked Point of Sale (POS)
machines, exfiltrated 56M credit card records over six
months via DNS queries, after capturing information when
cards were processed by the victim POS host [25], [44].
However, state-of-the-art detection methods are effective
in detecting and thwarting such attacks [64].
Today’s DNS exfiltration attacks. Next, we discuss mea-
sures attackers currently take towards successful exfiltra-
tion using DNS, while remaining stealthy.

Acquiring aged domains. If there is a large traffic
volume to a new domain, many defenses (e.g., a popular
one from Palo Alto Networks [66]) trigger an alarm sus-
pecting that the domain was created for DNS exfiltration.
To counter, attackers either purchase or compromise aged
domains [72].

Choosing common DNS lookup types. DNS supports
multiple lookup types [63], the most common ones being
A and AAAA, to resolve IP domains. Other DNS lookup
types include TXT, used for domain ownership verification
and email spam prevention; such lookups carry larger
volumes of data [63] and are uncommon. Exfiltration
using these latter types is faster, but these types often
trigger alerts due to their rarity [33], [64]. Thus, attackers
typically use A and AAAA, which limit the rate of exfil-
tration, but cannot be easily detected.

Bypass caching by choosing small TTLs. Most DNS
resolvers cache previously resolved DNS queries to avoid
repeated resolutions. DNS responses carry Time-To-Live
(TTL) values [63] that dictate how long the resolved query
stays valid (in the cache). Attackers’ domains typically
respond with very small TTL values to force the DNS
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resolver to repeatedly resolve the malware’s requests to
increase the volume of exfiltrated data. Since benign do-
mains also commonly use small TTL values (≤ 60s as
per a previous study [74]), detecting exfiltration based on
small TTL values is error prone. We point out that in [3],
38% of requests in the studied dataset have TTL values of
0s (no caching). Thus, any method that relies on TTL for
classification will cause high false positives. To the best
of our knowledge, there is no detection method that uses
TTL values to make inferences.

Managing transmission rates. Aggressive transmis-
sion of exfiltration queries (at high rates) can be detected
even by defenses that simply count requests to a remote
domain within short time windows [73]. Hence, attackers
use grace periods (e.g., ≈ minutes) between queries. One
detection method counts the number of cache misses to
flag attacks; this implicitly limits the number of exfiltra-
tion queries that can be sent in the time window [39].
To compensate for this rate reduction, exfiltration queries
can be made longer; however, there are limits on the
lengths of DNS queries [63]. Moreover, other defenses
can more accurately detect long queries than short ones
[42], [64], [73]. Thus a challenge in fast exfiltration is
how to generate long queries without being detected.

Encoding exfiltration data. Attackers typically encode
exfiltration data for two reasons. First, encoding ensures
that the generated query complies with standard DNS pro-
tocols. For instance, common DNS request types (i.e., A
and AAAA [63]) only accept 64 characters as the alphabet
for body text (i.e., alphanumerical letters, hyphen and dot).
Second, it offers some obfuscation aiding stealth. Sending
raw data, even if viable, may trigger defenses that compare
embedded DNS traffic with sensitive data (i.e., potential
exfiltrated data) from the compromised machine.

To the best of our knowledge, current DNS exfiltration
attacks only use general-purpose data encoders (e.g., Base-
32/64 and Hex) to map data into a representation space
of the characters used in DNS queries [15], [25]. Such
encodings however, may differ from benign DNS queries
and expose the attack (discussed earlier and in § 6.2).

Defensive efforts to detect exfiltration. Previous works
assume full knowledge of DNS traffic content (in plain-
text) by the detector/defender [3], [64], [73], [74]. We
follow the same assumption. While there is increasing
encrypted DNS traffic on the public Internet [56], in en-
terprise environments where DNS exfiltration attacks con-
stitute a major threat, DNS encryption is uncommon [56];
this is because network operators are motivated to monitor
DNS traffic and deploy existing defenses to protect the
enterprise network [2], [37] .

DNS exfiltration detection. Many legitimate domain
names appear to be randomly generated (e.g., “vwdfus-
dgdkshjdsd.aws.amazon.com”) and have become popular
[64], [74]. Thus, naive defenses relying on the readabil-
ity of domain names are ineffective. This has motivated
smarter defenses that check either the rates at which
queries are sent to individual domains or apply machine
learning to determine if the features in DNS queries are
suspicious. While these defenses are effective in thwarting
today’s exfiltration attacks, as shown in § 6.2, they are
ineffective against DOLOS.

Figure 2: Threat Model: employed policies by the defense.

2.2. Threat model

Attack scenario and assumptions. In this work, we
consider targeted attacks [88] where the malware acquires
and exfiltrates a specific type of data (e.g., credit card
numbers as in the FramePos attack [25]). We assume the
attacker has already controlled one or more victim hosts,
e.g., via insiders or compromises (this is how exfiltrations
happen in the real world) [47], [48]. Similar to the
“solarwinds” attack [22], [83], the initial malware file is
very small. Subsequently, the DOLOS malware downloads
the ML model and necessary files (each of small size)
that are used later for exfiltration. Downloading a set
of small files to avoid easy detection is commonly used
by many advanced malware [22], [83] (users can easily
notice large unexplainable files). The malware is assumed
to acquire the data either from that machine or from
the private network to which the machine is connected
(e.g., accessing sensitive infrastructure logs in the private
network). The malware can spread to multiple hosts in
an enterprise network and all infected hosts engage in
exfiltration; this was seen in previous DNS exfiltration
attacks (e.g., [48], where roughly 6K devices belonging
to the same company were infected).

Similar to FramePos [25], data is assumed to be ac-
quired opportunistically, and the attacker seeks to exfiltrate
the data as soon as viable (i.e., timeliness is considered
critical for effective use of the data) while evading detec-
tion. Fast exfiltration allows quick remuneration. In other
words, we assume that the goal of the attacker is fast but
stealthy exfiltration.
Defender. Even though the attacker has infiltrated the
network, it does not mean that it can exfiltrate the data
undetected, as many industrial [4], [37], [77] and research
solutions (e.g., [42], [64]) are targeted to stop exfiltra-
tion1. In practice, such exfiltration detection mechanisms
are unknown to the attacker. Upon detecting suspicious
primary domains or queries, operators can choose one
of two strategies to handle them (shown in Fig. 2): (1)
quarantine, which pauses traffic to the suspected domain
for a preset period. This strategy suits scenarios that expect
higher positive rates from detectors, since it is impracti-
cal to manually inspect and verify all suspicious traffic;
(2) termination, which completely disallows ongoing and
future DNS queries to the suspected domain.
Attacker. The malware seeks to steal sensitive data via
DNS exfiltration, bypassing an unknown defense using
DOLOS. Exfiltration can take place to a single or multiple
domains, the later acheiving the full potency of the attack.
If the defense uses a quarantine strategy, and this is known

1. Note that exfiltration detection is deployed to catch outbound traffic
instead of inbound i.e., our downloaded ML models can still be obtained,
hidden as benign HTTP traffic (e.g., with a Trojan Downloader [67]).
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to DOLOS, it can probe and estimate the best transmis-
sion rate that can maximize exfiltration efficiency while
avoiding quarantine. Otherwise, DOLOS observes benign
traffic on the compromised host, using a sniffer tool (e.g.,
[80]) to capture the rate of benign DNS requests; DOLOS
then tunes the exfiltration rate to be consistent with this
rate to avoid detection. We assume that the attacker can
attain high privileges on the hosts and mimic benign DNS
traffic rates. This is possible via local privilege escalation
exploits, which are common [10], [30], [89].

DOLOS is trained with samples of exfiltration data
offline before infecting the victim. These samples are
assumed to be similar to data exfiltrated online. Such sam-
ples, for example, for credit card records or computer logs,
have well-known formats and can be obtained/synthesized.
Similarly, a model trained with an English text dataset can
be used for e-mails or other text data, or a model trained
with specifiic classes of images (e.g., medical images) can
exfiltrate similar images in the wild.

We assume that the attacker has pur-
chased/compromised old domain(s), and uses common
DNS query types. Thus, defenses cannot use these to
discern exfiltration traffic and must detect the attack
based on its encoding and rate only.

3. System Overview

We design DOLOS to generate embedded DNS queries
akin benign traffic; in addition, DOLOS includes mecha-
nisms that boost exfiltration rate, while ensuring that the
aggregation of exfiltration queries remains undetected.

DOLOS is based on an efficient encoding method,
customized to the data of interest (e.g., credit card records
or emails). While prior encoding methods (e.g., Base-64)
are generic (no prior knowledge of data is necessary), we
argue that using customized encoders for different data
types trades off generality (see §7) for stealth and speed.
An overview of DOLOS’s encoder-decoder framework.
DOLOS’s encoder and decoder are trained offline with be-
nign DNS and exfiltration datasets. The encoding ensures
that the exfiltrated data representation has high similarity
to benign data. It is relatively straightforward to categorize
the broad type of networks where exfiltration occurs,
e.g., enterprises (Windows environments, user-facing ap-
plications) and data centers (Linux environments, server
applications). We can then feed the corresponding types
of benign DNS datasets in the offline training phase. We
leave the possibility of leveraging a victim’s DNS traffic
as ‘supplemental online training data’ as future work. Note
that the full training cannot be done on the victim host
since it may require a long time, large amounts of training
data, and high computational power.

After training, both the encoder and decoder are inte-
grated with the malware which infects the compromised
host (reasons for including the decoder are discussed
below). The decoder is also used at the attacker’s remote
site, to which the encoded data is exfiltrated.
An overview of DOLOS’s online functions. At this
point, assume that the malware (equipped with the trained
encoder) infects a victim host. Blindly performing exfil-
tration can still expose the attack because the volume of
the aggregated exfiltration queries may not conform with
benign volumes generated by the victim. Thus, DOLOS’s

malware includes a module to sniff the host’s benign
traffic and tune the exfiltration rate and inject some nec-
essary spurious requests (that are also seen in benign
DNS streams), accordingly. A bank of spurious queries
is generated offline (consistent with benign traffic) and
is shipped with the DOLOS malware, and used during
exfiltration. We choose this offline approach since the
malware does not have a method to craft spurious queries
that are stealthy online; thus online generation may result
in anomalies that trigger the detector. In addition, it helps
that these offline generated spurious queries can be easily
compared with the bank at the external site and discarded.
During online operation, the host chooses those queries
from the bank that are similar to the exfiltration queries
(details in § 5).

Finally, note that the encoding generated by DOLOS is
lossy (although we ensure that the loss rates are very small
during training). To fix this issue, DOLOS validates the
decodability of each exfiltration query with the decoder
shipped with the malware. If it is decodable, it is sent as
is. If not, DOLOS uses an error recovery module (using
a traditional lossless compression method in an exterme
case) to ensure its decodability. Upon the receipt of a
chunk, the remote site uses a simple method (discussed
in § 3) to apply the proper decoding and recover data.
Since such cases are rare, DOLOS is still able to evade all
considered defenses with very high probability.

4. GAN based encoder-decoder design

Next, we describe DOLOS’s encoder/decoder, trained
offline.

4.1. Properties of DOLOS’s encoder/decoder

In this section, we describe the set of desirable prop-
erties that guide the design of DOLOS’s encoder-decoder
framework.
Stealthy encoding. Traditional encoding (e.g., Base-64)
does not account for stealth, and thus, a steady stream
of such outputs are easily detectable by current detectors.
To achieve stealth, we need to coerce the encoded ex-
filtration traffic to resemble benign DNS traffic. While
this is challenging, we identify an opportunity to use
Generative Adversarial Networks or GANs (details on
GANs in [27]) in a novel way towards overcoming it.
GANs have been shown to generate examples that mimic
a given distribution (e.g., images resembling real humans).
However, they have not been previously used to morph
DNS exfiltration data. Our key idea is to train a generator
to encode exfiltration traffic with the aid of an evolving
discriminator (trained with benign traffic) that disam-
biguates such traffic from benign DNS traffic. A well-
trained generator then becomes an effective encoder that
can transform the exfiltration data into a representation
akin to benign DNS traffic. While similar training of a
GAN for a single objective (not in the DNS context)
has been done in other prior efforts, unfortunately, by
itself, this does not suffice. One must also ensure high
decoding accuracy at the external site, which is critical
for successful exfiltration. Note that fulfilling multiple
objectives using the same GAN have been explored to
a limited extent in the ML community [5], [12], [90].
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Figure 3: Offline training phase of DOLOS. The data from the
encoder is constrained to fool a discriminator, and must be
decoded by the decoder with high accuracy.

However, to the best of our knowledge, the first work to
apply this approach to realize a DNS exfiltration attack.
Decoding accuracy. To ensure that the generated codes
can be correctly decoded with very high probability, in ad-
dition to accomplishing stealth, DOLOS includes a second
discriminator (we abuse the term here) that is, in effect, an
evolving decoder. This decoder is trained jointly with the
generator and imposes a second objective to be fulfilled by
the latter. Specifically, the encoded representation (a) must
deceive the first discriminator and (b) must be translatable
to its original form by the decoder. To reiterate, to the
best of our knowledge, prior GAN efforts do not consider
multiple, different objectives during training.
Code compactness. An encoding that is both stealthy
and decodable with high probability, could entail high
overhead (lower encoding efficiency). Minimizing this
overhead is key for efficient exfiltration. Towards this, we
model the problem of finding the most compact encoding
as a search problem2. Specifically, we begin by consider-
ing different levels of compactness (corresponds to differ-
ent encoding overheads). We use a greedy approach where
we try the considered compactness levels in an ascending
order (most compact to least). For each, we try to generate
an encoding (satisfying stealth and decoding constraints)
within a predetermined time period. If unsuccessful, we
move to the next. The approach iteratively continues until
an encoding is found. More details are provided in § 4.4.

Blackbox exfiltration. The discriminator is arguably the
best anomaly detector since it learns to discern exfiltration
queries as they are iteratively refined to be similar to
benign DNS traffic. Thus, if the generation process goes
through several rounds of interaction with the discrimina-
tor, the encoding is likely to be sufficiently tuned to be
similar to benign traffic and can evade blackbox anomaly
detectors (as shown in §6).

4.2. Encoder and Decoder design

Before delving into the details of our design, we define
some notation used in what follows (summarized in Table
1). We define random variables that represent the benign
traffic and exfiltration data as x and z, respectively. These
random variables will have their own distributions in terms

2. We tried to include a compactness constraint directly in the encoder-
decoder formulation, but it increased the time complexity significantly.

TABLE 1: Key notation

Notation Description
Enc,

Dec, Dis
The encoder, decoder and discriminator neural

networks, respectively
θEnc,

θDec, θDis
The parameters of the Enc, Dec and Dis, respectively

Lmi The length of the exfiltration chunk data
LEi The length of the encoding of an exfiltration chunk of data

γ
Ratio of the encoding length of a chunk

to the length of an exfiltration chunk
VD Validation dataset
accD Validation decoding accuracy

H Maximum # of batches used for training
B # of samples in a training batch

α
A weighting hyperparameter to balance the updates

from the decoder and discriminator networks.

of characters in the query, the correlations across the
characters, etc. The offline phase relates to jointly training
three neural network blocks, viz., an encoder (Enc), a
decoder (Dec) and a discriminator (Dis). The parameters
of these neural networks (weights) are denoted as θEnc,
θDec and θDis, respectively. The data to be exfiltrated
is divided up into chunks, and each chunk is to be en-
coded and confined to one fake DNS query. We denote
a set of chunks as M , and each chunk is represented
by mi ∈ M . The encoder, thus, takes a chunk of the
exfiltration data of size Lmi , consisting of a sequence of
characters c = (c1, c2...cj ...cL

mi
), and tries to map that

on to a codeword y = (y1, y2...yL
Ei
) of length LEi . Note

that Lmi may not be equal to LEi . The mapping function
of the encoder is represented by Enc(c) = fθEnc

(c).
The decoder takes a codeword (y) from the encoder as

its input and estimates the original (raw) exfiltrated chunk
as a sequence of characters viz., ĉ = (ĉ1, ...ĉj .. ˆcL

mi ).
Given the input y, the decoder function Dec(y) represents
the probability that the output ĉ = c, and is denoted by
Dec(y) = fθDec

(y).
The discriminator learns how to differentiate between

a benign DNS query and a codeword generated by the en-
coder. Specifically, the discriminator function, Dis(s) =
fθDis

(s) yields the probability that the given input s,
belongs to the distribution of the benign samples. The
offline training is depicted in Fig. 3.
Stealth. Since the discriminator seeks to differentiate be-
tween benign and fake exfiltration queries, it tries to mini-
mize the cross entropy loss between the input and the cor-
rect output (which is known as ground truth during train-
ing). Let us denote the probability of the discriminator’s
prediction on the generated queries (fake) and the benign
queries as Dis(Enc(z)) and Dis(x), respectively; here, z
is the exfiltration data fed to the encoder, and x is a benign
DNS query. To minimize the cross-entropy as alluded to
above, the discriminator will seek to minimize the loss
function: min[−log(Dis(x)) − log(1 − Dis(Enc(z)))].
This, in turn, is equivalent to max[log(Dis(x))+ log(1−
Dis(Enc(z)))].

At the same time, the encoder seeks to fool the
discriminator by minimizing the discriminator’s confi-
dence (probability) with regards to labeling the gener-
ated fake queries. In other words, it wants to minimize
log(1−Dis(Enc(z))).

Given the conflicting objectives of the discriminator
and the encoder, we can model their interactions as an
iterative minimax game with the following loss function
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(Ex and Ez are the expectations over benign and exfiltra-
tion data):

min
θEnc

max
θDis

Ex[log(Dis(x))] + Ez[log(1−Dis(Enc(z))].

(1)
Decodability. To ensure the decodability of the generated
codes, we jointly train a decoder. Here, both the encoder
and the decoder seek to maximize the probability of
correctly predicting the original characters from the latent
space encodings. This translates to a minimization of the
average cross entropy between the inputs and the ground
truth labels. This cross entropy loss minimization is given
by:

min
θEnc,θDec

Ez[−log(Dec(Enc(z)))]. (2)

4.3. Practicalities

Neural network architecture. We need a neural network
architecture that captures semantic relationships as well
as short- and long-term dependencies across the charac-
ters in a benign DNS query. If the learnt embeddings
reproduce these properties, they can better mimic those
queries. There exist many neural network architectures
that satisfy the above properties, especially in the NLP
space, where capturing semantic relationships is critical.
Among those, we choose transformers [86] as our choice
since a transformer allows for parallel computations of
sequential data, which makes the training fast. One nuance
is that, typically, transformers take words as inputs; since
we want our approach to work with different types of
input data (e.g., credit card numbers, text data), we choose
our inputs to be characters instead of words. Note that as
discussed in detail later, even more complex data forms
(e.g., images, which we consider in this work) can be
represented using this method (e.g., with an image, each
byte representing pixel intensity can be considered as a
character and fed to the model).
Representation of the latent space. DNS queries A and
AAAA permit only 64 characters. Thus, the encoder’s out-
put (i.e., y1, y2..yL

Ei ) is a sequence of discrete characters
from these.
Non-differentiable discrete latent space. Our inputs are
discrete characters, and so are our latent space encod-
ings. Back-propagation, used to tune the neural network
weights, cannot be directly applied to discrete variable
representations that are non-differentiable (i.e., they have
zero gradients everywhere) [41]. To overcome this, we use
a popular solution for discrete representations, viz., the
softmax-Gumbel approximation [41]. The idea is to use
discrete variables in the forward pass, but use continuous
approximations (i.e, softmax) in the backward pass.

4.4. Training algorithm

We train DOLOS to optimize the objectives in Eqns.
(1) and (2) using an iterative algorithm. Iterative methods
are often used in GANs [27]; however, as discussed, the
novel aspect of our work is that we also seek very high
likelihood of decodability and compaction.

Towards iteratively optimizing the objectives in equa-
tions (1) and (2), we update the weights of the neural
networks after each batch of inputs, until we generate
stealthy and decodable, fake DNS queries. Specifically, we

Algorithm 1 Training DOLOS Encoding
Input: exfiltration and benign DNS datasets , accD
Input: Validation dataset (VD), Validation Model (VM )
Input: Validation model fooling rate threshold (β)
Input: Training time out threshold (H)
for γ in range (0.5,1.5,0.1) do

Initialize Dec, Dis, Enc with latent space of size γ ∗ Lmi

while True do
(1) Sample batches from exfiltration dataset and benign dataset
of size B.
(2) Update the Discriminator as follows:
∇θDis

1
B

∑B
k [log(Dis(xk)) + log(1−Dis(Enc(zk))).

(3) Update the Encoder: ∇θEnc
α 1

B

∑B
k [log(1 −

Dis(Enc(zk))) + (1− α) ∗ 1
Lmi

∑
j log(pĉj ).

(4) Update Decoder with ∇θDec
1

Lmi

∑
j log(pĉj ).

if 1
|VD|

∑
v∈VD

1( argmax Dec(Enc(v)) = v ) ≥ accD
& VM (Enc(VD)) ≥ β then

return trained DOLOS
end if
if # of batches ≥ H then

break {Need a bigger encoding size}
end if

end while
end for

first sample a batch from benign DNS traffic and a batch
from the output of Enc to update the weights of Dis. In
the second iterative step, the same batch from the Enc is
fed to both the Dec and Dis, and feedbacks from both
are used to update the weights of Enc. Since the updates
from both networks may vary in magnitude and effect,
the encoder may be forced to favor one objective over the
other. We use and tune a hyper-parameter α to balance
the two objectives. In the third step, we update the Dec
weights to enhance the decoding accuracy. The three steps
are repeated until DOLOS is able to successfully bypass
a validation step (discussed below in what follows). The
offline training of DOLOS is captured in Algorithm 1.
Compactness. As discussed in § 4.2, we seek compaction
to increase the exfiltration rate. For a given length of a raw
chunk, the generator is constrained to output a fixed (to
be determined) length encoded query (regardless of the
semantic content of the raw chunk). We seek to find a
value of γ = LEi

Lmi
, that allows us to map a raw chunk of

length Lmi to the shortest possible encoding length LEi

output by the generator. This would then maximize the
efficiency of the encoding (highest amount of information
encoded into the smallest number of characters in the
latent representation). In other words, we search for the
smallest value of γ, such that the encoded query is de-
codable, and preserves stealth. Specifically, any γ smaller
would violate either stealth or decodability or both. For
simplicity, we confine the search space of γ between 0.5
and 1.5 with step 0.1. We begin with the smallest γ (which
yields the most compaction), and if the model does not
meet the the criteria used to stop training (discussed next),
we re-initialize the models and train them with the next
larger γ value.

Once γ is thus determined, if we know what is the
maximum permissible encoding length LEi (the maximum
length of DNS queries sent by the victim host), we can
compute the corresponding raw chunk length that can be
used as LMi = LEi

γ . We then collect tokens to fill an mi

smaller than this length and generate the encoding during
online operations as discussed in § 5.
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Validation. Since it is very hard to fool the evolving
discriminator (as it continuously learns), we use a val-
idation process to determine when to stop training. Af-
ter every N batches (1000 in our evaluations), we first
test the decodability of the generated codes using the
trained decoder to ensure it meets the decoding accuracy
constraints. Subsequently, we test the stealthiness of the
generated codes against an anomaly detector (not the
Discriminator) just trained on benign DNS queries.
If we fool this detector with a very high probability (> 99
%), we assume that the GAN has been sufficiently trained.
We note that the anomaly detector is different from the
defenses we test DOLOS against, and thus it does not
violate the blackbox assumption. Further implementation
details are in Appendix A.

4.5. Composing spurious queries

As discussed in §3, we form a bank of spurious queries
offline by sampling the generated traffic from batches
in a validation dataset and identifing the most frequent
3-4 characters. We randomly combine these along with
natural separators present in DNS queries, viz., ‘hyphen’
and ‘dot’, to form spurious queries. We refine these with
our discriminator until validation.

5. Tuning the exfiltration online

Next, we describe DOLOS’s operations on an infected
host. We reiterate that DOLOS’s encoder is unaware of the
defense, or the policies employed upon flagging a domain
as an attack site.

Most of today’s defenses make an inference on queries
sent to each primary domain (i.e., decide if that domain is
an exfiltration site or not) [64], [73], [74]. Such inferences
are based on the volume, the rate, the repetition of queries
and the entropy associated with the aggregation of queries
to that domain. To evade detection, DOLOS must tune
these parameters for each domain to which it exfiltrates
data (can do so independently), towards achieving evasion
with respect to those domains.
The best rate for stealthy exfiltration. DOLOS observes
benign traffic over an empircally chosen time window
(few hours) to estimate the exfiltration rate. In particular,
DOLOS needs to choose the number of requests (N ), and
the average query size, (L), in each time window. The
bigger these values, the more data can be exfiltrated, but
if they are too large, detection is very likely. A naive
approach is to observe the number of requests and the av-
erage length of requests to each domain, and from among
these, choose the N and L that would maximize the
exfiltration rate (i.e., N ∗ L per time window). However,
as discussed benign traffic consists of many repetitions
of queries (either partial overlaps or full repetitions). To
be consistent with benign queries, the attacker has to
transmit unique exfiltration requests and repeated requests,
and requires an estimation of the rate of requests in each
category. Note that determining exactly how many times
each query is repeated is not necessary as this value differs
across different primary domains and we have not seen
it being used in practical defenses. In other words, the
percentage of unique and repeated queries transmitted to

each domain should be consistent with the repetition rate
seen in benign queries sent by the victim host.

Beyond repetitions, many requests are partially similar
in benign DNS traffic. Not accounting for partial similarity
may expose the attack [74]. To illustrate, the follow-
ing two unique requests are considered partially similar:
gllto1.glpals.com and, gllto2.glpals.com.
To evade the detector, DOLOS includes both repetitive
and partially overlapping spurious queries consistent with
benign traffic; these are later ignored after exfiltration.

Key idea. To estimate the volume of “unique” or
dissimilar queries for each primary domain (obtained from
the benign traffic on the compromised host), we cluster the
associated queries; those belonging to the same cluster
can be deemed similar or repetitions. From these, DOLOS
identifies the domain for which the combination of aver-
age query length and number of unique queries yields the
highest exfiltration rate, and uses these values in tuning
its exfiltration process.

Clustering algorithm. Existing clustering methods, in-
cluding even the simplest of them (i.e., k-means clustering
[55]) are expensive. This is because k-means requires
multiple iterations of comparisons among the data to
converge, and a large space complexity to store all the
queries from the host. Importantly, the proper “k” is not
known a priori. Because of this, we design a simple
algorithm for DOLOS. In brief, for each primary domain,
the algorithm processes the streamed queries. With each
query, it measures the similarity between the query and
the cluster representatives of previously formed clusters; if
the query is not similar to any representative, a new cluster
is created with that query chosen as its representative.

To assess the similarity between two DNS queries,
we use the following approach. For each pair of queries,
we measure the Jaccard similarity [40] by computing
intersection between the characters of the query relative
to the length. If this value is greater than a pre-selected
threshold, we consider the queries to be partially similar.
To select the appropriate threshold, we conduct offline
analysis using samples of benign traffic and find that a
threshold value ranging from 0.7 to 0.8 effectively groups
similar queries.

The algorithm has a O(n ∗ d) run time complexity
where n and d refer to the number of DNS queries sent
by the host to a primary domain and the number of clusters
per primary domain to which queries are sent, within
the time window of interest. This process is captured in
Algorithm 2.
Online exfiltration. DOLOS’s online workflow is shown
in Fig. 4. DOLOS computes the number of unique queries
that it can transmit in a time window, as well as the
number of spurious queries it must insert, based on
the clustering it has constructed3. DOLOS computes the
most frequent characters used in the encoded exfiltration
queries; it then chooses the spurious queries that are clos-
est to the cluster members (in terms of Hamming distance)
from the pre-stored bank (recall § 4.5). Subsequently, for
the given exfiltrated data, DOLOS encodes chunks of the
proper size (it computes the size based on the learned

3. The number of spurious queries is the difference between the total
number of queries and the number of unique queries that are determined
by our clustering (for each domain).
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Figure 4: Online attack phase of DOLOS. DOLOS sniffs benign traffic to tune the exfiltration rate in terms of number of queries
transmittable in a time window and chunk length. Next, it divides the data into chunks and encodes them as DNS queries. If the
encoded query is decodable, it is sent as is; else the error recovery module is used.

value of γ as discussed in § 4.4) to form fake queries
using the pre-trained encoder. The exfiltration (fake) and
spurious DNS queries are sent in that time window.

Algorithm 2 DOLOS clustering methodology
Input : list requests to a domain (Queries), threshold
Initialize clusters set (ClusSet)
for newQ in Queries do

for q in ClusSet do
if JaccardSimilarity(newQ,q) ≥ threshold then

Break {Found a match}
end if

end for
if no match then

ClusSet ← newQ {Create new cluster with query newQ}
end if

end for

Decodability assurance: Since the latent representa-
tions generated by DOLOS are inherently lossy in nature,
a small subset of chunks may not be decodable (details
in § 6.2), despite considering decodability during training.
To guarantee decodability, DOLOS checks if the encoded
chunk is decodable using the downloaded decoder (a
replica of that used at the remote site). If the chunk is
not decodable, DOLOS uses an error recovery method
to guarantee decodability. Our module for error recovery
attempts to use DOLOS’s encoder but with shorter chunk
sizes, and if it fails, DOLOS replaces the encoded chunk
with a new fake query using Base-32 encoding (which is
lossless). We use Base-32 because it performs better as
compared to other traditional encoding methods in terms
of stealth (e.g., Base-64). As shown in § 6.2, the fraction
of chunks needing error recovery is very small and the
effect on DOLOS’s stealth and speed is negligible.

The error recovery model shown in Fig. 4 works
as follows. Upon finding a chunk with decoding errors,
DOLOS’s online module shrinks the input chunk size by
a factor β (set to 0.8 empirically in our experiments) and
attempts to encode the new chunk with DOLOS, again. If
this fails, the step is repeated a second time. If the two
attempts still cause a decoding failure, DOLOS uses Base-
32 for encoding. While such queries can be flagged by
defenses, because they are rare, the domain to which data
is being exfiltrated are not deemed malicious by defenses
(they need to observe a sustained stream of such queries
to do so) as seen in § 6.2.

Decodability at the remote site: Upon receiving a
DNS query, the remote site has to determine whether

the received query is encoded using Base-32 or DOLOS’s
encoder. We use a simple solution for this task. The
receiver attempts to decode the query using a Base-32
decoder; if the query is not in the correct format, the
Base-32 decoder issues an exception. In that case, the
receiver infers that the received query is encoded using
DOLOS’s encoder. Otherwise (no flag), it deems that the
query is encoded using the Base-32 encoder. While it
is possible for the Base-32 decoder to decode DOLOS
encoded queries in extremely rare occasions, we did not
observe those in our experiments. To cope with such cases,
one can apply other solutions to make the decoding more
robust. For example, the outputs of both decoders can
be combined with previously decoded chunks to evaluate
which one is more consistent with the received stream.
Another possibility is to use a query classifier (similar to
the work in [11]) that discriminates between Base-32 and
DOLOS encoded queries.

6. Evaluations

We evaluate DOLOS with multiple types of exfiltration
data and against multiple defenses, and compare it to prior
encoding baselines. We first describe our setup, and then
our experiments and results.

6.1. Preliminaries

First, we describe the datasets used, our implemen-
tation, the encoding baselines, and the considered de-
fenses. The parameters used in training DOLOS are in
Appendix A.
Datasets. We use multiple datasets in our evaluations.

Benign datasets: We use two datasets for training
DOLOS (trained on each at a time) and two different others
for training the ML based defenses. The use of different
datasets for DOLOS and the defenses emulates blackbox
settings. DOLOS is trained using:
• Georgia Tech DNS dataset (GT) [84]: This dataset

contains DNS traces collected from suspect Windows
executables in a sterile, controlled environment; thus,
they often do not generate malicious queries. These
exceutables often use benign DNS queries to test con-
nectivity [21]4. We collect PCAP files dating from 2015

4. To verify that the dataset contains only benign traffic, we use the
best defense in our study [3] (discussed later) on the Georgia Tech
dataset, and find that the triggering rate is negligible.
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until December 2020, and use it to train DOLOS5.
DOLOS that is trained on this dataset is denoted as
DOLOS (GT).

• ISI-reverse DNS queries (ISI-rdns) [69]: This dataset is
collected by using a reverse DNS scan over the entire
IPv4 space. While a subset of the IP addresses may lead
to names that are not associated with real domains, we
try our best to filter these out using heuristics based
on our domain expertise. Domains with a fraction of
numerical and capital characters, larger than 30% are
removed. Moreoever, many queries (e.g., to the same
primary domain) are similar, and these can create bias
in training DOLOS. To remove these, we cluster queries
using our method in §5 and only use diverse samples.
We denote the version of DOLOS that is trained on ISI-
reverse DNS queries as DOLOS (ISI-rdns).

Datasets used for training state-of-the-art defenses are:
• Thapar dataset [79]: This dataset was collected from

4,000 hosts in a university over 10 days. We extract
DNS queries from successful DNS responses (e.g.,
DNS queries associated with NXDOMAIN responses
are ignored) [59]. Since the dataset is from an opera-
tional setting, our belief is that it represents data used
to train real DNS exfiltration defenses.

• ISI host Level dataset [68]: This dataset contains mas-
sive raw packets collected at a b-root DNS server with
anonymized IP over two days. We group requests by
the srcIP field corresponding to the recursive resolver
(i.e., each of which is a host). Since this huge dataset
is collected from real users, our belief is that a defense
trained with dataset should be able to differentiate
between benign and exfiltration queries.
Exfiltration Datasets: We consider multiple types of

exfiltration datasets to evaluate DOLOS. In all cases, we
separate the records into training and testing sets. At most
a third of the records (selected randomly) are used for
training and validation, while the rest are used in testing.
• Text dataset: We use the Amazon Reviews Dataset [60]

to represent text data (e.g., emails or documents) that
the attacker may compromise. We consider the data
in terms of characters (not words as discussed in §4).
This dataset contains 168 unique characters (English
alphanumerical characters and special characters).

• Credit Cards: We mimic real credit card information
to create our own synthetic dataset (2M records). Each
synthesized credit card record contains a 16 digit credit
card number where the digits have to pass the Luhn
algorithm test [57], a method that is used to verify
synthesized credit card numbers. In addition, the four
digit expiry date, the three digit CVV, the first and
last names, the address and billing zip codes are also
generated as follows. The CVV is just three random
digits and the expiry date is randomly chosen between
Jan 2024 and Dec 2034. To generate names, we use
the dataset in [76] which contains around two million
real names. For the address and billing zip codes,
we download US west, midwest, northeast and south
addresses from batch.openaddresses.io [70].

5. This dataset was used in [21] but was recently withdrawn. We
learned from the authors of [21] that this was due to funding/maintenance
issues.

• Computer Logs: Computer logs can be useful for subse-
quent reconnaissance attacks (e.g., [32], [54]). We use
two datasets of logs. The first is a Microsoft Windows
“Event Logs” dataset (from a public GitHub repository
of logs collected over 226 days [1]) of size 27GB. The
second is a Linux logs dataset [31], collected from
/var/log/messages on a Linux server over 264
days. We report the results of Microsoft logs in the
main paper, and those of Linux logs with examples in
Appendix G.

• Images: We use a dataset of x-ray images (in PNG
formats) that were used in COVID diagnostics [45];
such data became valuable recently for attackers [78].
We transform the image from the PNG file into a matrix
of bytes (each representing pixel intensity). Note that
PNG image formats offer lossless compression and the
actual values of pixel intensities are retained without
change. Thus, this transformation does not result in any
loss of data. Further, the matrix is processed to form a
sequence of characters/bytes. In other words, we flatten
the matrix to a single dimension (sequence of bytes)
which is then input to the encoder; the matrix can be
reconstructed at the receiver. DOLOS initially transmits
the metadata describing the image shape, so that the
receiver can reconstruct the same.

Encoding Baselines. We compare DOLOS’s encoding
against three types of baselines (which we implement):

• Iodine [15]: Iodine, the popular DNS exfiltration tool,
which compresses data and encodes it with Base-64
(denoted Iodine-64) or Base-32 (denoted Iodine-32).
While Base-128 is available on Iodine, it does not
comply with DNS types A and AAAA.

• DNSCat (Compressed HEX) [36]: DNSCat is a popular
DNS exfiltration tool that compresses and encodes the
data using Hex-encoding into strings.

• FramePos encoding [25]: This encoding was used in
the recent attack where credit card information from
POS was exfiltrated over DNS. It is essentially a variant
of Hex encoding that does not compress data. After
encoding the exfiltration data, each byte is XOR-ed with
a pre-determined integer value; to decode, the received
value is XOR-ed with the same integer at the attack site
to retrieve the original value. Details are found in [25].

Defenses. We can categorize defenses into three types: (1)
rule based defenses; (2) anomaly detectors (ML based);
and (3) classifiers that distinguish between bengin and
malicious classes using ML.

Rule based defenses impose empirically derived rules
on some properties of outgoing DNS traffic. We summa-
rize rule based defense methods below:

• Zeek flags a domain if (i) the length of any transmitted
query or (ii) if the number of unique queries within a
time window, to the domain exceed preset thresholds.

• ZeekQ is similar to Zeek but adds a rule to check if the
percentage of numerical characters in a query exceeds
a threshold [34].

• Paxson et al. [74] collects queries to a domain over a
time window and compresses them; if the compressed
volume exceeds a certain threshold, the domain is
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flagged. While Zeek and Paxson el al., issue alerts
based on the traffic volume to a domain, they fail if
the attacker exfiltrates data to multiple domains with
low rates.

• Ishikura et al. Unlike the above, [39] builds a shadow
least-recently-used (LRU) DNS cache (a copy not inter-
fering with DNS directly), which counts cache misses
in a time window. If the number of shadow cache
misses for a given client exceeds a threshold (i.e., the
maximum number of cache misses across all clients in
the prior time window), the defense flags an attack.

Anomaly detectors, listed below, learn features in be-
nign DNS queries or the aggregation of DNS queries to
a domain, in a time window. They detect deviations from
benign queries and flag existing attacks even if exfiltration
is at low rates.

• Nadler et al. [64] uses an isolation forest [52] to detect
anomalous domains and is adopted by Akamai [4]. The
features used are: average length of queries, number
of queries, fraction of unique queries, average length
of readable subdomains, the aggregated entropy of all
transmitted queries and the fraction of DNS types that
are A and AAAA.

• Jawad et al. [3] uses a set of hand-crafted features to
build an isolation forest anomaly detector. The features
are: query length, # of capital letters and numbers,
# of subdomains, average and maximum lengths of
subdomains, and the entropy of the request.

Classifiers are trained with both benign and malicious
samples (assumed to be known to the defender), and
perform classification at a DNS query level. Below we
list such defenses.

• Buczak et al. [9] uses Random Forest to classify benign
and malicious queries. A total of 17 features are used
including query shape features such as ratio of distinct
characters, maximum and average length of subdomains
and percentage of numerical characters.

• Liu et al [53] uses Support Vector Machine (SVM)
to classify benign and malicious queries. It uses the
entropy of the uni-gram, bi-gram and tri-gram of char-
acters as features.

• Chen et al. [11] trains an LSTM classifier with samples
of benign and malicious traffic.

In all cases we follow the directions on training and tuning
the defensive models from the original papers. Since the
last three defensive models need adversarial samples to
train, for each attack method, we provide examples gen-
erated by the same method (e.g., the classifier is given
Iodine-32 examples, when it is tested against Iodine-
32 encoded exfiltration). We also provide the classifier
examples generated by DOLOS (for example, we feed
malicious queries generated with DOLOS that is trained
with GT or the ISI-rdns benign dataset, but test them
with a different set of queries that are generated with
either the same or the other dataset). One can think of
this as providing some form of adversarial training [6]
to these defenses, which make them very powerful. We
hypothesize that since DOLOS generates different encod-
ings in each training instance (they all look similar to
benign but are different), it is effective even with such

whitebox defenses. Some results on these are in § 6.2,
while additional results and details are in Appendix F.

Attack and defense setups. We assume the worst
outcome upon detection because we consider a blackbox
setting, i.e., the defense blocks the primary domain that is
flagged. Thus, DOLOS monitors and uses the victim host’s
DNS query patterns to tune the online rates of fake and
spurious queries. Some of the defenses we consider seek
to detect individual anomalous queries (i.e., ZeekQ and
Jawad et al., Chen et al., Buczak et al. and Liu et al.).
We consider queries to the same domain as a flow and
incorporate a rule, wherein if the percentage of flagged
queries in a flow (denoted as PFQ) exceeds a threshold,
the flow (domain) is flagged and the attack is detected.
We use the following metrics to evaluate DOLOS.
• Blackbox detection probability (BDP): We compute the

probability that the exfiltrating primary domain(s) is de-
tected by “at least” one of the defenses. This probability
is given by 1−

∏
i(1− pi), where pi is the probability

of being detected by defense method di.
• AUC score: To measure the stealth of DOLOS, we

measure a defense’s ability to distinguish benign and
malicious traffic by using the receiver operating char-
acteristic (ROC) curve, and we report the area under
that curve (AUC) score. A low AUC score means that
the defense is poor in performing the distinction, which
is good for the attacker (e.g., DOLOS).
We defer the explicit details on the thresholds chosen

for the various methods for issuing alerts and rationale for
the same to Appendix A because of space issues.

Default settings. Unless otherwise specified, by de-
fault we use DOLOS (ISI-rdns) that is trained on the Text
dataset, and defenses that are trained on ISI-host datasets.
The results are consistent in behavior with the other
datasets and with DOLOS (GT), and we showcase samples
of several of those. We also use a single exfiltration
domain by default.

6.2. Evaluation results

Due to space limits, we present the core results relating
to stealth and exfiltration speed of DOLOS in this section.
Additional results on speed and stealth relating to the
considered datasets and an ablation study are provided
in Appendices B, C and D.
Holistic evaluation of DOLOS. We evaluate DOLOS
holistically against baselines as they are used today. We
apply all of the rule based and anomaly detection based
defenses sequentially (together) and compute the blackbox
detection probability (BDP). The defenses are trained on
the ISI-host dataset. We exclude the classification methods
in computing these plots (i.e., [9], [11], [53]) because they
detect the baselines almost surely regardless of the rate
they use, based on simply the features of the encoding,
while DOLOS is unaffected (details are discussed later in
Table 2). Our experiments, upon including these defenses,
showed that the absolute performance with DOLOS was
unchanged from what is discussed below; however, the
BDP with the baselines was ≈ 1.0 regardless of the rate,
thus, precluding them from exfiltrating almost any data.
Our evaluations are with all considered exfiltrated datasets
together (i.e., Text, credit cards, logs and Images) and we
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Figure 5: On the left is the blackbox detection probability when baseline methods use a
constant exfiltration rate commensurate with the average rate of DOLOS with deployed
anomaly and rule based detection methods. On the right is the maximum rate that
baselines can send with a fixed BDP of 0.15.

Figure 6: Detection rate with Jawad et
al., and Ishikura et al., with multiple
exfiltration sites (60 and 80 sites).

report the average performance with confidence intervals
in Figs. 5 and 6. Further results relating to individual
datasets are in Appendix B.

The BDP of baselines are almost close to 1 while
DOLOS experiences a BDP of only 0.12, when they
exfiltrate data at the same rate: We perform multiple
experiments using DOLOS to exfiltrate a set of files from
a different exfiltration dataset (e.g., medical images, credit
cards) in each run, with an average data size of ≈ 5KB
from a single host to one external site; this takes on
average, 12 hours. We exfiltrate the same file(s) with the
baselines, with the same average rate of DOLOS. To set
this rate, we vary the chunk length and choose the longest
one that does not flag any of the methods (making query
length a non-factor). We then choose a constant rate given
this query length, to commensurate with the average rate
of DOLOS. We see that, at this rate, the BDP of the
baselines are almost close to 1 (> 0.95); the baselines
have many disadvantages compared to DOLOS (e.g., their
encoding, fixed rate, lack of spurious queries) and these
tend to trigger at least one defense. In contrast, DOLOS
has a BDP of just 0.12.

If the baselines use a low rate to avoid detection,
DOLOS can exfiltrate data 25× faster (with an even
lower BDP): Now, in contrast to keeping the rate fixed, we
fix the tolerable BDP. We search for the most conservative
rate that keeps the BDP to below 0.15 for all the methods
(similar to what DOLOS achieved in the prior experiment).
In such a case, we see in Fig. 5 that DOLOS is able to
transfer 25 times more data than the baselines in a given
fixed time.

Increasing the number of exfiltration sites helps
DOLOS boost its exfiltration rate, but does not help
baselines. Next, we examine the exfiltration of files from
a single host to multiple exfiltration sites in the control
of the attacker. We only use Jawad et al., and Ishikura
et al., as our defenses since these allow us to explicitly
showcase the impact of increasing the number of remote
sites. Jawad et al., imposes a maximum length constraint
on the queries sent by the exfiltration methods. Ishikura
et al., counts the number of cache misses per host, which
can increase as the number of external sites to which the
attacker sends queries increases. Again, for the baselines,
we choose the maximum length that does not flag Jawad
et al., ensuring that rate and the number of external sites
are the only factors that influence detection. DOLOS uses
its rate tuning to be consistent with the hosts’s query rates.

The results are shown in Fig. 6. The baselines are almost
surely detected because unlike DOLOS, they send at fixed
rate (increased as a consequence of the length limit due
to Jawad at al.) and hence, often exceed the cache miss
limit. There is an increase in the detection probability of
DOLOS as well, because Ishikura et al., counts the cache
misses across all its connections to the plurality of sites
(in fact, as the number of sites increase the detection rate
is likely to increase). However, this increase is modest as
seen in Fig. 6.
Stealth against individual defenses. We evaluate
DOLOS ’s encoding in evading defenses. We consider
exfiltration to a single domain, since most defenses are
domain specific. We use the two versions of DOLOS
(i.e., DOLOS (GT) and DOLOS (ISI-rdns) ) in this ex-
periment. We train the anomaly detectors with the two
training datasets exclusively used for defenses (see §6.1).
Classifiers have access to the attacker’s encoding models.
To zoom in on the benefits of DOLOS’s encoding, we
empower the baselines with DOLOS’s rate tuning module
(RT); in essence they perform markedly better than they
would in their native forms (as demonstrated later). In
what follows, we only report results associated with the
Text dataset in Tables 2 and 3 due to space constraints;
results from the remaining datasets are in Appendix C.

Rule based detection methods have low detection
rates on all encoding methods (including baselines) if
empowered with DOLOS’s rate tuning. Zeek does not
detect any method because the maximum length of the
queries and the rate of unique queries, are consistent
with those at the host. Ishikura et al [39] fails to detect
exfiltration as long as the exfiltration rate is consistent with
benign DNS query generation on the host (cache misses
rarely exceed threshold in the time window chosen by
the method). ZeekQ does not detect any of the encoding
methods including DOLOS, because the percentage of nu-
merical characters conform to its threshold. Paxson et al.,
has a slightly higher detection probability on methods that
aggressively pursue encoding efficiency (the compressed
volume is higher). Thus, both Iodine-64 and Iodine-32
which have higher information per bit compared to the
others (regardless of query length), are more likely to be
detected.

Classification methods almost always detect baselines
but DOLOS evades them because of its ability of genera-
tive diverse code books. Buczak et al. [9], Liu et al. [53],
Chen et al. [11] learn and thereby almost surely detect
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signatures generated by the baseline methods (Table 2);
however, DOLOS goes undetected since it creates diverse
sets of codes by simply re-training the encoding-decoding
framework. Thus, these defenses are unable to build a
signatures of traffic from DOLOS. We emphasize that these
classification methods are whitebox i.e., they have access
to the model architecture and the dataset used to train
DOLOS; in spite of it, these classification methods fail to
detect DOLOS queries, because DOLOS generates different
codes with each fresh training. The locations of the very
small fraction of queries using Base-32 encoding with
DOLOS are staggered depending on the input, and even if
a few of these are detected, these defenses cannot easily
categorize a domain as malicious. We provide details with
these methods in Appendix F.

Anomaly detection methods are effective in detecting
baselines but fail to detect DOLOS due to the similarity
of the queries it generates, to benign traffic. Nadler et al.
[64] detects high entropy codes (e.g., Base-64, and Base-
32) and thus is effective in detecting the Iodine variants.
The other methods including DOLOS are less easily de-
tectable; specifically, the entropy of DOLOS is very similar
to that of benign queries. Jawad et al. [3] achieves much
higher detection rates with the baselines (> 0.5 detection
probability), but DOLOS goes undetected. This is because
even when considering multiple features, DOLOS’s encod-
ing largely resembles benign traffic enabling it evade even
this arguably strongest among defenses that do not need
to be trained with malicious samples.
AUC scores. We assess the ability of the encoding meth-
ods in generating queries indistinguishable from benign
traffic, using AUC scores (see §6.1) in Table 4. Since,
Jawad et al., considers the length of a query in mak-
ing an inference, to ensure that length is a non-factor
in triggering anomalies (only the encoding matters), we
impose that malicious traffic of the other baselines are also
consistent with the benign query lengths (DOLOS’s GAN
based encoding ensures this). We use multiple ROC curves
where, in each, fake and benign queries of equal length are
plotted. On average DOLOS has ≈2× lower AUC score
when compared against the best baseline (i.e., Iodine-32)
when tested against Jawad et al. [3]. The lower AUC
with DOLOS implies that the baseline encoding methods
are more likely to be detected than DOLOS even if query
length is not a factor, i.e., the encoding with DOLOS can
better evade detection compared to baselines.
A case study from previous DNS exfiltration attacks.
In a previous attack [35], attackers were able to steal 40M
credit cards from US Target stores in 2013 (estimated to
be from 1790 stores at that time [87]). The total amount
of exfiltrated data was ≈ 4GB. Motivated by this, we ask
how fast we can exfiltrate this amount of data compared
to the baselines when the attacker compromises the same
number of devices. We fix the number of queries per day
to 80 and transmit to 120 remote servers, and exfiltrate
a 4GB file over varying number of days. We evaluate
DOLOS (with the same fixed rate (DOLOS (FT)) along
with the baselines with Jawad et al.; this is the best
performing defense (other defenses are inferior as seen in
Table 2) from those that do not need malicious samples
for training. We also show how holistic DOLOS performs.

DOLOS can exfiltrate data more than 2.5 × faster,

than the baselines, without being detected, when evalu-
ated with Jawad et al. [3]. We consider the fastest time to
exfiltrate a 4GB file with different PFQ thresholds (see
§ 6.1). The results in Fig. 7 show that DOLOS exfiltrates
data much faster and yet is undetected. For example,
with the logs dataset, DOLOS can potentially go almost
undetected even when completing exfiltration in 3 days;
in comparison, the closest baseline takes over 8 days if
it is to go undetected. In practice, the holistic version of
DOLOS (shown by the red stars) uses rate tuning (the best
fixed rate is unknown) and so performs slightly worse.
Importantly, if any of the baselines was to exfiltrate data
within 4.5 days (worst case with full DOLOS), they would
almost surely be detected. We also want to emphasize
that this is only with the defense by Jawad at al. As
discussed earlier, if a plurality of defenses are used, the
baselines almost always are detected, unlike DOLOS (e.g.,
with classifiers).
Queries with decoding errors. Next, we report the per-
centage of queries that were handled by DOLOS’s error
recovery module. The percentages of such queries for
Text, credit cards, Logs and Images datasets are 8%, 5%,
4% and 18%, respectively. While images have the highest
error rates (in comparison with others) the rate is still very
small to significantly affect stealth.

6.3. DOLOS Complexity

We had earlier discussed the time for training DOLOS
offline (§ 6.1). Here, we examine its runtime complexity.

Clustering. The complexity of DOLOS’s clustering
depends on the benign query rate of the victim and the
number of unique domains. Computations are amortized
over a time window and require low CPU workloads.
The average number of clusters per domain is 70 against
each of which, each query is compared; this takes 1.5ms.
With regards to space overhead, we store the number of
clusters for each unique domain, as well as their represen-
tative queries. The maximum needed space for a 24-hour
window is 0.6MB (600KB), which is insignificant with
respect to today’s computers.

Data encoding. We measure the average encoding du-
ration at test time, on a 2.9 GHz laptop CPU with 3 differ-
ent batch sizes (1, 8 and 16). The average encoding times
are 1.4s, 0.452s and 0.28s, respectively. Since the exfiltra-
tion queries are sent at time scales of seconds/minutes to
avoid detection, this overhead has a negligible influence
on the rate. With regards to the space overhead, the model
sizes for text, credit card and logs models and images are
59M, 22M and 18M, 30M, respectively. On average, the
size of the encoder is 35MB, which is very small given
the disk and memory of today’s machines. The size of
the decoder is the same as the encoder associated with
a given dataset. The average decoding times for batch
sizes (1,8 and 16) are 1.5s, 0.49s and 0.31s, respectively.

We break up the model into multiple files to reduce
the storage footprint; the model can be composed from
these scattered files in the memory during operation with
negligible additional time. Further optimization to smaller
and cheaper architectures (e.g., using model pruning or
knowledge distillation) is viable but left for future work.
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TABLE 2: Detection probability of defensive methods against the considered attacks. DOLOS evade all detection methods because
of the similarity of its encoding to benign traffic; the baselines are flagged by at least a sub-set of the defenses.

Method
Anomaly Detection methods Classification methods

Nadler et al Jawad et al Buczak et al Liu et al Chen et al
Thapar ISI-HOST Thapar ISI-HOST Thapar ISI-HOST Thapar ISI-HOST Thapar ISI-HOST

Iodine-64 + (RT) 0.75 0.59 1 0.98 0.89 0.9 0.92 0.94 0.94 0.96
Iodine-32 + (RT) 0.25 0.32 0.51 0.54 0.88 0.88 0 0 0.94 0.96

Hex + (RT) 0.03 0.02 0.53 0.58 0.92 0.92 0 0 0.94 0.96
FramePos + (RT) 0 0.09 0.57 0.87 0.92 0.92 0.89 0.91 0.94 0.96

DOLOS (GT) 0.04 0.01 0.03 0.06 0 0 0 0 0 0
DOLOS (ISI-rdns) 0.04 0.02 0.02 0.04 0 0 0 0 0 0

TABLE 3: Detection probability of rule based defensive methods against
attacks (empowered with DOLOS’s rate tuning).

Method
Rule Based Methods

Zeek ZeekQ Ishikura Paxson et al
Thapar ISI-HOST Thapar ISI-HOST Thapar ISI-HOST Thapar ISI-HOST

Iodine-64 + (RT) 0 0 0 0 0 0 0.17 0.3
Iodine-32 + (RT) 0 0 0 0 0 0 0.1 0.16

Hex + (RT) 0 0 0 0 0 0 0 0.07
FramePos + (RT) 0 0 0 0 0 0 0 0

DOLOS (GT) 0 0 0 0 0 0 0 0.08
DOLOS (ISI-rdns) 0 0 0 0 0 0 0 0.06

TABLE 4: AUC scores of encoding methods with
Jawad et al.

Method Text Credit Cards Logs Images
Iodine-64 0.996 0.996 0.996 0.996
Iodine-32 0.63 0.62 0.68 0.68

Hex 0.995 0.995 0.995 0.995
FramePos 0.998 0.998 0.998 0.998
DOLOS 0.34 0.35 0.34 0.38

Figure 7: Jawad et al. defense [3] PFQ on Text, Credit Card, and Logs and Images datasets, respectively, for varying exfiltration
rates. The PFQ when using DOLOS is much lower than encoding baselines. The red stars represent DOLOS’s (holistic) performance.

6.4. Real implementation details and results

We host a domain we purchased from godaddy.com,
on two name servers as described in RFC [63]. The
two name servers are Windows server 2019 virtual ma-
chines deployed on Microsoft Azure. We use the default
Microsoft DNS server [61], and we generate CNAME
DNS records for the generated domain as *.dolos.com
(fake name for anonymity reasons). This makes the server
respond to DNS queries with any subdomain under do-
los.com with the default configured IP address. We use
the default DNS logging system to decode queries to
their original representations. Client queries (regardless of
whether they are benign or malicious) are generated using
a Mac pro laptop with nslookup. We use three popular
public DNS resolvers: Google (IP:8.8.8.8), Control
D (IP:76.76.10.0) and CloudFlare (IP:1.1.1.1).
In addition we also experiment with the DNS resolver
(owned by our institution). We capture DNS queries on
the local machine and extract the features required to
make an inference using the defenses we considered in
§ 6.1. In our experiments we exfiltrate a 10KB text file
with an average chunk length of 90 characters. We repeat
the exfiltration with DOLOS and each baseline, but the
benign queries are only those that are naturally generated.
These constraints are imposed because we do not want
to cause unintentional damage to either the public or our
institutional DNS resolvers (e.g., DDoS attacks).

Real Implementation results. Since we are unaware
if these real systems deploy defenses, we also pass the
traffic through Jawad et al., for safety. Flagged queries
are stopped and do not reach the destination. We use all
considered name servers in this experiment. Finally, we

ended up retrieving all fake queries that were not detected
by Jawad et al., which suggests that the public DNS
resolvers do not employ any potent defense (although we
cannot verify this explicitly). We will investigate this in
the future by talking to administrators or other means (e.g.,
security blogs).

7. Discussion

Defending against DOLOS. One potential defense against
DOLOS is to use program analysis to identify programs
responsible for creating DNS queries for exfiltration. One
can check if a program accesses (i) confidential files and
(ii) inputs those to a processing engine. However, running
such analyses on all programs on all hosts is expensive.
Instead, one can monitor the DNS queries and use a
detector or ensemble of detectors with somewhat lower
detection thresholds (i.e., higher detection rate of attacks
but high false positives). Expensive program analysis can
be used as a second filtration layer on only those programs
that generated these queries.
Exfiltrating multiple types of data. To exfiltrate multiple
types of data, one can train and use multiple encoders. At
run time, the malware can include a codeword to indicate
the type of data being exfiltrated. The remote server then
uses the appropriate decoder for recovery.
Whitelists and their impact on DOLOS. Enterprises
could use whitelists to block access to DOLOS’s remote
server. Today, the deployed whitelists specify the only
domains that users can access (i.e., all other domains are
inaccessible/blocked by default). [65] suggests that the
top (most popular) one million domains could be used as
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such, in a whitelist. However, we argue that such whitelists
are highly impractical in the real world, because access
patterns to domains/websites could vary significantly over
time. This makes it infeasible for network operators to
keep such lists up to date without inducing blockages to
benign domains. Google reports that about 4% of the 2
billion domains are accessed with between 10 and 1000
visits, in a month [81]. This is about 80 million websites
and not all of these can be in the top-1-million whitelist
described in [65]. In other words, having whitelists with a
million pages causes more problems for defenses in terms
of false positives and thus is not useful against DOLOS.
Out-of-order packet delivery. In-order packet delivery
from the compromised host to the remote domain is
not guaranteed by the DNS protocol. To ensure delivery
guarantees, new attributes such as sequence numbers may
be needed. This aspect is left for future work. We highlight
that DOLOS decodes each query independently. Thus, we
believe that using the decoded queries, an ML model can
assess the received queries to determine whether they were
received in order and rectify the order if necessary.

8. Related Work

Text generation. GPT [75] and BERT [17] are ML meth-
ods to synthesize text similar to training text. However,
our problem differs since we seek a latent space repre-
sentation, largely decodable to its raw form. Similarly,
GANs have been used for text generation [49], [92] but
do not handle multiple goals (mimicking benign traffic and
ensuring decodability). Recent work uses multiple gener-
ators and discriminators with different loss functions in
order to achieve a single objective (e.g., generating better
synthetic images [26], [82]). However, DOLOS seeks to
fulfil multiple objectives.
Adversarial Perturbations. There is work on perturbing
inputs to deceive a neural network (e.g., [85], [93]). Such
methods cannot be readily applied to modify exfiltration
data. NIDSGAN [93] perturbs packet headers while adher-
ing to domain constraints to deceive ML-based intrusion
detection systems. However, they only have one objective
(evasion).
Encoder-decoder frameworks. ML-based encoder-
decoder frameworks have been studied. For example,
[20] builds such a framework to send text data over
an erasure channel. This work differs from ours in two
ways. First, the latent representations are continuous
whereas in our case, they are discrete (they form the
fake queries). Beyond this, our approach has constraints
on the latent space (it should resemble benign traffic).
A work close to ours is [43], where the authors design
an end-to-end communication system over an erasure
channel but constrain the latent representation to binary
values. The problem differs from ours because, in
addition to constraining the representation to characters
used by DNS, we also have additional requirements (e.g.,
stealth and decodability).
Detection. As discussed, defenses against DNS exfiltra-
tion are either rate based [18], [46] or encoding based [16],
[42], [50], [51], [58], [91]. These methods were either
considered in our evaluations in § 6.2 or are very similar
to those considered and we expect them to fail in detecting
DOLOS.

DNS Exfiltration tools. Today’s DNS exfiltration tools
such as DNSmessanger [8], DNSteal [24] and Iodine [15],
use DNS query types that do not conform with benign
traffic and/or use the traditional encoding (e.g., Base-64,
Base-32 and Hex) that are inefficient and detectable. For
example, DNSmessager uses DNS type TXT, which, as
discussed, is easily detectable.

9. Conclusions

In this work, we show that contrary to the common
belief that current defenses have succeeded in curbing
DNS exfiltration, our GAN-guided approach, DOLOS, can
achieve successful exfiltration. DOLOS encodes the exfil-
tration data such that it not only mimics benign traffic to
fool defenses but also achieves significantly faster exfil-
tration than what is possible today. In addition, it includes
a rate tuning module that is key in preventing the attack
from being detected in a blackbox setup. Finally, DOLOS
also ensures that exfiltrated data is fully decodable at an
external site like with traditional methods. Our evaluations
show that DOLOS can exfiltrate data 25 × faster than the
baselines, if the detection probability needs to be kept low
(< 0.15).

Acknowledgement

This research was sponsored by the U.S. Army Com-
bat Capabilities Development Command Army Research
Laboratory and was accomplished under Cooperative
Agreement Number W911NF-13-2-0045 (ARL Cyber Se-
curity CRA). The views and conclusions contained in
this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the Combat Capabilities De-
velopment Command Army Research Laboratory or the
U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government pur-
poses notwithstanding any copyright notation here on. We
also thank the anonymous reviewers and our anonymous
shepherd for their comments and suggestions that helped
significantly improve our paper.

References

[1] Loghub: A collection of system log datasets for intelligent log
analysis. https://github.com/logpai/loghub, 2019.

[2] National Security Agency. Adopting encrypted dns in enterprise
environments. https://media.defense.gov/2021/Jan/14/2002564889/
-1/-1/0/CSI ADOPTING ENCRYPTED DNS U OO 102904
21.PDF, 2021.

[3] Jawad Ahmed, Hassan Habibi Gharakheili, Qasim Raza, Craig
Russell, and Vijay Sivaraman. Monitoring enterprise dns queries
for detecting data exfiltration from internal hosts. IEEE Transac-
tions on Network and Service Management, 17(1):265–279, 2019.

[4] Akamai. Dns: The easiest way to exfiltrate data? https://www.
akamai.com/blog/security/dns-the-easiest-way-to-exfiltrate-data,
2022.

[5] Isabela Albuquerque, Joao Monteiro, Thang Doan, Breandan Con-
sidine, Tiago Falk, and Ioannis Mitliagkas. Multi-objective training
of generative adversarial networks with multiple discriminators. In
International Conference on Machine Learning, pages 202–211.
PMLR, 2019.

14

https://github.com/logpai/loghub
https://media.defense.gov/2021/Jan/14/2002564889/-1/-1/0/CSI_ADOPTING_ENCRYPTED_DNS_U_OO_102904_21.PDF
https://media.defense.gov/2021/Jan/14/2002564889/-1/-1/0/CSI_ADOPTING_ENCRYPTED_DNS_U_OO_102904_21.PDF
https://media.defense.gov/2021/Jan/14/2002564889/-1/-1/0/CSI_ADOPTING_ENCRYPTED_DNS_U_OO_102904_21.PDF
https://www.akamai.com/blog/security/dns-the-easiest-way-to-exfiltrate-data
https://www.akamai.com/blog/security/dns-the-easiest-way-to-exfiltrate-data


[6] Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. Recent
advances in adversarial training for adversarial robustness. arXiv
preprint arXiv:2102.01356, 2021.

[7] Seth Bromberger. Dns as a covert channel within protected net-
works. National Electronic Sector Cyber Security Organization
(NESCO)(Jan., 2011), 2011.

[8] Edmund Brumaghin. Covert Channels and Poor Decisions: The
Tale of DNSMessenger. http://blog.talosintelligence.com/2017/03/
dnsmessenger.html, 2017. [Online; accessed March-15-2022].

[9] Anna L Buczak, Paul A Hanke, George J Cancro, Michael K Toma,
Lanier A Watkins, and Jeffrey S Chavis. Detection of tunnels in
pcap data by random forests. In Proceedings of the 11th Annual
Cyber and Information Security Research Conference, pages 1–4,
2016.

[10] Joseph Carson. Privilege escalation on linux: When it’s good
and when it’s a disaster (with examples). https://delinea.com/blog/
linux-privilege-escalation, 2020.

[11] Shaojie Chen, Bo Lang, Hongyu Liu, Duokun Li, and Chuan
Gao. Dns covert channel detection method using the lstm model.
Computers & Security, 104:102095, 2021.

[12] Jinyoung Choi and Han Bohyung. Mcl-gan: Generative adversarial
networks with multiple specialized discriminators. 2019.

[13] CloudFlare. Http policies. https://developers.cloudflare.com/
cloudflare-one/policies/filtering/http-policies/, 2020.

[14] Cloudflare. Cloudflare Resource Hub. https://www.cloudflare.com/
resource-hub/?resourcetype=Whitepaper, 2022. [Online; accessed
Dec-1-2022].

[15] code.kryo.se. Iodine:code.kryo.se. https://github.com/yarrick/
iodine, 2021.

[16] Anirban Das, Min-Yi Shen, Madhu Shashanka, and Jisheng Wang.
Detection of exfiltration and tunneling over dns. In 2017 16th IEEE
International Conference on Machine Learning and Applications
(ICMLA), pages 737–742. IEEE, 2017.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805, 2018.
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TABLE 5: Hyper parameters used in training DOLOS.

Module
(Parameter) Discriminator Encoder Decoder

Embed size 400 600 600
hidden size 400 600 600
# of layers 2 2 2
# of heads 2 3 3

Learning rate 0.00004 0.00001 0.00001
# of parameters 195k 440K 440K
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A. Details of various parameters

Model parameters and training. As discussed in § 4,
DOLOS is composed of three transformer-based neural
networks with hyper-parameters specified in Table 5. We
follow Algorithm 1 to train the model, with an average
training time < 9 hours per run, on two Tesla P100 GPUs.

Model used for validation during training.. We utilize
a validation model (an anomaly detector) to assess the
stealth of the generated codes during training. To train this
model, we choose some of the commonly used features
from existing defenses (specifically, entropy, numbers of
capital and numerical letters, numbers of subdomains and
maximum and average length of subdomains). We choose
an isolation forest anomaly detection method. Specifically,
we want to emphasize that our model is different from ex-
isting anomaly detection defenses that we compare against
in our evaluations (i.e., Nadler et al [64] and Jawad et al
[3]). The defenses we test against differ from our home
grown model with regards to at least a sub-set of aspects
(the architecture is different and/or the features that they
consider are different). Importantly, the datasets that these
defenses are trained on, are different from that were used
to train our validation model.
Defense thresholds. Here, we discuss how we set the
thresholds of the various considered methods for issuing
an alert.

(a) For Zeek, we set the length and “number of
queries” thresholds to the maximum of those observed
on the host in a validation time window. This is to ensure
that the method does not flag benign domains. We do the
same with Paxson et al. [74], but with the compressed
volume instead.

(b) With regards to Ishikura et al, we compute the
cache misses for all hosts within a time window (24
hours) as suggested by the original paper and choose the
maximum as the threshold for the next time window. Note

that in the ISI-host dataset there are 3000 plus hosts,
in which a subset of them are considered to have the
DOLOS malware (one or more). In the original work,
the authors suggest using the 99th percentile (instead of
the maximum), but this results in a 1% alert rate even if
there is no attack activity. We observe that using the 99th
percentile does not change the results in Table 2. Apart
from the 1% of the hosts that are flagged because of the
conservative threshold, no new hosts are flagged.

(c) With respect to Nadler et al., we choose the
anomaly thresholds dynamically per host. In particular, the
method outputs an anomaly score for each client-domain
pair in the data set. We choose the anomalous score that
would set the domain false positive rate to 10−5 and use
this to set the threshold as suggested in the paper [64].

(d) For query-specific defenses (Jawad et al., Buczak
et al., Liu et al., Chen et al.), we do not choose thresholds
dynamically (since those papers do not discuss how to
issue domain or flow specific alerts). We choose a fixed
threshold for flagging queries, that corresponds to roughly
a 1% PFQ with respect to benign queries. This corre-
sponds to the results obtained with [11], [53]. Then, if
PFQ exceeds a threshold (for a domain) that we assume,
an alert is issued. Note that usually defenders set the
domain false positive to very small percentage (e.g., zero
as in the case of Paxson et al [74] or 10−5 as the case in
Nadler et al [64]). For classification methods, we chose
the same false positive rate as Nadler et al., because they
are ML models as well; furthermore, these models are
expected to provide even better classification results being
exposed to the exfiltration samples as well (as discussed
in § 6.1). Jawad et al, does not need malicious traffic
to train on; when we tried to set the threshold to yield a
false positive rate of 10−5 to be consistent with the others,
the performance of the method dropped significantly (in
terms of detection of all attacks including DOLOS and
baselines). Thus, we use a more conservative threshold
corresponding to a false positive rate of 10−3. This would
imply a better attack detection but a higher rate of false
positives when no attack exists.

(e) With ZeekQ, two rules are set identical to Zeek.
With respect to the additional rule, there are no spec-
ifications on what the threshold on the percentage of
numerical characters in a query should be set. We check
the percentage in benign queries, and set it to the 99th

percentile; this ensures that the PFQ is about 1 % in
benign settings.

B. Holistic evaluation of DOLOS with various
datasets individually

In this part, we provide the holistic evaluation of
DOLOS, but individually with each of the considered
datasets (as opposed to with all datasets jointly as reported
in the main paper). As shown in Figs. 8, 9, 10, 11,12, 13,
14 and 15 the results of individual datasets do not deviate
much from the average case, which demonstrates that
DOLOS is equally effective in exfiltrating various types
of data.
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Figure 8: On the left is the blackbox detection probability when baseline methods use a
constant exfiltration rate commensurate with the average rate of DOLOS with deployed
anomaly and rule based detection methods. On the right is the maximum rate that
baselines can send with a fixed BDP of 0.12. These results relate to exfiltration of text
data.

Figure 9: Detection rate with Jawad et
al., and Ishikura et al., with multiple
exfiltration sites (60 and 80 sites).
These results relate to exfiltration of
text data.

Figure 10: On the left is the blackbox detection probability when baseline methods
use a constant exfiltration rate commensurate with the rate of DOLOS with deployed
anomaly and rule based detection methods. On the right is the maximum rate that
baselines can send with a fixed BDP of 0.14. These results relate to exfiltration of
credit card data.

Figure 11: Detection rate with Jawad
et al., and Ishikura et al., with multiple
exfiltration sites (60 and 80 sites).
These results relate to exfiltration of
credit card data.

Figure 12: On the left is the blackbox detection probability when baseline methods use a
constant exfiltration rate commensurate with the average rate of DOLOS with deployed
anomaly and rule based detection methods. On the right is the maximum rate that
baselines can send with a fixed BDP of 0.08. These results relate to exfiltration of logs
data.

Figure 13: Detection rate with Jawad
et al., and Ishikura et al., with multiple
exfiltration sites (60 and 80 sites).
These results relate to exfiltration of
logs data.

C. Stealth with various datasets

In this section, we report the stealth (ability to evade)
with respect to individual defenses with different exfil-
tration datasets. We use the same setup as those corre-
sponding to Table 2. The performance of the classification
methods and the rule based methods (i.e., Zeek, ZeekQ
and Ishikura et al) are almost identical to the ones in
Tables 2 and 3; thus, we do not include them here. We only
report the performance of defensive methods that have
changed to some extent when a different dataset is used.
The results are shown in Table 6.

D. Ablation Study

In this part, we conduct an ablation study to showcase
the importance of the different design choices we make in

TABLE 6: Detection probability of defensive methods against
the considered attacks with the various considered datasets.

Datasets Method Rule based method Anomaly Detection Threshold
Paxson et al Nadler et al Jawad et al

Credit Card

Iodine-64 + (RT) 0.3 0.59 0.98
Iodine-32 + (RT) 0.2 0.32 0.52

Hex + (RT) 0.12 0.02 0.6
FramePos + (RT) 0 0.09 0.87

DOLOS 0.1 0.03 0.01

Microsoft Logs

Iodine-64 + (RT) 0.12 0.59 0.98
Iodine-32 + (RT) 0.04 0.32 0.51

Hex + (RT) 0 0.02 0.62
FramePos + (RT) 0 0.09 0.97

DOLOS 0.03 0.02 0.03

Images

Iodine-64 + (RT) 0.3 0.59 0.98
Iodine-32 + (RT) 0.17 0.32 0.54

Hex + (RT) 0.1 0.02 0.58
FramePos + (RT) 0 0.09 0.87

DOLOS 0.05 0.08 0
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Figure 14: On the left is the blackbox detection probability when baseline methods
use a constant exfiltration rate commensurate with the average rate of DOLOS with
deployed anomaly and rule based detection methods. On the right is the maximum rate
that baselines can send with a fixed BDP of 0.14. These results relate to exfiltration
of image data.

Figure 15: Detection rate with Jawad
et al., and Ishikura et al., with multiple
exfiltration sites (60 and 80 sites).
These results relate to exfiltration of
image data.

TABLE 7: Detection probabilities with the different encoding methods on Text dataset when they are equipped with DOLOS rate
tuning but with no spurious queries (NQ).

Method Rule Based Method Anomaly Detection methods Classification methods
Paxson et al Nadler et al Jawad et al Buczak et al Liu et al Chen et al

Iodine-64 + (RT+ NQ) 0.29 0.81 1 1 1 1
Iodine-32 + (RT+ NQ) 0.13 0.47 0.62 1 0 1

Hex +(RT+ NQ) 0.06 0.18 0.6 1 0 1
FramePos + (RT+ NQ) 0 0.14 0.89 1 1 1

DOLOS + NQ 0.05 0.23 0.05 0 0 0

developing DOLOS. In particular, we discuss the perfor-
mance of (1) DOLOS without our proposed encoding, (2)
DOLOS without rate tuning, (3) DOLOS without spurious
queries and (4) DOLOS without the error recovery module.
DOLOS without our proposed encoding methods. In
Tables 2 and 6, we show multiple baselines when they
are equipped with DOLOS rate tuning methods. Such base-
lines are essentially versions of DOLOS that do not have its
GAN based encoding (has only its online rate tuning and
spurious query injection components). As seen in these
tables, these methods are almost surely detected by at
least one of the detection methods. This demonstrates the
importance of DOLOS’s GAN based encoding.
Deploying DOLOS without rate tuning. We refer to
Fig. 7 where a DOLOS with fixed rate is shown. While
the best fixed rate can potentially speed up the exfiltration,
it is hard to know this rate a priori. Choosing the wrong
fixed rate can leave DOLOS vulnerable to easy detection.
This is why we use rate tuning, and see (as shown by the
red stars) in the figure that this full version of DOLOS
only experiences a slight slow down compared to the best
fixed rate one can use.
Impact of using spurious queries. we examine the
performance of DOLOS without the spurious queries. We
show the detection rates of all exfiltration methods in
Table 7 when tested with Text dataset. We see that that
detection rates of all methods have significantly increased
in comparison with the results in Table 2. The omis-
sion of spurious queries improves detection (and worsen’s
DOLOS’s stealth) with a significant subset of the defenses
because these identify the absence of such queries in the
stream. The most significant effect is seen with Nadler
et al. This is because this method takes entropy as an
explicit feature for classification which increases without
such queries.
Deploying DOLOS without its error recovery module.
Recall that due to the lossy nature of DOLOS’s encoder,

queries with decoding errors are fed to an error recovery
module that guarantees data decodability at the remote
site. In this experiment, we send the faulty queries even
if they have errors i.e., use DOLOS without the error
recovery module. While the received data has a small
number of errors, we can now obtain a slightly higher
exfiltration rate. We observe this especially with the image
dataset. We discuss in the next section, the decoding error
rates and ways to recover from those errors at the remote
site. For example, one can possibly use NLP methods that
understand the context of the received decoded chunks
and correct them accordingly; for images, we observe that
the pixel values are only changed slightly, retaining their
structure and properties i.e., the changes are imperceptible
to a human.

E. Decodability of DOLOS’s lossy encoder’s
outputs

Here, we directly evaluate the decodability of
DOLOS’s lossy encoding and usefulness if lossy data is
exfiltrated (without recovery) with various datasets.

Text datasets: We first look at the decoding accuracy
without any external post processing. The attacker obtains
115K records from 130K with no errors (around 87%).

One way of achieving error correction post exfiltration
is to use NLP methods, which understand the context of
the received text and can perform corrections. For this
purpose, we examine the use of the popular ChatGPT tool
[71]. We exfiltrate 30 white-papers on different technical
topics (e.g., denial of service (DoS), 5G security) from
Microsoft and CloudFlare from 2022 [14], [62], and pass
the decoded stream to chatGPT. The maximum observed
percentage of words in error is less 1.1% across all the
documents.

Credit card dataset: The attacker acquires 91% of
the records with no errors (i.e., 275K out 300K credit
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cards were decoded correctly). Most errors are either in
the address or the name parts. Fewer than 20 credit cards
had errors in the number, CVV or expiry date; thus, if only
the credit card number is needed for a transaction, almost
all decoded data are usable. When the billing address
and names are needed, we use correction methods (see
below) that ultimately render 296K out 300K (98.7%) of
credit cards usable. We use Google Maps API [28], [29]
to validate the address and correct it if in error (i.e., by
suggesting the closest match). For the names part, we use
a big dataset of names that validates the name as a natural
name, or provides the closest suggestion if no match is
found.

Logs datasets: 94% of the logs in our test set are
decoded with no errors. Records with errors can still be
useful to the attacker in reconnaissance of the victim
(i.e., the contacted IP addresses, the duration of open
sessions). Further, leaking this data can violate the host’s
privacy [31]. With a small case study on Linux logs
dataset, we observe that errors are mostly in the process
numbers which all can be corrected using brute force.

Image datasets: We measure the number of correctly
decoded chunks per image, and we find that 82% of DNS
queries describing an image are received with no errors.
In the image space, We observe that the decoder outputs a
pixel intensity that is very close to actual pixel value. This
makes the errors in the images imperceptible to humans.

Summary: These results suggest that our DOLOS en-
coder can even be used without our error recovery module
in most cases, i.e., even in its absence, the attacker can still
receive almost perfect and useful content. This can poten-
tially improve DOLOS’s stealth further, since it eliminates
all Base-32 encoding, if such errors are tolerable.

F. A closer look at the performance with the
classification-based detection methods

Next, we take a closer look at the performance of the
various attacks with the classification methods (see § 6.1)
used for detection. Specifically, we report the percentage
of flagged queries (PFQ) with the considered classification
based defenses in Table 8. With regards to DOLOS, we
report the results, when classification methods are tested
on (i) the same encoding on which it was trained (meaning
the exact instance of training is known to the classifier)
and (ii) a different encoding instance of DOLOS, denoted
as DOLOS (same) and DOLOS (diff), respectively. As
seen in the table, the classification methods are extremely
effective in detecting signatures that they know about.
However, in the case where DOLOS generates codes with a
different encoding instance (DOLOS (diff)), classification
methods perform very poorly. Liu et al., has a relatively
inferior performance in comparison with the other two
methods. Specifically, the hand selected features used by
the method can detect Iodine-64 and FramePos with high
accuracy, but it does not detect the others. Understanding
why this is the case falls within the realm of explainability
of ML models and is beyond the scope of this work.

G. Linux logs results and case studies

We show the results associated our Linux Logs dataset.
95% of the logs were correctly decoded with no errors. We

TABLE 8: Percentage of flagged queries (PFQ) when tested
against classification methods. We report the results for Text
dataset.

Method Buczak et al Liu et al Chen et al
Iodine-64 0.85 0.99 1
Iodine-32 0.62 0.12 0.997

Hex 0.99 0.09 1
FramePos 0.99 0.72 1

DOLOS (diff) 0.07 0.02 0.09
DOLOS (same) 0.55 0.06 0.99

Figure 16: Jawad et al defense [3] PFQ, with the Linux logs
dataset.

evaluate the AUC score with Jawad et al., and it is 0.34
(similar to what is observed with Microsoft logs dataset).
As shown in Fig. 16, the detectability and exfiltration rate
results with this dataset are consistent with the results
obtained with the Microsoft logs dataset.
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