
M2HO: Mitigating the Adverse Effects of 5G Handovers
on TCP

Zhutian Liu†, Qing Deng†, Zhaowei Tan†, Zhiyun Qian†,
Xinyu Zhang‡, Ananthram Swami§, Srikanth V. Krishnamurthy†

†University of California, Riverside, ‡University of California, San Diego, §DEVCOM Army Research Lab

Abstract
The advent of 5G promises high bandwidth with the in-

troduction of mmWave technology recently, paving the way
for throughput-sensitive applications. However, our mea-
surements in commercial 5G networks show that frequent
handovers in 5G, due to physical limitations of mmWave
cells, introduce significant under-utilization of the available
bandwidth. By analyzing 5G link-layer and TCP traces, we
uncover that improper interactions between these two layers
causes multiple inefficiencies during handovers. To mitigate
these, we propose M2HO, a novel device-centric solution that
can predict and recognize different stages of a handover and
perform state-dependent mitigation to markedly improve
throughput. M2HO is transparent to the firmware, base sta-
tions, servers, and applications. We implement M2HO and
our extensive evaluations validate that it yields significant
improvements in TCP throughput with frequent handovers.

CCS Concepts
• Networks → Network protocol design; Mobile net-
works; Network mobility; Transport protocols.

1 Introduction
In recent years, 5G cellular networks have seen extensive

deployments by mobile carriers. One of the new features
promoted by 5G is the use of millimeter wave (mmWave)
bands. Operating at frequencies between 24.25 GHz and
71 GHz [16], these bands can theoretically offer data rates
of up to 20 Gbps, a remarkable improvement over tradition-
ally used sub-6GHz bands. On a global scale, major carriers
are actively deploying 5G mmWave base stations [7, 9–11],
and consequently, according to a 2022 measurement, the ag-
gregated throughput with commercial carriers could reach
over 3 Gbps [3]. The high bandwidth brings the promise

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0489-5/24/11
https://doi.org/10.1145/3636534.3690680

of enabling emerging throughput-intensive applications in
5G, such as Virtual/Augmented Reality (VR/AR) [27, 34],
unmanned aerial vehicles (UAV) [58, 62], and autonomous
driving [39, 52].
However, the physical characteristics of mmWave links

also introduce unique challenges. mmWave can only travel
as a direct wave, and is extremely vulnerable to various block-
ages like walls, humans, and even hands [28, 36]. Conse-
quently, operators have to deploy a large number ofmmWave
base stations to ensure consistent connectivity, resulting in
frequent handovers during mobility [33, 46–48, 60].

In this paper, we attempt to answer the following question:
“Would frequent handovers, especially those due tommWave,
impose a negative effect on TCP performance?” We focus on
one of themost deployed TCP variants, CUBIC [32]. Research
on TCP performance in 5G has shown that TCP may under-
utilize the available bandwidth [30, 42, 46, 49, 54, 60, 63], but
how the interactions between 5G link layer and TCP would
incur such deficiencies is yet to be fully understood.
To this end, we first conduct an extensive measurement

study under two mobile operators in six locations from three
cities (§3). We collect 190 GB of traces at both the TCP
and the 5G link layers, and investigate whether TCP CU-
BIC can realize the potential promise of 5G mmWave and
how mobility-induced events impact TCP performance. Our
measurements show that, unfortunately, frequent handovers
indeed cause TCP to severely underutilize the available band-
width. In our experiments, TCP only achieves an average
throughput of 468.4 Mbps, while the link capacity measured
by the saturation tests reaches 993.1 Mbps. After each han-
dover, TCP goes through a slow ramp-up phase of around
6.7 s before it reaches a stable throughput.
Since 5G promises seamless handovers with small dis-

ruptions, what causes this significant performance under-
achievement? To uncover the root cause for this unexplained
adverse behavior, we analyze the traces of both transport
and 5G link layers. We find that improper interactions be-
tween the 5G link and TCP are the main reasons for this
underutilized bandwidth. First, packets are dropped due to
a link-layer context re-establishment procedure before the
handover. This triggers duplicate ACKs and greatly reduces
the sending rate. This effect manifests in 18.4% of the han-
dovers, which leads to a 63.3% congestion window (cwnd)

https://doi.org/10.1145/3636534.3690680

ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Liu et al.

reduction, on average. Second, the packets accumulated dur-
ing handover cause buffer overflows and packet loss. We see
this behavior in 17.7% of the handovers, with an average
cwnd drop of 70.4%. Third, TCP is unaware of bandwidth
changes and fails to quickly increase cwnd to commensurate
the bandwidth. It takes an average of 6.7 s and up to 22.1 s
to achieve the maximum throughput.

To address these issues, we propose M2HO, a novel device-
centric solution designed to mitigate the negative effects on
TCP from handovers (§4). It predicts and recognizes various
stages of handover by monitoring lightweight 5G control-
plane messages from the baseband processor, using an event-
based handover prediction algorithm. Given the handover
state, M2HO mitigates the associated deficiencies by means of
state-dependent actions. It avoids the buffer overflow before
handovers through an intelligent buffer estimation algorithm,
suppresses duplicate ACKs after handover without impacting
reliable data delivery, and incorporates a fast convergence
algorithm leveraging TCP’s receive window manipulations.

We implement M2HO on a commercial Android device (§5).
Notably, M2HO operates as a transparent middle layer on the
device side only, requiring no modifications to the firmware,
base stations, servers, or applications. Our implementation
reads the link-layer events for state transition and alters
outbound TCP packets to apply the policies. Since M2HO ide-
ally needs to acquire link-layer messages, which experience
delays because of inefficiencies in current firmware APIs
(which we cannot fix), we build an emulator to simulate the
wireless channel dynamics and deliver the link-layer mes-
sages to the device, and leverage user-space APIs to modify
the packets. We verify the fidelity of our emulator by com-
paring real-world and emulated evaluation results.
We set up a testbed and evaluate M2HO by replaying 722

recorded handovers with our emulator (§6). The handover
throughput (average throughput from 5 s before to 5 s after a
handover) achieved is 314.8 Mbps, which is exceeding that of
TCP CUBIC by 45.8%, and is 20.1%-44.8% better than popular
alternatives. The convergence time to reach link capacity is
reduced to 5.9 ms, which outperforms popular alternatives
by 56.3%-68.5%. To achieve the throughput boost, M2HO pre-
dicts the handover with 94.8% accuracy. It also recognizes
the unnecessary duplicate ACKs caused by handover with
90.3% precision and 98.6% recall. M2HO ensures no packet
loss during handover in 85.2% of the cases, whereas with the
alternatives losses happen in 44.2-60.3% of the handovers.

2 Background
2.1 5G mmWave

5G has emerged as the new standard wireless technology
for wide-area mobile communications. A major facilitator of
the promise of high throughput in 5G is the incorporation
of FR2 (mmWave) bands into the cellular spectrum. While

Handover

Source cell Target cell

(a) User mobility trig-
gers handover.

1. Configuration

2. Measure. Report
Measurement

4. Handover Config

5. Handover ACK

8. Random Access Completed

7. Handover Execution

6. Status transfer

Source Cell

9. Data Received

Target Cell

3. Coordination

Buffering

(b) Detailed handover procedure.
Figure 1: 5G handover procedure.

LTE and 5G FR1 bands operate at sub-6GHz frequencies,
mmWave bands function at markedly higher frequencies
from 24.25 to 71 GHz, enabling multi-gigabit bandwidths of
up to 20 Gbps. To enable mmWave, 5G incorporates a wide
range of enhancements such as massive MIMO, advanced
channel coding, and scalable modulation [18].

Both phone vendors and mobile operators are incorporat-
ing mmWave, to harness its performance promise and sup-
port throughput-intensive applications, such as VR/AR [27,
34]. On the device side, leading phone manufacturers, such
as Samsung and Apple, have shipped numerous smartphones
with 5G mmWave support [8]. On the network side, major
mobile operators are actively deployingmmWaveworldwide;
examples include Verizon [11], AT&T [9], T-Mobile [7], and
China Telecom [10]. In EU, Faroese Telecom and Ericsson
are testing major mmWave deployments [5]. Currently, over
100 cities in the US support 5G mmWave technology [6].

In 5G/4G, a device (or user equipment, UE) connects to a
cell (called serving cell) for network access1. A mmWave cell
has limited coverage due to significant propagation loss and
vulnerability to blockage and attenuation [47, 49]. Therefore,
operators often install a large number of mmWave cells to
ensure consistent connectivity as a UE moves. Given the
high cost, 5G mmWave is primarily deployed in populated
urban locations including malls, airports, and stadiums.

2.2 5G Handover Primer
A UE needs to disassociate from the serving cell (source

cell) when it is about to move out of the cell’s coverage area.
It then associates with a new serving cell (target cell) to main-
tain connectivity (Figure 1a). This process, called handover,
is considered a norm for mmWave, given its limited cov-
erage and dense deployment. Figure 1b shows the detailed
handover procedure. It consists of the following major steps.

1○ The serving cell configures a UE to monitor its serving
and neighboring cells’ signal strength and the conditions to
report. 2○ The UE periodically measures cell conditions and
reports an event once a configured criterion is satisfied (e.g.,
the serving cell’s signal strength is below a threshold). 3○
1The cell refers to the logical unit providing radio access, while the base
station is the physical equipment that manages one or multiple cells. In this
paper, we use these two terms interchangeably.

M2HO: Mitigating the Adverse Effects of 5G Handovers on TCP ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

Upon receiving a report, the serving cell decides if a handover
is needed. 4○ If so, it sends a handover command to the UE.
5○ The client acknowledges the command and prepares for
the switch. 6○ The serving cell transfers the device status
and buffered data to the target cell. 7○ The UE executes the
handover to the target cell; interim, there is no data transfer
since it is a hard handover [14]. 8○ After the switch, the UE
starts a random access procedure and establishes a new data
path with the target cell. 9○ Data transmissions are resumed.

Handovers can happen between heterogeneous (mmWave
↔ sub-6GHz) or homogeneous (mmWave→mmWave / sub-
6GHz→sub-6GHz) cells. We call the former vertical han-
dovers and the latter horizontal handovers. Handovers could
be more complicated in reality. For instance, 5G/4G Carrier
Aggregation (CA) allows simultaneous connections to multi-
ple cells for higher throughput. In CA, a UE might release
and add multiple cells during a handover; nevertheless, it
still follows the basic handover procedure in Figure 1b.

2.3 TCP and TCP Congestion Control
TCP is the primary transport layer protocol for reliable

data delivery. According to recent research [53, 56], it carries
75%-91.5% of the bytes on the Internet. TCP senders maintain
a cwnd for each connection to restrict the in-flight data until a
new acknowledgement. The receiver also notifies the sender
of its available buffer space as “receive window (rwnd).” The
maximum data that the sender can send before expecting
an acknowledgment (𝑊𝑠𝑒𝑛𝑑), is determined jointly by cwnd
and rwnd, and is chosen so as to not cause congestion or
overwhelm the receiver, i.e.,𝑊𝑠𝑒𝑛𝑑 =𝑚𝑖𝑛(𝑐𝑤𝑛𝑑, 𝑟𝑤𝑛𝑑).
To properly maintain cwnd, a TCP sender needs to infer

whether the end-to-end link is under- or over-subscribed
(except when the network provides explicit feedback). TCP
relies on implicit feedback from the network such as packet
loss and delay to perform such tasks. There are two classes
of methods used in various TCP versions for such assess-
ments. Loss-based methods take (no) loss as an indicator
(TCP New Reno [29], BIC [61], and TCP CUBIC [32]) of
congestion, while delay-based methods use packet delay
to infer/calculate proper window sizes to avoid congestion
(TCP-Vegas [23], Verus [64] and Copa [20]). Some TCP vari-
ants take a model based approach and estimate bottleneck
bandwidth directly (BBR [26] and TCP-Westwood [44]).
This work is focused on TCP CUBIC [32], the predom-

inant TCP congestion control used today with the largest
share of the Alexa Top 20,000 websites [45]. CUBIC has been
the default TCP variant for Linux since Kernel v2.6.19 [2]
and for Windows OS since Microsoft Windows Server 2019
OS [50]. The findings in CUBIC would also provide insights
on behaviors of other loss-based variants with 5G mmWave.

Other TCP congestion control variants, such as Copa [20]
and BBR [26], are less widely adopted than CUBIC. Research

shows that BBR also encounters issues in highly dynamic
5G network [40, 42], and we will leave the investigation of
these variants to our future work.

Similar to other loss-based variants, TCP CUBIC increases
cwnd additively upon receiving ACKs, and shrinks it mul-
tiplicatively upon experiencing packet loss [51] (as implied
by duplicate ACKs (≥3) from the receiver or a timeout [22]).
When a packet loss event occurs, TCP CUBIC records the
current cwnd as an estimate of the current path capacity,
denoted as𝑊𝑚𝑎𝑥 . The cwnd is reduced to𝑊𝑚𝑎𝑥 · 𝛽 , where 𝛽
is a constant multiplicative decrease factor. It then updates
cwnd𝑊 (𝑡) to be used at time 𝑡 after the loss event as per a
cubic function

𝑊 (𝑡) = 𝐶 · (𝑡 − 𝐾)3 +𝑊𝑚𝑎𝑥 (1)
where 𝐶 is a constant, and 𝐾 = 3

√︁
𝑊𝑚𝑎𝑥 (1 − 𝛽)/𝐶 .

3 Handover Implications on TCP
First, we study whether TCP CUBIC, as the most widely

used loss-based TCP variant, can achieve high throughput
by exploiting mmWave links, given frequent handovers in
5G due to dense deployments of mmWave cells.

3.1 Methodology
Settings. We conduct an empirical study spanning May
2023 to December 2023, across two major U.S. commercial
carriers viz., Verizon and AT&T. The traces are collected
from 18 distinct routes (5 indoor routes) at six distinct lo-
cations in three cities with mmWave coverage, with each
location having at least two mmWave cells. Our experi-
ments cover a total of 33 distinct 5G mmWave cells and 32
sub-6GHz cells. We collect traces under two mobility scenar-
ios: 1) walking at 3 mph; and 2) driving at 20-30 mph causing
frequent handovers. For each experimental setting (location,
mobility, carrier, etc.), we perform the same test three times.
Experimental Setup. To evaluate TCP performance, we
set up a stationary server with an AMD EPYC-Rome Pro-
cessor and 8GB memory as the TCP sender. It runs Linux
5.15 kernel with TCP CUBIC. It is connected to the Internet
through high-speed Ethernet. The Internet speed could reach
2.6 Gbps in our speed test with another PC, thus not being
the bottleneck. We use two smartphones as the UEs (TCP
receivers): Google Pixel 5 and Samsung Galaxy S22, both
equipped with 5G mmWave and LTE capabilities.
MeasurementTools. As our objective is to analyzewhether
TCP CUBIC over 5G mmWave is able to exploit its full band-
width and correlate the obscured degradations with potential
5G link-layer behaviors (e.g., handovers), we use multiple
measurement tools to acquire data from different layers.
• iPerf3.We use iPerf3 to generate TCP traffic and statistics.
It is configured to report timestamped bit rate, cwnd, and
round-trip-time (RTT) for each 100 ms interval.

ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Liu et al.

• UDP Flooding. We develop a UDP flooding app to satu-
rate the wireless link, for measuring the link capacity
and isolating TCP artifacts such as cwnd adaptation and
retransmissions. The UDP packets are created with in-
cremental sequence numbers to quickly capture packet
loss, duplication, and out-of-order packets.
• tcpdump. We use tcpdump to capture raw IP packets,
enabling fine-grained per-packet analysis of TCP CUBIC.
tcpdump offers insights into events such as packet loss,
duplicate ACKs, packet reordering, etc.
• XCAL [4].We use this a tool to expose 5G link-layer info
from Qualcomm-based firmware. We install the XCAL-
Smart app on the UE, and XCAL5 on a ACER laptop with
AMD Ryzen 7 5800 CPU and 16 GB memory. The lap-
top connects to UEs via adb, and XCAL5 communicates
with XCAL-Smart to fetch and decode link-layer logs. We
write a Python script to extract handover-related mes-
sages (e.g., measurement reports, handover commands).

3.2 TCP Performance under Handovers
Underutilization of Bandwidth. In our experiments,
we find that TCP throughput can significantly benefit from
mmWave, as expected. On average, the TCP throughput is
468.4 Mbps with mmWave cells, as compared to 121.5 Mbps
with just sub-6GHz cells, with a boost of 285.6%.

However, we find that even during low mobility, the “po-
tential” TCP performance is not reached. In UDP flooding
tests conducted separately under the same setting as TCP,
the UE in mmWave cells achieves an average throughput
of 993.1 Mbps. The throughput exceeds 1 Gbps 63.0% of the
time, with the maximum being 1.7 Gbps. However, TCP
throughput only reaches 468.4 Mbps on average, utilizing
47.2% of the mmWave link capacity, lower than the conser-
vative estimation of 75% of UDP throughput [66].

What causes TCP to under utilize the bandwidth? We
hypothesize that frequent handovers could be a key reason.
To this end, we perform a TCP throughput test while keeping
the UE static and connected to a mmWave cell. In this case,
the TCP throughput converges to more than 80% of the link
capacity. This indicates that TCP CUBIC is indeed capable
of achieving this markedly high throughput in the absence
of mobility. We next conduct a more in-depth analysis.
Handovers Negatively Affect TCP Throughput. We
analyze the collected XCAL logs and extract handover com-
mands from the mobilityControlInfo field in the Radio
Resource Control (RRC) messages. These messages are times-
tamped and are associatable with TCP measurement re-
sults. In total, we capture 329 sub-6GHz-sub-6GHz, 109 sub-
6GHz-mmWave, 100 mmWave-sub-6GHz, and 184 mmWave-
mmWave handovers in our experiments.

15 20 25 30 35 40 45
Time(s)

0

500

1000

1500

Th
ro
ug

hp
ut
(M

bp
s) TCP

HOtcp

UDP
HOudp

Figure 2: Comparing TCP/UDP throughput in sample traces.

We observe that during mobility, handovers are common.
The average time that a UE stays in a sub-6GHz (mmWave)
cell before handover is 15.5 s (7.2 s). Handovers happen every
22.1 s on average, in walking tests and every 9.2 s, in driving
tests. When walking (driving), 60% (90%) of the connections
last less than 20 s before handovers. A device that is in a
mmWave cell, in 90% of the cases, will handover to another
cell in 25.8 (10.0) s in walking (driving) tests.

We confirm that handovers indeed negatively impact TCP
throughput. After a handover, cwnd is reduced by 48.3 %
on average, and it takes 6.7 s for TCP to converge to a sta-
ble cwnd. The average throughput at 3 s after handover is
reduced by 26.3%, on average. In contrast, without a han-
dover, the TCP throughput only fluctuates with small vari-
ance. The throughput reduces by more than 50% for only
0.73 times/minute in our experiments. Even if it happens, the
throughput ramps up within 1.8 s on average. In addition,
there are very few packet losses, with 1.25 losses/min on
average, keeping the cwnd stable.

Figure 2 depicts a typical driving trace with TCP and UDP
tests under the same setting independently. We plot the TCP
throughput and link capacity measured by UDP flooding,
with handover events highlighted. At 19 s, a UE handovers
to a mmWave cell. The link capacity quickly exceeds 1 Gbps;
however, the TCP throughput is still low. Five seconds after
this handover, TCP achieves only 33.56% of the link capac-
ity. At 26 and 28 s, two horizontal handovers to other two
mmWave cells occur. TCP CUBIC throughput encounters
brief drops and recovers to its pre-handover value. Subse-
quently, TCP gradually reaches its peak throughput in 10
seconds at around 38 s, which still fails to converge to the
high mmWave available throughput. TCP throughput only
achieves 50.62% of the link capacity on average during the
entire connection duration across the mmWave cells.

3.3 Deficiencies of CUBIC under Handovers
Why do handovers impose such a negative impact on TCP

throughput? To answer, we delve into the traces and asso-
ciate cellular-specific events with transport layer behaviors.
Finding 1: Handover disruption time is NOT an issue.
Although 3GPP rel-16 proposes soft handovers in 5G [12],
our measurements indicate that only hard handovers are
used. During handover execution, no data is transferred. One

M2HO: Mitigating the Adverse Effects of 5G Handovers on TCP ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

XCAL report tcpdumpCorrelate two traces using IP packet size

...

...

Early delivery due to reset

Figure 3: XCAL report and tcpdump packet trace side by side.

hypothesis is that such disruptions trigger timeouts (RTO)
on TCP, causing cwnd to reduce drastically.
However, we find that each such disruption is small and

will not cause any performance degradation. The average
disruption time is only 27.0 ms. Combined with the average
RTT of 69.7 ms in our measurement, the overall latency is
still less than the default minimum TCP RTT of 200 ms on
Linux [1]. We further confirm from our tcpdump traces that
among all 722 handovers, only 11 (1.5%) experience timeout,
and all of them are caused by random access failures.
Finding 2: Handover causes packet losses at the source
cell. We find that improper interactions between 5G and
TCP during handover, rather than disruptions, cause the per-
formance degradation. First, TCP clients experience packet
losses in the source cell. After handover execution, a client re-
ceives out-of-sequence packets, indicating that certain pack-
ets are discarded by the source cell and are not forwarded to
the target cell. This results in multiple duplicate ACKs to the
server, stimulating congestion events and cwnd reduction. In
our traces, we see such duplicate ACKs in 18.4% of handovers.
They result in a 63.3% cwnd reduction, on average.

Why would this happen given that the UE link layer is
supposed to buffer out-of-order packets and wait for retrans-
mission? We uncover that, UE releases the link-layer context
(including info such as link-layer sequence number) with the
source cell after receiving the handover command [15]. As
a result, the UE link layer releases the buffered data to the
upper layer, regardless of whether they are in order or not.
Therefore, TCP observes the packets with sequence number
gaps. We confirm this behavior using XCAL. Although the
context release action cannot be directly captured, we indi-
rectly verify it by observing a sequence of packets labeled
as “delivered to upper layer due to context release.” Besides,
packets after handover are assigned new link layer sequence
numbers, indicating that a new context is established.

We further validate that the gaps in the transport layer are
indeed caused by context release. This requires mapping cel-
lular link-layer packets (collected by XCAL) to TCP packets
(collected by tcpdump), which is infeasible in our experimen-
tal setting. We thus design an experiment, where the server
sends UDP packets with sequentially increasing packet size.

XCAL report tcpdump

No loss

Link-layer sequence number

UDP packet 120-161 lost

Figure 4: Start/End count in XCAL report indicates the se-
quence numbering of link-layer packets.

This is used to correlate the (missing) packets between tcp-
dump and XCAL using packet size as the identifier. Figure 3
shows such an example. From XCAL, link-layer packets of
254 to 272 bytes are delivered to the upper layer due to con-
text release, while packets of 250 to 253 are missing. They
match the pattern observed in the tcpdump trace.
Finding 3: Handovers cause buffer overflows in target
cells. In addition to packet losses at source cells, we also
discover packet losses after handovers at the target cells.
Shortly after handover execution, a target cell experiences
packet loss in 17.7% of all the recorded handovers. It is more
severe when the source cell is mmWave, occurring in 68.7%
of the cases. The number of lost packets, ranges from 1 to
995, leading to a 70.4% cwnd reduction, on average.
To understand where this loss stems from, we examine

XCAL traces using UDP packets with incremental sizes again,
and find that link layer does not discard any packets. Figure 4
shows a typical XCAL trace post-handover, where the link-
layer sequence numbers are in order while the transport
layer observes losses (lines 120-161 in the figure). The device
receives link-layer packets with in-order sequence numbers.
This implies that these lost TCP packets are already discarded
before the target cell starts to serve the user.

We infer that, these packets are lost at the target cell due to
a buffer overflow. During a disruption from a handover, both
pending packets from the source cell and new packets from
the sender cannot be sent to the UE. These are accumulated
in the target cell buffer. The TCP sender, unaware of the
ongoing handover, sends data until the send window is full,
often causing overflows of this buffer. We cannot directly
observe such drops from device-side logs, but indirectly val-
idate this hypothesis. First, we observe that only new data
sent after the handover commencement, are lost. This means
that the lost packets are those at the end of the queue, likely
due to buffer overflow. Second, buffer overflow explains why
the loss is more likely when the source cell is mmWave. The
sender is more likely to have a larger cwnd when the client
is in a mmWave source cell, causing more data accumulation
in the target cell queue buffer upon handover.
Finding 4: Slow window growth after handover. Fi-
nally, we show that the congestion window grows at a very

ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Liu et al.

10 20 30 40
Time (s)0

500

Tp
ut

(M
bp

s)

2

4

CW
(M

B) TCP
Horizontal HO
Vertical HO
CW

Figure 5: TCP cwnd slow rampup after handover tommWave.

slow rate even if the link capacity is greatly increased af-
ter vertical handovers to mmWave cells. For all types of
handovers, it takes 6.7 s on average for cwnd to converge2.
This issue is especially serious for vertical handovers from
sub-6GHz to mmWave cells, where the available bandwidth
increases greatly. It takes 17.2 s on average for TCP through-
put to converge to the available bandwidth. Considering that
a device often stays in a cell for less than 20 s before handover
(§3.3), throughput barely converges in our experiments.

Figure 5 shows a typical trace of cwnd and throughput
changes. There are three handovers during 30 s of mobility.
At 11.5 s, a horizontal sub-6GHz handover causes consecutive
packet losses and cwnd reduction. At 19 s, a vertical handover
to mmWave increases the throughput to 384.4Mbps. Another
horizontal handover between mmWave cells at 27 s increases
the cwnd at a slow pace, over an extended 24.5 s to raise
the throughput to the link capacity. Note that although TCP
converges to the pre-handover throughput, it fails to reach
the highmmWave capacity, causing severe under-utilization.
The root cause is TCP CUBIC’s loss-based congestion

control algorithms’ conservative cwnd increase during con-
gestion avoidance. Specifically, as per Eqn. 1, TCP CUBIC
probes the Bandwidth-delay product (BDP) at a slow pace
when cwnd is around𝑊𝑚𝑎𝑥 . As shown in Figure 5, there is a
12 s slow probing phase around𝑊𝑚𝑎𝑥 . CUBIC designs this
slow probing phase with the assumption that𝑊𝑚𝑎𝑥 is close
to the actual channel capacity. However,𝑊𝑚𝑎𝑥 is not proac-
tively estimated to reflect the increased BDP, after a vertical
handover to mmWave. Instead, it is only updated using the
cwnd when congestion (packet loss) is conceived to occur.
In this case,𝑊𝑚𝑎𝑥 is set to the cwnd before handover, failing
to reflect the bandwidth of the new channel capacity.

3.4 Design Insights for Mitigation
Cross-Layer Solution across Link and Transport Layers.
Our findings highlight the need for a cross-layer solution that
seamlessly integrates information from both of these layers
to mitigate improper interactions. The 5G link layer will
provide handover-related and real-time capacity info, while
TCP will adapt its behavior based on link-layer information.
Handover State-Dependent Solution. As our investi-
gation has uncovered, the causes of TCP underperformance
exist in distinct stages of handovers, both before and after
2Here we consider TCP CUBIC throughput to converge when it reaches
75% of UDP throughput, which is its limit in static case due to intrinsic
overhead as shown in a large-scale measurement test [66].

Preparation

Handover Prediction (§4.2)

Reorder Handling (§4.4)

Bandwidth Estimation (§4.5)

State-dependent action

Server

M2HO State

Handover
Predicted

Handover
Complete

Smoothing
End

Preemptive Window
Shrinking (§4.3)

RWND
Control

Stable

Smoothing

Figure 6: Overview of M2HO design.

the execution. For proper mitigation, we need to design state-
dependent actions. A prerequisite to such a solution is to
identify handovers in an accurate and timely way. This way,
proper countermeasures can be taken before loss occurs.

4 Mitigating Handover Effects with M2HO

4.1 Overview
We introduce M2HO, a novel solution designed to mitigate

all mentioned negative effects on TCP, caused by handovers.
M2HO is standards-compliant and operates without modifying
the 5G protocol stack. As a cross-layer solution, M2HO ana-
lyzes the link-layer signaling messages and predicts impend-
ing handovers. It subsequently masks their adverse effects
via device-side packet manipulation mechanisms. M2HO lever-
ages link-layer information to infer the available bandwidth,
and implicitly adjusts the sending rate using the TCP rwnd.
M2HO is a pure device-side solution, requiring no infrastruc-
ture assistance or specification modifications. Since M2HO
significantly mitigates packet loss, it is applicable to any loss-
based TCP variant. Even though the uncovered deficiencies
have lower impact on delay-based TCP variants, M2HO can
also help them by reducing the required retransmissions.
The core of M2HO is a state machine with three states: 1)

Stable state, when no pending handover exists; 2) Prepa-
ration state, when a handover is predicted but prior to its
execution; and 3) Smoothing state, after handover execution.
After the packets buffered before handover are delivered, the
state machine goes back to the stable state. Our action space
includes four state-dependent actions, as shown in Figure 6.
• Stable State: Lightweight, Event-Based Handover Predic-
tion (§4.2). In the absence of a pending handover, M2HO
monitors the control-plane signaling messages at the link
layer infrequently (once every few seconds), and predicts
any upcoming handovers early with high accuracy. It
leverages the insight that a handover decision is event-
based and the device could infer the cell’s decision by
locally checking events in measurement reports.
• Preparation state: Preemptive Window Adjustment to Mit-
igate Packet Drops (§4.3). M2HO tackles potential drops
caused by cell buffer over-subscription by preemptively
adjusting the rwnd to reduce server’s sending rate, with-
out direct servermodifications. M2HO incorporates a novel

M2HO: Mitigating the Adverse Effects of 5G Handovers on TCP ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

Table 1: 5G measurement events.
Event Explanation

A1 Serving cell becomes better than threshold
A2 Serving cell becomes worse than threshold
A3 Neighbor becomes offset better than serving cell
A4 Neighbor cell becomes better than threshold
A5 Serving cell becomes worse than threshold1 AND

Neighbor becomes better than threshold2
B1 Inter RAT neighbor cell becomes better than threshold
B2 Serving cell becomes worse than threshold1 AND

Inter RAT Neighbor cell becomes better than threshold2

algorithm to estimate buffer size leveraging 5G/4G cells’
burst-based transmission scheme [21].
• Smoothing State: Suppressing Unnecessary Congestion In-
dicators (§4.4). M2HO identifies duplicate ACKs caused by
source cell packet losses as unnecessary as they will be
delivered via a second attempt by the target cell. This
insight allows M2HO to suppress the duplicate ACKs after
handover execution to avoid cwnd reduction. M2HO intel-
ligently recognizes the end of such a secondary delivery
and releases the suppression.
• Stable State: rwnd-Based Sending Rate Control and Avail-
able Bandwidth Estimation (§4.5). To ensure a fast cwnd
convergence after an abrupt bandwidth increase, M2HO
opts to control the sending rate using rwnd after a ver-
tical handover to a sub-6GHz cell. M2HO dynamically es-
timates the available bandwidth and updates rwnd to
avoid a following loss event and cwnd reduction. When
the UE hands over back to a mmWave cell, M2HO releases
rwnd control and the sender will still enjoy a large cwnd.

4.2 Event-Based Handover Prediction
The first critical component of M2HO is to predict an im-

minent handover, which aids the UE in making informed
preemptive actions before the actual handover execution. A
simple solution without prediction is to react upon receiving
a Handover Command. However, our measurements indi-
cate an average interval of 32.7 ms between the reception of
the handover command and the actual execution. This short
interval is insufficient for triggering changes in TCP server
actions to prevent the adverse effects.
Prediction Algorithm. M2HO predicts a handover before
the arrival of Handover Command with high accuracy by
analyzing lightweight 5G link-layer messages. The key in-
sight is that the 5G handover is interactive and event-driven.
As discussed in §2.2, a UE sends a measurement report if
the measured signal strength meets the criteria of one of
the configured events. The list of possible events are stan-
dardized [13], and a subset of them is shown in Table 1. An

Algorithm 1 Handover prediction algorithm.
𝑀𝑅 ← the event in a measurement report object.
𝑠,𝑚 ← serving cell and a measured cell as in the event.
if 𝑀𝑅 = 𝐴3 and 𝑠 .𝑡𝑦𝑝𝑒 =𝑚.𝑡𝑦𝑝𝑒 then return HO
if 𝑠 is sub-6GHz then

if 𝑀𝑅 = 𝐵1 then return HO
else if 𝑀𝑅 = 𝐴5 and𝑚 is mmWave then return HO

else if 𝑠 is mmWave and𝑀𝑅 = 𝐴2 then return HO
else Return No HO

example is A2 Event, where a neighbor cell’s signal quality
is higher than a threshold pre-configured by source cell.
While the operators can configure events with different

thresholds for each cell, they usually employ the same handover-
triggering logic based on the reported events [55]. Therefore,
in M2HO, the UE captures such events from measurement re-
ports from the 5G link layer locally and predicts a handover
by inferring the cells’ decision logic. We design a lightweight
prediction algorithm, depicted in Algorithm 1. We observe
that when the serving cell is sub-6GHz, the serving cell will
initiate a vertical handover to a mmWave cell whenever
feasible. This includes the B1 event, when a mmWave cell
has a signal better than the B1 threshold, and the A5 event
when a mmWave cell has a better signal strength than an
A5 threshold and the current cell’s signal strength is below
another A5 threshold. On the other hand, if the serving cell
is a mmWave cell, a vertical handover to the sub-6GHz cell
is only initiated upon an A2 event, which indicates that the
signal strength of the serving mmWave cell is no longer
acceptable. Meanwhile, a horizontal handover is initiated
when a neighbor cell’s signal strength becomes better than
that of the serving cell by an offset (A3). While there are
other events defined by 3GPP (e.g., A4 and B2), they are not
directly correlated with handover from our observations and
thus excluded from M2HO’s decision making.
M2HO scrutinizes the RRC messages and extracts reported

events frommeasurement reports. If any handover-triggering
condition is met, it predicts an upcoming handover. To mit-
igate false positives, M2HO employs a fallback mechanism,
canceling predicted handover actions if no handover occurs.
M2HO includes two conditions for such fallbacks: 1) An A1
event is generated after prediction, since A1 indicates a good
signal quality from the serving cell. This is usually perceived
as a signal that the handover will be annulled since the sig-
nal strength of the serving cell is improving. 2) A handover
command is not received within 2 ·𝑇2 after prediction, where
𝑇2 is the average interval between the measurement event
and handover command as recorded by M2HO. This indicates
a mis-prediction and a handover is unlikely to happen.

ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Liu et al.

Fully AllocatedTime
Slot Partially Allocated

Not AllocatedBurst Burst
Figure 7: Identify the burst with fully allocated slots.

4.3 Preemptive Window Shrinking
After a handover is predicted by M2HO, it enters the prepa-

ration state, where the UE aims to mitigate the potential over-
flow after handover execution as discussed in §2.2. Without
access to the cell’s internal buffer, M2HO opts to preemptively
prevent the TCP server from sending excessive data.
Controlling the server’s sending rate via receive win-
dow tuning at the UE. M2HO is a client-side-only solution
that avoids any server-side changes. As the sending rate is
bounded by 𝑟𝑤𝑛𝑑 , to prevent the sender from overflowing
the receiver’s buffer, M2HO encapsulates the intended sending
rate, 𝑟𝑤𝑛𝑑𝑒𝑠𝑡 , as rwnd in all uplink packets. 𝑟𝑤𝑛𝑑𝑒𝑠𝑡 is sup-
posed to be a small value, and once the first packet with the
modified rwnd arrives at the server, it refrains from sending
more data. The volume of in-flight packets will converge to
𝑟𝑤𝑛𝑑𝑒𝑠𝑡 , avoiding packet losses from buffer overflow.

There is a corner case where the first packet with modified
rwnd arrives at the server too late, causing in-flight packet
numbers to still exceed the buffer size. However, M2HO still
performs no worse than vanilla TCP CUBIC. Importantly,
a reduced rwnd will not further increase the in-flight data
and aggravate buffer overflow. Besides, if packet loss indeed
occurs, the sending rate after handover will be decided by
cwnd and M2HO will not impact throughput post-handover.
We will also show in §6 that a late rwnd barely happens
thanks to our early handover prediction algorithm.
Estimating buffer size. Akey design choice is to properly
select 𝑟𝑤𝑛𝑑𝑒𝑠𝑡 for reasonable sending rate control. A straight-
forward solution is to set 𝑟𝑤𝑛𝑑𝑒𝑠𝑡 as 0, which fully stops the
server from any further data transmission, as in M-TCP [24].
However, this wastes the available bandwidth between the
measurement report and handover execution times, which
is 178.9 ms on average, and can be up to 310.2 ms. Such a
long disruption might even affect application services.

We note that M2HO needs tomake sure that the data volume
in-flight is smaller than the max buffer size of the target cell,
𝑠𝑖𝑛−𝑓 𝑙𝑖𝑔ℎ𝑡 ≤ 𝑠𝑚𝑎𝑥 , as the buffered data will be no more than
in-flight data. Consequently, an oracle M2HO would select
𝑟𝑤𝑛𝑑𝑒𝑠𝑡 = 𝑠𝑚𝑎𝑥 , since the 𝑠𝑖𝑛−𝑓 𝑙𝑖𝑔ℎ𝑡 is bounded by 𝑟𝑤𝑛𝑑 .

However, the max buffer size, 𝑠𝑚𝑎𝑥 , is unknown to UE. We
estimate this value by leveraging a key insight from cellular
downlink scheduling [21]. To serve all connected UEs, a cell
will clear each UE’s buffer before serving another one. This
scheme is shown in Figure 7. As background, 5G splits the
time domain into time slots. In each time slot, resources
on frequency domains are split into Resource Blocks (RBs).
When the cell schedules downlink data for a UE, it will assign

most RBs to it in consecutive time slots until the buffer is
cleared. We call this period a burst period. The beginning
of the burst is marked by a time slot when RBs are fully
allocated to the user. The burst ends with a time slot with
partially allocated RBs followed by one with none.3

Since the burst drains the current buffer data, the UE could
count the data received within one burst period to estimate
the data in buffer before the burst, effectively getting a lower
bound of 𝑠𝑏 , on 𝑠𝑚𝑎𝑥 . M2HO keeps counting the data in each
burst period, and updates the lower bound on the buffer if the
new estimate is larger than the previous estimate, denoted
as 𝑠𝑚𝑎𝑥 . Eventually, we have 𝑠𝑏 ≤ 𝑟𝑤𝑛𝑑𝑒𝑠𝑡 = 𝑠𝑚𝑎𝑥 ≤ 𝑠𝑚𝑎𝑥 .
M2HO updates 𝑠𝑚𝑎𝑥 for current cell in every burst.
M2HO needs to estimate the buffer size of the target cell.

When using bursts as above, it only learns the buffer size
of the serving cell. Thus, M2HO also records the cell ID and
stores its buffer size in the local database. When a handover
happens, M2HO reads the target cell ID and gets the buffer
size estimate from the history. If the target cell has not been
accessed before, M2HO reads the target cell “type” from the
handover command and uses the minimum buffer size of the
same cell type in the history as a conservative estimate.
Confirming the scheduling algorithm and burst peri-
ods in 5G. We cross-validate the scheduling method as
claimed in [21] by analyzing our collected traces. For this
purpose, we calculate the percentage of the time slots where
resources are assigned to the UE belonging to a burst. In our
5G sub-6GHz measurement, the slot length is 0.5 ms and the
maximum number of RBs is 106 as per the RRC configuration.
We find that 96.5% of the received resources belong to a burst.
This confirms the validity of the buffer-clearing scheduling.

However, we cannot verify this pattern in mmWave cells.
Due to directional beams, when a mmWave cell allocates RBs
to a UE, the radio resource cannot be shared among other UE.
Thus, we cannot easily identify the partial slots from resource
allocation. Therefore, M2HO assumes mmWave cell’s buffer
is no smaller than a sub-6GHz’s buffer. This is because we
observe no buffer overflow behavior in handovers between
mmWave cells, while mmWave-sub-6GHz handovers usually
suffer from packet losses. M2HO in turn uses the minimum
buffer size of the sub-6GHz cells as a safe estimate.

4.4 Handling Packet Reordering
M2HO confirms handover execution completion by finding

random access procedure messages at the link layer, and sub-
sequently enters the smoothing state. In this stage, duplicate
ACKs are sent from the UE, resulting in the reduction of
sender’s cwnd. This is unnecessary, as the missing packets
will be retransmitted by the target cell. M2HO suppresses such
3Note that, we define a time slot as “fully” assigned if more than 90% of the
RBs are assigned to the UE, and partially assigned if less than 40% of the
RBs are assigned to the UE. This is consistent with the definition in [21].

M2HO: Mitigating the Adverse Effects of 5G Handovers on TCP ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

duplicate ACKs in the smoothing state. It specifies a short
time period after handover, during which all outgoing ACKs
are discarded. This will ensure that the duplicate ACKs are
not seen by the server, not affecting cwnd on the server side.

M2HO intelligently decides when to stop the suppression. A
premature termination will potentially incur duplicate ACKs,
while a late release might even cause a timeout on the sender
side. M2HO releases the suppression when all the data from
the source base station have been sent. It uses two indicators.
First, if M2HO sees an outgoing ACK with a larger sequence
number (SN) than the largest SN before handover, all data
tunneled to the new cell has been delivered. Second, the
suppression ends when M2HO observes the end of the first
burst period. Similar to our observation in §4.3, the target
cell will quickly clear the buffer, including data forwarded
from the source base station, in a burst pattern.
We note that, M2HO does not adversely ignore legitimate

duplicate ACKs caused by actual packet loss. Actual packet
loss is potentially triggered by buffer overflow. However,
we note that, when such a packet loss event happens, those
dropped packets will have higher sequence numbers than the
ones received before handover. This already satisfies our first
suppression releasing condition, and M2HOwill let TCP report
duplicate ACKs and trigger a sender-side retransmission.

4.5 rwnd Control w/ Bandwidth Estimation
Traverse the bandwidth gap bymaintaining large cwnd.
On exiting the smoothing state, M2HO enters a stable state
which aims to update the server’s sending rate to fully utilize
the bandwidth. We note that, it is challenging to increase the
sending rate on the device side. Using rwnd is effective in
limiting the sending rate, but not increasing it.

M2HO’s core idea is to keep sender’s cwnd at the level of a
mmWave cell even when the UE hands over to a sub-6GHz
cell. Thus, when the UE switches back to a mmWave cell, the
sender still has a large cwnd. Interim, when the UE is in a
sub-6GHz cell(s), M2HOmanipulates rwnd to limit the sending
rate, preventing loss events from decreasing the cwnd.
Estimating available bandwidth. As the sending rate
in sub-6GHz cells is throttled by rwnd, it cannot be set ar-
bitrarily but needs to faithfully reflect the channel capac-
ity. An underestimated rwnd leads to an underutilized link,
while overestimation causes packet losses. To this end, M2HO
estimates the capacity and adjusts the rwnd continuously.
We adapt a simple, client-side estimation algorithm based
on RTT variation and real-time bandwidth estimation [38].
M2HO performs RTT estimation using the TCP timestamp
option [35]. In every RTT, M2HO counts the bytes received as
a conservative bandwidth estimate 𝑐𝑒𝑠𝑡 . rwnd is computed
as,

𝑟𝑤𝑛𝑑 = 𝜆 × 𝑐𝑒𝑠𝑡 ×
𝑅𝑇𝑇𝑚𝑖𝑛

𝑅𝑇𝑇
(2)

where 𝑅𝑇𝑇𝑚𝑖𝑛 is the minimum RTT value measured by M2HO.
𝜆 is a tunable parameter that determines the aggressiveness
of probing. In our setting, aggressive probing might lead to
overestimation of the link capacity, causing packet losses and
cwnd reduction. Therefore, we set 𝜆 = 2, a less aggressive
value based on the prior cellular experimental results [38].

5 Implementation
5.1 Implementing M2HO
We implement M2HO as a pure user-space daemon on the

device side, as shown in Figure 8. It is based on the Android
14 Kernel with Google Tensor and Qualcomm chipsets. The
same implementation logic could also be applied to other
OSes (e.g., iOS) and chipsets (e.g., MediaTek). All components
are written in C with 1,028 lines of code.

Our implementation consists of three major components.
Controller. The Controller module maintains the states
for M2HO and controls the TCP behavior based on its state-
dependent design. With respect to the former, M2HO main-
tains a local state machine. It interacts with Event Capturer
to acquire the measurement events and runs event-based
handover prediction (i.e., Algorithm 1). For the latter, M2HO
implements the burst-based throughput estimation, updating
the intended rwnd and sending it to the Packet Processor to
enforce the packet processing policy. It also sends requests
to Packet Processor to start and release reorder suppression.

We build a shared memory object for Controller to update
policy to Packet Processor. It supports two commands: “rwnd
Update,” where Controller specifies the new rwnd window
(negative meaning release), and “ACK Suppression” with 1
meaning activation and 0 meaning release. To retrieve in-
formation from link and TCP layers, we build two shared
memory objects, one for packet stats report from Packet Pro-
cessor and the other for link-layer info from Event Capturer.
Packet Processor. This module is M2HO’s interface to ma-
nipulate TCP packets. It is implemented as a netfilter_queue
process to control TCP packets in user space4. At the start of
a TCP connection, Packet Processor sets iptables rules to redi-
rect all TCP packets to the Netfilter queue. When any TCP
packet passes through the iptables, the module will receive
a callback that allows it to modify, release, or suppress the
packet. Packet Processor changes its strategy upon receiving
commands from Controller as introduced above. It further
logs the sequence number and timestamp for inbound TCP
packets and sends them to Controller .
Event Capturer. This module monitors cellular informa-
tion and sends important events to Controller . The cellular
information in the firmware can be exported through the di-
agnostic API embedded in the chipset firmware (e.g., Android

4If more critical performance is needed, it can be implemented in the kernel.

ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Liu et al.

Packet Processor

TCP Client

Event Capturer

Controller

PC

Packet Modify
Netfilter
queue

Policy Update
Packet
Stats

Packet Info Link event

Cellular
InfoUser

space

Kernel

Device

Emulation
params Netfilter

queue

TC qdiscs 1

Link
event

Iptables

TCP ServerEmulator
Controller

TCP Server

Commercial
5G Network

Emulator

Device
Modem

Device Firmware

TC qdiscs 2

Device
USB

tether
-ingIptables

M2HO moduleMessageTCP data Network pathUDP Emulator path
Figure 8: Implement M2HO in phone and emulate channel dynamic by replaying real trace.

iPerf3 log

Pixel 6

Emulator log

Figure 9: Testbed.

dev/diag Port [41]). This module leverages that information
to report four events to Controller : 1) measurement reports;
2) handover command; 3) random access completion after
handover; 4) RB allocation status per slot. The first three
events are used for state management, and the last is re-
ported periodically for buffer estimation.

5.2 Implementation-Compatible Emulator
While M2HO implementation is generally applicable, we

currently cannot achieve accurate evaluation results as XCAL
delivers messages from firmware with significant delays
(around 2.4 s). Implementing Event Capturer in firmware
fundamentally addresses the issue, but we have no access to
5G firmware on commercial smartphones. We are working
with industry collaborators to explore the possibility.

To this end, we further develop a trace-driven emulator for
evaluation purposes. The architecture is shown in Figure 8.
Instead of connecting the phone with M2HO to commercial 5G,
we connect it to the PC using USB network tethering5. The
program on the PC modifies the capacity and emulates han-
dover behaviors, both based on replaying the traces collected
during our measurement study. This way, the emulator is
transparent to the device and M2HO components. From the
phone’s perspective, it is as if it is directly running under a
cellular network. It has three major functionalities.
Emulating the channel dynamics. The emulator con-
trols the USB data rate to reflect the throughput dynamics.
We create two network interfaces on the PC to emulate two
cells, applying TBF qdisc and NETEM qdisc to control the
link bandwidth and latency, respectively. The configurations
of both qdiscs are updated by our emulator controller, which
gets bandwidth, average delay, and jitters from our measure-
ments. A Netfilter queue is created between the TCP server
and the interfaces to emulate the buffer. All TCP packets have
a Netfilter mark that routes them to one of the interfaces.
Emulating handovers. Emulator Controller acquires
handover events and measurement reports from the XCAL
logs, and then processes the TCP traces to associate han-
doverswith the packet loss events caused by re-establishment.
It duplicates and drops the packets in the server Netfilter

5This link can support 3.8 Gbps with a 1.8 ms latency on average, and thus
is not a bottleneck in our emulation.

queue to recreate false congestion behavior. The delay is em-
ulated by holding packets in the queue. Emulator controller
will then create the bandwidth configuration of the target
cell on an idle interface. After handover execution, it will
change the Netfilter marks, so that the future packets will
be routed to the new interface that emulates the target cell.
Forwarding link-layer message. The Emulator Con-
troller reads the XCAL logs and forwards (using UDP) the
RRC messages, random access messages and RB allocation
report, according to the timestamps, to Event Capturer . Event
Capturer reads the messages from the UDP port instead of
from the firmware diagnostic port.
Confirming the authenticity of the emulator. To val-
idate that our emulator approximates real cells’ behaviors,
we disable the M2HO components and run the emulator by
replaying all our TCP traces in six locations with 722 han-
dovers. We compare the achieved throughput through the
emulated network and under real measurement.
As shown in Figure 12, the measured throughput closely

aligns with real-world data. The average throughput differ-
ence in each 1s sliding window is 6.26%. We thus consider
the emulator to reliably mimic real-world conditions [59].

6 Evaluation
6.1 Evaluation Setup
Testbed. We implement M2HO on a Pixel 6 phone and host
the emulator on a laptop running the Linux 6.5 kernel. The
laptop is equipped with an AMD Ryzen 7 5800U processor
with 16 GB memory. A high-speed USB4 cable connects the
two machines. The TCP sender and receiver run on the PC
and phone, respectively. The setup is shown in Figure 9.
Setting. We replayed a subset of the original traces span-
ning 6 hrs, with 722 handovers. They include 513 horizontal
and 209 vertical handovers. We process these, and extract
the necessary network metrics for the emulator (see §5.2).
Benchmarks. We apply M2HO over vanilla TCP CUBIC.
In addition to CUBIC, we compare the performance of M2HO
with other relevant TCP variants, optimized for cellular net-
works. TCPWestwood [44] is designed for wireless networks
with channel bandwidth monitoring using the rate at which
ACKs are returned. Verus [65] can adjust the sending rates by

M2HO: Mitigating the Adverse Effects of 5G Handovers on TCP ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

100 200
Tput.(Mbps)

0

100

CD
F(
%
)

0 200 400
Tput.(Mbps)

250 500 750
Tput.(Mbps)

100 200 300 400
Tput.(Mbps)

M2HO CUBIC Westwood C2TCP Verus

(a) sub6-sub6 (b) sub6-mmw (c) mmw-mmw (d) mmw-sub6
Figure 10: Average throughput in [-5,5] seconds of handover.

0 20 40
Time(s)

0

100

CD
F(
%
)

0 20 40
Time(s)

0 20 40
Time(s)

0 20 40
Time(s)

M2HO CUBIC Westwood C2TCP Verus

(a) sub6-sub6 (b) sub6-mmw (c) mmw-mmw (d) mmw-sub6
Figure 11: Converge time to stable throughput.

HO Type M2HO CUBIC Westwood C2TCP Verus
Tput. t Tput. 𝜂0% t 𝜂1% Tput. 𝜂0% t 𝜂1% Tput. 𝜂0% t 𝜂1% Tput. 𝜂0% t 𝜂1%

sub6-sub6 175.0 6.8 83.2 110 14.3 52 122.4 43 13.7 51 132.7 32 14.3 52 116.1 51 15.3 56
sub6-mmw 287.4 7.7 138.2 108 15.9 52 200.7 43 17.3 56 201.2 43 14.7 48 200.2 44 17.6 56
mmw-mmw 557.8 4.9 447.4 25 21.2 76 387.9 44 7.8 37 419.8 33 12.9 62 430.2 30 15.7 69
mmw-sub6 348.8 3.6 297.7 17 19.9 82 304.1 15 16.7 79 313.9 10 20.7 83 309.1 13 17.0 79
Overall 314.8 5.9 215.8 46 18.7 68 217.4 45 13.5 56 264.1 20 15.7 62 224.6 40 16.5 62

Table 2: Details of throughput (Mbps) and convergence time 𝑡(s). 𝜂0 (%) and 𝜂1 (%) shows M2HO’s improvement over other
algorithms, while 𝜂0 = (M2HO − 𝑎𝑙𝑔𝑜)/𝑎𝑙𝑔𝑜 and 𝜂1 = (𝑎𝑙𝑔𝑜 − M2HO)/𝑎𝑙𝑔𝑜 .

observing cellular network delay. C2TCP [17] is an end-to-
end algorithm to accommodate different applications’ QoS
requirements. For each benchmark, we apply the parame-
ters used in the original papers (Verus, C2TCP) or use the
standard Linux implementation (Westwood, CUBIC). For
instance, we configure Verus with a 5 ms epoch, a 1 ms
decrement parameter, and a 2 ms increment parameter [65].
Note that these baseline variants handle handover implicitly
and cannot leverage the additional information from M2HO.

To evaluate M2HO’s handover prediction, we compare with
two baselines: LTE-VR [55], a handover prediction algorithm
for 4G LTE, and HO-Naive, a naive method that treats any
measurement report as an indication of handover.

6.2 Overall Performance Evaluation
6.2.1 Average Handover Throughput We assess how M2HO
improves TCP throughput during handover. The throughput
is calculated as the average TCP throughput within the time
range of 5 seconds before and after the handover execution.
The results are shown in Figure 10. Compared to TCP CU-
BIC, M2HO achieves 45.8% higher throughput (215.8 Mbps
→ 314.8 Mbps) across all handovers. In addition, M2HO effec-
tively eliminates the long tail caused by a handover. The 95th
percentile of the throughput is improved from 31.9 Mbps to
158.1 Mbps, a 396% improvement.

M2HO also provides a marked improvement over the base-
line alternatives: 44.8% over TCPWestwood, 40.1% over Verus
and 20.0% over C2TCP. The benefit over C2TCP is not as no-
table; however, M2HO requires device-side modification only,

while C2TCP is an end-to-end solution that requires server
side changes that are hard to realize in practice. Besides,
C2TCP requires manually adding oracle knowledge of cell
configuration parameters such as link delay. This does not
work in real deployments as the UE does not have this knowl-
edge. We remove this oracle information and let C2TCP
naively set target delay as the average of the two links’
(52 ms). This version of C2TCP only achieves 205.8 Mbps on
average, and M2HO provides 53.0% higher throughput.
We also evaluate the improvements across different han-

dover types in Table 2. The improvements are most signif-
icant for sub-6GHz-mmWave handovers. M2HO achieves a
108.3% throughput improvement over CUBIC and a 43.3% on
average, over the other approaches. This is because M2HO can
effectively exploit the large mmWave bandwidth after a han-
dover, thus achieving significant throughput boosts. On the
other hand, M2HO brings more modest benefits in mmWave-
sub-6GHz handovers with a 17.1% improvement over CUBIC
and a 12.7% over the other approaches. This is due to the dom-
inant high throughputs in mmWave cells before handover,
making improvements on the sub-6GHz link less noteworthy.
Here, if we compute the throughput improvement within 5
seconds after handover only, M2HO increases the throughput
significantly, with 27.53%, 29.55%, 30.65%, and 31.13% over
CUBIC, Westwood, C2TCP, and Verus, respectively.

6.2.2 Throughput Convergence Speed Next, we evaluate the
time for TCP to reach the converged throughput after han-
dover. The results are shown in Figure 11. M2HO takes a much

ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Liu et al.

0 20 40 60
Time(s)

0

500

Tp
ut

(M
bp

s)

 Emulated Trace

Figure 12: Sample replay.

sub6-
sub6

sub6-
mmW

mmW-
mmW

mmW-
sub6

Total

Precis. 89.5 95.8 98.0 72.5 90.3
Recall 97.5 99.3 100 98.9 98.6

Table 3: Duplicate handling result.
0 1 2 3

0.0

0.5

1.0

CD
F(
%
)

M2HO
CUBIC
Westwood

C2TCP
Verus

Figure 13: # of losses.

sub6-sub6 sub6-mmW mmW-mmW mmW-sub6 Totalp r p r p r p r p r
Naive 66.3 37.9 24.3 28.8 34.3 36.6 20.4 32.8 41.0 39.0
LTE-VR 98.2 60.0 87.2 56.1 88.8 70.2 68.3 40.2 93.1 64.4
M2HO 98.9 93.3 91.9 93.2 88.8 86.1 88.4 59.3 94.8 87.8

Table 4: Handover prediction precision 𝑝 and recall 𝑟 (%).

M2HO No Pred.
sub6-sub6 128.7 43.8
sub6-mmW 233.7 144.3
mmW-mmW 159.7 80.6
mmW-sub6 146.8 65.8

Table 5: Earliness (ms) comparison.

shorter time to converge in all types of handovers. The aver-
age time with M2HO is 5.9 s, which is a 68.32% improvement
over CUBIC. M2HO also outperforms the other baselines by
56.06% to 62.17%. Among all types of handovers, M2HO of-
fers the most significant reduction in mmWave-sub-6GHz
handovers, with an 82.11% time reduction. M2HO does better
than the baselines by 78.66-82.75%. This is because the high
throughput in mmWave and large bandwidth differences
lead to many losses due to buffer overflows. M2HO is capable
of suppressing these losses and avoiding slow starts.

6.2.3 Overhead To achieve its benefits, M2HO only incurs
a small overhead as a user space application. We use ps to
monitor the resource usage of M2HO process. It consumes an
additional 5.0% CPU usage and 0.6% memory. As mentioned
in §5.2, the overhead could be further reduced if we consider
modifying the kernel as an option.

6.3 Effectiveness of Key Components
6.3.1 Handover Prediction We evaluate the precision, recall,
and “earliness” of our handover prediction Algorithm 1. Pre-
cision is the percentage of correct predictions of handovers.
Recall is the percentage of “occurred handovers” that are
successfully predicted. Earliness refers to the time difference
between when the UE predicts a handover and when the
handover execution starts. As discussed in §4.2, it is impor-
tant that this time is large to ensure a sufficient time for
preparation. The evaluation results for recall and precision
for different types of handovers are shown in Table 4. For all
types of handovers, we achieve 94.8% precision and 87.8%
recall, which are 53.8% and 48.8% higher than naively treat-
ing all measurement reports as handover indicators. Our
recall is 23.9% higher than LTE-VR, which is designed for
4G LTE. M2HO captures the events that include mmWave cell
measurements, such as the B1 event indicating a switch from
a standalone LTE to mmWave cell. This ensures that M2HO
predicts mmWave-related cell switches with higher recall.

On the other hand, although being much higher than the
baselines, the recall for mmWave-sub-6GHz handovers is a
modest 60%. This is because some handovers happen without
measurement reports. We examine the link-layer logs of
those handovers that are not captured by M2HO prediction.We

find that there are continuous transmission failures before
these handovers, causing the UE to spontaneously disconnect
from the mmWave cell and fall back to sub-6GHz. Thus,
M2HO’s event-based algorithm cannot capture such behaviors.
We note two things. First, one might wonder why M2HO

does not consider link failures also as handover indications.
This is because, unlike in a normal handover, consecutive link
failures will cause the connection to be immediately dropped.
In our traces, 80.3% of such transmissions are dropped in the
next 10 ms, leaving no time for rwnd adjustment. Second,
even if such behaviors are not captured, M2HO falls back to
the vanilla CUBIC, inducing no extra overhead.

We evaluate how early a prediction is made, by measuring
“earliness,” the time difference between the prediction and
handover execution, as shown in Table 5. M2HO’s prediction
leaves 128.7-233.7 ms for other components to prepare for an
upcoming handover. Meanwhile, earliness for naively taking
a handover command as the indication is only 43.8-144.3 ms.

6.3.2 Mitigating Losses after Handover We evaluate how
well M2HO reduces the number of loss events after handovers.
The results are shown in Figure 13. Among all handovers,
M2HO ensures 85.2% incur no loss, compared to 44.2%, 55.9%,
60.3%, and 54.1% in CUBIC, Westwood, C2TCP, and Verus.
The baseline methods are not designed to handle buffering
in handovers and thereby avoid losses. When M2HO fails to
eliminate the losses, 87.9% of cases are handovers that are
not captured by our prediction. When a handover is correctly
predicted, in 97.9% of the cases, we do not experience loss.

6.3.3 Unnecessary Duplicate ACK Handling We next exam-
ine the effectiveness of M2HO in mitigating reordering after
handovers. For simplicity, we name every three consecutive
ACKs as a congestion event. Mitigating reordering requires
high precision and recall: the congestion events that M2HO
identifies and prevents should indeed be unnecessary (i.e.,
due to reordering), while M2HO must capture as many unnec-
essary congestion events as possible to prevent cwnd reduc-
tion. The results are shown in Table 3. M2HO achieves a 95.3%
precision overall, with 89.5%, 95.8%, 72.5% and 98.0% for the
four types of handovers, respectively. M2HO’s effective buffer
overflow prevention mitigates real packet loss, resulting in

M2HO: Mitigating the Adverse Effects of 5G Handovers on TCP ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

high precision. We see that the precision for mmWave-sub-
6GHz handovers, is smaller compared to the others. This is
due to the lower recall rate in mmWave-sub-6GHz handover
prediction. Without an early prediction, M2HO delays the pre-
emptive mechanism, incurs packet loss, and thus reduces the
overall precision of reorder handling. For the successfully
predicted handovers, the precision increases to 99.3%.

M2HO achieves a 98.6% recall across all handovers, and
97.5%, 99.3%, 98.9%, and 100% for the four handover types. It
shows that most of the reordering behavior can be effectively
captured and suppressed with the rules discussed in §4.4.

6.3.4 Accuracy of Estimating Available Bandwidth Lastly, we
evaluate how accurately M2HO estimates link capacity. Specif-
ically, M2HO’s estimate must have high accuracy, as it relies
on it to control the send rate (by manipulating rwnd) in a sub-
6GHz cell after a vertical handover from a mmWave cell. We
compute the throughput over 1 s sliding windows, and com-
pute the average TCP throughput over the UDP throughput,
named the “throughput utilization rate.” On average, TCP
CUBIC only achieves a 68.4% average throughput utilization
rate (118.53 Mbps). Meanwhile, M2HO achieves a 151.29 Mbps
average throughput, and the utilization rate reaches 87.3%.
This is a 27.6% improvement over TCP CUBIC.

7 Related Work
Improving throughput at 5G mmWave PHY. Consid-
erable research has been conducted on fully exploiting the po-
tential of 5G mmWave links. Many papers attempt to address
the challenges arising due to the physical characteristics
of mmWave, such as improving signal-to-interference-plus-
noise ratio [25], mitigating mobile blockers [36], and enhanc-
ing reliability and throughput throughmulti-beamforming [37].
Our work studies deployed mmWave in 5G and its impact
on TCP, which is complementary to these efforts.
Improving application performance in 5G. Some re-
search efforts [49, 63] target application performance over
highly dynamic 5G networks. They observe that TCP ap-
plications cannot make full use of bandwidth, and suggest
specialized tuning for such applications. [33] measures han-
dover characteristics (frequency, delay), and proposes a so-
lution for video streaming application. On the other hand,
M2HO reveals the root cause of such deficiencies by studying
interactions between TCP and 5G handovers, and proposes
device-centric, handover-aware solutions for CUBIC.
Reducing 5G handover disruption. To improve TCP
performance during mobility, some prior efforts [30, 54]
propose fine-tuning the handover control parameters to re-
duce handover disruption time, which may improve overall
TCP performance. Our findings reveal that the packet losses
caused by 5G handover have a significant and prolonged
negative impact on performance beyond the disruption time.

TCP sending rate control efforts. Some works leverage
PHY information to estimate the available bandwidth for
TCP window control dynamically [43, 59]. These approaches
however fail to resolve the adverse effects from 5G handovers,
and/or pose impractical or high-overhead requirements such
as knowledge of SINR to rate mapping. Other works rely on
transport layer information only, to optimize TCP sending
rates in dynamic cellular networks [17, 65]. However, they
are handover agnostic and the link characteristic changes
after handover leads to inaccurate estimation.
Window control and handover prediction. Some con-
cepts similar to those used by M2HO have been partially ex-
plored, but are not applicable in our context. [31, 57] adver-
tise receive window as zero during handovers to prevent
packet loss and timeouts. However, unlike M2HO, they cannot
predict mmWave handovers and setting the receive window
to 0 wastes large mmWave bandwidth, while also disrupting
applications. Several machine learning based handover pre-
diction algorithms have been proposed [19, 33, 47, 49]; how-
ever, they either work on the network side or require mod-
ifying apps. Similar to M2HO, [55] uses a signaling-message
for 4G handover prediction, but works poorly for 5G (§6.3).

8 Conclusion
We conduct extensive measurements to uncover critical

deficiencies that hinder achieving high throughputs in 5G
due to mobility induced handovers. To address these short-
comings, we design, implement, and evaluate M2HO, a novel
device-centric solution to mitigate the negative effects from
handovers. M2HO maintains various states of handovers and
mitigates associated issues through state-dependent actions.
Notably, it operates as a transparent middle layer on the
device side only, requiring no modifications to the firmware,
transport layer, or 5G protocols. Our research shows that
simply exposing 5G mobility events to TCP, allows the latter
to intelligently adapt its behavior to enhance throughput in
mobile scenarios. In the future, we plan to extend our analy-
sis to understand how handovers affect other TCP variants.

Acknowledgement
We would like to express our gratitude to the anonymous

reviewers and shepherd for their invaluable feedback. This
research was sponsored partly by the OUSD(R&E)/RT&L and
was accomplished under Cooperative Agreement Number
W911NF-20-2-0267. The views and conclusions contained
in this document are those of the authors and should not
be interpreted as representing the official policies, either
expressed or implied, of the ARL and OUSD(R&E)/RT&L or
the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes,
notwithstanding any copyright notation herein.

ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Liu et al.

References
[1] 2005. linux/include/net/tcp.h at. github.com/torvalds/linux/blob/

master/include/net/tcp.h.
[2] 2006. TCP: make cubic the default · tor-

valds/linux@597811e. https://github.com/torvalds/linux/commit/
597811ec167fa01c926a0957a91d9e39baa30e64.

[3] 2022. T-Mobile Tops 3 Gbps with World’s First Stan-
dalone 5G Carrier Aggregation Achievement. https://www.t-
mobile.com/news/network/t-mobile-tops-3-gbps-with-worlds-first-
standalone-5g-carrier-aggregation-achievement. [Accessed January
2024].

[4] 2023. ACCUVER XCAL. https://www.accuver.com/sub/products/view.
php?idx=6. [Accessed Februrary 2023].

[5] 2023. Faroese Telecom and Ericsson set European 5G mmWave
downlink speed record. https://www.ericsson.com/en/press-
releases/3/2023/faroese-telecom-and-ericsson-set-european-5g-
mmwave-downlink-speed-record. [Accessed January 2024].

[6] 2023. Here are all the US cities with 5G coverage. https://www.
androidauthority.com/5g-cities-us-1105898/. [Accessed January 2024].

[7] 2024. 5G Coverage Map | T-Mobile. https://wholesale.t-mobile.com/5g-
coverage-map/. [Accessed January 2024].

[8] 2024. 5G Phones: 5G Ultra Wideband with a 5G Phone | Verizon.
https://www.verizon.com/5g/phones/. [Accessed January 2024].

[9] 2024. AT&T Rolls Out 5G+ Across the U.S. https://about.att.com/
pages/5g-plus.html. [Accessed January 2024].

[10] 2024. GSMA Thrive: China Sets Its Eye On Millimeter Wave
5G. https://www.spglobal.com/marketintelligence/en/news-insights/
research/gsma-thrive-china-sets-its-eye-on-millimeter-wave-5g. [Ac-
cessed January 2024].

[11] 2024. Verizon CoverageMap: Nationwide 5G and 4G LTENetwork Cell
Phone Coverage | Verizon. https://www.verizon.com/coverage-map/.
[Accessed January 2024].

[12] 3GPP. 2021. TS 38.300: NR and NG-RAN Overall description; (3GPP
TS 38.300 version 16.4.0 Release 16).

[13] 3GPP. 2021. TS 38.331: Radio Resource Control (RRC); Protocol speci-
fication (3GPP TS 38.331 version 16.3.1 Release 16).

[14] 3GPP. 2022. TS 23.502: NR; Procedures for the 5G System (3GPP TS
23.502 version 15.2.0 Release 15).

[15] 3GPP. 2022. TS 37.340: NR; Multi-connectivity; Overall description;
Stage-2 (3GPP TS 37.340 version 15.16.0 Release 15).

[16] 3GPP. 2024. TS 38.104: NR; Base Station (BS) radio transmission and
reception (3GPP TS 38.104 version 17.14.0 Release 17).

[17] Soheil Abbasloo, Yang Xu, and H. Jonathan Chao. 2019. C2TCP: A
Flexible Cellular TCP to Meet Stringent Delay Requirements. IEEE
Journal on Selected Areas in Communications 37, 4 (2019), 918–932.
https://doi.org/10.1109/JSAC.2019.2898758

[18] Ahmed M Al-samman, Marwan Hadri Azmi, and Tharek Abd Rahman.
2019. A survey of millimeter wave (mm-Wave) communications for
5G: Channel measurement below and above 6 GHz. In Recent Trends in
Data Science and Soft Computing: Proceedings of the 3rd International
Conference of Reliable Information and Communication Technology
(IRICT 2018). Springer, 451–463.

[19] Ahmed Alkhateeb, Iz Beltagy, and Sam Alex. 2018. Machine learn-
ing for reliable mmwave systems: Blockage prediction and proactive
handoff. In 2018 IEEE Global Conference on Signal and Information
Processing (GlobalSIP). 1055–1059. https://doi.org/10.1109/GlobalSIP.
2018.8646438

[20] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical {Delay-
Based} congestion control for the internet. In 15th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 18). 329–342.

[21] Arjun Balasingam, Manu Bansal, Rakesh Misra, Kanthi Nagaraj, Rahul
Tandra, Sachin Katti, and Aaron Schulman. 2019. Detecting if lte is

the bottleneck with bursttracker. In The 25th Annual International
Conference on Mobile Computing and Networking. 1–15.

[22] Ethan Blanton, Dr. Vern Paxson, and Mark Allman. 2009. TCP Con-
gestion Control. RFC 5681. https://doi.org/10.17487/RFC5681

[23] Lawrence S Brakmo, Sean W O’Malley, and Larry L Peterson. 1994.
TCP Vegas: New techniques for congestion detection and avoidance. In
Proceedings of the conference on Communications architectures, protocols
and applications. 24–35.

[24] Kevin Brown and Suresh Singh. 1997. M-TCP: TCP for mobile cellular
networks. ACM SIGCOMM Computer Communication Review 27, 5
(1997), 19–43.

[25] Sherif Adeshina Busari, ShahidMumtaz, Saba Al-Rubaye, and Jonathan
Rodriguez. 2018. 5G Millimeter-Wave Mobile Broadband: Performance
and Challenges. IEEE Communications Magazine 56, 6 (2018), 137–143.
https://doi.org/10.1109/MCOM.2018.1700878

[26] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas
Yeganeh, and Van Jacobson. 2016. Bbr: Congestion-based congestion
control: Measuring bottleneck bandwidth and round-trip propagation
time. Queue 14, 5 (2016), 20–53.

[27] Mohammed S Elbamby, Cristina Perfecto, Mehdi Bennis, and Klaus
Doppler. 2018. Toward low-latency and ultra-reliable virtual reality.
IEEE network 32, 2 (2018), 78–84.

[28] Filipa Fernandes, Christian Rom, Johannes Harrebek, Simon Svendsen,
and Carles Navarro Manchón. 2022. Hand Blockage Impact on 5G
mmWave Beam Management Performance. IEEE Access 10 (2022),
106033–106049. https://doi.org/10.1109/ACCESS.2022.3211525

[29] Sally Floyd, Tom Henderson, and Andrei Gurtov. 2004. The NewReno
modification to TCP’s fast recovery algorithm. Technical Report.

[30] Vigneswara Rao Gannapathy, Rosdiadee Nordin, Nor Fadzilah Ab-
dullah, and Asma Abu-Samah. 2023. A Smart Handover Strategy for
5G mmWave Dual Connectivity Networks. IEEE Access 11 (2023),
134739–134759.

[31] T. Goff, J. Moronski, D.S. Phatak, and V. Gupta. 2000. Freeze-TCP: a true
end-to-end TCP enhancement mechanism for mobile environments.
In Proceedings IEEE INFOCOM 2000. Conference on Computer Commu-
nications. Nineteenth Annual Joint Conference of the IEEE Computer
and Communications Societies (Cat. No.00CH37064), Vol. 3. 1537–1545
vol.3. https://doi.org/10.1109/INFCOM.2000.832552

[32] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-
friendly high-speed TCP variant. ACM SIGOPS operating systems
review 42, 5 (2008), 64–74.

[33] Ahmad Hassan, Arvind Narayanan, Anlan Zhang, Wei Ye, Ruiyang
Zhu, Shuowei Jin, Jason Carpenter, Z. Morley Mao, Feng Qian, and
Zhi-Li Zhang. 2022. Vivisecting mobility management in 5G cellu-
lar networks. In Proceedings of the ACM SIGCOMM 2022 Conference.
Association for Computing Machinery, New York, NY, USA, 86–100.
https://doi.org/10.1145/3544216.3544217

[34] Ananya Hazarika and Mehdi Rahmati. 2023. Towards an Evolved
Immersive Experience: Exploring 5G- and Beyond-Enabled Ultra-Low-
Latency Communications for Augmented and Virtual Reality. Sensors
23, 7 (2023). https://doi.org/10.3390/s23073682

[35] Van Jacobson, Robert Braden, and Dave Borman. 1992. RFC1323: TCP
extensions for high performance.

[36] Ish Kumar Jain, Rajeev Kumar, and Shivendra S. Panwar. 2019. The
Impact of Mobile Blockers on Millimeter Wave Cellular Systems. IEEE
Journal on Selected Areas in Communications 37, 4 (2019), 854–868.
https://doi.org/10.1109/JSAC.2019.2898756

[37] Ish Kumar Jain, Raghav Subbaraman, and Dinesh Bharadia. 2021. Two
beams are better than one: towards reliable and high throughput
mmWave links. In Proceedings of the 2021 ACM SIGCOMM. ACM,
488–502. https://doi.org/10.1145/3452296.3472924

github.com/torvalds/linux/blob/master/include/net/tcp.h
github.com/torvalds/linux/blob/master/include/net/tcp.h
https://github.com/torvalds/linux/commit/597811ec167fa01c926a0957a91d9e39baa30e64
https://github.com/torvalds/linux/commit/597811ec167fa01c926a0957a91d9e39baa30e64
https://www.t-mobile.com/news/network/t-mobile-tops-3-gbps-with-worlds-first-standalone-5g-carrier-aggregation-achievement
https://www.t-mobile.com/news/network/t-mobile-tops-3-gbps-with-worlds-first-standalone-5g-carrier-aggregation-achievement
https://www.t-mobile.com/news/network/t-mobile-tops-3-gbps-with-worlds-first-standalone-5g-carrier-aggregation-achievement
https://www.accuver.com/sub/products/view.php?idx=6
https://www.accuver.com/sub/products/view.php?idx=6
https://www.ericsson.com/en/press-releases/3/2023/faroese-telecom-and-ericsson-set-european-5g-mmwave-downlink-speed-record
https://www.ericsson.com/en/press-releases/3/2023/faroese-telecom-and-ericsson-set-european-5g-mmwave-downlink-speed-record
https://www.ericsson.com/en/press-releases/3/2023/faroese-telecom-and-ericsson-set-european-5g-mmwave-downlink-speed-record
https://www.androidauthority.com/5g-cities-us-1105898/
https://www.androidauthority.com/5g-cities-us-1105898/
https://wholesale.t-mobile.com/5g-coverage-map/
https://wholesale.t-mobile.com/5g-coverage-map/
https://www.verizon.com/5g/phones/
https://about.att.com/pages/5g-plus.html
https://about.att.com/pages/5g-plus.html
https://www.spglobal.com/marketintelligence/en/news-insights/research/gsma-thrive-china-sets-its-eye-on-millimeter-wave-5g
https://www.spglobal.com/marketintelligence/en/news-insights/research/gsma-thrive-china-sets-its-eye-on-millimeter-wave-5g
https://www.verizon.com/coverage-map/
https://doi.org/10.1109/JSAC.2019.2898758
https://doi.org/10.1109/GlobalSIP.2018.8646438
https://doi.org/10.1109/GlobalSIP.2018.8646438
https://doi.org/10.17487/RFC5681
https://doi.org/10.1109/MCOM.2018.1700878
https://doi.org/10.1109/ACCESS.2022.3211525
https://doi.org/10.1109/INFCOM.2000.832552
https://doi.org/10.1145/3544216.3544217
https://doi.org/10.3390/s23073682
https://doi.org/10.1109/JSAC.2019.2898756
https://doi.org/10.1145/3452296.3472924

M2HO: Mitigating the Adverse Effects of 5G Handovers on TCP ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

[38] Haiqing Jiang, Yaogong Wang, Kyunghan Lee, and Injong Rhee. 2012.
Tackling bufferbloat in 3G/4G networks. In Proceedings of the 2012
Internet Measurement Conference. 329–342.

[39] Junhyeong Kim, You-Jun Choi, Gosan Noh, and Heesang Chung. 2023.
On the Feasibility of Remote Driving Applications Over mmWave
5G Vehicular Communications: Implementation and Demonstration.
IEEE Transactions on Vehicular Technology 72, 2 (2023), 2009–2023.
https://doi.org/10.1109/TVT.2022.3210689

[40] Rajeev Kumar, Athanasios Koutsaftis, Fraida Fund, Gaurang Naik, Pei
Liu, Yong Liu, and Shivendra Panwar. 2019. TCP BBR for ultra-low
latency networking: challenges, analysis, and solutions. In 2019 IFIP
Networking Conference (IFIP Networking). IEEE, 1–9.

[41] Yuanjie Li, Chunyi Peng, Zhehui Zhang, Zhaowei Tan, Haotian Deng,
Jinghao Zhao, Qianru Li, Yunqi Guo, Kai Ling, Boyan Ding, et al. 2021.
Experience: a five-year retrospective of MobileInsight. In Proceedings
of the 27th Annual International Conference on Mobile Computing and
Networking. 28–41.

[42] Hyoyoung Lim, Jinsung Lee, Jongyun Lee, Sandesh Dhawaskar Sathya-
narayana, Junseon Kim, Anh Nguyen, Kwang Taik Kim, Youngbin Im,
Mung Chiang, Dirk Grunwald, et al. 2023. An empirical study of 5G:
Effect of edge on transport protocol and application performance. IEEE
Transactions on Mobile Computing 23, 4 (2023), 3172–3186.

[43] Feng Lu, Hao Du, Ankur Jain, Geoffrey M. Voelker, Alex C. Snoeren,
and Andreas Terzis. 2015. CQIC: Revisiting Cross-Layer Congestion
Control for Cellular Networks. In Proceedings of the 16th International
Workshop on Mobile Computing Systems and Applications (Santa Fe,
New Mexico, USA) (HotMobile ’15). Association for Computing Ma-
chinery, 45–50. https://doi.org/10.1145/2699343.2699345

[44] Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi, and
Ren Wang. 2001. TCP westwood: Bandwidth estimation for enhanced
transport over wireless links. In Proceedings of the 7th Annual Interna-
tional Conference on Mobile Computing and Networking (Rome, Italy)
(MobiCom ’01). ACM, 287–297. https://doi.org/10.1145/381677.381704

[45] Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer Pande, Raj Joshi,
and Ben Leong. 2019. The great internet TCP congestion control census.
Proceedings of the ACM on Measurement and Analysis of Computing
Systems 3, 3 (2019), 1–24.

[46] Arvind Narayanan, Eman Ramadan, Jason Carpenter, Qingxu Liu, Yu
Liu, Feng Qian, and Zhi-Li Zhang. 2020. A first look at commercial 5G
performance on smartphones. In Proceedings of The Web Conference
2020. 894–905.

[47] Arvind Narayanan, Eman Ramadan, Rishabh Mehta, Xinyue Hu,
Qingxu Liu, Rostand A. K. Fezeu, Udhaya Kumar Dayalan, Saurabh
Verma, Peiqi Ji, Tao Li, Feng Qian, and Zhi-Li Zhang. 2020. Lumos5G:
Mapping and Predicting Commercial mmWave 5G Throughput. In Pro-
ceedings of the ACM Internet Measurement Conference (Virtual Event)
(IMC ’20). ACM, 176–193. https://doi.org/10.1145/3419394.3423629

[48] Arvind Narayanan, Muhammad Iqbal Rochman, Ahmad Hassan,
Bariq S Firmansyah, Vanlin Sathya, Monisha Ghosh, Feng Qian, and
Zhi-Li Zhang. 2022. A comparative measurement study of commercial
5G mmWave deployments. In IEEE INFOCOM. IEEE, 800–809.

[49] Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ahmad Hassan,
Shuowei Jin, Xiao Zhu, Xiaoxuan Zhang, Denis Rybkin, Zhengxuan
Yang, Zhuoqing Morley Mao, Feng Qian, and Zhi-Li Zhang. 2021.
A variegated look at 5G in the wild: performance, power, and QoE
implications. In Proceedings of the 2021 ACM SIGCOMM. ACM, 610–625.
https://doi.org/10.1145/3452296.3472923

[50] Brien Posey. 2019. Explore the Cubic congestion control provider for
Windows. (2019). https://bit.ly/2VfhxoA.

[51] I Rhee, L Xu, S Ha, A Zimmermann, L Eggert, and R Scheffenegger.
2018. RFC 8312: CUBIC for Fast Long-Distance Networks.

[52] Kei Sakaguchi, Ryuichi Fukatsu, Tao Yu, Eisuke Fukuda, Kim Mahler,
Robert Heath, Takeo Fujii, Kazuaki Takahashi, Alexey Khoryaev,
Satoshi Nagata, et al. 2021. Towards mmWave V2X in 5G and beyond
to support automated driving. IEICE Transactions on Communications
104, 6 (2021), 587–603.

[53] Luca Schumann, Trinh Viet Doan, Tanya Shreedhar, Ricky Mok, and
Vaibhav Bajpai. 2022. Impact of Evolving Protocols and COVID-19 on
Internet Traffic Shares. arXiv:2201.00142 [cs.NI]

[54] GP Spoorthi andMBAkkamahadevi. 2019. Handover mechanism in 5G
mmWave band. In 2019 4th International Conference on Recent Trends
on Electronics, Information, Communication & Technology (RTEICT).
IEEE, 772–778.

[55] Zhaowei Tan, Yuanjie Li, Qianru Li, Zhehui Zhang, Zhehan Li, and
Songwu Lu. 2018. Supporting mobile VR in LTE networks: How close
are we? Proceedings of the ACM on Measurement and Analysis of
Computing Systems 2, 1 (2018), 1–31.

[56] Irina Tsareva, Trinh Viet Doan, and Vaibhav Bajpai. 2023. A Decade
Long View of Internet Traffic Composition in Japan. In 2023 IFIP Net-
working Conference (IFIP Networking). 1–9. https://doi.org/10.23919/
IFIPNetworking57963.2023.10186393

[57] Nen-Chung Wang, Ying-Yuan Wang, and Shih-Chien Chang. 2007. A
Fast Adaptive Congestion Control Scheme for Improving TCP Perfor-
mance During Soft Vertical Handoff. In 2007 IEEE Wireless Commu-
nications and Networking Conference. 3641–3646. https://doi.org/10.
1109/WCNC.2007.667

[58] Zhenyu Xiao, Lipeng Zhu, Yanming Liu, Pengfei Yi, Rui Zhang, Xiang-
Gen Xia, and Robert Schober. 2022. A Survey on Millimeter-Wave
Beamforming Enabled UAV Communications and Networking. IEEE
Communications Surveys & Tutorials 24, 1 (2022), 557–610. https:
//doi.org/10.1109/COMST.2021.3124512

[59] Xiufeng Xie, Xinyu Zhang, and Shilin Zhu. 2017. Accelerating Mobile
Web Loading Using Cellular Link Information (MobiSys ’17). ACM,
427–439. https://doi.org/10.1145/3081333.3081367

[60] Dongzhu Xu, Anfu Zhou, Xinyu Zhang, GuixianWang, Xi Liu, Congkai
An, Yiming Shi, Liang Liu, and Huadong Ma. 2020. Understanding op-
erational 5G: A first measurement study on its coverage, performance
and energy consumption. In ACM SIGCOMM. 479–494.

[61] Lisong Xu, Khaled Harfoush, and Injong Rhee. 2004. Binary increase
congestion control (BIC) for fast long-distance networks. In IEEE IN-
FOCOM 2004, Vol. 4. IEEE, 2514–2524.

[62] Tao Yu, Yoshitaka Takaku, Yohei Kaieda, and Kei Sakaguchi. 2021. De-
sign and PoC Implementation of Mmwave-Based Offloading-Enabled
UAV Surveillance System. IEEE Open Journal of Vehicular Technology
2 (2021), 436–447. https://doi.org/10.1109/OJVT.2021.3124787

[63] Xinjie Yuan, Mingzhou Wu, Zhi Wang, Yifei Zhu, Ming Ma, Junjian
Guo, Zhi-Li Zhang, and Wenwu Zhu. 2022. Understanding 5g perfor-
mance for real-world services: A content provider’s perspective. In
Proceedings of the ACM SIGCOMM 2022 Conference. 101–113.

[64] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subrama-
nian, and Carmelita Görg. 2015. Adaptive Congestion Control for
Unpredictable Cellular Networks. SIGCOMM Comput. Commun. Rev.
45, 4 (aug 2015), 509–522. https://doi.org/10.1145/2829988.2787498

[65] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian,
and Carmelita Görg. 2015. Adaptive Congestion Control for Unpre-
dictable Cellular Networks. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication (London, United King-
dom) (SIGCOMM ’15). Association for Computing Machinery, New
York, NY, USA, 509–522. https://doi.org/10.1145/2785956.2787498

[66] Menglei Zhang, Michele Polese, Marco Mezzavilla, Jing Zhu, Sundeep
Rangan, Shivendra Panwar, and Michele Zorzi. 2019. Will TCP work
in mmWave 5G cellular networks? IEEE Communications Magazine
57, 1 (2019), 65–71.

https://doi.org/10.1109/TVT.2022.3210689
https://doi.org/10.1145/2699343.2699345
https://doi.org/10.1145/381677.381704
https://doi.org/10.1145/3419394.3423629
https://doi.org/10.1145/3452296.3472923
https://bit.ly/2VfhxoA
https://arxiv.org/abs/2201.00142
https://doi.org/10.23919/IFIPNetworking57963.2023.10186393
https://doi.org/10.23919/IFIPNetworking57963.2023.10186393
https://doi.org/10.1109/WCNC.2007.667
https://doi.org/10.1109/WCNC.2007.667
https://doi.org/10.1109/COMST.2021.3124512
https://doi.org/10.1109/COMST.2021.3124512
https://doi.org/10.1145/3081333.3081367
https://doi.org/10.1109/OJVT.2021.3124787
https://doi.org/10.1145/2829988.2787498
https://doi.org/10.1145/2785956.2787498

	Abstract
	1 Introduction
	2 Background
	2.1 5G mmWave
	2.2 5G Handover Primer
	2.3 TCP and TCP Congestion Control

	3 Handover Implications on TCP
	3.1 Methodology
	3.2 TCP Performance under Handovers
	3.3 Deficiencies of CUBIC under Handovers
	3.4 Design Insights for Mitigation

	4 Mitigating Handover Effects with M2HO
	4.1 Overview
	4.2 Event-Based Handover Prediction
	4.3 Preemptive Window Shrinking
	4.4 Handling Packet Reordering
	4.5 rwnd Control w/ Bandwidth Estimation

	5 Implementation
	5.1 Implementing M2HO
	5.2 Implementation-Compatible Emulator

	6 Evaluation
	6.1 Evaluation Setup
	6.2 Overall Performance Evaluation
	6.3 Effectiveness of Key Components

	7 Related Work
	8 Conclusion
	References

