
LinKRID: Vetting Imbalance Reference Counting in Linux kernel with Symbolic
Execution

Jian Liu1,4, Lin Yi1, Weiteng Chen2, Chenyu Song2, Zhiyun Qian2, and Qiuping Yi3,5

1{CAS-KLONAT*, BKLONSPT†}, Institute of Information Engineering, Chinese Academy of Sciences
2UC Riverside

3Beijing University of Posts and Telecommunications
4School of Cyber Security, University of Chinese Academy of Sciences

5Beijing Key Lab of Intelligent Telecomm. Software and Multimedia
liujian6@iie.ac.cn, teroincn@gmail.com, {wchen130,csong,zhiyunq}@cs.ucr.edu, yiqiuping@gmail.com

Abstract

Linux kernel employs reference counters, which record the
number of references to a shared kernel object, to track its
lifecycle and prevent memory errors like use-after-free. How-
ever, the usage of reference counters can be tricky and often
error-prone, especially considering unique kernel conventions
of managing reference counters (e.g., external vs. internal
reference counters). In this paper, we aim to automatically
discover incorrect usage of reference counters, overcoming
two key challenges: (1) scalability and (2) the aforementioned
unique kernel conventions. Specifically, we develop a tiered
program analysis based solution to efficiently and precisely
check the imbalances between the change in the actual num-
ber of references and the corresponding reference counter. We
apply our tool to the 4.14.0 kernel (with allyesconfig) and find
118 bugs, out of which 87 are new. The result shows our tool
is scalable and effective.

1 Introduction

Vulnerabilities in operating system (OS) kernels can lead
to serious attacks (e.g., privilege escalation and information
leakage) that compromise the confidentiality and integrity of
the foundation that applications rely on. Memory manage-
ment errors such as use-after-free (UAF) and double-free are
among the most severe kernel vulnerabilities, which often
allow attackers to perform arbitrary read/write and code exe-
cution [35]. Therefore, they have drawn significant attentions
from the security community to harden the kernel against
these vulnerabilities.

*Key Laboratory of Network Assessment Technology, CAS
†Beijing Key Laboratory of Network Security and Protection

As one of most complex system software written in unsafe
languages, the Linux kernel provides many primitives to avoid
memory management errors. One of these primitives that
aims to prevent memory object from being prematurely freed
is reference counter (referred to as refcount hereinafter). A
refcount records the number of references (i.e., pointers in the
C language) to a given memory object. A positive refcount
means a memory object could be accessed in the future, hence
it should not be freed. When a refcount is decremented to zero,
the kernel knows that the associated memory object will no
longer be accessed thus is safe to be freed. In the Linux kernel,
refcounts are widely used for resource management in every
aspect, from user-data, files, memory allocations, to hardware
resources [28]. Refcount mechanisms in the Linux kernel
typically employ a simple data structure called struct kref
which encapsulates an integer as the real counter, and provide
APIs (e.g., kref_get and kref_put) for manipulating the
counter [13].

Since the refcount mechanisms are not automatic, Linux
kernel developers are required to ensure that all operations
on refcounts are performed as intended; in other words, the
refcount and corresponding reference changes should be con-
sistent. Unfortunately, as many other manually enforced secu-
rity invariants, they are prone to errors. Based on our study,
the most common bugs related to refcounts are (1) failure to
increase the counter when a new reference is created, and (2)
failure to decrement the counter when a reference has been re-
moved. The first case can easily lead to use-after-free (UAF),
which is usually exploitable (e.g., CVE-2016-4557 [23]); and
the second case usually results in memory leaks. However, if
the refcount can be incremented repeatedly and indefinitely
(causing an overflow of the refcount), it can also be exploited
to trigger UAF: CVE-2016-0728 [22] is an example of such
vulnerabilities. For this reason, the Linux kernel has adopted

a hardening against refcount overflow [14].
In this work, we aim to discover these refcount-related er-

rors using program analysis techniques. There are two major
challenges in discovering such erroneous refcount usage pat-
terns. First, it fundamentally requires a path-sensitive analysis
to check whether a refcount increment/decrement matches
the addition/removal of new references along a feasible path.
However, it is well-known that path-sensitive static analysis
is extremely difficult to scale and dynamic approaches such
as fuzzing can cover only a limited number of paths. Second,
refcount uses in the Linux kernel have special conventions
that exhibit benign violations of the above consistency rule.
Therefore, without capturing such benign conventions, a tool
will likely produce a large number of false positives and be-
come impractical to use. As an example, the Linux kernel has
the notion of internal references that do not actually need to
be refcounted [1] (see §2.2 for more details).

As of now, no research has adequately addressed both chal-
lenges. Mao et al. [20] proposed using inconsistent path pair
(IPP) to find refcount bugs in the Linux kernel: if two code
paths return the same error code but manipulate the refcount
differently (e.g., have different number of get or put), then
one of them is likely to have a bug. This specific pattern
encoded in the analysis is a less precise (considering only ref-
count changes without reference changes) or weaker version
of the consistency rule we mentioned earlier; therefore, it can
only uncover a subset of refcount bugs. For instance, refcount
bugs can happen along paths that return different error code
(e.g., Figure 3); conversely, all paths that return the same error
code might be buggy but consistent. Some works do conduct
path-sensitive analyses but only within a limited scope. For
example, to find refcount bugs in Python extensions written in
C, Li and Tan [15] adopted an escape rule that requires, in any
function and any of its paths, the change of a refcount must be
equal to the number of references escaped from the function.
Since the analysis is tailored towards the native C used in
Python modules, it relies on well-defined interfaces (between
Python and C) to track refcount changes and the analysis
scope. In addition, it employs the notion of “shallow aliasing”
which can easily miss aliases (which is especially challenging
to track in the Linux kernel), leading to imprecision analysis
results. Finally, none of the related work addresses the second
challenge of special Linux conventions of refcount usage;
therefore, they can induce many false positives.

Motivated by the above deficiencies, we develop
LinKRID (Linux Kernel Refcount Imbalance Detector), a
scalable and practical refcount bug discovery tool for the
Linux kernel, that addresses the aforementioned challenges.
To scale up the path-sensitive analysis, we apply a tiered anal-
ysis — starting with a lightweight static analysis to identify a
constrained scope of a refcounted object, through which we
can then analyze in detail the corresponding refcount changes
and global reference changes using under-constrained sym-
bolic execution. We also codify a set of conventions currently

specified in natural language (e.g., documentations) to filter
seemingly erroneous but benign usage patterns. To our knowl-
edge, LinKRID is the first tool that attempts to fill the void of
addressing both the imprecise modeling and Linux-specific re-
fcount usage conventions, packaged in a scalable analysis tool
representing an important step towards automating the discov-
ery of Linux kernel refcount bugs. We applied LinKRID to
the 4.14.0 kernel, which includes all drivers, file systems, and
other peripheral modules that can be compiled under the x86
architecture. LinKRID successfully re-discovered all refcount
bugs reported in [20], and further found 118 bugs, within
which 87 are new.

In summary, this paper makes the following key contribu-
tions:

• We identified the limitations of prior static analyses for dis-
covering refcount bugs, and proposed more general patterns
that reflect the root causes of refcount bugs.

• We propose a combination of static analysis and under-
constrained symbolic execution to track the dynamic ref-
erence and refcount changes. We show this approach is
precise and efficient.

• We developed a practical refcount bug finding tool and
found 87 new bugs in the v4.14 Linux kernel. We plan to
open source the tool entirely to facilitate the reproduction
of the results and future research.

2 Refcount Bugs in Linux

The purpose of refcount mechanisms is to manage the lifecy-
cle of shared memory objects [28]. A refcount is, in general,
a counter that records how many (live) references/pointers
can be used/dereferenced to access the shared object (in the
future). Note that such references/pointers do not have to
point to the beginning of the object, as long as they point
to the memory space occupied by the object, they should be
refcounted.

Each time, a new live reference to an object is created, the
corresponding refcount should be increased by 1. When the
lifecycle of a reference ends (i.e., will no long be used to
access the object), the refcount should be decreased by 1. Ref-
count can be automatically maintained through programming
language (e.g., Python) or containers (e.g., std::shared_-
ptr in C++). In the Linux kernel, however, refcounts are man-
ually managed by developers, which makes them error-prone.
Developers must guarantee the refcount consistency (i.e., ref-
count = #(live reference)) in all execution paths, including all
error handling paths.

2.1 Bugs due to Complex Paths

Figure 1 is a UAF example (CVE-2016-0728 [22]) in the
Linux kernel caused by refcount bug in an error handling path.

1 long join_session_keyring(const char *name) {
2 struct cred *new;
3 struct key *keyring;
4 long ret;
5 ...
6 keyring = find_keyring_by_name(...);
7 if (PTR_ERR(keyring) == -ENOKEY) {
8 keyring = keyring_alloc(...);
9 if (IS_ERR(keyring)) {

10 ret = PTR_ERR(keyring);
11 goto error2;
12 }
13 } else if (IS_ERR(keyring)) {
14 ret = PTR_ERR(keyring);
15 goto error2;
16 } else if (keyring == new->session_keyring) {
17 ret = 0;
18 goto error2;
19 }
20 ...
21 install_session_keyring_to_cred(new, keyring);
22 ret = keyring->serial;
23 key_put(keyring);
24 return ret;
25 error2:
26 return ret;
27 }
28 struct key *find_keyring_by_name(...) {
29 struct key *keyring;
30 // if name match
31 if (atomic_inc_not_zero(&keyring->usage))
32 return keyring;
33 return ERR_PTR(-ENOKEY);
34 }

Figure 1: Simplified code snippet of CVE-2016-0728 [25], a
missing refcount decrement bug.

In function join_session_keyring(), if the kernel success-
fully found the corresponding keyring, the object keyring’s
refcount is increased by atomic_inc_not_zero() at line 31;
otherwise it returns an error code. A special case/path, how-
ever, is when the look up is successful but the keyring is the
same as the current one (line 16). One the return path, the
refcount is not decremented (e.g., line 23). This violates the
refcount consistency of keyring and can lead to UAF as it
can be triggered multiple times to overflow the keyring’s
refcount (at that time, before the overflow hardening is intro-
duced). Note that this refcount bug can only be triggered on
this path. On other paths, the refcount changes and reference
changes are balanced, as the reference keyring is a local
variable and will be automatically released once the function
returns; and the refcount is not incremented on other error
returning paths.

This example illustrates a few important points: (1) We
need a more fundamental invariant like refcount consistency
within a single path to reliably detect all refcount bugs. Prior
work RID [20] detects inconsistencies across paths: if there
are two paths where the refcount changes are different but
the return values are the same, it usually indicates a refcount
bug. RID is unable to detect the example bug because the
erroneous path is the only path that returns 0. (2) We need a

1 static void amp_mgr_destroy(struct kref *kref) {
2 struct amp_mgr *mgr = container_of(kref, struct

amp_mgr, kref);
3 mutex_lock(&_mgr_list_lock);
4 list_del(&mgr->list);
5 mutex_unlock(&_mgr_list_lock);
6 kfree(mgr);
7 }
8 int amp_mgr_put(struct amp_mgr *mgr) {
9 return kref_put(&mgr->kref,

&_mgr_destroy);
10 }
11

Figure 2: An example of internal reference.

path-sensitive analysis to precisely identify the problematic
path, which leads to two decrements of a refcount but only one
actual reference removal. If we only perform a flow-sensitive
analysis and consider what “may” happen (instead of what is
feasible), then we will report false alarms for error other paths
that also go to label error2. (3) It is necessary to conduct
an inter-procedural analysis to reduce false positives. In the
example, refcount manipulation and reference acquisition/re-
lease happen in different functions, intra-procedural analysis
like [7] would result in many false alarms.

2.2 Internal References
Besides the sheer complexity, special design patterns of ref-
counts in the Linux kernel introduce additional challenges in
detecting refcount bugs. In particular, there are two distinct
types of references to a kernel object [1]: external reference
and internal reference. An external reference (or strong refer-
ence) is a reference we have discussed above: its purpose is
to access the object. Therefore, an external reference has to
strictly abide the reference consistency invariant.

On the contrary, an internal reference (or weak reference)
is not refcounted. Unlike external references, the interpreta-
tion of internal references is completely subject to the kernel
subsystem. The most common type of internal references are
pointers inside a software cache, such as a radix tree, a double-
linked list, and a hash map. A kernel thread can lookup the
corresponding object (e.g., by name), then derive an exter-
nal reference from the internal reference stored in the cache.
Such an internal reference does not imply the corresponding
object is “in use,” it simply means the object “exists.” For
this reason, they are not refcounted. To prevent memory man-
agement errors like UAF, such internal references should be
automatically released when the last external reference is re-
leased (i.e., when refcount reaches zero). Figure 2 shows an
example, when mgr->kref reaches zero, kref_put would
call amp_mgr_destroy to remove the internal reference to
mgr. Without understanding these special patterns, we would
face many false positives because internal references clearly
violates the refcount consistency invariant.

Unfortunately, the flexibility of internal references also
makes it hard to reason about their correctness. For example,

1 func_1(){ // local reference scope begins
2 p = kmalloc(sizeof(*p));
3 refcnt_init(p); // init refcnt = 1
4 list_insert(p, list); // save to heap, escaped

reference += 1
5 } // local reference scope ends
6 // #escape = 1, #release = 0, ∆refcnt = 1.
7 // ∆refcnt == (#escape - #release) == 1. correct!
8
9 func_2(){ // local reference scope begins

10 p = list_lookup("name", list);
11 refcnt_get(p); // refcnt += 1
12 use(p);
13 refcnt_put(p); // refcnt -= 1
14 } // local reference scope ends
15 // #escape = 0, #release = 0, ∆refcnt = 0.
16 // ∆refcnt == (#escape - #release) == 0. correct!
17
18 func_3(){ // local reference scope begins
19 p = list_lookup("name", list);
20 refcnt_get(p); // refcnt += 1
21 insert(p, list2); // escaped reference += 1
22 } // local reference scope ends
23 // #escape = 1, #release = 0, ∆refcnt = 1.
24 // ∆refcnt == (#escape - #release) == 1. correct!
25
26 func_4(){ // local reference scope begins
27 p = list_lookup("name", list);
28 list_remove(p, list); // released reference += 1
29 refcnt_put(p); // refcnt -= 1
30 } // local reference scope ends
31 // #escape = 0, #release = 1, ∆refcnt = -1.
32 // ∆refcnt == (#escape - #release) == -1. correct!

Figure 3: Four types of local reference scopes.

another typical type of internal references are back-pointers.
The network namespace object struct net is such an ex-
ample. The net object has a refcount and many network
related objects contain a back-pointer to the network names-
pace they reside in. However, most of these pointers are not
refcounted. The reason is that when a network namespace is
torn down, its destructor will automatically tear down those
objects reside in the namespace. In other words, those internal
references will be automatically released when the object they
refer to is freed. But there are exceptions, like the Point-to-
Point Protocol (PPP) channels, which can reside in a different
namespace. Therefore, such back-pointers will no longer be
internal and should be refcounted. When developers simply
follow the common pattern in other network subsystems, they
introduced an UAF vulnerability (CVE-2016-4805 [24]).

3 Methodology

3.1 Problem Definition

Ideally, we would like to use the invariant “refcount == #
of live reference” throughout the lifetime of a refcounted
object to detect refcount bugs. However, due to the complex-
ity of the kernel code, it is intractable to precisely track live

references across different system calls and possibly across
different threads with static analysis. We address this problem
by tracking the changes (∆) to the refcount and live references
within a limited local references scope [15] instead. Our key
observations are: (1) references stored in globally-visible ob-
jects (global variables or heap objects reachable from global
variables), or simply global references, can be considered as
always live because they can be accessed by other syscalls
or threads at any arbitrary time; and (2) when a syscall or
thread needs to access refcounted objects, the kernel code
(at least at the LLVM IR level) will always load global ref-
erences into local references. Therefore, by maintaining the
local invariant “∆refcount == ∆#(live reference)” (where ∆

denotes the changes) within the local reference scope, one
could also guarantee the global invariant “refcount == # of
live reference”.

Unfortunately, even after reducing the analysis scope to
local ones, if we simply define a refcount bug as a violation
of the local invariant at any program location, we will face
too many false positives due to borrowed and stolen refer-
ences [15]. For example, in Figure 1, a reference is borrowed
when keyring is passing to install_session_keyring_-
to_cred() at line 21. However, since the corresponding ref-
count has already been incremented previously at line 31, i.e.,
the developer has already indicated that the corresponding
object is “in use”, it is safe and unnecessary to increment
the refcount again. Therefore, to eliminate the false positives
caused by borrowed and stolen references, we only perform
the invariant check at the end of each local analysis scope.

Unlike other software like the Python extensions written in
C [15], the Linux kernel does not have well-defined interfaces
that marks the beginning and the end of a local reference
scope. We solve this problem by dividing a global reference’s
lifecycle into four common types (Figure 3):

• Creation: from allocation (e.g., kmalloc()) site to local
reference(s) to global reference(s) (i.e., func_1);

• Usage: from global reference to local reference(s) to usage
(i.e., func_2);
• Escape: from global reference to local reference(s) to an-

other global reference (i.e., func_3);
• Release: from global reference to local reference(s) to the

removal of the global reference (func_4).

Based on this modeling, we define the beginning of a local
references scope when a local reference is derived from a
global reference to a refcounted object. Correspondingly, the
local reference scope ends when all local references to the
refcounted object are released. During this analysis scope,
if the reference flows into a global/heap object, we consider
the reference as escaped to the global scope. Similarly, if a
global reference has been removed (e.g., being overwritten by
a NULL pointer), we consider the reference as being released.
With these definitions, we define refcount bugs are follows.

DEFINITION 1 Refcount bugs. There is a refcount bug if
at the end of a local reference scope, the refcount changes (i.e.,
∆refcount) are not the same as the changes to globally visible
references (i.e., ∆#(reference) == #escaped - #released).

Figure 3 showcases the four different types of local ref-
erence scope and how the refcount changes invariant is
checked. Note that while our approach is conceptually similar
to Pungi’s [15], analyzing the Linux kernel requires a vastly
different and more comprehensive solution.

3.2 Overview

Figure 4 shows an overview of LinKRID and its whole
workflow, which involves three phases: a static analysis, a
summary-based under-constrained symbolic execution, and
the bug detector.

In the first phase of static analysis, we perform two sub-
analyses. (1) We need to identify refcounted heap objects and
the APIs that manipulate the refcounts. In our static analysis,
we take into consideration the multiple layers of abstractions
(§4.1). (2) We need to identify the local reference scope to
allow the symbolic execution to work on a confined code. To
do so, LinKRID constructs flow chains, which correspond
to the local reference scopes, to facilitate the checks on the
safety invariant (§4.2).

Once we have identified the analysis scope, the next chal-
lenge is how to perform the check described in Definition 1.
In the second phase, we show how to customize symbolic
execution to scale the analysis to a local reference scope. As
shown in §2.1, a path-sensitive and context-sensitive analysis
is vital to track refcount and reference changes precisely. Two
common choices are dynamic analysis, which has a coverage
problem; and symbolic execution, which needs to start from
fixed entry points like syscall entries or the kernel boot entry
and has a path explosion problem. In this work, we opt for
under-constrained symbolic execution [8], which takes an ar-
bitrary function and runs it without initializing any of its data
structures or doing environmental modeling (§5).

Finally, in the last phase, we need to filter out false positives
caused by internal references (§2.2). We solve this problem
by extracting Linux-specific conventions that represent the
usage of internal references (§6).

4 Static Analysis

Our static analysis takes kernel code in LLVM IR (interme-
diate representation) as inputs and spots all local references
to refcounted objects and computes their lifecycles. It first
collects basic refcount information (i.e., refcounted structures
and refcount wrappers), then leverages the retrieved informa-
tion to construct the data-flow for local reference (referred
to as flow chains hereinafter). Flow chains encode all local
references (to refcounted objects) and their lifecycles, from

the time when the reference is created to the time when it is
no longer accessible.

4.1 Extract Refcount Information

One of the contributions of our methodology is a system-
atic recovery of refcount-related structures and functions in
the Linux kernel. We collect two types of refcount informa-
tion in all subsystems of the kernel: (1) refcounted structures
which embed a reference counter, and (2) refcount wrappers
which initialize, increase, and decrease reference counts for
refcounted structures.

Extracting refcount structures. Despite the fact that the
Linux kernel is mostly written in C, it makes broad use of
embedded structures to implement kernel objects [2] in a
manner similar to object-oriented programming. We leverage
this property to identify refcounted structures. This means
that refcounted objects can show up with different levels of
abstractions. For example, driver-specific objects are usually
refcounted through an embedded kobject structure, which
in turn maintains the refcount through an embedded kref
structure. However, kref is also a wrapper over struct
refcount_t, which is a wrapper over atomic_t. Developers
are free to use any abstraction they see fit by embedding any
of these structures (and even introduce custom ones). Based
on this, we collect refcounted structures by checking whether
a data structure has embedded known refcount structures like
kref and refcount_t.

Extracting refcount wrappers. Next, we collect refcount
manipulation APIs (or wrappers) for refcounted structures.
Typical refcount wrappers follow the get()/put() naming
conventions to update the refcount of refcounted structures.
Similar to the refcounted structures, refcount manipulation
could be done via different levels of abstractions such as
kobject_get/put, kref_get/put, refcount_inc/dec, or
directly using atomic_inc/dec. Developers are free to use
any abstraction they see fit and can even introduce their own
custom wrappers.

We manually collected 16 lower level refcount manip-
ulation APIs that are generic in Linux. To identify addi-
tional wrappers on top of these low level ones, we propose a
heuristic-based approach based on following features: (1) it
invokes a known refcount wrapper once, (2) it transfers ref-
erence by function arguments or the return value, and (3) it
does not change the number of global references. Using these
features, we find 685 custom refcount wrappers in the 4.14
kernel. We further divide them into two groups, one for re-
fcount increment (i.e., get-like), and the other for refcount
decrement (i.e., put-like).

Source LLVM IR

Static Analysis

Refcount embedded structure

Refcount operating wrappers

- Extract refcount information

Reference flow graph

- Construct reference flow

Symbolic Analysis

Summary

on flow

graph

- Track reference changes

 - global variables

 - allocated memory

 - reference-wrappers

- Track refcount changes

 - refcount-wrappers

- Path summary calculation

Summary

on entry

functions

Bug Detection

- Comparation on refcount

and reference

Warning functions

- contain refcount operations

- contian reference changes

- filter internal reference

Refcount

bugs

Figure 4: Overview of LinKRID’s architecture and its workflow

4.2 Build Flow Chains
Once we have identified refcounted structures and refcount
wrappers, we then construct flow chains for local references.
As defined in §3, a local reference scope starts when a local
reference receives the reference to a refcounted object from
a heap allocator or a global reference, and ends when all the
local references are released/dead. The challenge to identify
the scope is that a local reference could expand its life-scope
via data-flow, i.e., by passing the reference to other local
variables, function arguments, return value. We use flown
chains to “union” these overlapping life-scopes and generate
the final analysis scope for our refcount checker.

A flow chain is a call graph containing all functions that
need to be analyzed for a specific local reference. These func-
tions are connected by inter-procedural data-flow of the lo-
cal reference. It is constructed in two steps. In the first step,
LinKRID performs a flow-sensitive intra-procedural data-flow
analysis to identify three types of function-to-function (i.e.,
inter-procedural) relations regarding local references.

DEFINITION 2 Return-Return relation. Let (fi, f j) be a
pair of caller and callee functions, we say there is a Return-
Return relation fi

lr−→ f j on a local reference lr, if lr is the
return variable of fi and is also returned by f j. Figure 5 (a)
depicts this relation.

DEFINITION 3 Call-Call relation. Let (fi, f j) be a pair of
caller and callee functions, we say there is a Call-Call relation
fi

lr−→ f j on a local reference lr, if lr is both an argument of
function fi and f j. Such relation is showed in Figure 5 (b).

DEFINITION 4 Call-Return relation. Let (fi, f j) be a pair
of caller and callee functions, we say there is a Call-Return
relation fi

lr−→ f j on a local reference lr, if lr is passed to
f j as a function argument and is live (e.g., be used as return

value) after f j returns. Figure 5 (c) displays the Call-Return
relation.

After collecting the all the three types of inter-procedural
relations for each specific local reference, we chain functions
involved in these relationships together to derive the flow
chain for a given local reference, representing its scope. As an
example, Figure 6 (I) shows a set of functions call relations
concerning four different local references (the complete code
is in Figure 11). Two start in tunnel_attach_1() and two
start in tunnel_attach_2(). Therefore, we construct four
flow chains in Figure 6 (II) representing the scopes of the
four local references. Once we constructed the flow chains,
symbolic execution can take them and perform a much more
detailed path-sensitive analysis for bug finding.

5 Symbolic Execution

After static analysis, we have the refcount structures, wrap-
pers, and flow chains. At a high-level, we have all the neces-
sary building blocks to start an under-constrained symbolic
execution [27] to perform a path-sensitive analysis and dis-
cover refcount bugs.

5.1 Tracking Changes to References and Ref-
count

As mentioned in §3, we detect refcount bugs by checking the
security invariant “∆refcount == ∆#(reference)”. To do so,
we need to precisely track the changes to the number of live
references and refcount. Given a flow chain, which focuses
on a specific local reference, this subsection illustrates how
LinKRID traces changes of reference and refcount during
analysis.

struct obj *FuncA(...) {

 …

 struct obj* myobj = FuncB(…);

 …

 return myobj;

}

struct obj *FuncB(...) {

 …

 struct obj* myobj = malloc();

 …

 return myobj;

}

void FuncA(…, struct obj *myobj, …) {

 …

 FuncB(…, myobj, …);

 …

}

void FuncB(…, struct obj *myobj, …) {

 /* work with myobj */

 …

}

void FuncB(…, struct obj *myobj, …) {

 /* work with myobj */

 …

}

struct obj *FuncA(...) {

 …

 struct obj* myobj = …;

 FuncB(…, myobj, …);

 …

 return myobj;

}

Data Flow:Control Flow:

(a) Return-Return (b) Call-Call (c) Call-Return

Figure 5: The example of function relations

(III) Summarize Flow Chain

bottom-up

analyzing

(I) Call relations (II) Flow Chains

generate chain

13 Entry functionsSummarized functionsRefcount functions

Call relation Analyze process

tunnel_attach_1 tunnel_attach_2

tunnel_create state_lookup

call callcall

1 2

3 4

tunnel_create state_lookup

state_alloc init_tunnel __state_lookup

__init_tunnel

ret_ret call_ret ret_ret

call_call

3 4

765

8

5 6

8

7

3 4

5 6

1

summary

7

summary

2

summary summary

33 44

11 22

Bug Detection

8

1 1

5 6

8

7

3 4

2 2

Figure 6: The flow chains and how to do symbolic execution on them.

5.1.1 Tracking Reference Changes

We can compute the changes to the number of live references
as: ∆#(reference) = #escaped - #released. To be more clear,
the right-hand side of the equation denotes two types of opera-
tions: local reference escape and global reference release. The
former creates new global references and the latter removes
globally references.

A reference escapes the local scope when it becomes ac-
cessible to other syscalls/threads. This happens when a local
reference is copied to a globally-visible variable (e.g., a field
of a heap object). Similarly, a reference is released when it
is no longer accessible by other syscalls/threads. This could
happen in two scenarios: (1) when a globally-visible variable
that already holds a reference is overwritten, either by another
reference or a constant like NULL; and (2) when a globally-
visible variable that holds a reference is freed. Therefore, we
can track the changes to the number of live references by
tracking writes to non-local variables and frees.

RULE 1 Reference change through global variables or dy-
namically allocated memory. When a local reference is as-
signed to a globally-visible object, this reference is escaped
and a global reference is created . If a global reference is
overwritten by another reference or NULL, or the object that

Table 1: Summarized kernel APIs that change the number of
live references. * means there are several APIs with the same
name prefix.

Type Functions
Reference Escape list_add*, hlist_add*, idr_alloc
Reference Release list_del*, hlist_del*, idr_remove

contains the reference is freed, then the reference is consid-
ered released.

While most writes and frees can be tracked at the LLVM
IR level, there are a few frequently used kernel APIs that are
not easy to analyze (e.g., due to the use of assembly code for
atomic operations and memory barriers). For example, list_-
add() can be used to add a refcounted object into a double-
linked list, implying an escape of the reference. Similarly,
list_del() can be used to remove a live reference to a
refcounted object from a double-linked list, implying a release
of the reference. To handle these APIs, we manually collected
and summarized their effects (Table 1).

RULE 2 Reference change through reference wrappers.
When APIs listed in Table 1 are invoked, reference changes
should be updated according to our modeling.

5.1.2 Tracking Refcount Changes

LinKRID tracks refcount changes by tracing invocations of re-
fcount wrappers (§4.1). While this solution is straightforward
and effective, some refcount wrappers will not always process
successfully. When these refcount wrappers fail, they return
specific values (e.g., a NULL pointer) to inform their callers.
For example, the wrapper kref_get_unless_zero() will
not increase the refcount when the current refcount is 0, and
will return 0 to indicate the failure in increment; its caller
should check the return value and handle the error. If we sim-
ply regard an invocation of kref_get_unless_zero() as
an unconditional refcount increment, we will introduce false
positives. Fortunately, the symbolic execution employed in
LinKRID is path-sensitive by design and is therefore capable
of handling successful and erroneous paths. To leverage this
capability, we use symbolic path summary (see §5.2 for more
details) of the wrappers to indicate what return values are
associated with refcount increment (i.e., success) and what
return values indicate errors.

RULE 3 Refcount change through successful refcount-
wapper. When a refcount wrapper successfully operates on a
reference, the reference’s corresponding refcount should be
changed.

5.1.3 Tracking Changes in Asynchronous Methods

Asynchronous mechanisms like work queue and timer are
widely used in the Linux kernel, which imposes additional
challenges in tracking reference and refcount changes. When
a local reference is used as parameters to construct an asyn-
chronous task, the corresponding refcounted object must not
be freed (i.e., its refcount cannot drop to 0) before the asyn-
chronous callback function is invoked. One possible approach
is to consider the reference as escaped when passed to an asyn-
chronous task thus demands a refcount increment. Similarly,
there should be a corresponding refcount decrement inside
the asynchronous callback function, as when the callback
function has finished using the reference, it is no long live.
However, after constructing an asynchronous task, the current
syscall/thread can also decide to wait for the completion of
the task while holding the reference. In this case, the reference
is effectively borrowed to the asynchronous task hence do
not require additional changes to the refcount. To correctly
handle these different cases, we consider callback functions as
invoked synchronously (i.e., as normal function calls) during
our analysis. Specifically, LinKRID analyzes those callback
functions individually and adds their summaries (described
in §5.2) into the current flow chain when encountering an
asynchronous register function like queue_work and mod_-
timer. For the deregister functions like cancel_work and
del_timer, LinKRID will create another path where the
callback function is treated as not being invoked. Because
these register/deregister functions may also fail and return

errors, we use the same as simulation on refcount wrappers
to handle successful and failed cases.

RULE 4 Refcount change through successful asyn-
chronous functions. When an asynchronous callback
function is registers/deregisters successfully, its summary will
be included/removed from the current flow chain.

5.2 Summary-based chain analysis

As highlighted in Figure 1, precise detection of refcount bugs
demands path-sensitive analysis. In this subsection, we de-
scribe how LinKRID use under-constrained symbolic exe-
cution [27] to analyze flow chains symbolically to identify
potential buggy paths. Despite limiting the analysis scope to
a single flow chain (i.e., a local reference scope), there still
could exist many functions invocations along the flow chain
that could cause path explosion. We mitigate this problem
from three aspects. First, we only perform symbolic execu-
tion for functions defined in the same source code file. For
external functions, we assume they will return unconstrained
symbolic values. Second, to avoid repeatedly analyzing the
same function, we propose a lightweight symbolic execution
paradigm by summarizing functions. The summary of a func-
tion encapsulates how references and refcount change under
different execution paths. Finally, we set a maximum of paths
to be explored for each reference.

5.2.1 Path Summary Calculation

Formally, the summary of each path in a function is a 5-tuple.

Sum = (lr,escape,release,∆re f cnt,retval)

where, lr is the local reference that appears in the function.
escape is a set of instructions where lr is propagated to global
references. release is a set of instructions where global refer-
ences that are removed. Based on these two sets, LinKRID can
calculate the ∆#reference of the corresponding refcounted ob-
ject (the left-hand side of the equation as in Definition 1).
Note that we save the instructions corresponding to the es-
cape and release operations instead of numbers to help filter
false positives (e.g., internal references, see §6 for more de-
tails). ∆re f cnt records refcount changes to the corresponding
refcounted object. retval is the path return value. Regarding
the execution path, we only save its return value, which can
influence the control-flow (i.e., path feasibility) of the caller.

To compute path summaries of a function, we run the under-
constrained symbolic execution on the function by maintain-
ing and forking “states” as necessary. Similar to the definition
of summary, a state in the symbolic execution is a 7-tuple that
contains the intermediate result during execution.

State = (ip,con,escape,release,∆re f cnt,vmap,retval)

Table 2: symbolicexec(func):How instructions are evalu-
ated symbolically.

Instruction Symbolic execution
Case 1. x =uninitial make_symbolic
Case 2. x = u vmap[x] = vmap[u]
Case 3. x = u, where u is local refer-
ence, and x is a global variable or a heap
variable

vmap[x] = vmap[u] and up-
date #escape(vmap[u]) and
#release(vmap[x]) according RULE1

Case 4. if condition, l1, l2
if l1 is taken, cons = cons∧ condition,
otherwise cons = cons∧ (¬condition)

Case 5. call f on local reference u,
where f is a reference-wrapper

update #escape(vmap[u]) or
#release(vmap[u]) according RULE2

Case 6. call f on local reference u,
where f is a refcount-wrapper or asyn-
chronous functions

update ∆re f cnt(vmap[u]) according
RULE3 or RULE4

Case 7. return u ret = vmap[u]

where ip points to the next instruction to be executed. cons
are path constraints. escape, release and ∆refcnt_map are the
same as in the path summary. vmap is a map from variables
to symbolic values. retval is the return value.

Table 2 shows how instructions are executed in an informal
manner. Briefly, cases 3, 5, and 6 are related to rules in §5.1.
Others, including 1, 2, 4, and 7, are how UC-KLEE handles
typical instructions. For example vmap[x] = vmap[u] means
the value of key x in vmap is set to the value of key u in vmap.
Updating the instruction pointer ip is straightforward.

When LinKRID encounters a call instruction, it first checks
whether the target function has summaries or not. If so, its
summaries would be merged into current state; otherwise, this
function would be symbolic analyzed directly. Besides, if a
function calls itself (i.e., recursive invocation), as there are
no summaries for current analyzed function, LinKRID will
only execute the recursion once. In other words, the recursive
depth is limited to one.

The execution will generate a set of new states, each of
which will be executed independently. Each time a return
instruction is executed, a summary is created to record the
reference changes, the refcount changes, and the expression
of the return value from the state and added into the function’s
summaries sums.

5.2.2 Summary-Based Analysis of Flow Chains

To avoid analyzing the same function repeatedly across differ-
ent flow chains, we perform a bottom-up and iterative analysis.
First, we merge all flow chains in the same source code file
to construct the call graph over functions that need to be an-
alyzed. In each iteration, we first put all leaf nodes in the
current call graph (i.e., functions that has no callees to be ana-
lyzed) to a work list. For each function in the work list, we first
check whether it has multiple callers (i.e., involved in multiple
flow chains); if so, we invoke symbolicexec(f), as defined
in Table 2, to compute its summary. Then we checked if it is
an entry function; if so, we will always perform symbolic ex-
ecution with it. For other functions, we simply mark them as
“analyzed” without actually performing symbolic execution.

The reason is that using summaries will inevitably introduce
approximations, which could cause false positives. To mini-
mize the imprecision, we only create summary for functions
that will be invoked multiple times. For functions that is in-
voked only once, they will be analyzed (inter-procedurally)
when generating summaries or when analyzing the entry func-
tions. Once we have finished processing the work list, we
have a new set of leaf nodes as previous set of leaf nodes have
already be analyzed.

Figure 6 III shows which functions need to be summarized
for the flow chains illustrated in §4.2. In this example, the four
flow chains are analyzed together where node1 and node2 are
entry functions; and node5, node7, and node8 are the initial
leaf functions. When walking the call graph from bottom up,
LinKRID will compute summaries for node3 and node4 as
they are invoked by multiple callers (both node1 and node2).
Node5, node6, and node8 will be analyzed when summariz-
ing node3; and node7 will be analyzed when summarizing
node4. Finally, the entry functions are being processed. In
this example, they (node1 and node2) will be analyzed using
summaries from node3 and node4.

6 Bug Detection

Given a flow chain C , when symbolic execution finished, we
can obtain the per-path summary at the end of the local refer-
ence scope (i.e., the outmost caller). Now we check whether
the invariant ∆refcount == #escaped - #released holds. That
is, we will report a potential bug whenever there exists a lo-
cal reference lr in a Sum satisfying the following condition:
(|escapelr|, |releaselr| calculate the number of elements in a
set):

∆re f countlr 6= |escapelr|− |releaselr|

However, this result does not take into account the internal
reference design pattern mentioned in §2.2 thus may still
result in a substantial number of false positives. In addition,
there are ambiguities in the presence of embedded structures
when associating the refcount change with reference change.
For these reasons, LinKRID treats any detected violations as
only candidates of warnings at this point.

6.1 Identifying Internal References
We first discuss how we address the internal reference prob-
lem. As described in §2.2, fundamentally, internal references
are references that do not need to be refcounted because they
are tracked and released through a separate mechanism. If we
mistakenly require refcount changes for internal references,
we will end up with false alarms. At the moment, LinKRID
handles two internal reference patterns, both of which are
described in §2.2.

The first pattern we handle is the internal references that
are can be viewed as separate/additional references that are

released automatically when the refcount reaches zero. For
example, in Figure 2, mgr is removed by list_del() when
its refcount is decreased to zero. In other words, LinKRID
analyzes the callback function registered in refcount wrappers
(e.g., kref_put()) to discover such internal references.

The second pattern is a more generalized version of the
first, where internal references may not be released at a spe-
cific known point (e.g., when refcount reaches zero). Instead,
they are released in domain-specific manners. In the example
described in §2.2, the net struct representing network names-
pace can be freed on demand (from a syscall). When such an
object is freed, it will automatically and forcefully free all the
network objects that have a back-pointer to it. Unfortunately,
it can be challenging to identify all possible places where an
internal reference is released. Therefore, we develop a generic
heuristic for this. The idea is simple: when a particular refer-
ence (e.g., a pointer in a struct) is never refcounted anywhere
throughout the kernel, we consider the reference an internal
one. While this does help with reducing false positives, we
find that it will cause some false negatives as well (which
will be discussed in §7.3). Finally, we also note that there are
even more complex internal reference patterns (mixed usage
between internal and external) and we will discuss how they
can be handled in §7.3.

6.2 Determining the Association of Refcount
and Reference Changes

In addition to handling internal references, there is one more
complication regarding the application of the invariant listed
earlier. Specifically, ∆re f countlr, escapelr, and releaselr are
implicitly assumed to operate on the same refcounted object
because they share the same local reference (i.e., belong/point
to the same object). However, in reality, validating this as-
sumption is not always straightforward. As a real example
in the kernel, struct gdm embeds a refcounted struct tty_-
port. The tty_port->kref field can technically represent
the refcount of tty_port. However, due to complex pointer
arithmetics (e.g., container_of), it could be unclear whether
a pointer of type tty_port* actually points to a standalone
tty_port object or a gdm object. Consequently, we may not
be able to associate the refcount with gdm. In practice, if a
local reference of gdm escapes, we may observe the refcount
change is operated through a local reference of tty_port
instead. As a result, we may end up with two false positives.
One is the missing reference count change when a local ref-
erence of gdm escapes. The other is the missing reference
change when the refcount of tty_port is incremented.

Fundamentally, this is an alias analysis problem of embed-
ded structures (i.e., whether two pointers point to the same
memory object), which is known to be hard to solve in the
presence of pointer arithmetic and type casting (e.g., integer
to pointer and pointer to integer). To infer such aliasing and
filter such false positives, we apply the following heuristic:

join_session_keyring path record:
Error Path:
security/keys/process_keys.c L780 , get keyring refcnt +

1 by find_keyring_by_name
security/keys/process_keys.c L781 , if condition is false
security/keys/process_keys.c L791 , if condition is false
security/keys/process_keys.c L794 , if condition is true
...
Summary: <keyring , escape=∅, release=∅, ∆refcnt=1, return=0>
Result : refcnt error in keyring

Figure 7: Example bug report for the erroneous path in Fig-
ure 1.

if two local references (e.g., gdm and tty_port) happen to
trigger two warnings in the same function —one leads to
a missing refcount change and the other leads to a missing
reference change, and one local reference is “embedded” in
another (e.g., tty_port is embedded in gdm), we will then
consider the refcount change of one local reference is actu-
ally associated with the reference change of another. As the
heuristic may also lead to false negatives, we will discuss
possible improvements in handling embedded structures in a
more systematic manner in §7.3.

6.3 Bug Reporting
After the filter of internal reference and the association of
refcountand reference changes, the remain warnings would
be regarded as bugs for further manual verification. Figure 7
shows an example bug report for the erroneous path in Fig-
ure 1. To assist manual verification, the bug report includes
path information (e.g., branch direction) and the detail ref-
count information (e.g., refcount get/put) with corresponding
source code line.

7 Evaluation

LinKRID is implemented based on the static analysis frame-
work from KENALI [31] and symbolic execution engine
KLEE [3, 33]. LinKRID ’s source code contains 3.5k lines
of C++ code and 2.7k line of python code. We applied
LinKRID on the Linux kernel v4.14 release, compiled with
LLVM 3.9 with make defconfig and make allyesconfig,
respectively.

7.1 Basic Statistics
Table 3 shows the experiment statistics in different compila-
tion options. In the static analysis phase, we extracted 85 and
445 refcount embedded structures, 149 and 685 refcount incre-
ment/decrement wrappers in the Linux kernel v4.14 compiled
with defconfig and allyesconfig, respectively. Based on
the above, we extracted 16,155 and 54,731 functions respec-
tively which manipulate those refcounted structures. Further-
more, LinKRID outputs 4,063 and 12,075 flow chains respec-
tively. During symbolic execution phase, we set the maximum

Table 3: Statistics in experiments

Phase Description Data
defconfig allyesconfig

Static Analysis

refcounted structures 85 445
refcount wrapper 149 685
related functions 16155 54731

flow chains 4063 12075
Symbolic Execution summaries 2964 9419

Bug Detection BUGs 31 118

explored paths mentioned in §5.2 to 1000, LinKRID gener-
ated 2,964 and 9,419 summaries respectively.

We ran our experiments on two virtual machines, both of
which are configured with an Intel Xeon E3-1220 CPU and
32GB RAM. The operating system is Ubuntu 16.04 LTS
x64. Our lightweight static analysis took 1 hour to finish
the analysis of a whole Linux kernel (with allyesconfig).
For symbolic execution, as there is no dependency among
separate flow chains, we run the symbolic execution in 8
different processes in parallel. In this phase, LinKRID took
192 hours to process all the flow chains.

7.2 Detected Bugs
Finally, LinKRID reported in total 209 refcount errors under
allyesconfig. Out of them, we manually confirmed 118 to
be true positives and 31 bugs of them exist under defconfig.
Among the 118, 31 have already been patched in the newer
versions, 87 are previously unknown. For the 87 bugs, we
submitted bug reports to kernel maintainers for verification.
47 of the submitted bugs were confirmed, among which 11
were patched with our patches. More details can be seen
in Table 4. To manually analyze all the bugs, it took two
researchers, a total 72 man-hours. After that, we manually
checked our results against a more recent kernel version v5.10,
and found that 43 of 87 bugs exist in the newer version, which
are marked by ‘*’ in Table 4.

Responsible Disclosure. We have disclosed all the unpatched
vulnerabilities following the guidelines of the Linux commu-
nity1. Among the 43 bugs that still exist in the newer version,
12 bugs have been fixed with patches from us (marked as ‘A’
in Table 4); 11 bugs have been confirmed and we are working
with corresponding maintainers to forge patches (marked as
‘C’ in Table 4); 12 bug reports have been sent to maintainers
and waiting for reply (marked as ‘S’ in Table 4). For the rest
8 bugs (marked as ‘/’ in Table 4), we cannot find the corre-
sponding sustainers in Linux kernel’s MAINTAINERS list; and
the modules, in which bugs were found, are likely deprecated.

We also noticed that almost all these bugs occur in error
handling paths, which is a common issue in the development
of the Linux kernel [14]. The result shows that LinKRID can
detect these buggy paths precisely and effectively. We di-
vide these bugs into two categories based on fix strategies:

1https://www.kernel.org/doc/html/latest/process/
submitting-patches.html

improper refcount changes and improper reference changes.

Improper refcount changes. LinKRID reported 52 new bugs
that are related to improper refcount changes, with two sub-
types: missing refcount decrement (i.e., over-counting) and
redundant refcount decrement (i.e., under-counting). The for-
mer may cause memory leak and is usually fixed by adding a
corresponding refcount decrement. Figure 8 shows a missing
refcount decrement bug fixed by inserting refcount decre-
ment before line 6. The latter may cause use-after-free and
is usually fixed by avoiding the redundant decrement. Fig-
ure 9 depicts a redundant refcount decrement bug, where if
line 7 is executed, the kref_put at line 13 would be a redun-
dant decrement and may cause the object orig_io_req be
freed prematurely when it is still in use. The distribution of
improper refcount changes cause is heavily skewed towards
missing refcount decrement. Our reports showed 50 new bugs
are caused by missing refcount decrement. One explanation
could be that redundant refcount decrement bugs are more
likely to trigger use-after-free, thus are more likely to be cap-
tured during kernel fuzzing when kernel address sanitizer
(KASAN) is enabled.

Improper reference changes. Another typical bug found
by LinKRID is the improper reference changes. All of such
bugs due to missing reference releases. That is, an object’s
refcount is decreased without releasing the reference (e.g., set-
ting the reference to NULL), which may be used somewhere
even after it is freed and cause use-after-free. Such bugs are
usually fixed by releasing the reference to avoid being used
accidentally and erroneously. Figure 10 displays a case where
usb_free_urb is invoked at line 5 without release the refer-
ence at dvb->bulk_urb, which is accessed at line 13 in func-
tion tm6000_stop_stream and caused use-after-free. This is
fixed by assigning a NULL pointer to dvb->bulk_urb after
the refcount decrement.

1 int kobject_rename(struct kobject *kobj, const char *
new_name) {

2 int error = 0;
3 const char *devpath = NULL;
4 kobj = kobject_get(kobj);
5 if (!kobj) return -EINVAL;
6 if (!kobj->parent) return -EINVAL;
7 devpath = kobject_get_path(kobj, GFP_KERNEL);
8 if (!devpath) {
9 error = -ENOMEM;

10 goto out;
11 }
12 out:
13 kobject_put(kobj);
14 return error;
15 }

Figure 8: A missing refcount decrement caused by improper
error handling, which is fixed by adding a refcount decrement
before return.

https://www.kernel.org/doc/html/latest/process/submitting-patches.html
https://www.kernel.org/doc/html/latest/process/submitting-patches.html

1 int bnx2fc_send_rec(struct bnx2fc_cmd *orig_io_req) {
2 struct bnx2fc_els_cb_arg *cb_arg = NULL;
3 int rc;
4 cb_arg = kzalloc(...);
5 if (!cb_arg) {
6 rc = -ENOMEM;
7 goto rec_err;
8 }
9 kref_get(&orig_io_req->refcount);

10 cb_arg->aborted_io_req = orig_io_req;
11 rec_err:
12 if (rc) {
13 kref_put(&orig_io_req->refcount,...);
14 kfree(cb_arg);
15 }
16 return rc;
17 }

Figure 9: A redundant refcount decrement detected by
LinKRID.

1 static int tm6000_start_stream(struct tm6000_core *dev
) {

2 dvb->bulk_urb = usb_alloc_urb(0, GFP_KERNEL);
3 dvb->bulk_urb->transfer_buffer = kzalloc(size,

GFP_KERNEL);
4 if (dvb->bulk_urb->transfer_buffer == NULL) {
5 usb_free_urb(dvb->bulk_urb);
6 return -ENOMEM;
7 }
8 return ret;
9 }

10 static void tm6000_stop_stream(struct tm6000_core *dev
) {

11 struct tm6000_dvb *dvb = dev->dvb;
12 if (dvb->bulk_urb) {
13 usb_kill_urb(dvb->bulk_urb);
14 }
15 }

Figure 10: A missing reference release, which is fixed by
adding a release after refcount decrement.

7.3 False Positives and False Negatives
False Positives. As presented in §7.2, LinKRID has a false
positive rate of 43% ((209 - 118) / 209). Here, we investigate
the root causes and discuss potential solutions.

Non-standard refcount (mixed use of internal and external
reference). Interestingly, we find that some developers may
define their own refcount rules and mix the use of internal and
external reference. For example, The struct fib_lookup_arg
has a pointer member to a refcounted struct fib_rule and a
flag member. The latter dictates whether the former reference
needs to be refcounted. If the Flag is set to FIB_LOOKUP_-
NOREF, the reference change does not need be refcounted,
effectively making it an internal reference. Otherwise, it is
treated as an external reference. Given that our heuristic de-
veloped in §6.1 do not recognize this special pattern of condi-
tional internal references, we will misclassify it as an external
reference (as it does seem to be refcounted sometimes in the
kernel), and hence the false positive. Surprisingly, these cases
contribute to 66% of all false positives.

To properly handle such cases, we will need to model this
special pattern by actively looking for such “flag” members
whose values correlate with the presence or absence of ref-
count changes. For example, if refcount changes always hap-
pen under one value of the flag (but never happen under a
different value) and vice versa, then we will infer that it is a
conditional internal reference.

Out-of-scope reference changes. We find that some warn-
ings of missing reference releases can be false positives. This
is because the reference releases actually do happen (e.g.,
set to NULL) but they happen outside of our local analysis
scope. In other words, the flow chains we construct are based
on the local reference change which may miss a release of
a global reference that happens, for example in the caller of
the functions in the flow chain (after they return). Such cases
account for 18% of the false positives.

To eliminate such false positives, we need to expand the
analysis scope to consider not only the life-scope of local
references but also the life-scope of global references. If we
can track both, we can construct the flow chain by considering
the “union” of the two scopes. However, this can be potentially
expensive and challenging. First of all, we do not know when a
global reference will be released (e.g., set to NULL). In fact, it
may never happen, forcing us to exhaustively traverse the call
graph all the way back to the syscall entry point. Second, since
global references involve heap objects, it can be challenging to
analyze statically, e.g., in terms of alias analysis. Nevertheless,
this is a clear avenue for improvement.

Other causes. Besides the above, false positives can also
arise due to some rarely used programming patterns that we
currently do not recognize. For example, we find sometimes
the refcount wrappers can be in the form of refcount_-
set(refcnt, refcount_read(refcnt) + 1) instead of
refcount_inc(refcnt). Another example is on reference
releases — sometimes developers set a pointer to ~0 instead
of NULL. These cases account for the remaining 16% of the
false positives.

These cases are mostly trivial and can be solved by aug-
menting our modeling of the Linux kernel.

False Negatives. As we mentioned in §6, to avoid excessive
false positives, LinKRID will drop errors it believes to be
caused by internal references. However, it is also possible that
a reference is supposed to be external but the programmers
simply forgot to refcount it — CVE-2016-4805 [24] is such
an example. In such cases, LinKRID will believe a reference
is internal and ignore any warning associated with it. In addi-
tion, LinKRID currently does not verify the correctness of
the internal reference use and thus lead to false negatives as
well. This can happen when developers forget to remove the
internal reference properly when they are supposed to.

A possible solution to the above is to distill more fine-
grained internal reference patterns and check them more pre-
cisely as opposed to using generic heuristics. For example, we
can check whether internal references are correctly removed

at specific points according to their typical usage patterns. If
not, it is either not an internal reference, or it is a buggy use
of internal reference (we should report both cases).

Another problem is the association of refcount and refer-
ence changes as described in §6.2. Our current solution only
heuristically infers the association in a post-processing man-
ner, which do lead to some false negatives. A more principled
approach would be to adopt a more accurate aliasing anal-
ysis that can handle arbitrary pointer arithmetic and struct
embedding in the Linux kernel.

7.4 Security Impact of Found Bugs

In this subsection, we are interested in understanding the secu-
rity impact of these reported bugs. While it is time-consuming
to triage these bugs, we did randomly sample 22 of the 87 bugs
to analyze their exploitability and understand their security
impact.

Among these 22 bugs, 12 can cause memory leak and 10
can cause UAF. Furthermore, all of the ten UAF cases involve
objects that contain function pointers, indicating that they can
likely lead to control hijacking primitives. In addition, we
evaluate the following metrics of these bugs in terms of their
exploitability: triggering condition (how easy it is to trigger
the bug), reachability of the bug (whether it is possible to
trigger the bug from userspace), and permission requirement
(does it require a special uid or Linux capability). In terms of
triggering conditions, 18 bugs can be triggered only when the
memory allocation fails, 3 of which additionally require ref-
count overflows in order to trigger UAF. We note that there are
indeed prior attacks that successfully exploit vulnerabilities by
exhausting system memory and therefore it is not impossible
to trigger memory allocation failures [34, 39]. However, the
latest Linux kernel has included hardening against refcount
overflows and therefore the 3 overflow cases are unlikely ex-
ploitable [14]. The remaining 3 bugs do not seem to require
any extreme conditions to trigger. In terms of reachability, 6
can be reached from the userspace (i.e., through syscalls) and
all of them happen to be UAF bugs. 10 are not reachable from
userspace. Instead, 9 of them are called upon driver/device
registration or system initialization. 1 of them is reachable
from hardware interrupt. The remaining 6 are unclear. Finally,
in terms of permission requirements, 3 require Linux capa-
bility, e.g., CAP_NET_ADMIN. The detailed breakdown of each
individual bug is presented in Table 5 in appendix. Overall,
we conclude that at least 3 of the UAF bugs are highly ex-
ploitable as they are reachable from userspace, possible to
trigger (do not require refcount overflow), and do not require
any special permission.

To give some examples, Figure 8 shows a bug that can
cause UAF. If it is triggered multiple times, the refcount would
overflow to zero and release the object incorrectly. Figure 9
displays a bug triggered only when memory allocation fails.

8 Related Work

Finding refcount bugs. As mentioned in §1, there are two
categories of research on finding refcount bugs. An intuitional
and rigorous way to detect refcount bugs is to check the ref-
count invariant (i.e., refcount = #(live reference)). Referee [7]
uses compositional model checking to verify the refcount cor-
rectness. It transforms the verification on reference counting
of unbounded resources on unbounded threads to arbitrary
resources on an single thread by assuming that resources are
arranged as an array and uniformly managed with the same
piece of code. Then, Referee symbolically verifies an arbi-
trary resource is accessed under a positive reference count.
CPyChecker [19] is a GCC plug-in that detects the errors
in Python’s native extension modules, including reference
counting errors. Pungi [15] also aims to find refcount errors
in Python’s native extension modules. Both of them rely on
the invariant that, the changes to refcount must matches the
changes to reference number. CPyChecker applied this idea
to a single function without inter-procedure analysis. Pungi
extended it to inter-procedural analysis, used affine abstrac-
tion and analyzed the Static Single Assignment (SSA) form
of programs. In addition, the affine abstraction on some wrap-
pers of python refcount APIs relies on manually constructing.
Naively applying affine abstraction to Linux kernel will face
many challenges such as various refcount APIs and exclu-
sive using contexts. Another method is using heuristics to
find a specific type of refcount bugs. RID [20] uses incon-
sistent path pair (IPP) to detect developer’s misunderstand
of refcount APIs in Linux kernel. Unfortunately, RID could
not find refcount bugs in the common case, like violating of
refcount invariant.

Symbolic execution for bug detection. With the recent ad-
vances in SMT solver, symbolic execution has been widely
applied on detecting bugs in software systems, including
Linux applications [38], embedded firmware [4], Android
applications [37], and the Android framework [17]. However,
a major obstacle that prevents symbolic execution from get-
ting even wider application is the path explosion problem.
Although there are efforts on mitigating the problem, e.g.,
by using methods based on compositionally [9], abstraction
refinement [18], interpolation [5, 10, 11, 21], parallelization
[6, 12, 26, 30, 32], and machine learning [16, 29], path explo-
sion remains a bottleneck in scaling symbolic execution to
larger applications.

Given the code complexity, applying symbolic execution to
analyze the entire OS kernels is challenging. To make trade-
offs between scalability and path coverage, under-constrained
symbolic execution is a promising method for Linux kernel
bugs detection. UC-KLEE [27] employs this method to find
bugs and verifies patches in Linux kernels, specifically to
memory leaks, uses of uninitialized data, and unsanitized uses
of user inputs. DEADLINE [36] applies symbolic execution
to the detection of double-fetch bugs in the Linux kernel.

9 Conclusion

In this paper, we proposed a scalable and effective approach
to detect refcount bugs in the Linux kernel. Our approach has
two key technical innovations: (1) an inter-procedural data-
flow analysis to construct the local reference lifetime, which
narrows down the analysis to a reasonable scope, thus scaling
expensive analyses to Linux kernel; (2) a summary-based
symbolic execution to provide path-sensitive analysis as well
as avoiding repetitive computation on tracking reference and
refcount changes. Our prototype LinKRID found 87 new
refcount bugs in Linux 4.14, demonstrating the scalable and
effective of our approach.

Acknowledgments

We would like to express our gratitude to our shepherd
Dr.Hamed Okhravi and the anonymous reviewers for their
helpful advice on the paper. We also thank the Linux kernel
developers who gave useful feedback to us. This work was
supported in part by National Key Research and Development
Program of China under Project No. 2018YFB0805000.

References
[1] Neil Brown. Linux kernel design patterns - part 1. https://lwn.net/

Articles/336224/, 2009.

[2] Neil Brown. Object-oriented design patterns in the kernel, part 2.
https://lwn.net/Articles/446317/, 2011.

[3] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: Unas-
sisted and automatic generation of high-coverage tests for complex
systems programs. In 8th USENIX Symposium on Operating System
Design and Implementation (OSDI 08), volume 8, pages 209–224,
2008.

[4] Daming D Chen, Maverick Woo, David Brumley, and Manuel Egele.
Towards automated dynamic analysis for Linux-based embedded
firmware. In Proceedings of the 2016 Annual Network and Distributed
System Security Symposium (NDSS), pages 1–16, 2016.

[5] Duc-Hiep Chu and Joxan Jaffar. A complete method for symmetry re-
duction in safety verification. In International Conference on Computer
Aided Verification (CAV), pages 616–633, 2012.

[6] Liviu Ciortea, Cristian Zamfir, Stefan Bucur, Vitaly Chipounov, and
George Candea. Cloud9: a software testing service. Operating Systems
Review, 43(4):5–10, 2009.

[7] Michael Emmi, Ranjit Jhala, Eddie Kohler, and Rupak Majumdar. Veri-
fying reference counting implementations. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
pages 352–367. Springer, 2009.

[8] Dawson Engler and Daniel Dunbar. Under-constrained execution:
making automatic code destruction easy and scalable. In Proceedings
of the 2007 international symposium on Software testing and analysis,
pages 1–4, 2007.

[9] Patrice Godefroid. Compositional dynamic test generation. In ACM
Symposium on Principles of Programming Languages (POPL), pages
47–54, 2007.

[10] Joxan Jaffar, Andrew Santosa, and Razvan Voicu. An interpolation
method for CLP traversal. In International Conference on Principles
and Practice of Constraint Programming, pages 454–469, 2009.

[11] Joxan Jaffar, Andrew E. Santosa, and Razvan Voicu. Efficient memo-
ization for dynamic programming with ad-hoc constraints. In AAAI,
pages 297–303, 2008.

[12] Moonzoo Kim, Yunho Kim, and Gregg Rothermel. A scalable dis-
tributed concolic testing approach: An empirical evaluation. pages
340–349, 2012.

[13] Greg Kroah-Hartman. kobjects and krefs. In Linux Symposium, page
295, 2004.

[14] Greg Kroah-Hartman. Add overflow protection to kref. https://
lkml.org/lkml/2012/2/24/345, 2012.

[15] Siliang Li and Gang Tan. Finding reference-counting errors in
Python/C programs with affine analysis. In European Conference
on Object-Oriented Programming, pages 80–104. Springer, 2014.

[16] Xin Li, Yongjuan Liang, Hong Qian, Yi-Qi Hu, Lei Bu, Yang Yu, Xin
Chen, and Xuandong Li. Symbolic execution of complex program
driven by machine learning based constraint solving. In 2016 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pages 554–559. IEEE, 2016.

[17] Lannan Luo, Qiang Zeng, Chen Cao, Kai Chen, Jian Liu, Limin Liu,
Neng Gao, Min Yang, Xinyu Xing, and Peng Liu. Tainting-assisted
and context-migrated symbolic execution of Android framework for
vulnerability discovery and exploit generation. IEEE Transactions on
Mobile Computing, 2019.

[18] Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In
ACM/IEEE International Conference on Software Engineering (ICSE),
pages 416–426, 2007.

[19] D. Malcom. A static analysis tool for cpython extension code.
https://gcc-python-plugin.readthedocs.org/en/latest/
cpychecker.html, Accessed: 2020-05-08.

[20] Junjie Mao, Yu Chen, Qixue Xiao, and Yuanchun Shi. Rid: finding ref-
erence count bugs with inconsistent path pair checking. In Proceedings
of the Twenty-First International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 531–544,
2016.

[21] Kenneth L. McMillan. Lazy annotation for program testing and verifi-
cation. In International Conference on Computer Aided Verification
(CAV), pages 104–118, 2010.

[22] MITRE. CVE-2016-0728. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2016-0728, 2016.

[23] MITRE. CVE-2016-4557. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2016-4557, 2016.

[24] MITRE. CVE-2016-4805. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2016-4805, 2016.

[25] MITRE. CVE-2017-11176. https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-11176, 2017.

[26] Corina S. Pasareanu, Peter C. Mehlitz, David H. Bushnell, Karen
Gundy-Burlet, Michael R. Lowry, Suzette Person, and Mark Pape.
Combining unit-level symbolic execution and system-level concrete ex-
ecution for testing NASA software. In ACM International Symposium
on Software Testing and Analysis (ISSTA), pages 15–26, 2008.

[27] David A Ramos and Dawson Engler. Under-constrained symbolic
execution: Correctness checking for real code. In 24th USENIX Security
Symposium (USENIX Security 15), pages 49–64, 2015.

[28] Elena Reshetova, Hans Liljestrand, Andrew Paverd, and N. Asokan. To-
ward Linux kernel memory safety. Software: Practice and Experience,
48(12):2237–2256, 2018.

[29] Shiqi Shen, Shweta Shinde, Soundarya Ramesh, Abhik Roychoudhury,
and Prateek Saxena. Neuro-symbolic execution: Augmenting symbolic
execution with neural constraints. In Proceedings of the 2019 Annual
Network and Distributed System Security Symposium (NDSS), 2019.

https://lwn.net/Articles/336224/
https://lwn.net/Articles/336224/
https://lwn.net/Articles/446317/
https://lkml.org/lkml/2012/2/24/345
https://lkml.org/lkml/2012/2/24/345
https://gcc-python-plugin.readthedocs.org/en/latest/cpychecker.html
https://gcc-python-plugin.readthedocs.org/en/latest/cpychecker.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0728
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-0728
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4557
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4557
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4805
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-4805
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11176
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-11176

[30] Junaid Haroon Siddiqui and Sarfraz Khurshid. Scaling symbolic exe-
cution using ranged analysis. In ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), pages
523–536, 2012.

[31] Chengyu Song, Byoungyoung Lee, Kangjie Lu, William R. Harris,
Taesoo Kim, and Wenke Lee. Enforcing Kernel Security Invariants
with Data Flow Integrity. In Proceedings of the 2016 Annual Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
feb 2016.

[32] Matt Staats and Corina S. Pasareanu. Parallel symbolic execution
for structural test generation. In ACM International Symposium on
Software Testing and Analysis (ISSTA), pages 183–194, 2010.

[33] The KLEE Team. KLEE. http://klee.github.io/, Accessed:
2020-05-08.

[34] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clémentine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. Drammer: Deterministic rowham-
mer attacks on mobile platforms. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, pages
1675–1689, 2016.

[35] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui Gong, and Wei Zou.
FUZE: Towards facilitating exploit generation for kernel use-after-free
vulnerabilities. In 27th USENIX Security Symposium (USENIX Security
18), 2018.

[36] Meng Xu, Chenxiong Qian, Kangjie Lu, Michael Backes, and Taesoo
Kim. Precise and scalable detection of double-fetch bugs in os kernels.
In 2018 IEEE Symposium on Security and Privacy (SP), pages 661–678.
IEEE, 2018.

[37] Chao Chun Yeh, Han Lin Lu, Chun Yen Chen, Kee Kiat Khor, and
Shih Kun Huang. Craxdroid: Automatic Android system testing by
selective symbolic execution. In 2014 IEEE Eighth International
Conference on Software Security and Reliability-Companion, pages
140–148. IEEE, 2014.

[38] Qiuping Yi, Zijiang Yang, Shengjian Guo, Chao Wang, Jian Liu, and
Chen Zhao. Eliminating path redundancy via postconditioned symbolic
execution. IEEE Transactions on Software Engineering, 44(1):25–43,
2017.

[39] Hang Zhang, Dongdong She, and Zhiyun Qian. Android ion hazard:
The curse of customizable memory management system. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 1663–1674, 2016.

A Appendix

http://klee.github.io/

1 struct state {
2 refcount_t refcnt;
3 struct hlist_node node;
4 struct state* tunnel;
5 }
6
7 LIST_HEAD(my_list)
8
9 int tunnel_attach_1(struct state *x) {

10 int err = 0;
11 struct state *t;
12
13 t = state_lookup();
14 if (!t) {
15 t = tunnel_create();
16 if (!t) {
17 err = -EINVAL;
18 goto out;
19 }
20 refcount_inc(&t->refcnt);
21 }
22 x->tunnel = t;
23 out:
24 return err;
25 }
26
27 int tunnel_attach_2(struct state *x) {
28 int err = 0;
29 struct state *t;
30
31 t = state_lookup();
32 if (!t) {
33 t = tunnel_create();
34 if (!t) {
35 err = -EINVAL;
36 goto out;
37 }
38 refcount_inc(&t->refcnt);
39 }
40 x->tunnel = t;
41 out:
42 return err;
43 }
44
45 struct state *state_lookup() {
46 return __state_lookup();
47 }

48 struct state *__state_lookup(){
49 struct state *x;
50
51 hlist_for_each_entry(x, my_list, node) {
52 if (cond(x))
53 continue;
54 if (!refcount_inc_not_zero(&x->refcnt))
55 continue;
56 return x;
57 }
58 return NULL;
59 }
60
61 struct state *tunnel_create() {
62 struct state *t;
63
64 t = state_alloc();
65 if (!t)
66 goto out;
67
68 if (init_tunnel(t))
69 goto error;
70 hlist_add(&t->node, my_list);
71 out:
72 return t;
73
74 error:
75 kfree(t);
76 t = NULL;
77 goto out;
78 }
79
80 struct state *state_alloc() {
81 struct state *x = kzalloc(sizeof(struct state),

GFP_ATOMIC);
82 if (x)
83 refcount_set(&x->refcnt, 1);
84 return x;
85 }
86
87 int init_tunnel(struct state* t) {
88 return __init_tunnel(t);
89 }
90
91 int __init_tunnel(struct state* t) {
92 ...
93 }

Figure 11: Running example adapted from real function ipcomp_tunnel_attach and ipcomp6_tunnel_attach in Linux
kernel 4.14.0

Table 4: List of bugs discovered by our tool in the Linux kernel 4.14, ’*’ means the bug exists(ed) in the Linux kernel version 5.10.
MRD, RRD and MRR indicate bugs cause: missing refcount decrement, redundant refcount decrement and missing reference
release respectively. A - patches from us are accept. C - bug reports are confirmed by developers. S - bug reports are submitted,
waiting for replies. P - bugs are already patched. / - the corresponding module are no longer maintained.

Function Cause Status # Function Cause Status
1 kobject_rename* MRD A 60 watchdog_cdev_register MRR S
2 amdgpu_cs_process_fence_dep* MRD A 61 bfusb_send_bulk* MRR S
3 ttm_bo_add_move_fence* MRD A 62 nvmet_fc_ls_disconnect* MRR S
4 blk_register_queue* MRD A 63 usbnet_start_xmit* MRR S
5 __blk_mq_register_dev* MRD A 64 fb_open MRR S
6 rpc_clnt_add_xprt* MRD A 65 mcs_net_open MRR S
7 write_parport_reg_nonblock* MRD A 66 vnt_start* MRR S
8 tty_lookup_driver* MRD A 67 pn533_usb_probe MRR S
9 bnx2fc_send_srr* RRD A 68 send_mpa_req MRR S
10 bnx2fc_send_rec* RRD A 69 port100_probe MRR S
11 imon_probe* MRR A 70 bcm203x_probe MRR S
12 airspy_alloc_urbs* MRR A 71 igorplugusb_probe MRR S
13 audit_list_rules_send* MRD C 72 ap_probe* MRR S
14 audit_send_reply* MRD C 73 usb_urb_alloc_bulk_urbs* MRR S
15 radeon_user_framebuffer_create* MRD C 74 usb_urb_alloc_isoc_urbs* MRR S
16 edac_device_register_sysfs_main_kobj MRD C 75 mos7840_open MRR S
17 new_lockspace MRD C 76 lan78xx_tx_bh MRR S
18 acpi_cppc_processor_probe MRD C 77 send_mpa_reject MRR S
19 bond_sysfs_slave_add MRD C 78 gsmld_open MRR S
20 cpuidle_add_state_sysfs MRD C 79 lvs_rh_probe MRR S
21 cpuidle_add_sysfs MRD C 80 edd_device_register* MRD /
22 cpuidle_add_driver_sysfs MRD C 81 dn_nsp_rx_packet* MRD /
23 dmi_system_event_log* MRD C 82 cx231xx_init_audio_bulk* MRR /
24 dmi_sysfs_register_handle MRD C 83 i2400mu_notification_setup* MRR /
25 esre_create_sysfs_entry MRD C 84 submit_urbs* MRR /
26 fw_cfg_register_file MRD C 85 usb_isoc_urb_init* MRR /
27 cm_create_port_fs* MRD C 86 cx231xx_init_audio_isoc* MRR /
28 add_port* MRD C 87 usb_bulk_urb_init* MRR /
29 add_port(different from above) MRD C 88 brcmf_usbdev_qinit MRR P
30 iommu_group_alloc MRD C 89 x25_connect MRR P
31 cxl_sysfs_afu_new_cr MRD C 90 tm6000_start_stream MRR P
32 pci_create_slot MRD C 91 z3fold_reclaim_page MRD P
33 iscsi_boot_create_kobj MRD C 92 cacheinfo_create_index_dir MRD P
34 add_mdev_supported_type MRD C 93 ext4_init_sysfs MRD P
35 create_space_info MRD C 94 ext4_register_sysfs MRD P
36 qib_create_port_files MRD C 95 gfs2_sys_fs_add MRD P
37 pdcs_register_pathentries MRD C 96 cifs_writev_requeue MRD P
38 mei_me_cl_rm_by_uuid MRD C 97 nfs_file_direct_write MRD P
39 mei_me_cl_rm_by_uuid_id MRD C 98 nfs_file_direct_read MRD P
40 edac_pci_main_kobj_setup MRD C 99 cuse_channel_open MRD P
41 acpi_sysfs_add_hotplug_profile MRD C 100 br_add_if MRD P
42 efivar_create_sysfs_entry MRD C 101 netdev_queue_add_kobject MRD P
43 edac_pci_create_instance_kobj* MRD C 102 rx_queue_add_kobject MRD P
44 edac_device_create_block* MRD C 103 __rfcomm_create_dev RRD P
45 edac_device_create_instance* MRD C 104 rds_ib_get_mr MRD P
46 usX2Y_rate_set* MRD C 105 meson_ao_cec_probe RRD P
47 usnic_ib_sysfs_register_usdev* MRD C 106 amdgpu_cs_parser_init RRD P
48 display_init_sysfs MRD S 107 drm_dp_mst_allocate_vcpi MRD P
49 l2cap_sock_alloc* MRD S 108 amdgpu_cs_user_fence_chunk MRD P
50 bnx2fc_eh_abort* MRD S 109 mdev_register_device MRD P
51 core_scsi3_emulate_pro_register_and_move MRD S 110 lpuart_start_rx_dma MRD P
52 bnx2fc_initiate_seq_cleanup* MRD S 111 ohci_platform_probe MRD P
53 __tm6000_ir_int_start MRR S 112 cpufreq_policy_alloc MRD P
54 rtl2832_sdr_alloc_urbs* MRR S 113 btrfs_sysfs_add_fsid MRD P
55 stir_net_open MRR S 114 hfi1_create_port_files MRD P
56 dw_hdmi_cec_probe MRR S 115 exofs_sysfs_odev_add MRD P
57 _dsa_register_switch MRR S 116 exofs_sysfs_sb_add MRD P
58 gigaset_if_initdriver MRR S 117 ldebugfs_register_mountpoint MRD P
59 nvmet_fc_ls_create_connection* MRR S 118 cpufreq_dbs_governor_init MRD P

Table 5: Security impact of found bugs. Impact∗: we consider a UAF can be exploited to hijack the control flow if the freed object
contains a function pointer.

Bug Impact∗ Triggering Condition Reachability
Permission
Requirement

__rfcomm_create_dev
UAF
likely exploitable No Userspace CAP_NET_ADMIN

audit_list_rules_send
UAF
likely exploitable

Exhaust memory
Refcount overflow Userspace CAP_AUDIT_READ

bnx2fc_send_srr
UAF
likely exploitable Exhaust memory Unclear No

bnx2fc_send_rec
UAF
likely exploitable Exhaust memory Unclear No

kobject_rename
UAF
likely exploitable Refcount overflow Unclear No

write_parport_reg_nonblock
UAF
likely exploitable

Exhaust memory
Refcount overflow Unclear No

audit_send_reply
UAF
likely exploitable

Exhaust memory
Refcount overflow Userspace CAP_AUDIT_READ

__tm6000_ir_int_start
UAF
likely exploitable Exhaust memory Userspace No

cx231xx_init_audio_isoc*
UAF
likely exploitable Exhaust memory Userpsace No

usb_urb_alloc_bulk_urbs*
UAF
likely exploitable Exhaust memory Userspace No

cpufreq_policy_alloc Memory leak Exhaust memory Called upon registering drivers No
iommu_group_alloc Memory leak Exhaust memory Unclear No
esre_create_sysfs_entry Memory leak Exhaust memory Called upon system initialization No
dmi_sysfs_register_handle Memory leak Exhaust memory Called upon system initialization No
cpuidle_add_sysfs Memory leak Exhaust memory Called upon registering cpu drivers No
acpi_cppc_processor_probe Memory leak Exhaust memory Called upon registering devices No
edac_pci_main_kobj_setup Memory leak Exhaust memory Called upon registering devices No
mei_me_cl_rm_by_uuid Memory leak No Called by IRQ No
mei_me_cl_rm_by_uuid_id Memory leak No Unclear No
add_mdev_supported_type Memory leak Exhaust memory Called upon registering devices No
add_port Memory leak Exhaust memory Called upon registering devices No
ttm_bo_add_move_fence Memory leak Exhaust memory Called upon module initialization No

	Introduction
	Refcount Bugs in Linux
	Bugs due to Complex Paths
	Internal References

	Methodology
	Problem Definition
	Overview

	Static Analysis
	Extract Refcount Information
	Build Flow Chains

	Symbolic Execution
	Tracking Changes to References and Refcount
	Tracking Reference Changes
	Tracking Refcount Changes
	Tracking Changes in Asynchronous Methods

	Summary-based chain analysis
	Path Summary Calculation
	Summary-Based Analysis of Flow Chains

	Bug Detection
	Identifying Internal References
	Determining the Association of Refcount and Reference Changes
	Bug Reporting

	Evaluation
	Basic Statistics
	Detected Bugs
	False Positives and False Negatives
	Security Impact of Found Bugs

	Related Work
	Conclusion
	Appendix Appendix

