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Abstract. Recent advances in state-of-the-art machine learning models like deep
neural networks heavily rely on large amounts of labeled training data which is
difficult to obtain for many applications. To address label scarcity, recent work
has focused on data augmentation techniques to create synthetic training data. In
this work, we propose a novel approach of data augmentation leveraging tensor
decomposition to generate synthetic samples by exploiting local and global infor-
mation in text and reducing concept drift. We develop Vec2Node that leverages
self-training from in-domain unlabeled data augmented with tensorized word em-
beddings that significantly improves over state-of-the-art models, particularly
in low-resource settings. For instance, with only 1% of labeled training data,
Vec2Node improves the accuracy of a base model by 16.7%. Furthermore,
Vec2Node generates explicable augmented data leveraging tensor embeddings.

Keywords: Text Augmentation · Tensor Decomposition · Self-training

1 Introduction

In recent years, neural network models have obtained state-of-the-art performance in
several language understanding tasks employing non-contextualized FastText [4] as
well as contextualized BERT [5] word embeddings. Even though these models have
been greatly successful, they rely on large amounts of labeled training data for their
state-of-the-art performance. However, labeled data is not only difficult to obtain for
many applications, especially for tasks dealing with sensitive information, but also re-
quires time consuming and costly human annotation efforts. To mitigate label scarcity,
recent techniques such as self-training [6, 11] and few shot learning [24, 28] methods
have been developed to learn from large amounts of in-domain unlabeled or augmented
data. The core idea of self-training is to augment the original labeled dataset with
pseudo-labeled data [11] in an iterative teacher-student learning paradigm. Traditional
self-training techniques are subject to gradual concept drift and error propagation [29,
24]. In general, data augmentation techniques aim to generate synthetic data with sim-
ilar characteristics as the original ones. While data augmentation has been widely used
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Fig. 1: Overview of the proposed approach.

for image classification tasks [18] leveraging techniques like image perturbation (e.g.,
cropping, flipping) and adding stochastic noise, there has been limited exploration of
such techniques for text classifiers. Recent work on data augmentation for text classi-
fication like [28] rely on auxiliary resources like an externally trained Neural Machine
Translation (NMT) system to generate back-translations4 for consistency learning.

In contrast to the above works, we solely rely on the available in-domain unlabeled
data for augmentation without relying on external resources like an NMT system. To
this end, we develop Vec2Node that employs tensor embeddings to consider both the
global context and local word-level information. In order to do so, we leverage the
association of words and their tensor embeddings with a graph-based representation
to capture local and global interactions. Additionally, we learn this augmentation and
the underlying classification task jointly to bridge the gap between self-training and
augmentation techniques that are learned in separate stages in prior works.

Our contributions can be summarized as follows:

– A novel tensor embedding based data augmentation technique for text classification
with few labels.

– A dynamic augmentation technique for detecting concept drift learned jointly with
the downstream task in a self-training framework.

– Extensive evaluation on benchmark text classification datasets demonstrate the ef-
fectiveness of our approach, particular in low-resource settings with limited training
labels along with interpretable explanations.

4 Process of translating a text to another language and translating it back to the original language.
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2 Background

In this section, first, we present mathematical background; then we discuss the problem
formulation followed by the details of the proposed method.

2.1 Tensor

A data tensor D ∈ IR𝐼1×𝐼2×···×𝐼𝑀 is a multi-way array i.e., an array with three or more
than three dimensions where the dimensions are usually referred to as modes [13].

2.2 Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) is a decomposition technique which factorizes a
matrix 𝑿 into the following three matrices [13]:

𝑿 = U𝚺V𝑇 (1)

where the columns of U and V are orthonormal and 𝚺 is a diagonal matrix with positive
real entries. A matrix can be estimated by a rank-𝑅 SVD as a sum of 𝑅 rank-1 matrices:

𝑿 ≈ Σ𝑅𝑟=1𝜎ru𝑟 ◦ v𝑟 (2)

2.3 Canonical Polyadic (CP) Decomposition

Canonical Polyadic (CP) or PARAFAC is an extension of SVD for higher mode arrays
i.e., tensors [10]. CP/PARAFAC factorizes a tensor into a sum of rank-1 tensors. For
instance, a 3-mode tensor is decomposed into a sum of outer products of three vectors:

X ≈ Σ𝑅𝑟=1a𝑟 ◦ b𝑟 ◦ c𝑟 (3)

where a𝑟 ∈ R𝐼 , b𝑟 ∈ R𝐽 , c𝑟 ∈ R𝐾 and the outer product is given by [19, 20]:

(a𝑟 , b𝑟 , c𝑟 ) (𝑖, 𝑗 , 𝑘) = a𝑟 (𝑖) b𝑟 ( 𝑗) c𝑟 (𝑘) ∀𝑖, 𝑗 , 𝑘 (4)

Factor matrices are defined as A = [a1 a2 . . . a𝑅], B = [b1 b2 . . . b𝑅], and C =

[c1 c2 . . . c𝑅] where 𝑅 is the rank of the decomposition, which is also the number of
columns in the factor matrices. PARAFAC optimization problem is formulated as [13]:

min
𝐴,𝐵,𝐶

= ∥X − Σ𝑅𝑟=1a𝑟 ◦ b𝑟 ◦ c𝑟 ∥
2
𝐹

(5)

One effective way to optimize the above problem is to use Alternating Least Squares
(ALS) which solves for each one of the factor matrices by fixing the others and cycles
over all matrices iteratively until convergence[13].
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2.4 KNN Tensor Graph

A 𝑘-nearest-neighbor (KNN) graph is a model for representing the nodes in a given
feature space such that the 𝑘 most similar nodes are connected with edges, weighted
by a similarity measure [9]. In this work, we use a co-occurrence tensor to map words
into an embedding space such that each word (represented by a vector) is a node in the
embedding space and then we measure the similarity of the nodes using the Euclidean
distance between the corresponding vectors.

2.5 Hypergraph

Hypergraphs [7, 31] are an extension of graphs where an edge may connect more than
two nodes to indicate higher-order relationships between the nodes. In contrast to a
single weighted connection in traditional graphs, an edge in a hypergraph is a subset of
nodes that are similar in terms of features or distance.

3 Vec2Node Framework

3.1 Problem Formulation

Given a corpus 𝐷 of labeled data, we aim to generate 𝐷 ′ that augments 𝐷 and
improves the performance of a classification model 𝑀 on the downstream task i.e.
𝑓 (𝑀 (𝐷)) > 𝑓 (𝑀 (𝐷 + 𝐷 ′)), where 𝑓 is an evaluation measure (e.g., accuracy).

To address the above problem, we propose a novel tensor-based approach for gener-
ating synthetic texts from the corpus 𝐷. The details of the proposed method, henceforth
referred to as Vec2Node, are described in the following section.

3.2 Data Augmentation

Vec2Node leverages tensor decomposition to find word and text embeddings. These
are further used for graph-based representations of the word vectors in order to find
similar ones as replacement candidates to generate synthetic samples while minimizing
the concept drift. Vec2Node consists of the following steps:

Tensor-based Corpus Representation Textual content of documents can be repre-
sented by a co-occurrence tensor [8, 1] which embeds the patterns shared between dif-
ferent topics or classes. These patterns are formed by words that are more likely to
co-occur in documents of the same class. We leverage similar principles to capture ex-
isting similarities within a given text. To this end, given a set of samples, we first slide
a window of size 𝑤 across the text of each sample and capture the co-occurring words
to represent them in a co-occurrence matrix. Furthermore, we stack the co-occurrence
matrices of all samples to form a 3-mode tensor of dimension 𝑇 × 𝑇 × 𝑆 where 𝑇 is
the number of terms or words in the entire corpus and 𝑆 is the number of samples. This
process is demonstrated in Figure. 1. The rationale behind this approach is to capture
the context (words) for a given target word. In the experimental section, we demonstrate
how this approach captures contextually related words.
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Fig. 2: Graph and hypergraph modeling for representing words’ homophily.

Decomposing Tensors into Word and Text Embeddings The objective of this step
is to embed the words and the texts of the corpus into rank-𝑅 representations which
are later used for calculating word similarities. As explained in Section 2, we use
CP/PARAFAC to decompose our 3-mode tensor as:

X ≈ Σ𝑅𝑟=1a𝑟 ◦ b𝑟 ◦ c𝑟 (6)

Where A = [a1 a2 . . . a𝑅], B = [b1 b2 . . . b𝑅], and C = [c1 c2 . . . c𝑅] are embedding
representations of word, word and text respectively. The word co-occurrence A and B
are symmetric. Thus, they capture the same information.

Tensor Embeddings for KNN and Hypergraph Homophily Representation In this
step, we exploit tensor embedded representations A and C to estimate words and texts
homophilies (similarities) to find the best candidates for replacement in a given text and
generate new synthetic samples. We leverage the following two graph based modelings:
K Nearest Neighbor Graph Modeling. Consider the factor matrix A (or B, as they
are symmetric and capture the same information) of dimension 𝑁 × 𝑅 where each row
is a tensor word embedding in 𝑅-dimensional space R𝑅. We represent the 𝑖th row of
this matrix which corresponds to word 𝑖 as a node in 𝑅 dimensional space. This allows
for calculating the Euclidean distance between the nodes and represent the similarity
between the nodes (words) as a weighted undirected edge. The Euclidean distance be-
tween rows 𝑖 and 𝑗 measures the similarity of these two vectors in 𝑅-dimensional space.
Hypergraph Modeling. Spitz et al.[23] propose a hypergraph modeling of the doc-
uments where hyperedges are defined by consecutive sentences and words within the
text. In that work, the similarity is considered based on spatial closeness. However, in
this work, we first leverage the factor matrix C corresponding to text embedding to find
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Fig. 3: Few-shot self-training with data augmentation and consistency learning to pre-
vent concept drift.

𝐾 closest texts and then we use factor matrix A to find 𝐾
′

closest words within these 𝐾
samples. Thus, a hyperedge in this hypergraph is the set of 𝐾

′
closest words. The details

of this process are shown in Fig. 2. It is worth mentioning that our proposed model uses
KNN tensor graph for modeling word similarities. However, for comparison purposes
we implement Vec2Node framework with hypergraph modeling as well.

3.3 Learning with Data Augmentation and Limited Labels

Contextualized Word Replacement Modeling the corpus using graph or hypergraph
representations allows for finding similar words by sorting the edge weights i.e., the
Euclidean distances between the nodes, and picking the ones with the smallest distance
(i.e., closest words) as the best candidates for replacement and generation of synthetic
samples. This process is fully unsupervised given that the tensor decomposition method
does not require any labels. Also, it considers local and global contextual information
given the graph and tensorial representation of words and texts.

Self-training with Consistency Learning In order to eliminate noisy samples, we
check for concept drift between the original samples and the synthetic ones using con-
sistency learning in a self-training framework. Given a few labeled samples {𝑥𝑙 , 𝑦𝑙} ∈
𝐷𝑙 for the downstream task, we first fine-tune a base model with parameter \.

Consider 𝑥𝑢 to be the target augmented pair for a source instance 𝑥𝑙 generated using
the augmentation technique described before. We can use the current parameters \ of
the model to predict the pseudo-label for the target 𝑥𝑢 as:

𝑦𝑢 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦 𝑝(𝑦 |𝑥𝑢; \) (7)
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Since the objective of data augmentation is to generate semantically similar in-
stances for the model, we expect the output labels for the source-target augmented pair
{𝑥𝑙 , 𝑥𝑢} to be similar as well; otherwise, we designate this as a concept drift and discard
augmented pairs where 𝑦𝑙 ≠ 𝑦𝑢.

We add the remaining target pseudo-labeled data with consistent model predictions
with the source data as our augmented training set {𝑥𝑢, 𝑦𝑢} ∈ 𝐷𝑢 and re-train the base
model to update \. The above steps are repeated with iterative training of the base model
with pseudo-labeled augmented data until convergence. The optimization objective for
the above self-training process can be formulated as:

𝑚𝑖𝑛\ E𝑥𝑙 ,𝑦𝑙 ∈𝐷𝑙
[−𝑙𝑜𝑔 𝑝(𝑦𝑙 |𝑥𝑙; \)]+

_ E𝑥𝑢∈𝐷𝑢
E𝑦𝑢∼𝑝 (𝑦 |𝑥𝑢;\∗) [−𝑙𝑜𝑔 𝑝(𝑦𝑢 |𝑥𝑢; \)] (8)

where 𝑝(𝑦 |𝑥; \) is the conditional distribution under model parameters \. \∗ is given by
the model parameters from the last iteration and fixed in the current iteration. Similar
optimization functions have been used recently in variants of self-training for neural se-
quence generation [11], data augmentation [28] and knowledge distillation. The details
of this process are shown in Figure 3 with the pseudo-code in Algorithm 1.

3.4 Complexity Analysis

In the proposed Vec2Node pipeline, the main computation bottleneck is CP decom-
position (CPD). In general, CPD is shown to be in the order of the number of non-zero
elements [2] of a tensor. In fact, CPD is very fast and efficient for sparse tensors which
is the case in this work due to sparsity of the word co-occurrences. Meanwhile, some
methods have been proposed for CPD which are amenable to hundreds of concurrent
threads while maintaining load balance and low synchronization costs [21]. Moreover,
CPD is an offline step in the Vec2Node framework i.e., we only execute it once to
obtain the embeddings and there is no need to repeat it while training the model.

4 Experimental Evaluation

In this section, we assess performance of Vec2Node against baselines we further in-
troduce and then we conduct an ablation study to evaluate components of Vec2Node.

4.1 Baselines

– Base classifiers to asses the effectiveness of augmentation We compare against
the following base classifiers:
• FastText-Softmax FastText is an efficient word embedding which is

an extension of Word2Vec. It represents each word as an n-gram of characters.
Thus, in contrast to other non-contextualized embeddings such as GloVe and
Word2Vec, provides representations for unseen words [4, 12]. Considering this
advantage of FastText over mentioned embeddings, we choose FastText
with a softmax layer (FastText-Softmax), as one of our base classifiers.
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Algorithm 1 Self-train Vec2Node
Input : Base model 𝑀 , small labeled set 𝐷𝑙 .
Return : Self-trained 𝑀 .

1. Slide a window of size 𝑤 across the text of each sample in 𝐷𝑙 , capture co-occurring words
to create a co-occurrence matrix for each sample.

2. Stack all co-occurrence matrices to create a 3-mode tensor X of size 𝑇 × 𝑇 × 𝑆.
3. Decompose X into A,B,C
4. Use A,C to model the corpus using graph / hypergraph representations.
5. Calculate Euclidean distances between the nodes to find the closest words.
6. Train 𝑀 using 𝐷𝑙 = {𝑥𝑙 , 𝑦𝑙}. Set 𝐷 = 𝐷𝑙 .
7. While not converged

– For {𝑥𝑙 , 𝑦𝑙} ∈ 𝐷, generate augmented samples 𝐷 ′
𝑢 by replacing closest words.

– Assign pseudo-label 𝑦𝑢 to each sample 𝑥𝑢 ∈ 𝐷 ′
𝑢 using Equation 7.

– If 𝑦𝑙 = 𝑦𝑢 then 𝐷 = 𝐷
⋃{𝑥𝑢, 𝑦𝑢}.

– Retrain 𝑀 using augmented data 𝐷 using Equation 8.
8. Return model 𝑀

• BERT leverages contextualized representations using deep bidirectional trans-
formers. We experiment with the pre-trained checkpoints of HuggingFace5 [26].

– Neural Machine Translation (NMT) to assess the effectiveness of Vec2Node
augmentation An Encoder-Decoder architecture with recurrent neural networks
(RNN) has become an effective and standard approach for Neural Machine Trans-
lation (NMT), sequence-to-sequence prediction and data augmentation. NMT is the
core of the Google translation service [27]. We use NMT to translate original sen-
tences into French and then translate them back into English. This process results
in synthetic sentences which will be added to the original dataset.

– GPT-3 to assess the effectiveness of Vec2Node augmentation Generative Pre-
trained Transformer 3 (GPT-3) is an autoregressive language model that generates
human-like text. In this work, for each training sample, we generate multiple sen-
tences using GPT-3 and train a base classifier on the training set, leveraging classic
self-training to assign pseudo labels to the generated samples.

– NLP Word embeddings to assess the effectiveness of tensor embedding We ex-
periment with the following word embeddings to investigate the efficacy of the
tensor embedding in our proposed Vec2Node framework. For a fair comparison,
for all of the following baselines, we retain KNN graph, self-training and concept
drift check components of the proposed Vec2Node and only substitute tensor em-
bedding with the following :
• FastText embedding. Not only do we use FastText for classification,

but also we replace the tensor embedding by FastText embedding to find
the most similar words. we retain other components as mentioned above.

• Word2Vec embedding. A shallow 2-layers neural network proposed in [14].
We use Word2Vec instead of tensor embedding to find the most similar words
using cosine similarity. Similarly, we retain other components in Vec2Node.

5 https://github.com/huggingface/transformers
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Dataset Class Train Test Avg. Words/Doc

SST2 2 67340 872 17
IMDB 2 25000 25000 235

AG News 4 12000 7600 40
DBpedia 14 560000 70000 51

Table 1: Dataset statistics.

• Random replacement. We replace tensor-based similarity strategy by random
word replacement while retaining self-training and consistency learning.

– Matrix modeling (tf-idf) to compare the effectiveness of tensor modeling
against matrix modeling: First, we create a tf-idf matrix and decompose it
into word embeddings using SVD decomposition. Similar to the previous setup,
we retain other components in Vec2Node and only replace tensor embedding by
tf-idf embedding. Both random replacement and tf-idf, with strong data
augmentation and self-training techniques have been shown to obtain very compet-
itive results for text classification [25, 28].

– Hypergraph similarity representation to assess the effectiveness of KNN graph
modeling We investigate the efficacy of KNN graph modeling against hypergraph
modeling proposed in [23]. Similar to the above setup, we only replace KNN tensor
graph by hypergraph while keeping other components of Vec2Node.

– Vec2Node with and without self-training and consistency learning We remove
the self-training and consistency learning from the Vec2Node pipeline to assess
the effectiveness of aforementioned mechanisms.

4.2 Evaluation

We experiment on SST2 [22], IMDB [16], AG News [30] and DBpedia [3] with statis-
tics in Table 1, to assess the efficacy of Vec2Node on short, long and multi-label
datasets respectively. We report results on the corresponding test splits as available
from the mentioned works. To facilitate easy comparison, we report relative accuracy
improvement (↑) for all the methods over the base model without augmentation.

Base classifiers From Table 2, we observe that Vec2Node with tensor data augmenta-
tion obtains on average 16.75% and 10.5% improvement over FastText-Softmax
with no augmentation, using only 1% and 5% of labeled training data respectively. In
this experiment, Vec2Node is built on top of FastText-Softmax to demonstrate
the strength of augmentation. We also observe the relative improvement with augmen-
tation to significantly increase with longer text. For example, the improvement in accu-
racy for IMDB is 16% more than that on SST2 dataset using 5% of labels. This could
be attributed to the shorter context samples not being able to generate diverse variety
of synthetic samples that are significantly different from the original ones. However,
we still demonstrate significant accuracy improvement with augmentation on SST2 as
well. In case of DBpedia classification, which is relatively a hard task, Vec2Node im-
proves the accuracy of base FastText-Softmax by 3 − 4% using only 1 − 5% of
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Dataset %Train #Train w/o Vec2Node w/ Vec2Node Average ↑

1 673 0.509±0.000 0.638±0.0007
SST2 5 3367 0.710±0.100 0.740±0.004 (5.46↑)

100 67340 0.818±0.0018 0.823±0.0006

1 250 0.499±0.000 0.605±0.004
IMDB 5 1250 0.522±0.012 0.718±0.001 (10.26↑)

100 25000 0.857±0.0007 0.863±0.002

1 1200 0.295±0.003 0.687±0.023
AG News 5 6000 0.663±0.001 0.825±0.002 (18.56 ↑)

100 12000 0.900±0.0003 0.903±0.0008

1 5600 0.566±0.000 0.603±0.000
DBpedia 5 28000 0.589±0.015 0.619±0.000 (3.06 ↑)

100 56000 0.602±0.013 0.627±0.000

Table 2: Performance of FastText-Softmax classifier with and without
Vec2Node augmentation.

Dataset %Train #Train w/o Vec2Node w/ Vec2Node

SST2 0.5 336 0.754 0.826(7.2↑)

IMDB 0.5 125 0.776 0.783(0.7↑)

AG News 0.5 600 0.869 0.880(1.1↑)

Table 3: Performance of BERT with and without Vec2Node augmentation.

training labels. As illustrated, when we use 100% of the training data, we still observe
improvement in classification accuracy which demonstrates the effectiveness of tensor
augmentation in both low and high-resource settings.

In contrast to FastText-Softmax which is trained from the scratch, the BERT
model we use here is pre-trained over massive amounts of unlabeled data thereby,
works well even in the low-data regime. Thus, to demonstrate the strength of our ten-
sor augmentation i.e., Vec2Node, we choose the few-shot setting with only 0.5% of
labeled training data. From Table 3, we observe that Vec2Node using BERT as an
encoder along with tensor augmentation to obtain 3% improvement on average over
the base BERT model using very few training labels. Meanwhile, augmenting SST2,
using BERT as a classifier, improves the overall performance of Vec2Node, where we
observe 7.2% improvement of accuracy after augmentation. In case of DBpedia, since
it is a very large dataset, even with 0.5% of the labels a pretrained BERT achieves its
maximum accuracy. Thus we skip it for this experiment. It is worth emphasizing that
the pre-trained BERT outperforms FastText-Softmax which is trained from the
scratch. However, in both base model settings, Vec2Node improves the performance.

Neural Machine Translation (NMT): As reported in Table 4, Vec2Node outper-
forms NMT augmentation strategy as well. We observed that in contrast to synthetic
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Dataset %Train #Train w/o Aug. w/ NMT w/ GPT3 w/ Vec2Node

SST2 5 3367 0.710±0.100 0.715±0.008(0.50↑) 0.700±0.005(0.01↓) 0.740±0.004(3.00↑)

IMDB 5 1250 0.522±0.012 0.692±0.016(17.00↑) 0.795±0.001(27.3↑) 0.718±0.001(19.06↑)

AG News 5 6000 0.663±0.001 0.786±0.021(12.30 ↑) 0.801±0.001(13.8↑) 0.825±0.002(16.20 ↑)

DBpedia 5 28000 0.589±0.015 0.610±0.005(2.10 ↑) 0.667±0.060(7.8↑) 0.619±0.000(3.00 ↑)

Table 4: Performance of FastText-Softmax classifier with augmentations from
NMT, GPT-3 and Vec2Node.

samples of Vec2Node, the majority of the synthetic samples created by NMT are quite
identical with the original ones and as a result, they do not add diversity to the datasets.

GPT-3 Text Generation: Table 4 also illustrates performance of Vec2Node against
GPT-3 on FastText-Softmax classifier. while GPT-3 outperforms Vec2Node
by only 1.53% on average (all four datasets), it is also significantly larger with 175
billion parameters compared to Vec2Node with only few hyper-parameters (i.e., 𝑅, 𝑤
and 𝐾) as well as pre-trained over massive amount of web corpora.

Ablation Study In this part, we conduct an ablation study to evaluate different com-
ponents of Vec2Node namely, tensor embedding, KNN tensor graph, and self-training
mechanism for few label classification.

NLP Word Embeddings vs. Tensor Embeddings Table 5 demonstrates performance of
Vec2Nodewith different replacement strategies including FastText and Word2Vec.
As illustrated, with longer texts as in IMDB and AG News, Vec2Node with ten-
sor embedding, outperforms other word embeddings due to more tangible word co-
occurrences in the texts. In case of SST2, where samples are short phrases with fewer
co-occurring non-stop words, we observe less diverse synthetic samples. However, we
may conclude that tensor embedding outperform other embeddings in general.

Tensor Modeling vs. Matrix Modeling and tf-idf Embedding In addition, Table 5
illustrates the performance of Vec2Node against Random and tf-idf word replace-
ment strategies. Random and tf-idf do not consider the local and global contextual
information of the target word during replacement, and, consequently, generate noisy
samples. Vec2Node captures both local and global context to outperform these strate-
gies. In case of large datasets such as DBpedia, we observe that matrix modeling results
in a very large and memory inefficient representation and suffers from compute bottle-
neck for SVD decomposition, whereas tensor modeling is memory efficient due to the
fact that it breaks down a large co-occurrence matrix into multiple, yet smaller ones.

KNN Graph vs. Hypergraph for Word Similarities From Table 6, we observe that
Vec2Node with KNN graph representation to capture word similarities, outperform
hypergraph representation on all four datasets. The KNN graph captures globally sim-
ilar words, whether or not they co-occur in similar sentences, whereas the hypergraph
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Dataset %Train Matrix (tf-idf) Random Word2Vec FastText Tensor (Our)

SST2 5 0.733±0.004 (2.3↑) 0.737±0.001(2.7↑) 0.759±0.03(4.9↑) 0.730±0.025(2↑) 0.740±0.004(3.0↑)

IMDB 5 0.602±0.021(7.9↑) 0.659±0.013(13.7↑) 0.663±0.01(14.1↑) 0.680±0.045(15.8↑) 0.718±0.001(19.6↑)

AG News 5 0.807±0.002(14.3↑) 0.799±0.002(13.6↑) 0.806±0.042(14.3↑) 0.810±0.054(14.7↑) 0.825±0.001(16.2↑)

DBpedia 5 Out of Memory 0.619±0.000(3.0↑) 0.619±0.000(3.0↑) 0.619±0.000(3.0↑) 0.619±0.000(3.0↑)

Average↑ 6.125↑ 8.25↑ 9.07↑ 8.87↑ 10.45↑

Table 5: Vec2Nodewith different word strategies on FastText-Softmax classifier

Dataset %Train FastText Hypergraph KNN

SST2 5 0.710±0.100 0.722±0.003(1.2↑) 0.740±0.004(3.0↑)

IMDB 5 0.522±0.012 0.664±0.004(14.2↑) 0.718±0.001(19.6↑)

AG News 5 0.663±0.001 0.811±0.002(14.8↑) 0.825±0.001(16.2↑)

DBpedia 5 0.589±0.015 0.615±0.000(2.6↑) 0.619±0.000(3.0↑)

Table 6: Vec2Node with KNN vs. hypergraph on FastText-Softmax classifier.

Dataset %Train FastText w/o ST & CL w/ ST & CL

SST2 5 0.710±0.100 0.720±0.006(1.0↑) 0.740±0.006(3.0↑)

IMDB 5 0.522±0.012 0.686±0.005(16.4↑) 0.718±0.001(19.6↑)

AG News 5 0.663±0.001 0.791±0.001(12.8↑) 0.825±0.001(16.2↑)

DBpedia 5 0.589±0.015 0.614±0.000(2.5↑) 0.619±0.000(3.0↑)

Table 7: Vec2Node with and without self-training & consistency learning (ST & CL)
on FastText-Softmax classifier.

representation confines the similarity search to words that co-occur in similar texts.
This may lead to situations in which all words in a given sentence are replaced by the
same word due to lack of candidates in the pool. Moreover, similar words may occur in
different contexts and in such cases hypergraph does not capture them.

Vec2Node with and without Self-training and Consistency Learning In this exper-
iment, we ablate the self-training and consistency learning components in Vec2Node
to analyze their contribution to the results in Table 7. We observe the self-training com-
ponent where the model leverages augmented data and pseudo-labels for consistency
learning to further improve the performance of Vec2Node by 8.2% on all datasets.
Also, this component along with augmentation jointly contributes to 10.45% improve-
ment of Vec2Node over that of FastText-Softmax.
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4.3 Interpretability and Examples

Table 8 in Appendix 7, demonstrates synthetic examples from the AG news and SST2
datasets, generated by Vec2Node using different word replacement strategies i.e., ran-
dom, tf-idf and tensor embedding. We observe Vec2Node to generate better sam-
ples with the following features.
Preserving context for word replacement. In contrast to random selection which
blindly substitutes words, the co-occurrence based structure of the tensor embedding
preserves the context, and selects candidate words that are contextually similar to the
original ones. For instance, in example #1 the entity “Jermain Defoe" is replaced by
“Owen Michael" as they are more likely to co-occur in a Sport text related to “Real
Madrid". As illustrated, the other approaches replace words quite randomly. This fea-
ture helps to minimize the concept drift that might happen in the replacement process.
Paraphrasing context. Vec2Node leverages a sliding window to capture co-occurring
concepts in a sentence, such that non-adjacent words that occur within the same context
can be substituted with each other. This contributes to paraphrased sentences generated
during augmentation as illustrated in example #2 with re-ordered proper nouns “Sam-
sung" and “SCH-S250".
Tensor embedding preserves word-level similarities. Tensor embedding not only pre-
serves the context-level similarity, but also retains the semantics of the replaced con-
cept. More precisely, it is more likely that a number gets replaced by another number
(# 3) or an adverb by another adverb (# 5), and so on and so forth. We observe that not
only numbers and verbs, but also prepositions like “a”, “an”, and “the” are replaced by
similar concepts in the synthetic samples while preserving the context.

4.4 Related work

Self-training and Consistency Learning Self-training is one of the well-known semi-
supervised approaches which has been widely used to minimize the need for annotation
leveraging large-scale unlabeled data [15, 11, 17, 24]. For instance, Wang et al. leverage
self-training and meta-learning for few-shot training of neural sequence taggers [24].
Moreover, a recent work, a.k.a UDA [28] exploits consistency learning with paraphras-
ing and back-translation from Neural Machine Translation systems for few-shot learn-
ing. In this work, we do not use any external resources such as an NMT system. In fact,
we aim to bridge the gap between self-training and augmentation techniques, while
solely relying on in-domain unlabeled data for tensor-based augmentation.

5 Conclusion

In this work, we propose a novel tensor-based technique i.e., Vec2Node, to augment
textual datasets leveraging local and global information in corpus. Vec2Node lever-
ages tensor data augmentation with self-training and consistency learning for text clas-
sification with few labels. Our experiments demonstrate that synthetic data generated
by Vec2Node are interpretable and improve the classification accuracy over different
datasets significantly in low-resource settings. For instance, Vec2Node improves the
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accuracy of FastText by 16.75% while using only 1% of labeled data. Overall, we
demonstrate Vec2Node to work well both in low and high-data regime with improved
performance when built on top of different encoders (e.g., FastText, BERT).
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7 Appendix

Hyper-parameter configurations. We perform grid search for the window size 𝑤 ∈ [3−10], 𝑅 ∈ [5−150], with the best
value as 𝑤 = 3 and 𝑤 = 7 for short and long texts respectively. Similarly, we found the best value for the decomposition
rank 𝑅 = 25. We also perform a search for the word replacement ratio – where we replace words by their nearest neighbors
in the embedding space to generate augmented samples (as outlined in Section 2). We observe that replacing 20 − 25 %
of the words results in fewer number of concept drift which consequently leads to the best accuracy. We also explored the
possibility of consecutive vs. random word replacement. We found the classification accuracy of the former to be 3% higher
as it preserves the context resulting in 10 − 12 % less concept drift. Reported experimental results are averaged over 25
runs with different random seeds. For BERT experiments, we use self-trianing algorithm 1, and for FastText and all other
baselines we use classic self-training due to the speed. The code is publicly available for reproducibility purposes6.

# Original-Label Augmented-Method Closest Tensor Neighbors

1 Jermain Defoe may replace him for Eng-
land on Saturday-Sports Owen Michael may replace him for Eng-

land on Saturday-Tensor
Jermain Defoe may replace him for Eng-
land vast desert Saturday-Random
Jermain Defoe may replace 1.22 for Eng-
land 0-11 Saturday 1,070-Tf-idf

Jermain ↩→ Owen
Defoe ↩→ Michael

2 The Samsung SCH-S250 5-megapixel
camera phone will enable users to take
photos-Sci/Tech

SCH-S250 Samsung the 5-megapixel cam-
era phone will enable users to take photos-
Tensor
seem dominance in hurricane season SCH-
S250 Samsung The will enable users to
take photos -Random
barbarians SCH-S250 Samsung The will
enable users to take photos-Tf-idf

Samsung ↩→ SCH-S250
SCH-S250 ↩→ Samsung

3 Pakistan has arrested at least five al-Qaida-
linked-World Pakistan has arrested at athens 10 al-Qaida-

linked -Tensor
Pakistan has arrested .26 pairings fatter al-
Qaida-linked-Random
Pakistan has 0.84 , 1,000-yard 1,000-yard
al-Qaida-linked-Tf-idf

least ↩→ athens
five ↩→ 10

4 working from a surprisingly sensi-
tive script co-written by gianni ro-
moli...Positive

add a surprisingly sensitive script co-
written by gianni romoli... Tensor
working from a surprisingly sensitive
script co-written by gianni mixed second-
rate -Random
working from a surprisingly sensitive
script co-written by becalmed chillingly ...-
TF-idf

working ↩→ add
from ↩→ ’ ’

5 Never seems hopelessly juvenile .-
Negative Never seems amateurishly accused-Tesnor

Never seems dawn carmichael-Random
Never seems born actioners -Tf-idf

hopelessly ↩→ amateurishly
juvenile ↩→ accused

Table 8: Snapshot of similar contexts captured with tensor embedding and augmented sentences created by replacing
20-30% words in a sentence.

6 https://github.com/Saraabdali/Vec2Node


