
Blokus Duo Game on FPGA

Ali Jahanshahi
Department of Electrical and Computer Engineering

University of Tehran
Tehran, Iran

ali.jahanshahi@ut.ac.ir

MohammadKazem Taram
Department of Computer Engineering

Sharif University of Technology
Tehran, Iran

taram@ce.sharif.edu

Nariman Eskandari
Department of Electrical and Computer Engineering

Shahid Beheshti University
Tehran, Iran

eskandari_nariman@robocyrus.ir

Abstract—There are a number of Artificial Intelligence (AI)

algorithms for implementation of “Blokus Duo” game. We
needed an implementation on FPGA, and moreover, the design
had to respond under a given time constraint. In this paper we
examine some of these algorithms and propose a heuristic
algorithm to solve the problem by considering intelligence,
time constraint and FPGA implementation limitations.

Keywords—Blokus Duo game; FPGA; monte-carlo tree
search; min-max tree search;

I. INTRODUCTION

The first National Digital Systems Design contest of Iran
was held in conjunction with Computer Architecture and
Digital Systems (CADS) conference from July to October
2013. The FPGA Challenge part of the contest was a Blokus
Duo game on a 12x12 board. This paper presents
implementation details of the design realized by the authors
who managed to secure the first place in the contest among
the teams who had successfully passed initial tests and were
granted entry to the final round of the game on October 29th
in Sharif University of Technology.
There are several versions of Blokus duo game. The version
of this game used in this paper is palyed on a 12 x 12 square
board. Two players play this game and each one has 17
different shaped tiles as illustrated in Fig. 1. Tiles can be
rotated in 8 possible way. All rotations of tile ‘P’ are
illustrated in Fig. 2. Players alternativly put one of their tiles
on the board according to two primary rules:

1. Newly placed tile must have at least one corner-to-
corner contact with a tile of the same color.

2. Newly placed tile must not have edge-to-edge
contact with any tile of the same color.But there is
no limitation for two opposite color tiles for putting
on board.

 Fig. 3 illustrates some allowed and prohibited moves.

Fig. 1. Existing tiles

Fig. 2. Different rotations of a tile

Fig. 3. Allowed and prohibited moves

There are some other rules for starting and finshing the
game:

 On the First move players must cover either (4,4)
or (9,9) on the board.

 When it is not possible for a player to place a tile
on the board, it must pass.

 The game continues until both players pass, one
player plays all its tiles, or one player makes an

978-1-4799-0565-2/13/$31.00 ©2013 IEEE 149

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 29,2020 at 17:57:12 UTC from IEEE Xplore. Restrictions apply.

invalid move.
There are also some rules for calculating scores of the
players:

 Basic score is given by minus total number of
squares of unplaced tiles.

 If a player played all 17 tiles, the player score will
be 15.

 If the last tile he puts on the board is 'a', the bounce
increases to 20.

 invalid move results in immediate loss of game.

II. ATTEMPTED ALGORITHMS

Our goal is to find an algorithm to implement this game
on an FPGA so that the FPGA plays the game. At first we
explain the algorithms by which this game can be
implemented on FPGA. There are some timing constraints
for players to choose and place a tile on the board.
Implemented algorithm should make a move in upto 10
seconds.
So we first investigated some alorithms and approaches to
maintain these constraints.

A. Min-max with alpha-beta pruning

Two-player deterministic games with perfect
information have been under study in Artificial Intelligence
(AI) research for many years and significant results have
been achieved. One well-known framework to deal with
such problems is the alpha-beta framework. However, this
framework works well only under two conditions:

1. A suitable evaluation function exists
2. The game doesn’t have a high branching

factor.
Because of high branching factor of Blokus duo game

we must evaluate the game at very early stages, so the result
is not acceptable.

B. Monte carlo tree search

One of the most important components required in AI to
achieve good results is defining a proper evaluation
function. The task of such functions is to estimate the state
of the game in a non-final state. However, to define a good
evaluation function we need heuristics based on specific
knowledge in the game domain. In simpler domains, where
AI has already achieved significant results, it is easier to
define the functionbut in more complex environments it is
unlikely to find such function. Recent researches including
Monte-Carlo based techniques are employing other
approaches. They have already been applied successfully to
many games, including POKER [7] and SCRABBLE [10].
For example Monte-Carlo Tree Search (MCTS) that was
first proposed in 2006, is implemented in top-rated GO
programs. MCTS programs could defeat professional GO
players on a 9x9 board. The idea is not specific to GO and
can be used simply in any other boardgames. To achieve
acceptable result we need to repeat the pseudo-random
simulation for large enough iterations, but on a low

frequency FPGA this can violate the time constraint of the
game.

III. PROPOSED HEURISTIC ALGORITHM

We investigated two well known AI algorithms that are
common in the field of computer games but they do not
maintain timing constraints. So we decided to propose a
heuristic algorithm. In the proposed heuristic algorithm, at
each step of game, we find all possible moves then rank
each move according to a number of strategies described
below. After ranking the moves, we finally select one of the
highest score moves randomly.
This algorithm proposed three heuristic strategies for
scoring each move:

1. Developing our game: by putting bigger tiles on
the board we try to place more squares early in the
game. Because of the game scoring rule which
state that “the player who puts more squares on the
board is winner.”, our first scoring strategy is
selecting bigger tiles. According to the game rules,
we are allowed to put a tile on board if it has a
corner-to-corner contact with exiting same color
tiles. This rule shows the importance of free
corners for each player. In fact, the number of next
possible moves depends on the number of free
corners. Thus, we detect moves that increase free
corners and give them a higher rank.

2. Disrupting the other player game: As said in
previous strategy, free corners are important for
players. So we can destroy free corners of the other
player by putting our tiles there. Fig. 4 and Fig. 5
illustrate a situation in which the player with black
tiles wants to choose a move between two possible
moves. According to this strategy, the move which
destroys more corners of the white player is
selected as the next move. So it chooses the move
of Fig. 5.

Fig. 4. The move does not destroy any corner

150

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 29,2020 at 17:57:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. The move destroys two corners

3. Survive: The last and the most important sterategy
is to survive. There are situations in which one
player is trapping the other player in a small region
of board and wants to limit the other player moves.
In these situations the player who is trapped by the
other player, must find a way to escape from trap.
We detect places on the board that can help us
escape from the other player's trap. We call these
places “strategic places.” Fig. 6 and Fig. 7 illustrate
two situations in which the white player is creating
a wall in order to trap the black player. Here we
also have some possible moves. Fig. 6 illustrates a
move by which the black player did not consider a
strategic place for later escaping from the trap. But
figure 7 illustrates a move in which the strategic
place is considered and we can pass to other side of
the white player as in Fig. 8.

IV. DYNAMIC STRATEGIES

Another heuristic used in the proposed algorithm is that
the weights of each ranking strategy, i.e. Progressing our
game, Disrupting the other player game and survive,
dynamically changes during the game. We called this
heuristic “dynamic strategies.” In this strategy, we partition
the game to three phases: beginning , middle and end of the
game. At each phase we have diffrent weights for the
ranking strategies. We detect each phase by the number of
moves we have played. For example at the beginning of the
game, strategic points are less important than the other
strategies, so they have little priority and weight, whereas
the other strategies are more important at that time. TABLE
I. shows priority of our strategies during game.

TABLE I. WHEIGHT OF EACH STERATEGY DURING THE GAME

Phases

Strategies
Disrupt
other
player

Increase
chance of your

next move

Bigger
tiles

Strategic
points

Start of the game

High High
Very
High

Normal

Middle of the game
 High Normal High

Very
High

End of the game Low Low Normal
Very
High

Fig. 6. Move without considering strategic place

Fig. 7. Move with considering strategic place

Fig. 8. Passing the white player wall from strategic place

SUMMARY AND CONCLUSION

In this paper we described the heuristic strategies we
employed and implemented on FPGA in our design
submitted to the FPGA Challenge game of the first National
Digital Systems Design contest of Iran. We developed three

151

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 29,2020 at 17:57:12 UTC from IEEE Xplore. Restrictions apply.

heuristics to rank possible choices at each move of our
player, and also employed a dynamic weighting strategy to
change the significance of each ranking heuristic based on
the beginning, middle, and

Our design won the first place in a round robin contest
among the 6 contestant teams who had managed to get to
the final round of the game.

REFERENCES

[1] Chaslot, Guillaume M. JB, Mark HM Winands, H. JAAP VAN DEN
HERIK, Jos WHM Uiterwijk, and Bruno Bouzy. "Progressive
strategies for Monte-Carlo tree search." New Mathematics and
Natural Computation 4, no. 03 (2008): 343-357.

[2] Winands, Mark HM, Yngvi Björnsson, and Jahn-Takeshi Saito.
"Monte-carlo tree search solver." In Computers and Games, pp. 25-
36. Springer Berlin Heidelberg, 2008.

[3] Browne, Cameron B., Edward Powley, Daniel Whitehouse, Simon M.
Lucas, Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener,
Diego Perez, Spyridon Samothrakis, and Simon Colton. "A survey of
monte carlo tree search methods." Computational Intelligence and AI
in Games, IEEE Transactions on 4, no. 1 (2012): 1-43.

[4] Stockman, George C. "A minimax algorithm better than alpha-beta?."
Artificial Intelligence 12.2 (1979): 179-196.

[5] Knuth, Donald E., and Ronald W. Moore. "An analysis of alpha-beta
pruning." Artificial intelligence 6, no. 4 (1976): 293-326.

[6] Chaslot, G.-B.; Saito, J.-T.; Bouzy, B.; Uiterwijk, J.; and van den
Herik, H. 2006. Monte-Carlo Strategies for Com- puter Go. In
Proceedings of the 18th Belgian-Dutch Con- ference on Artificial
Intelligence, 83–90.

[7] Kocsis, L., and Szepesva ́ri, C. 2006. Bandit Based Monte- Carlo
Planning. In Machine Learning: ECML 2006, Lec- ture Notes in
Artificial Intelligence 4212, 282–293.

[8] Sheppard, B. 2002. World-championship-caliber scrabble. Artificial
Intelligence 134(1):241–275.

[9] Billings, D.; Davidson, A.; Schaeffer, J.; and Szafron, D. 2002. The
challenge of poker. AI 134(1):201–240.

[10] Schaeffer, Jonathan. "The history heuristic and alpha-beta search
enhancements in practice." Pattern Analysis and Machine
Intelligence, IEEE Transactions on 11.11 (1989): 1203-1212.

[11] Chaslot, Guillaume, et al. "Monte-Carlo tree search: a new framework
for game AI." AIIDE. 2008.

152

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on December 29,2020 at 17:57:12 UTC from IEEE Xplore. Restrictions apply.

