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Adoption of renewable energy in power grids introduces stability challenges in regulating the operation frequency of the electricity
grid. Thus, electrical grid operators call for provisioning of frequency regulation services from end-user customers, such as data
centers, to help balance the power grid’s stability by dynamically adjusting their energy consumption based on the power grid’s need.
As renewable energy adoption grows, the average reward price of frequency regulation services has become much higher than that of
the electricity cost. Therefore, there is a great cost incentive for data centers to provide frequency regulation service.

Many existing techniques modulating data center power result in significant performance slowdown or provide a low amount of
frequency regulation provision. We present PowerMorph, a tight QoS-aware data center power-reshaping framework, which enables
commodity servers to provide practical frequency regulation service. The key behind PowerMorph is using “complementary workload”
as an additional knob to modulate server power, which provides high provision capacity while satisfying tight QoS constraints of
latency-critical workloads. We achieve up to 58% improvement to TCO under common conditions, and in certain cases can even
completely eliminate the data center electricity bill and provide a net profit.

CCS Concepts: • Hardware → Enterprise level and data centers power issues; • Software and its engineering → Power
management; • Computer systems organization→ Architectures.
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1 INTRODUCTION

Environmental regulations and falling costs are driving the rapid adoption of renewable energy resources (e.g. wind
and solar energy). During the past decade, electricity generation from wind energy has nearly tripled from 95,000
GWh to 254,000 GWh, and solar energy has grown nearly 40x from 2,200 GWh to 81,000 GWh [29, 41]. Overall, the
percentage of total generation due to renewable energy has increased from 12.3% to 19.7% [41]. However, the integration
of renewable energy and its intermittent behaviour present challenges in maintaining electrical grid stability.

Electrical grids typically have an operating frequency of 50Hz (e.g. China, European countries) or 60Hz (e.g. United
States, Canada). The operating frequency of the electrical grid can easily lose balance if the supply of electricity
generation does not match the demand of electricity consumption. To combat this in modern smart grids, regional
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electric grid operators—also known as Independent Service Operators (ISO)—call for conventional power plants and
end-use customers, such as data centers, to provision for frequency regulation services. The ISOs periodically send a
frequency regulation signal to these entities which will accordingly adjust their electricity consumption/generation to
help stabilize the grid frequency. In return, participants receive monetary benefits. With the increasing integration
of solar and wind, and increasing grid instability, the price of frequency regulation has increased significantly [29]
providing growing incentives along with opportunities for data center participation.

Conventional frequency regulation services are provided by electricity generators. However, generators tend to be
slow in adjusting electricity generation and it is only feasible for larger, longer fluctuations in electrical grid conditions.
More recently, batteries distributed across the electrical grid have been utilized for providing real-time frequency
regulation services which require electricity adjustments every two seconds. However, using batteries suffer from poor
battery lifetime due to the need to charge/discharge every two seconds and also the amount of regulation provisioned
can fade if the battery is either fully charged or discharged [18, 35].

As an alternative, data centers have recently emerged as a compelling candidate for participation in frequency
regulation services by providing significant regulation service provision and providing the ability to vary electricity
consumption dynamically. Data centers consume 2% of US electricity usage, representing a large portion of overall
electricity usage [22], providing a large potential source of regulation service provision. In the past, data centers have
been explored to participate in various types of demand response including voluntary load reduction [24, 85], and
peak shaving/power capping [14, 20, 31, 31, 89] through techniques including DVFS [14, 89], thread packing [12, 14],
co-scheduling [31, 36, 70], and consolidating cores [6]. In addition, energy storage devices (i.e. batteries) can be used to
achieve peak shaving by discharging during peak electricity usage periods and charging during low electricity usage
periods [42, 48, 82]. However, relying on UPS batteries for peak shaving can result in shorter battery lifetime and
jeopardizing power backup, and also requires significant capital expense investments.

Prior works [6, 8, 95] have attempted to adapt power capping techniques for participation in frequency regulation
services and for load following [48]. These works target batch (best-effort) or HPC workloads, which typically run at
maximum server power and are allowed to be slowed down (up to 200%) to track the regulation signal. Furthermore,
they rely on existing power management knobs which limits the amount of regulation provision capacity that can be
provided to the amount of power consumed by the workload.

Still, there are several significant limitations toward enabling practical frequency regulation services. First, data
centers typically run a mix of latency-critical workloads and best-effort workloads. These prior techniques assume
relaxed QoS targets and tolerated slowdowns of up to 200% QoS degradation [8, 95, 96], which would be intolerable for
latency-critical applications. Second, it is unclear how incoming request traffic variability can be handled in concert
with frequency regulation signals. Finally, the majority of prior works have been conducted through analytical models
(at best, models derived from empirical measurements) which do not capture the real-world variability of latency-
critical workloads [11, 39]. In this work, we present PowerMorph , the first work to demonstrate support for data

center frequency regulation in latency-critical environments. The main novelty of this work is that it is the first to
achieve frequency regulation of servers running latency-sensitive workloads through the introduction of a novel knob
(complementary workloads). While co-location of LC and BE workloads and throttling dummy load have been proposed
in prior works, our work is the first to show how to carefully coordinate co-location, throttling of complementary
workloads, and DVFS in order to maximize frequency regulation provisioning under ms-scale latency constraints. This
work opens up frequency regulation to a whole new class of widely-used data center workloads/servers that previously
was unattainable.
Manuscript submitted to ACM
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In this work, we make the following contributions:

• (§3) Identify the challenges of achieving frequency regulation service participation in commodity data centers
running latency-critical workloads.

• (§4) We propose PowerMorph, a QoS-aware server power reshaping framework, enabling data centers to provide
frequency regulation services using only computational resources under latency-critical data center conditions.

• (§5) We show that PowerMorph can accurately track frequency regulation signals in real-time and reshape
server power profiles. In a small-scale data center evaluation, we observed total electricity cost savings of up
to 71% and TCO ($ per throughput) improvement of up to 56% under common conditions. Under favorable
conditions, which occur 10% of the time, it is even possible to completely eliminate electricity cost and achieve
net profit. We also compare the total electricity cost of a data center providing frequency regulation using energy
storage technique (Flywheel) and a cluster-level frequency regulation technique using CPU resource limiting
and idle server modulation (EnergyQARE [8]) with PowerMorph .

2 BACKGROUND ANDMOTIVATION

In this section, we will first provide an overview of frequency regulation service and the potential opportunities for
electricity cost savings. Then we’ll provide an overview of other common techniques used to optimize data center
energy efficiency, such as power over-subscription and workload co-location. Then in the next section, we’ll provide
an overview of the limitations of existing work in providing practical data center frequency regulation service and
motivate the need for PowerMorph.

2.1 Overview of Frequency Regulation Service

In order to maintain electrical grid stability, electrical grids must maintain operating frequency between 58.98Hz -
60.02Hz in the United States. In traditional power grids, this is achieved by constantly adjusting the generator output to
match the electricity consumption of consumers. However, as renewable energy sources such as wind and solar are
integrated into the power grid, the intermittent nature of solar and wind causes significant variation in the electrical
generator side. These sources have limited ability to adjust electrical generation supply in order to match consumer
demand, and traditional power sources cannot vary power quickly enough to balance out the nature of solar and wind
variation. Therefore, power system operators have recently begun allowing end-use customers to help maintain the
electrical grid frequency.

Frequency Regulation Markets: In order to maintain the operating frequency of the electric grid at rated values,
power system operators call for the provision of frequency regulation services from end-user customers and thermal
power plants in day-ahead or real-time markets. The frequency regulation service provision resources, such as a data
center, submit their estimated energy consumption baseline and frequency regulation service provision capability into
the corresponding market either a day in advance (for day-ahead market), or an hour in advance (for real-time market).
The energy consumption baseline is denoted as 𝑃𝑎𝑣𝑔 (i.e. the average amount of power the data center is expected to
consume in the next day/hour) and the amount of frequency regulation service is denoted by 𝑅 (i.e. the amount of
power the data center can vary on-demand).

For real-time markets, estimates can be made at the start of the hour at 60-minute granularity (e.g. energy consumed
over the next hour) or at 5-minute granularity (e.g. energy consumed for every 5-minute interval over the next hour),
depending on the ISO support. We find that making hour-ahead 60-minute granularity bids in the real-time market
provides the ideal trade-off in forecasting accuracy, as it is difficult for data centers to forecast its usage a day ahead, or
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Fig. 1. Electricity cost and corresponding Regulation reward pricing in 2018 [66]

to estimate usage over the next hour in 5-minute granularity. In this paper, we utilize PJM real-time market which only
allows bids at 60-minute granularity.

Regulation signal: The frequency regulation service provision resources (e.g. a data center) have to modulate their
power consumption to follow a frequency regulation signal, 𝑟 (𝑡), which falls into the range of [−1, 1]. The frequency
regulation service signal is broadcast every 2 seconds by the ISO based on the current state of the power grid. ISOs
ensure that that the difference between two consecutive values of 𝑟 (𝑡) does not exceed 0.5% of R [67], which means that
the frequency regulation signal is relatively slow-moving compared to the variability experienced in servers. Examples
of regulation signals can be seen in Figure 7.

By setting the energy consumption baseline (𝑃𝑎𝑣𝑔) and the amount of frequency regulation (𝑅), the data center should
keep its power consumption at time 𝑡 to be 𝑃𝑎𝑣𝑔 + 𝑟 (𝑡) · 𝑅. The energy charge of the data center at time period 𝑡 equals
to the product of 𝑃𝑎𝑣𝑔 and locational marginal price of energy at time 𝑡 . The revenue (reward) that the data center
receives at time period 𝑡 from providing frequency regulation service equals the product of the amount of frequency
regulation service (𝑅) and the price of frequency regulation service price at time period.

Quantifying Quality of Frequency Regulation Service Provision: The revenue received from frequency regulation
service is also dependent on, and proportional to, the quality of the provided regulation service. In other words, the
magnitude of the revenue depends on how well a frequency regulation service provision resource (e.g. data center) can
track the frequency regulation signal. The quality of tracking is quantified by a performance score [67]. In quantifying
the performance score, the electricity market does not differentiate between the uncertainty of data center demand vs
the inability to follow regulation demand. Performance score is calculated with Equation 1:

Performance Score =
1
3
(Delay + Accuracy + Precision) (1)

Delay is the time delay between the frequency regulation signal and the point of its highest correlation with the
regulation service provision resource’s power consumption signal. Accuracy is the correlation or degree of relationship
Manuscript submitted to ACM
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between the frequency regulation signal and the regulation resources’ power consumption time series. Precision is
calculated based on the instantaneous error between the regulation signal and the regulating resource’s response.

ISOs typically certify a resource for regulation service provision after the resource achieves a performance score of
75% or better on three consecutive successful tests [67]. Once frequency regulation resources are qualified for regulation
service provision, they have to maintain a performance score of 40% or higher, otherwise, they will be disqualified from
future frequency regulation service provision [67].

Reward pricing and Electricity cost: Figure 1 shows the electricity cost (in $/MWh) and the reward pricing (in $/MWh)
combination for a 1-year period in 2018 from PJM Interconnection [66]. The top and right histogram distribution shows
the probability distribution function of electricity cost and reward pricing, respectively, in order to show the density of
the scatter plot. Based on this, we can observe that electricity cost is typically in the $20 -$40 per MWh range and the
reward pricing is typically in the $30 - $100 per MWh range. The diagonal lines in the scatter plot represent the reward
to cost ratio, with the lowest line representing price parity. 75% of the time we observe reward pricing greater than or
equal to electricity cost. Therefore, ample opportunities exist for data centers to take advantage of favorable reward
pricing. In fact, we observed that there are certain reward to cost ratios that result in net profit, as highlighted by
the yellow-colored dots. That is, at reward to cost ratios above 4, we observe that 10% of the time1 the reward revenue
from frequency regulation completely offsets the electricity cost resulting in overall profit. With the increasing adoption
of renewable energy, it is expected that the reward to cost ratio will only become more favorable [29]. Clearly, there is a
great financial incentive for data center participation in frequency regulation markets.

Regulation Service vs Reducing Power Consumption: Data center operators try to optimize different aspects of the
data centers to reduce costs and maximize monetary benefits as long as the optimization does not violate the Service
Level Agreement (SLA). Lowering data center energy consumption is of great importance because electricity costs are
a major operation expense in data centers. To reduce the data center energy costs, numerous approaches have been
proposed to minimize the energy consumption of servers [11, 39, 54, 56, 80, 87], or decrease the server’s peak power
without violating the SLA [3, 31, 71, 89].

Counter-intuitively, we show that regulation service mechanisms can enable data centers to reap monetary benefits
without the goal of minimizing server power consumption. As shown in Figure 1, the reward to cost ratio is commonly
2x - 10x. Due to these reward to cost ratios, there may be greater monetary benefits to participating in frequency
regulation service than to minimize server power consumption—in many cases it may be beneficial to have the server

consume more power.

2.2 Overview of server co-location

The traditional data center technique to improve the energy efficiency of data centers revolved around increasing the
utilization of existing power infrastructure and servers. Typically, many servers run at lower utilization, and therefore
consume less power than its nameplate power [20]. This is especially true of servers running latency-critical workloads
which typically exhibit request-response patterns where its utilization depends on the amount of incoming requests. A
common technique to improve the energy efficiency of data center servers is to increase the utilization of the servers.
Since servers commonly are lowly utilized [20], co-locating many jobs can significantly improve server utilization. For
example, server virtualization is a commonly used technique to allow co-location on a single hardware server.

More recently, there has been significant work done in exploring the safe co-location of common data center
workloads, such as best-effort batch-type workloads and latency-critical workloads. Many work exist in supporting safe

1Assumes a data center at moderate 40% load and 80% performance score.
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co-location of latency-critical and batch workloads to increase server utilization and scheduling of safe co-location
pairs [9, 15, 16, 55, 57, 61, 62, 65, 72, 90, 91, 94]. For example, Heracles [57] dynamically manages multiple hardware and
software isolation mechanisms to ensure that latency-critical workloads meet their strict QoS targets while maximizing
the resource given to best-effort tasks. More recently, safe co-location works have explored how to enable co-location
of multiple latency-critical workloads [61, 65] by quickly adjusting resource isolation in a fine-grain manner.

In our work, the goal is to provide practical data center frequency regulation for latency-critical data center workloads.
Due to their low utilization, the amount of frequency regulation provision available is severely limited. In order to
increase the amount of frequency regulation provision available, we aim to co-locate latency-critical workloads with a
complementary best-effort workloads with standard commercially available isolation mechanisms. Incorporating more
advanced co-location policies would enable even better isolation of latency-critical and best-effort workloads, resulting
in better tail latency results.

2.3 Overview of data center power capping

A common technique to improve the utilization of power infrastructure is to over-subscribe the number of servers in
the data center and then limit the power consumption to safe levels under power emergencies. Power emergencies can
occur when the amount of power consumed by servers exceed the amount of power that can be provided by the data
center. Typical techniques to handle these power emergencies are known as peak shaving or power capping. A lot of
research has been conducted on power-capping across single server, clusters/data center, or combination of them.

Server-level power capping: Peak shaving (power capping) limits the peak power consumption either the data center-
or server-level resulting in lower peak demand charge. Power capping can be achieved with a wide range of techniques,
which leverage computational resources. These techniques include DVFS [14, 89], thread packing [14], CPUJailing [37],
co-scheduling of power-complementary workloads [31], consolidating cores [6], and using batteries [1, 27, 42, 82].

Data center-level power management: Most power management techniques at data center rely on meticulous
coordination of server-level power capping techniques [20, 31, 37, 50, 84, 88] in conjunction with leveraging power
distribution units (PDUs) [51, 73, 92].

Supporting power capping has some similarities to supporting frequency regulation. For example, both require the
data center (or server) power consumption to meet a certain power level. In the case of power capping, this power level
is a static power level, while in frequency regulation this power level is time-varying based on the regulation signal.
However, there exists a critical distinction that presents unique challenges for frequency regulation. In power capping,
the nominal utilization and power consumption level is at a maximal level and power capping techniques aim to decrease
the power consumption through various means (i.e. DVFS, resource limiting, etc.). In the case of frequency regulation,
the data center power level must be able to be decrease or increase, depending on the regulation signal. In addition, the
capacity for power increase / decrease must be significant enough to provide a sufficient level of frequency regulation
provisioning in order to obtain sufficient reward. In comparison to power capping techniques, PowerMorph not only
requires servers to reduce power, but also follow and increase power.

3 CHALLENGES TOWARD PRACTICAL DATA CENTER FREQUENCY REGULATION UNDER

LATENCY-CRITICAL CONSTRAINTS

Due to the large electrical load that data centers consume, data centers make a good candidate for participation in
regulation services. Prior works have investigated the challenges and benefits of incorporating data centers into power
grids as regulation resources [54] for demand response and frequency regulation service. However, most work focuses
on the electricity market mechanisms on how to incentivize data centers to participate [54] or explores potential
Manuscript submitted to ACM
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benefits through extensive modeling [30, 49]. However, these prior works do not adequately demonstrate practical
implementations, and their challenges, for realizing data center participation in frequency regulation services. In our
work, we specifically address how data center frequency regulation can be supported under more realistic environments
which run latency-critical workloads. In this section, we will highlight the challenges towards achieving practical data
center frequency regulation with commodity servers and our approach to overcome it.

How to maximize regulation provision? A key challenge that latency-critical workloads present is that servers tend
to be lowly utilized due to the request-response nature of the workload [2]. This presents a challenge since the lower
utilization of latency-critical workloads limits the amount of frequency regulation provision that can be provided. This
contrasts to best-effort batch workloads which tend to run at near maximum utilization and provide a readily available
large dynamic power range to modulate power.

Another key challenge to maximizing the amount of regulation service provision is the need to provide symmetric

frequency regulation. While many power modulation techniques, such as DVFS and core shutdown, can already provide
symmetric frequency regulation, their provision amount can be limited. For example, if a server commit a total of 20W
for regulation service, then it must be able to either increase (up to 𝑃𝑎𝑣𝑔 + 20) or decrease (down to 𝑃𝑎𝑣𝑔 − 20) power
consumption as requested. However, certain scenarios can lead to violations. For example, if core sleep states are used
to reshape power and the server utilization is low, then there may not be enough cores to put to sleep to regulate
the power down to satisfy the regulation signal which negatively affects the performance score. To maintain quality
regulation performance, only a limited amount of power can be provisioned for frequency regulation.

To address these limitations and to maximize regulation provision, we pair the latency-critical workload with a
co-located complementary workload to provide offset power which symmetrically increases the amount of room to
modulate power up and down.

How to practically support complementary workloads? A key contribution of PowerMorph is the use of complemen-
tary workloads to regulate server power. Essentially, we co-locate a best-effort workload that we can modulate. Utilizing
complementary workloads presents several challenges. Specifically, the complementary workload needs to be able to
handle the high variability of the latency-critical workload and need to avoid performance-degrading contention with
the latency-critical workload. Due to the request-response nature of the latency-critical workload, server utilization
tends to exhibit high short-term variability and is prone to bursty behavior [11]. This presents a unique challenge for
the complementary workload as it needs to modulate its utilization to complement the latency-critical workload and at
the same time aim to accurately track the moving regulation signal.

If not carefully co-located, the complementary workload may also contend with the latency-critical workload causing
QoS degradation. As shown previously, there exist a large body of work that propose co-location frameworks to
allow latency-critical and best-effort workloads to safely co-locate. Although co-location frameworks that support
multiple latency-critical workloads exist, we do not consider co-locating multiple latency-critical workloads as a
complementary workload since the strict QoS requirement of the latency-critical workloads would eliminate any
possible power modulation opportunity. In order to maintain the tight QoS of the main workload, the goal of this work
is to answer "What level of isolation is required to safely co-locate complementary workloads with latency-critical workloads

for regulation service?" and also to see "How does co-located workloads variance impact regulation service quality?"
How to reshape power? A major challenge of data center frequency regulation is the selection of techniques to

modulate power to track the regulation signal. The challenge here is the time granularity of the regulation signal requires
the data center to vary its power every 2 seconds and the need to provide sufficient and symmetric regulation provision.
We mainly focus on servers since they consume the largest portion of the total data center power [38, 86]. Furthermore,
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Table 1. Overview of limitations of existing works enabling data centers to provide regulation service. PowerMorph (the last row)
enables data centers with co-located batch and latency-critical applications (very tight QoS constraint) participate in regulation
service to reduce the data center electricity costs.

Power Modulation Techniques Server/
Cluster

Workload
Support 1

QoS Criteria Workload Service
Time Constraint

RS
Provision

DVFS [49] Server Sim. No QoS Support ms Low
Forced idle injection [59] Server BE No QoS Support s Medium
CPU resource limit [6] Server BE BE sojourn time 2 s Medium
Power Capping, Job sched. [96] Cluster Sim. BE sojourn time min/hour Medium
CPU res. lim., Idle server [8] Cluster BE BE sojourn time s Medium
RE, EES, VM Allocation3 [63] Cluster Sim. BE sojourn time min High
RAPL, Job sched./Queue [95] Cluster BE BE sojourn time s High
Dummy load, DVFS [83] Cluster Sim No QoS Support ms High
Complementary Workload, DVFS4 Cluster LC&BE LC tail latency ms High

1 BE: Best-effort/Batch, LC: Latency-critical, Sim: Simulation || 2 sojourn time = queue time + execution time
3 RE: Renewble Energy, EES: Electrical Energy Storage || 4 This work: PowerMorph

servers provide a large dynamic power range for providing regulation service. Therefore, these computational resources
are a large source of untapped regulation service provision that does not require the capital expense overheads of
utilizing energy storage devices (i.e. flywheels, batteries)2 and are readily available in commodity data centers. Within
servers, by far the largest consumer of power is the processor, followed by main memory [38, 86]. Memory tends
to not be significantly energy proportional as main memory has significant static power due to the need for DRAM
refresh [58, 74]. Processors, on the other hand, are extremely energy proportional due to aggressive low power states
such as idle power states (power gating) and dynamic voltage frequency scaling, which makes them an ideal candidate.

Table 1 shows a list of common techniques that can modulate data center power and their limitations. At the
cluster-level, power can be potentially reshaped by migrating load in order to consolidate workloads to a subset of
active servers and turn off idle servers. In addition, idle servers can be turned on / off such that the idle power can act
as a form of power modulation. However, load migration takes in the order of seconds or minutes, and turning idle
servers on / off can take in the order of seconds, both of which are not responsive enough to track regulation signals.
Load can also be modulated by queuing up jobs that are going into the cluster. While potentially more responsive,
this approach can result in significant delays in job processing time. In many cases, these techniques can tolerate and
enforce QoS targets with up to 200% performance degradation. Due to this high tolerance, standby jobs are able to be
used while delaying requests is not tolerable for latency-critical workloads.

Therefore, in order to modulate cluster-level power, we would require coordination with server-level techniques
which are more responsive. Potential knobs here involve DVFS [49] and core sleep states [59] which can be modulated
in the order of milliseconds. However, DVFS can only reshape dynamic power, which limits the amount of regulation
provision that it can provide. Core sleep states can provide more benefits by also taking advantage of static power.
Techniques such as CPU resource limits [6] can be combined with DVFS and core sleep. Hardware power limiting
mechanisms, such as RAPL [40], provides power capping through hardware-controlled DVFS. Many of these server-
level techniques are coordinated with cluster-level techniques [8, 95] to provide higher levels of frequency regulation
provisions. However, a major limitation of these techniques is that they can significantly slowdown the running
workload, which is detrimental in latency-critical environments.

2See Section 5 for frequency regulation comparison against flywheel.
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Fig. 2. PowerMorph overview. a) hierarchical coordination of servers for data center-level regulation service. b) Server-level components
of PowerMorph. Grey dashed boxes are PowerMorph inputs. Profiler runs on each server only one time to obtain the power model of
the server. Optimizer runs every hour to determine if the server participates in RS. 𝑅 and 𝑃𝑜𝑓 𝑓 are computed by Optimizer. Since
the profiled power model can vary for different applications, we adapt the computed power to the application’s power behavior.
Application adapted power (AAP) is the target power of the server to be set in the next 2-second time step which is the adaption of
the power model interpolation error (e in black circle) for currently running applications on the server. The controller runs every
2-second to control the co-location policy module.

To solve these aforementioned limitations, we introduce using complementary workload where we utilize a co-located
application as a knob for power reshaping. By modulating a complementary workload, we can provide millisecond
power reshaping (to mask the high variability of the latency-critical workload and meet the granularity of the regulation
signal), provide a high provision for frequency regulation (to both increase and decrease power consumption), and can
meet tight QoS targets.

How to coordinate cluster-level power reshaping? Another challenge of data center frequency regulation is in
coordinating regulation service across all servers in the data center in order to maximize cost benefits. Cluster-level
coordination occurs at two time-scales. Every hour the data center has to make a bid for the amount of frequency
regulation (𝑅). Every 2 seconds the data center as a whole has to follow a regulation signal. This 2-second regulation
signal does not provide ample opportunity for complex cluster-level optimizations. On top of that, the data center can
have various cluster scheduling policies (such as load-balanced or consolidated) which can interfere with cluster-level
coordination of frequency regulation.

Therefore, we propose a hierarchical approach where servers are allocated individual frequency regulation provisions
and enforced locally to meet the timing requirements of the regulation signal, and regulation provisions are reallocated
every hour globally which enables more time-intensive optimization policies to maximize cost benefits. We found this
hierarchical approach provides good provisions and adapts to various cluster scheduling policies.

4 POWERMORPH

The goal of PowerMorph is to provide practical data center-wide frequency regulation using commodity servers. The
PowerMorph framework coordinates server power reshaping using DVFS and complementary workload provides
performance isolation to maintain tight QoS, and maximizes rewards by providing symmetrical regulation service
provision. Intuitively, PowerMorph utilizes complementary workload to add offset power to maximize the amount of
regulation service provision. PowerMorph dynamically adapts to the power behavior of different types of applications
running on the server resulting in more flexibility and robustness. Figure 2 demonstrates the server- and date center-level
components of PowerMorph. In this section, we describe how server-level components of PowerMorph work, then
expand the proposed server-level regulation service approach to enable data center participation in regulation service.

4.1 PowerMorph Profiler

Targeting data centers with commodity servers in this paper, each server has a specific power consumption pattern
based on its hardware resources and the workload running on it. In order to control a server’s power, i.e. providing
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Fig. 3. PowerMorph processor core organization and operation.

regulation service, PowerMorph requires the power consumption pattern of the server which we call Power model.
Profiler is run once on each server to sample and capture the Power model of the server with a workload running on it.
Depending on the granularity of frequency scaling that the server’s hardware supports, the profiling operation takes
about 1-3 minutes.

We use deep learning training workload on the server since they are both computation- and memory-intensive. The
captured power model is built by interpolating the samples of (utilization, frequency) pairs each of which corresponds
to a 𝑃𝐶𝑃𝑈 and 𝑃𝐷𝑅𝐴𝑀 . Due to interpolation and using one workload type to profile the power consumption pattern of a
server introduces an error to the power model, e in Figure 2.b. We use a 1D Kalman filter to make PowerMorph capable
of adapting to different workloads which will be explained in Section 4.3.3.

4.2 PowerMorph Optimizer

The profit of providing regulation service depends on the average power usage of the server which is determined by the
workload (𝑃𝑎𝑣𝑔) and the regulation provision (𝑅) that the server is able to provide. Optimizer is responsible for picking
a (𝑃𝑎𝑣𝑔) and (𝑅) that maximize the data center profit.

4.2.1 Maximizing regulation provision with offset power: Using power range lines, Figure 3 gives an illustrative
overview of how PowerMorph adjusts the server’s CPU cores to reshape its power, while avoiding impacting the
latency-critical workload adversely. The circle markers on the power range lines are points of interest for the server’s
power when running its target workload. 𝑃𝑚𝑖𝑛 and 𝑃𝑚𝑎𝑥 represent the server’s minimum (active idle) and maximum
power consumption. 𝑃𝑎𝑣𝑔 is the average power consumption of the latency-critical workload running on the server
(with no participation in regulation service). Due to natural variations in workload load, there is a natural variance
in the power consumption of the server at a given utilization. This variance range is represented by the smaller solid
circles. In this illustrative example, we assume we have 16 cores on the server, where the workload on the server can be
serviced by packing all of its work in the first 5 cores. Therefore, on average, the amount of power consumed is due to
the first 5 cores. This represents a case where the workloads utilization is typically ∼30%, but can vary from ∼20%-40%
due to real-world short-term variation. We note that all cores typically do not consume the same amount of power as
the utilization-power curve is non-linear.

In order to maximize the amount of regulation service provision, we need to provide a large symmetrical range.
Our approach is to introduce offset power (through the use of complementary workload) so that we have a larger dynamic

power range to utilize. In the figure, 𝑃𝑜 𝑓 𝑓 𝑠𝑒𝑡 is the offset power added to 𝑃𝑎𝑣𝑔 . Therefore, the effective average power of
the server is 𝑃 ′ = 𝑃𝑎𝑣𝑔 + 𝑃𝑜 𝑓 𝑓 𝑠𝑒𝑡 . 2𝑅 is the regulation server provision that is available. Therefore, the server’s power
can range from 𝑃 ′ − 𝑅 to 𝑃 ′ + 𝑅, represented by the smaller square markers. These regulation service parameters are
readjusted by Optimizer every 60 minutes depending on the regulation service market, data center workload, and
workload variance.

4.2.2 Determining regulation provision and offset power: PowerMorph tries to minimize the total electricity
cost by picking a proper offsetted power 𝑃 ′ (reported to ISO as the average power) and |𝑅 |, for any given workload
Manuscript submitted to ACM
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(i.e. 𝑃𝑎𝑣𝑔 and 𝑃𝑣𝑎𝑟 ), reward (𝑟𝑒𝑤 ), and electricity cost (𝑐𝑜𝑠𝑡 ). Equation 2 shows the optimization formula solved by
PowerMorph .

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 : 𝑇𝑜𝑡𝑎𝑙 𝑒𝑙𝑒𝑐. 𝑐𝑜𝑠𝑡 = 𝑃 ′𝑐𝑜𝑠𝑡 − 𝑅𝑒𝑤𝑎𝑟𝑑

𝑠𝑡 : 𝑃 ′𝑐𝑜𝑠𝑡 = 𝑃 ′ × 𝑐𝑜𝑠𝑡

𝑅𝑒𝑤𝑎𝑟𝑑 = |𝑅 | × 𝑟𝑒𝑤

𝑃𝑎𝑣𝑔 +
𝑃𝑣𝑎𝑟

2
< 𝑃 ′ < 𝑃𝑚𝑎𝑥

𝑇𝑜𝑡𝑎𝑙 𝑒𝑙𝑒𝑐. 𝑐𝑜𝑠𝑡 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 × 𝑃𝑎𝑣𝑔 × 𝑐𝑜𝑠𝑡

(2)

Recall that [-𝑅,+𝑅] has to be symmetrical around 𝑃 ′. Therefore, for any given 𝑃 ′, |𝑅 | is calculated as follows:

|𝑅 | =𝑚𝑖𝑛

(
𝑃𝑚𝑎𝑥 − 𝑃 ′, 𝑃 ′ −

(
𝑃𝑎𝑣𝑔 +

𝑃𝑣𝑎𝑟

2

)
+ 𝑠𝑎𝑓 𝑒 𝑟𝑎𝑛𝑔𝑒

)
(3)

As 𝑃 ′ increases, |𝑅 | increases up to a point, then begins to decrease (because +𝑅 eventually becomes restricted by
𝑃𝑚𝑎𝑥 ). Similarly, as 𝑃 ′ gets close to 𝑃𝑎𝑣𝑔 + 𝑃𝑣𝑎𝑟

2 , it becomes restricted by the safe range (shown as an arrow with a
hollow circle in Figures 3) which represents the limit of lowering frequency while safely meeting QoS.

To find the optimal 𝑃 ′, we solve the optimization formulated in equation 2 with exhaustive search (as illustrated
in Figure 4) by gradually increasing 𝑃𝑜 𝑓 𝑓 𝑠𝑒𝑡 from 𝑃𝑎𝑣𝑔 + 𝑃𝑣𝑎𝑟

2 to 𝑃𝑚𝑎𝑥 , which we call it sweeping. For every 𝑃 ′, we
estimate the total monetary benefit of participating in regulation service and select the combination that maximizes
the benefit. This optimization runs every hour when the data center bids how much regulation service provision it can
provide. Based on our experiments, this step takes under a second. Therefore, this algorithm has negligible overheads.

In order to pick 𝑅 and 𝑃 ′, we need to know the server’s 𝑃𝑎𝑣𝑔 and its variance power (𝑃𝑣𝑎𝑟 ). Many research has been
done on predicting these parameters for data centers based on their historical load traces [4, 5, 17, 21, 53, 81, 93]. In this
work, our aim is not in proposing new load prediction algorithms for data centers. Instead, we can rely on these prior
works to be able to predict the average load of the data center, which we can then use to estimate the server’s 𝑃𝑎𝑣𝑔 and
𝑃𝑣𝑎𝑟 . We evaluate the impact of power prediction inaccuracy in Section 5.

When to participate: Figure 4 shows illustrative examples of our algorithm in picking 𝑃 ′. Figure 4(a) shows a case
with high reward/cost ratio. The dotted line shows the 𝑃𝑎𝑣𝑔 cost of the server without participating in RS. By increasing
𝑃𝑜 𝑓 𝑓 𝑠𝑒𝑡 , reward (|𝑅 |) first increases, and then decreases (dashed line). Meanwhile, by increasing 𝑃𝑜 𝑓 𝑓 𝑠𝑒𝑡 the electricity
cost increases (dash-dotted line). Since reward/cost is high, monetary reward outweighs the electricity cost introduced
by 𝑃𝑜 𝑓 𝑓 𝑠𝑒𝑡 , resulting in savings (green shaded region). However, at some point (after the "Highest Reward" point), due
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to shrinking |𝑅 |, the total electricity cost begins to increase to the point that it exceeds the 𝑃𝑎𝑣𝑔 cost (dotted line), i.e.
red area. In other words, after some point, it is not beneficial to increase 𝑃𝑜 𝑓 𝑓 𝑠𝑒𝑡 anymore. PowerMorph picks 𝑃 ′ that
minimizes total electricity cost (solid line).

Figure 4(b) shows an example in which reward/cost is low. Since reward is low and electricity price is high, electricity
cost savings is only observed with small 𝑃𝑜 𝑓 𝑓 𝑠𝑒𝑡 before electricity cost overheads dominate. As 𝑃 ′ increase, total cost
quickly exceeds the 𝑃𝑎𝑣𝑔 cost (dotted line), i.e. red area. In such scenarios, in which the green area is very small, an
even small misprediction of either 𝑃𝑎𝑣𝑔 or 𝑃𝑣𝑎𝑟 leads to losing money. To avoid such scenarios, PowerMorph uses a
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 to be conservative in participating in regulation service. If the minimum total electricity cost (for the best 𝑃 ′)
is higher than 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ (𝑃𝑎𝑣𝑔𝑐𝑜𝑠𝑡), PowerMorph decides not to participate in RS. We use 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.95 in our
experiments.

The impact of reward and electricity cost:We also performed a space exploration to investigate how the total
electricity cost is affected by reward to cost ratio and 𝑃𝑎𝑣𝑔 . Figure 5 shows total electricity cost normalized based on the
average server power (𝑃𝑎𝑣𝑔) for all possible reward prices and electricity cost values. We ran the experiment for the
scenarios in which the server is running with 10, 50, and 70% utilization each of which corresponds to a 𝑃𝑎𝑣𝑔 . In this
experiment we assume there is no workload variation, and PowerMorph is able to follow the regulation signal with a
performance score of 80%.

In Figure 5, normalized total electricity cost equal to 1 means the total electricity cost of the server participating in
regulation service is equal to the electricity cost of the same server without participating in regulation service. There is
a point at which the reward (𝑅) outweighs the electricity cost introduced by 𝑃𝑜 𝑓 𝑓 𝑠𝑒𝑡 , the area at which normalized total
electricity cost is greater than 1.

PowerMorph withdraws from regulation service for all points that have normalized total electricity cost of greater
than 1, which is dark blue-colored area in Figure 5. The lower the normalized total electricity cost the more monetary
benefit we get. Negative normalized total electricity cost (less than zero) means not only we do not pay for the electricity
we use, but we also earn money at that point, which is shown by grayish color in Figure 5. In Figure 5, the area at which
we earn money (negative normalized total electricity cost) shrinks as the server utilization (𝑃𝑎𝑣𝑔) increases. The reason
is that at higher utilization regions, the amount of 𝑅 that we can provide starts to decrease, and as a result we do not
get a large benefit.
4.3 PowerMorph Controller

To provide regulation service, the server power needs to be adjusted every 2 seconds. PowerMorph Controller calculated
the target power of the server (𝑃𝑡+1) based on the regulation signal (𝑟 (𝑡)), regulation provision (𝑅) and 𝑃

′
calculated by

PowerMorph Optimizer, as well as issuing the proper commands to the co-location policy module.
Manuscript submitted to ACM



PowerMorph: QoS-aware Server Power Reshaping for Data Center Regulation Service 13

4.3.1 Core organization: To provide isolation between the complementary workload and the latency-critical work-
load to maintain tight QoS, we pin tasks to specific groups of cores. Based on real-time utilization of the latency-critical
workload, theWorking core set is pinned with the latency-critical workload, and other resources, such as cache, are
allocated to them to meet their target QoS. The power consumption of the working cores is 𝑃𝑎𝑣𝑔 with some power
variance, due to workload variance.

The Offset cores are dynamically assigned between either the latency-critical workload or the complementary
workload as the server’s utilization varies. These cores increase the server’s power consumption in order to provide
symmetry to increase or decrease server power, as well as to increase the amount of regulation service provisioning
that we can provide. The Free core set is used to increase target power by adjusting the complementary workload when
needed. By organizing PowerMorph into three core types, we can provide different functionalities for regulation
service, along with the server’s original latency-critical workload, in a way that decouples the performance impact with
reshaping server power.

The number of cores assigned to the latency-critical workload is readjusted in real-time to dynamically provide
performance isolation. If latency-critical workload needs more computation resources, an offset core (or free core if no
offset cores exist) is reallocated and converted into a working core instantly. Then, other cores are reevaluated in a way
that the server’s power follows the regulation signal.

Due to variation in server load, the offset cores also act as cores that absorb this noise and minimize core reallocation
events. In order to remove the switching overhead, we added hysteresis to the switching. Switching an offset core to a
working core occurs instantly when the workload requires more core. On the other hand, if a working core has not
been used for a while, we convert it into either an offset core or free core, whichever can preserve 𝑃 ′. Adding this
hysteresis makes the isolation more robust, reliable, and has almost no overhead.
4.3.2 Complementary workload: By artificially inflating the utilization of the server by 𝑃𝑜 𝑓 𝑓 𝑠𝑒𝑡 , we can essentially
follow regulation signals solely by scaling the utilization of the complementary workload and varying power around 𝑃 ′.
Fundamentally, there is a trade-off between how much power we offset by (extra electricity cost) and how much reward
we get by increasing our regulation service provision (more regulation reward). Supporting utilization scaling requires
us to explore 1) what type of complementary workloads to use, and 2) how to control the complementary workload.

Best-effort complementary workload selection: A common approach to improve the energy efficiency of data centers
is to co-locate best-effort workloads with latency-critical workloads in order to increase the utilization of the servers.
To select a best-effort complementary workload, we assume the server can rely on a multitude of prior works that select
safe co-location workload pairs [9, 55, 57, 61, 62, 65, 91].

Complementary workload isolation: One of our goals is to identify the level of isolation required to safely co-locate

complementary workload with latency-critical workloads. Towards this end, we evaluate using isolation mechanisms
that are readily available in commercial off-the-shelf servers.Whilemore sophisticatedworkload co-locationmechanisms
exist [61, 62, 91], our evaluation is conservative and would obtain even better results with more advanced techniques.

To provide isolation and preserve QoS in co-location scenarios with best-effort workloads, we follow a similar scheme
to Heracles [57]. Since latency-critical workload has priority over the best-effort workload, we continuously monitor
the resource requirement latency-critical workload and adjust hardware resources allocated to that. Using taskset

command, we pin the latency-critical and best-effort workloads to separate cores so that there is no interference
between them. In order to help latency-critical workload run faster, we increase the priority of its processes using nice
command. To isolate shared resources such as LLC, we utilize Intel’s Cache Allocation Technology [34] which allows
partitioning of cache between tasks. Currently, no memory bandwidth isolation techniques exist. In [57], memory

Manuscript submitted to ACM



14 A. Jahanshahi, N. Yu, and D. Wong

0 20 40 60 80 100
Utilization (%)

0

10

20

30

40

50

60

70

80

90

P
ow

er
 (

W
at

t)

2.1GHz

1.2GHz

1.2GHz
1.3GHz
1.4GHz
1.5GHz

1.6GHz
1.7GHz
1.8GHz
1.9GHz

2.0GHz
2.1GHz
Failed

1

2

3

1

2
3
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bandwidth availability was maintained by scaling down the number of BE cores. In our experiments, we observed that
the main sources of contention come from core and cache contention, memory contention has a minuscule effect.

Controlling utilization of best-effort workloads: One challenge of using best-effort complementary workloads is
that we cannot direct the best-effort workloads to limit utilization directly. Therefore to limit the utilization (and the
power consumed by the server), we need to throttle these workloads’ utilization using existing Linux system tools. We
observed taskset achieves a better performance score as this method is more robust to noise introduced by variation.
4.3.3 Morphing server power: Power morphing is guided by a sampled profiled power model that interpolates the
power curves shown in Figure 6. For each (utilization, frequency) pair, we have 𝑃𝐶𝑃𝑈 and 𝑃𝐷𝑅𝐴𝑀 , separately. Every
cycle (2 seconds) we need to determine the target power (𝑃𝑡+1 = 𝑟𝑡+1 ∗ 𝑅 + 𝑃 ′ ) based on the new regulation signal 𝑟𝑡+1,
the chosen 𝑅, and determine if we should increase/decrease power.

Mapping target power to target utilization/frequency: Utilization (on offset/free cores) and frequency scaling (on
working cores) are the knobs we use to morph server power. To achieve a target power, we need to select a utiliza-
tion/frequency point given our current operating point (as illustrated in Figure 6).

To decrease power, PowerMorph first removes free/offset cores allocated to best-effort complementary workload
( 3→ 2 ). If still necessary, PowerMorph further decreases the frequency of the working cores while remaining
within the safe range ( 2→ 1 ). To increase power, PowerMorph first increases the frequency of cores allocated to the
working cores ( 1→ 2 ). Next, PowerMorph increases the server power by allocating offset/free cores to the best-effort
complementary workload until the target power is reached ( 2→ 3 ).

Adapting to noise and application types: Due to noise/error introduced by inaccuracies to the profiled power model,
non-deterministic nature of real systems, and application type-dependent power consumption pattern, setting the
server utilization/frequency may not lead to the target power. To address this problem, a 1D Kalman filter is integrated
into PowerMorph . The noise/error of the previous cycles (𝑒𝑡 ) is fed into the filter to get an estimate of the error (𝑒𝑡+1)
we predict for the power model to have for the next 2-second interval. Adding 𝑒𝑡+1 to the target power (𝑃𝑡+1) we will
have the Application adapted power (𝐴𝐴𝑃𝑡+1) for the next interval. Then, using the power model obtained by the Profiler,
PowerMorph maps 𝐴𝐴𝑃𝑡+1 to utilization/frequency which is going to be set.

The adaptive capability of PowerMorph provides high-quality regulation service with different application types, i.e.
memory- or compute-intensive. For example, for memory-intensive applications, the extra memory power (compared
to the memory power in the profiled power model) is inputted as noise/error to the filter. Therefore, the application
adjusted power (𝐴𝐴𝑃𝑡+1) would be less than the target power (𝑃𝑡+1) to alleviate the adverse effect of extra memory
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power usage. We also noted that depending on the workload, the maximum server power varies while the shape of the
power curve remains similar. To account for this difference, we derive a scaling factor that scales the profiled power
curve to the running workload’s power at a given utilization when making power predictions.

Maintaining QoS: In order to maintain QoS under varying loads and regulation signals, we monitor the amount
of latency slack (the difference between observed latency and target tail latency) at run-time. If the observed latency
approaches the target tail latency, then we would need to increase the amount of latency slack available to avoid any
QoS violations. The way to do this is by lowering the amount of best-effort workload that is co-locating. By opting to
maintain the latency slack, we essentially trade-off the performance score (and amount of reward we can obtain) to
ensure QoS levels are met.

4.4 Data center-level regulation service

As illustrated in Figure 2.a, to provide frequency regulation across the data center, we utilize a hierarchical approach
where each server is allocated its own responsibility of frequency regulation provision. For example, Server A (due
to its workload or hardware resources) can provide 10W for frequency regulation service and Server B can provide
20W for frequency regulation service. The regulation signal is then broadcast to every server, where every server is
responsible for tracking a regulation signal with respect to their own regulation provision.

To support this, we reallocate regulation provision (𝑅) responsibility every hour. Every hour, we broadcast the reward
and electricity pricing to each server and each individual server will determine its average power (𝑃

′
) during the 1-hour

interval as well as the amount of frequency regulation provision (𝑅)it can provide. The server’s regulation provision
will then be aggregated at the data center-level and sent to the ISO. To determine the data center’s estimated power
consumption, we aggregate the estimated power of all running servers. Since this reallocation occurs once every hour,
this process can utilize more complex optimization.

5 EVALUATION

Platform setup, tools, and benchmarks: We run all experiments on a small-scale data center of 6 servers with an Intel
Xeon E5-2620 v4 processor, which has 16 physical cores, 128GB of DDR4 DRAM. Power of the server is sampled through
Intel PCM [33]. TheWeb Search benchmark from CloudSuite [64] is used as a representative latency-critical workload.
The target tail latency was selected as the 95th percentile tail latency of Web Search running in isolation. To obtain the
target tail latency, we adopt the same methodology established in prior works [11, 91]. We obtain the target tail latency
at the “knee” of the utilization3-tail latency curve, where queues and tail latency begins to grow—which we observe to
occur at ∼90% of the maximum supported RPS.

Workload utilization traces: We evaluate Web Search under realistic varying workload utilization traces from Table 2.
We use two workload traces of differing variance (email, and msg-store1) from [87]. These traces were collected from
institutional data centers representing a wide range of workloads including web serving, email services, and data stores.

Table 2. Workload utilization trace properties. email and msg-store1 are from [87].

Trace name Avg. load (%) Variance Min (%) Max (%)
email 10.38 10.5 3 34

msg-store 32.1 10.77 21 59
high-util 50.5 15.32 25 75

3Our metric for utilization is with respect to the maximum achievable request-per-second of the LC workload and not the OS reported CPU utilization
(i.e. as reported in top).
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Fig. 7. Regulation signals used to evaluate PowerMorph.

According to [2], the utilization of servers running latency-critical workloads is typically around 20-40% of max RPS.
However, to evaluate PowerMorph at higher utilization ranges, we used a synthetic high utilization load (high-util).
We also evaluate a scenario where the cluster has mixed workload utilization where each trace is run by 2 servers.

Best-effort complementary workloads: When selecting a complementary workload, it is imperative that this workload
would not degrade the QoS of the latency-critical workload. Complementary workloads can simply be safe co-located
best-effort workloads in co-located data centers. While outside the scope of this work, we assume that safe co-location
workload pairs can be assigned dynamically to the servers from amultitude of prior works on identifying safe co-location
pairs at run-time [9, 55, 57, 61, 62, 65, 91]. To select a candidate complementary workload in our experiments, we
evaluated a range of applications from SPEC2017, PARSEC3.0, and machine learning training (AlexNet, VGG, LeNet)
built on Keras. We observed that all of these best-effort workloads can safely co-locate with our target latency-critical
workload using existing isolation mechanisms available in commodity servers. For our complimentary workload, we
selected AlexNet training. ML workloads give us a throughput metric (training epochs per second) [32] which we can
use to quantify throughput and TCO impacts.

Regulation signal selection: We select three regulation signals from PJM regulation signal archive [68] selected
from 2018. Figure 7 shows the regulation signals we chose for evaluating PowerMorph . Since we are participating in
hour-ahead regulation market, we picked one hour slices. We chose Extreme (E) with regulation signal that stays in
the highest and the lowest power points for extended periods of time. We chose High Transition (HT) which have
frequent min-to-max power change requests. We select Noisy (N) to evaluate how accurate PowerMorph can track
small changes in the regulation signal.

Regulation reward and Electricity cost selection: The regulation reward and electricity cost is broadcast every hour
(for hour-ahead regulation market). We selected three pairs of (regulation rewards, elec. cost) shown with hollow black
circles in Figure 1. (70, 20) is selected from the area with the highest density (the most common scenario). (101, 12)
represents a high reward/cost ratio pair. (102, 100) represent a reward/cost ratio that is approximately 1 where electricity
cost is high. Note that with high electricity pricing, reward price is typically high and of similar magnitude. For ratios
where price is greater than reward, PowerMorph typically decides not to participate in regulation service.

Evaluation scenarios: In our evaluation, we consider the following scenarios. LC + BE represents a baseline scenario
where best-effort (BE) workloads are co-located to increase the utilization and efficiency of the servers. LC + BE + RS

represents the co-location case that is participating in regulation service where the best-effort complementary workload
is being regulated by PowerMorph.

5.1 Comparative Results

Figure 8 shows a comparative design-space exploration of various frequency regulation techniques across a range of
reward-to-cost ratios. This figure runs every technique with our 3 workload utilization traces. We define total electricity
Manuscript submitted to ACM



PowerMorph: QoS-aware Server Power Reshaping for Data Center Regulation Service 17

1 2 3 4 5 6 7 8 9 10
RewardtoCost Ratio

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 T
ot

al
 E

le
ct

ric
ity

 C
os

t 
 w

.r
.t.

 U
ni

fo
rm

Uniform Rightsizing(highutil) Rightsizing(msgstore) Rightsizing(email)

Flywheel
EnergyQARE
PowerMorph (Uniform)
PowerMorph (Rightsizing)
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technique using CPU resource limiting and idle server modulation (EnergyQARE [8]). Colored region represent range of cost under
various utilization traces. All result normalized to Uniform load balanced scheduling.

cost = (cost of electricity consumption) – (reward obtained from regulation service) + (capital expense cost). Capital
expense only applies to the Flywheel scenario.

Comparison to traditional data center-level energy-saving approaches To reduce the data center energy costs,
numerous approaches have been proposed to minimize the energy consumption of servers [11, 39, 54, 56, 80, 87],
decrease the server’s peak power without violating SLA [3, 31, 71, 89], or consolidate servers to turn off idle servers [13,
23, 52, 69, 77–79, 86]. Data center-level scheduling policies typically fall into two broad categories: Uniform load balanced
and Right-sizing which consolidates workloads in order to save power. In Figure 8, the electricity cost savings due
to right-sizing is shown with the black horizontal lines and are normalized to each workload’s electricity cost using
Uniform scheduling. The mixed scenario is omitted for figure clarity. As workload utilization decreases, this results in
more power-saving opportunities for right-sizing, with email resulting in ∼80% electricity cost savings.

We evaluate PowerMorph on top of both Uniform and Right-sizing scheduling. In the case of PowerMorph + right-
sizing, the idle servers are not shut off to save power, but instead used entirely by the complementary workload to provide
regulation service. For scenarios where reward-cost ratio is above 3 (a common scenario), PowerMorph consistently
saves more in electricity cost compared to right-sizing. Despite PowerMorph consuming more power by not shutting
down idle servers, the amount of reward far outweighs the cost of increased power consumption. In certain cases,
PowerMorph even provides net electrical cost profit where the amount of reward exceeds the electricity consumption
cost! Counter-intuitively, we show that regulation service mechanisms can enable data centers to reap monetary benefits

without the goal of minimizing server power consumption.

Comparison with Flywheel energy storage system We compare against Flywheel [60], a data center-level energy
storage system that has been shown to be one of the best suited for frequency regulation applications [7]. Energy
storage devices facilitate frequency regulation service by either charging or discharging to change the data center’s
power consumption profile without impacting the underlying workload. However, energy storage devices incur high
upfront capital cost expenses. In our small-scale experiment, we provision the Flywheel to be similar to the peak power
consumption of our cluster with capital expense cost of $2,400 / KW spread over 20 years and power-energy ratio of
0.25 which is typical of commercial products today [60]. Overall, we found that Flywheel is effective and can save up to
∼90% of the total electricity cost with reward-to-cost ratio of 10. However, we found that the capital expense of the
Flywheel can significantly reduce the overall monetary benefit. PowerMorph by comparison can provide significant
regulation provision without any upfront capital cost, leveraging the available power flexibility in servers.
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Fig. 9. Total Electricity Cost and Cost per Throughput for LC+BE+RS (PowerMorph) normalized to LC+BE. Bars of 1.00 represents
scenarios that decides to not participate in RS. In all scenarios, PowerMorph improves total electricity cost.

Comparison with alternative data center-level frequency regulation technique We compare against EnergyQARE[8]
which runs on top of right-sizing scheduling policies and coordinates server-level CPU resource limiting with turning
idle servers on / off for additional regulation provision capacity. Even though EnergyQARE can enforce QoS targets of
up to 200% slowdown, the amount of monetary benefits is limited (averages ∼80% savings) due to the relatively smaller
capacity of regulation provision that CPU resource limiting and idle servers can provide.

5.2 PowerMorph evaluation results

As shown in Figure 8, PowerMorph consistently outperforms alternative techniques for data center frequency regulation.
When running on top of Right-sizing, PowerMorph is more sensitive to utilization load as the amount of idle servers
fluctuate, and hence, the amount of regulation provision. Running on top of Uniform scheduling is more challenging
for PowerMorph as every server has our complementary workload co-located with a latency-critical workload which
introduces more workload variance. Towards this end, the remainder of this evaluation focuses on PowerMorph on
top of Uniform scheduling which is more challenging.

Figure 9 shows our experimental results for total electricity cost and total cost of ownership. The figure shows the
result of the co-location case with regulation service (LC + BE + RS) normalized to the baseline co-location case (LC +

BE). These scenarios are evaluated against various (reward,cost) conditions, regulation signal patterns, and workload
utilization patterns as discussed previously. For certain scenarios, PowerMorph determines that it is not worth it to
participate in regulation service; these are indicated when both total electricity cost and $/Throughput are both 1.0. We
note that due to PowerMorph’s hierarchical approach to cluster-wide coordination we observed similar results as we
scale across different server counts and hence our result is representative of larger clusters.

5.2.1 Total Electricity Cost. In the common case of (70, 20), PowerMorph can save 59% - 74% of the total electricity
cost. Even when the reward-cost ratio is not favorable, (102, 100), LC + BE + RS can still save 28% - 38% of total
electricity cost when participating in frequency regulation. For favorable cases (101, 12), we observed that the amount
of monetary reward can outweigh the total electricity cost. In these scenarios, we observed that we can earn a net
profit equivalent to up to 65% of the original total electricity cost!

In general, we observe that total electricity cost savings remain relatively stable across different regulation signals. Thus,
demonstrating that PowerMorph is able to efficiently handle arbitrary regulation signals.

5.2.2 Total Cost of Ownership. In order to estimate the impact of PowerMorph on total cost of ownership, we
evaluate the dollar spent on electricity per throughput ($ / throughput). This gives us a more holistic evaluation metric
that incorporates both throughput impact and electricity cost to evaluate if the throughput reduction of best-effort
workloads justifies the gains in frequency regulation service participation.
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Measuring TCO: To capture impact to the total cost of ownership, we evaluate $ per throughput. Note that typically
the metric throughput per $ is used; however, due to having negative electricity cost this metric becomes difficult to
understand. We simply take the inverse to represent TCO. This metric can simply be understood as the cost (or reward)
for every unit of throughput the data center provides.

Measuring throughput: For best-effort workloads, we use the number of training epochs per minute as the throughput
metric. For latency-critical workloads, we use queries per second as the throughput metric. In order to quantify these
two throughput metrics into a single metric, we use the System Throughput (STP) metric [19] which is commonly used
to capture throughput in multiprogram environments. STP quantifies the total system throughput as follows:

𝑆𝑇𝑃𝑠𝑒𝑟𝑣𝑒𝑟 =
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝐿𝐶𝑤/𝑅𝑆
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝐿𝐶

+
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝐵𝐸𝑤/𝑅𝑆
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝐵𝐸

For a single server, ideal STP is equivalent to 2 since we’re running two workloads (LC + BE). Values less than 2
indicates overall throughput decrease. The throughput in the denominator is the throughput when running the baseline
co-location, while the numerator is the throughput when participating in regulation service. To quantify STP for a data
center cluster, we simply take the summation of each server’s STP where ideal STP is two times the number of servers.

TCO results: For the typical case (70,20), we observe TCO improvements of 28-58%. For favorable reward-cost ratio
(101,12), we are now basically earning money for every unit of computational throughput. In this scenario, we are
earning up to 87%, per unit of throughput, of what we would have paid for electricity cost per throughput unit.

For scenarios where reward-cost ratio is not favorable, (102,100), the $ / throughput is around parity ranging from 1.03
to 1.15. The throughput decrease is mainly from the complementary workload and is due to PowerMorph deciding that
the additional electricity cost of offset power does not out-weight the reward benefit of providing a larger regulation
provision. Therefore, PowerMorph decides to participate with less offset power (and thus, less complementary
workload). Even with a worse case $ / throughput decrease of 15%, we still save 31% of total electricity cost. Therefore,
system designers will need to carefully identify whether total electricity cost is more important or throughput is more
important when running in these reward-cost range.

5.2.3 Quality-of-Service. QoS has been defined as the sojourn time of BEworkload in previous work [8, 63, 96]. In this
work, however, the QoS is defined as the latency of LC workload. Table 3 shows the average normalized tail latency of
PowerMorph across different (reward, cost) conditions and individual utilization traces. Across all scenarios, not only is
PowerMorph able to maintain QoS levels but also the QoS tail latency has been improved. Since PowerMorph regulates
the utilization of the complementary workload to follow a regulation signal, we will always introduce less interference
compared to the baseline co-location case. The co-location techniques utilized by PowerMorph are not the strictest
which shows by utilizing more advanced co-location techniques, PowerMorph is capable of performing even better.
Therefore, there is a large room to isolate workloads even more and get more profit in regulation service. Table 3 also
shows the BE throughput (QoS) normalized to that of baseline co-location case.

Table 3. QoS (Tail latency) of LC workload normalized to the target tail latency as well as BE workload QoS (throughput) normalized
to baseline co-location case for different utilization traces in PowerMorph.

Trace name Normalized LC tail latency Normalized BE throughput
(101, 12) (70, 20) (102, 100) (101, 12) (70, 20) (102, 100)

email 0.52 0.64 0.68 0.55 0.19 1.01

msg-store 0.52 0.63 0.52 0.43 0.14 0.22
high-util 0.49 0.52 0.52 0.45 0.29 0.43

1 In this case, PowerMorph decides not to participate in RS.
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Fig. 11. Normalized Total Electricity Cost and Cost per Throughput
of mixed workload utilization traces (2 servers per trace) normalized
to LC+BE

Although the QoS of BE workload is not considered in the PowerMorph optimizer, the result shows that the QoS
degradation is about 60% on average and within the range of 45-86% when PowerMorph participates in RS which
still meets the QoS limit defined in previous works which allow up to 200% QoS degradation [8, 63, 96]. According
to [8], 200% QoS degradation is translated to 0.33 throughput degradation. As shown in Table 3, for some scenarios,
PowerMorph is not able to keep BE QoS within the range reported by prior works.

5.2.4 Performance score. Table 4 shows average performance score of providing regulation service for different
scenarios. Across all scenarios, PowerMorph is able to provide performance scores of >80 with an overall average
of 83.05. Of all the regulation signals, Noisy signal is the hardest to track due to the need to track small changes in
regulation signal. Even in this scenario, PowerMorph is able to obtain a performance score of 80.52. We observe that
as the number of servers in the cluster increases, the overall data center performance score improves due to variation
across servers having a masking effect of under-performing individual servers.

Table 4. Average performance score of providing regulation service by PowerMorph for different scenarios.

Regulation Signal Trace Overall
AverageE HT N email msg-store high-util

85.02 83.62 80.52 81.53 83.62 84.01 83.05

5.2.5 Impact of average power / variation misprediction. One of the goals of this paper is to investigate how
co-located workload variance impacts regulation service quality. To investigate this, we artificially inject variation
errors (misprediction) of -10, -5, +5, and +10W for one scenario. Figure 10 shows the impact of artificially injecting
misprediction errors when predicting workload variation for msg-store and Noisy regulation signal. We find that
performance score is not greatly impacted by variation misprediction, but normalized TCO is impacted slightly; no
more than 5% difference in the worse case.

5.3 Mixed workload cluster

Figure 11 shows total electricity cost and total cost of ownership of a 6-server cluster with combinations of workloads
described in Table 2. Overall, we observe similar trends at the data center-scale similar to that of the single server
scenario, thus, highlighting the feasibility of scaling out PowerMorph across the data center. In favorable cases, we
observe profit of up to 46% of the total electricity cost. In the common case (70,20) we save up to 71% of total electricity
cost with 56% improvement to TCO. In the non-favorable cases, we achieve up to 37% improvement to total electricity
cost with near parity TCO.
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6 DISCUSSION

Frequency regulation, public vs private data centers: PowerMorph utilizes the server’s performance metrics to
maintain the QoS for the latency-critical application. Since workload performance metrics are required, this work
assumes private data centers where the applications’ QoS requirement is known. Many previous works on data center
frequency regulation [8, 63, 95, 96] use sojourn time as performance metric to measure the QoS of the batch workload
which also is not practical in a public data center and is limited to private data centers.
Aggressively provisioned data centers: Without frequency regulation participation, the data center would aggres-
sively provision and safely co-locate latency-critical and best-effort workloads. In this baseline case, the best-effort
workload would run unconstrained. If we participate in frequency regulation, PowerMorph will utilize the co-located
workload to modulate power. This means that under frequency regulation the co-located workload will always be
consuming less power (to track the regulation signal) compared to the baseline case. If there is a workload burst,
we would handle this scenario similar to the baseline case by throttling the best-effort workload and prioritizing the
latency-critical workload. However, aggressively provisioned data centers operate at higher utilization and have less
power headroom, which can potentially limit the amount of frequency regulation provision that PowerMorph can
provide in order to maintain availability.
Security concerns: Power attacks can create power emergencies that threaten the availability of aggressively-
provisioned data centers [46]. In general, data center frequency regulation techniques are susceptible to such power
attacks which can impact workload performance and overall cost returns. Power attacks can be detected based on
attack features, feature extraction, or abnormal user behavior [10]. However, the attacker can evade this by changing
the attack patterns and even attack the data centers with power attack detectors. PowerMorph can potentially provide
a ground truth for power attack detection. For any given average power of the server (𝑃 ′) and 𝑟 (𝑡), at any given time,
the target power can be calculated and monitored by an automated system. The moment the power of a server does not
follow the expected target power, it can be a sign of power attack which can be further investigated by more complex
power attack detection methods.

Currently, PowerMorph relies on the workload average load and its variance which can be manipulated by attackers.
We assume the data center is not compromised and it is secured from power or DDoS attacks which interfere with
the predicted workload behavior of the data center leading to power consumption misbehavior. PowerMorph is most
suitable for private data centers which have more control over the security. Also, PowerMorph framework runs on
each server independent from the other servers in the data center resulting in more security isolation in case attackers
manage to compromise a small portion of servers.

7 RELATEDWORK

The most relevant work in providing frequency regulation service in data centers was discussed previously in Section 3.
Renewable energy-powered data center: This intermittent nature of renewable energy pose many workload sched-
uling problems [25, 26, 75] and scheduling/design of power sources [26, 44, 45]. A major problem is load matching,
where there is a need to balance the load power demand and local/global power generation. Load matching has been
proposed at the processor-level [43, 47] by using DVFS to tune load, by using stored energy devices [27, 28], and by
coordinating local power generators to track power and power shaving to trim load demand [48]. These prior techniques
mainly target batch workloads without tight millisecond-level QoS requirements, and also load matching at 15-minute
granularities. In contrast, frequency regulation requires power readjustment every 2s and PowerMorph maintains
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ms-level QoS requirements. Due to this, PowerMorph can also be applied to load matching of renewable energy data
centers, but not vice versa.
Batteries for RS: Leveraging UPS has also been considered to enable data centers participating in RS [30, 76] reduce
the electricity costs of data center. While UPS can be leveraged to participate in regulation service, they incur significant
capital expense and they are mainly designed for backup power, and not for the charge and discharge cycles required
for regulation service which leads to lifetime issues.

8 CONCLUSION

In this work, we have proposed PowerMorph, a QoS-aware server-level power-reshaping framework which enables
data centers to participate in regulation service by dynamically adjusting the servers’ power consumption, providing
us with up to 71% savings in electricity costs and up to 58% TCO improvement in common conditions. To the best
of our knowledge, PowerMorph is the first practical demonstration of frequency regulation service under realistic
latency-critical data center environments.

ACKNOWLEDGMENTS

This work was supported in part by NSF Grant CCF-1815643, California Energy Commission EPC-16-030, and the
University of California, Riverside. The authors would like to thank the anonymous reviewers for their invaluable
comments and suggestions.

REFERENCES

[1] Baris Aksanli and Tajana Rosing. 2014. Providing Regulation Services and Managing Data Center Peak Power Budgets. In Proceedings of the
Conference on Design, Automation & Test in Europe (DATE ’14). European Design and Automation Association, 3001 Leuven, Belgium, Belgium,
143:1–143:4. http://dl.acm.org/citation.cfm?id=2616606.2616782

[2] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. 2018. The Datacenter as a Computer: Designing Warehouse-Scale Machines, Third
Edition. Synthesis Lectures on Computer Architecture 13, 3 (2018), i–189.

[3] A. A. Bhattacharya, D. Culler, A. Kansal, S. Govindan, and S. Sankar. 2012. The need for speed and stability in data center power capping. In 2012
International Green Computing Conference (IGCC). 1–10. https://doi.org/10.1109/IGCC.2012.6322253

[4] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya. 2015. Workload Prediction Using ARIMA Model and Its Impact on Cloud Applications’ QoS.
IEEE Transactions on Cloud Computing 3, 4 (Oct. 2015), 449–458. https://doi.org/10.1109/TCC.2014.2350475

[5] Katja Cetinski and Matjaz B. Juric. 2015. AME-WPC: Advanced model for efficient workload prediction in the cloud. Journal of Network and
Computer Applications 55 (Sept. 2015), 191–201. https://doi.org/10.1016/j.jnca.2015.06.001

[6] Hao Chen, Can Hankendi, Michael C. Caramanis, and Ayse K. Coskun. 2013. Dynamic Server Power Capping for Enabling Data Center Participation
in Power Markets. In Proceedings of the International Conference on Computer-Aided Design (ICCAD ’13). IEEE Press, Piscataway, NJ, USA, 122–129.

[7] Hao Chen, Zhenhua Liu, Ayse K Coskun, and Adam Wierman. 2015. Optimizing energy storage participation in emerging power markets. In 2015
Sixth International Green and Sustainable Computing Conference (IGSC). IEEE, 1–6.

[8] Hao Chen, Yijia Zhang, Michael C. Caramanis, and Ayse K. Coskun. 2019. EnergyQARE: QoS-Aware Data Center Participation in Smart Grid
Regulation Service Reserve Provision. ACM Trans. Model. Perform. Eval. Comput. Syst. 4, 1 (Jan. 2019), 2:1–2:31. https://doi.org/10.1145/3243172

[9] Shuang Chen, Christina Delimitrou, and José F Martínez. 2019. PARTIES: QoS-aware resource partitioning for multiple interactive services. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. 107–120.

[10] Shenglei Chen, Dongyang Ou, Congfeng Jiang, Jing Shen, Li Yan, and Shuangshuang Guo. 2020. Power Attack and Detection Technology in Data
Centers: A Survey. In 2020 International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI). IEEE, 1–5.

[11] C Chou, L N Bhuyan, and D Wong. 2019. 𝜇DPM: Dynamic Power Management for the Microsecond Era. In 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA). 120–132.

[12] Marcus Chow, Kiran Ranganath, Robert Lerias, Mika Shanela Carodan, and Daniel Wong. 2021. Energy Efficient Task Graph Execution Using
Compute Unit Masking in GPUs. In Redefining Scalability for Diversely Heterogeneous Architectures Workshop (RSDHA).

[13] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian Limpach, Ian Pratt, and Andrew Warfield. 2005. Live migration
of virtual machines. USENIX Association (2005).

[14] Ryan Cochran, Can Hankendi, Ayse K Coskun, and Sherief Reda. [n.d.]. Pack & Cap: Adaptive DVFS and Thread Packing Under Power Caps. In
44th Annual IEEE/ACM International Symposium on Microarchitecture.

[15] Christina Delimitrou and Christos Kozyrakis. 2013. Paragon: QoS-aware scheduling for heterogeneous datacenters. In 18th international conference
on Architectural support for programming languages and operating systems.

Manuscript submitted to ACM

http://dl.acm.org/citation.cfm?id=2616606.2616782
https://doi.org/10.1109/IGCC.2012.6322253
https://doi.org/10.1109/TCC.2014.2350475
https://doi.org/10.1016/j.jnca.2015.06.001
https://doi.org/10.1145/3243172


PowerMorph: QoS-aware Server Power Reshaping for Data Center Regulation Service 23

[16] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: resource-efficient and QoS-aware cluster management. In 19th international conference
on Architectural support for programming languages and operating systems.

[17] Sheng Di, Derrick Kondo, and Walfredo Cirne. 2012. Host Load Prediction in a Google Compute Cloud with a Bayesian Model. In International
Conference on High Performance Computing, Networking, Storage and Analysis.

[18] EnergyStorageNews. 2022. PJM’s frequency regulation rule changes causing ’significant and detrimental harm’. https://www.energy-storage.news/
news/pjms-frequency-regulation-rule-changes-causing-significant-and-detrimental.

[19] S Eyerman and L Eeckhout. 2008. System-Level Performance Metrics for Multiprogram Workloads. IEEE Micro 28, 3 (May 2008), 42–53.
[20] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. 2007. Power Provisioning for a Warehouse-sized Computer. In 34th Annual International

Symposium on Computer Architecture.
[21] W. Fang, Z. Lu, J. Wu, and Z. Cao. 2012. RPPS: A Novel Resource Prediction and Provisioning Scheme in Cloud Data Center. In 2012 IEEE Ninth

International Conference on Services Computing. 609–616. https://doi.org/10.1109/SCC.2012.47
[22] ForesterNetwork. 2022. Data Center Demand Response. https://www.foresternetwork.com/distributed-energy/article/13036367/data-center-

demand-response
[23] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A Kozuch. 2012. Autoscale: Dynamic, robust capacity management for

multi-tier data centers. ACM Transactions on Computer Systems (TOCS) 30, 4 (2012), 1–26.
[24] M Ghamkhari and H Mohsenian-Rad. 2012. Data centers to offer ancillary services. In 3rd International Conference on Smart Grid Communications.
[25] Íñigo Goiri, Kien Le, Md E Haque, Ryan Beauchea, Thu D Nguyen, Jordi Guitart, Jordi Torres, and Ricardo Bianchini. 2011. Greenslot: scheduling

energy consumption in green datacenters. In International Conference for High Performance Computing, Networking, Storage and Analysis.
[26] Íñigo Goiri, William Katsak, Kien Le, Thu D. Nguyen, and Ricardo Bianchini. 2013. Parasol and GreenSwitch: Managing Datacenters Powered by

Renewable Energy. SIGPLAN Not. 48, 4, 51–64. https://doi.org/10.1145/2499368.2451123
[27] Sriram Govindan, Anand Sivasubramaniam, and Bhuvan Urgaonkar. 2011. Benefits and Limitations of Tapping into Stored Energy for Datacenters.

In Proceedings of the 38th Annual International Symposium on Computer Architecture (ISCA ’11). ACM, New York, NY, USA, 341–352.
[28] Sriram Govindan, Di Wang, Anand Sivasubramaniam, and Bhuvan Urgaonkar. 2012. Leveraging stored energy for handling power emergencies in

aggressively provisioned datacenters. In 17th international conference on Architectural Support for Programming Languages and Operating Systems.
[29] GreenTechMedia. 2022. In California, Solar and Wind Boost the Price of Frequency Regulation. http://www.greentechmedia.com/articles/read/in-

california-solar-and-wind-boosts-the-price-for-frequency-regulation
[30] R. Guruprasad, P. Murali, D. Krishnaswamy, and S. Kalyanaraman. 2017. Coupling a Small Battery with a Datacenter for Frequency Regulation. In

2017 IEEE Power Energy Society General Meeting. 1–5.
[31] Chang-Hong Hsu, Qingyuan Deng, Jason Mars, and Lingjia Tang. 2018. SmoothOperator: Reducing Power Fragmentation and Improving Power

Utilization in Large-scale Datacenters. In 23rd International Conference on Architectural Support for Programming Languages and Operating Systems.
[32] HamidReza Imani, Jeff Anderson, and Tarek El-Ghazawi. 2022. iSample: Intelligent Client Sampling in Federated Learning. In 6th International

Conference on Fog and Edge Computing (ICFEC).
[33] Intel. 2022. Intel Performance Counter Monitor. http://www.intel.com/software/pcm.
[34] Intel. 2022. Introduction to Cache Allocation Technology in the Intel Xeon Processor E5 v4 Family. https://software.intel.com/en-us/articles/

introduction-to-cache-allocation-technology.
[35] IsoNewsWire. 2022. Redesigned Regulation Market now in effect. http://isonewswire.com/updates/2015/4/7/redesigned-regulation-market-now-in-

effect.html.
[36] Ali Jahanshahi, Hadi Zamani Sabzi, Chester Lau, and Daniel Wong. 2020. Gpu-nest: Characterizing energy efficiency of multi-gpu inference servers.

IEEE Computer Architecture Letters 19, 2 (2020), 139–142.
[37] Kostis Kaffes, Dragos Sbirlea, Yiyan Lin, David Lo, and Christos Kozyrakis. 2020. Leveraging application classes to save power in highly-utilized

data centers. In Proceedings of the 11th ACM Symposium on Cloud Computing. 134–149.
[38] S. Kanev, K. Hazelwood, G. Wei, and D. Brooks. 2014. Tradeoffs between power management and tail latency in warehouse-scale applications. In

2014 IEEE International Symposium on Workload Characterization (IISWC).
[39] Harshad Kasture, Davide B Bartolini, Nathan Beckmann, and Daniel Sanchez. 2015. Rubik: Fast analytical power management for latency-critical

systems. In Proceedings of the 48th International Symposium on Microarchitecture. ACM, 598–610.
[40] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K Nurminen, and Zhonghong Ou. 2018. Rapl in action: Experiences in using rapl for power

measurements. ACM Transactions on Modeling and Performance Evaluation of Computing Systems (TOMPECS) 3, 2 (2018), 1–26.
[41] Samuel Koebrich, Emily I Chen, Thomas Bowen, Sydney Forrester, and Tian Tian. 2019. 2017 Renewable Energy Data Book: Including Data and

Trends for Energy Storage and Electric Vehicles. Technical Report. National Renewable Energy Lab.(NREL), Golden, CO (United States).
[42] V. Kontorinis, L. E. Zhang, B. Aksanli, J. Sampson, H. Homayoun, E. Pettis, D. M. Tullsen, and T. Simunic Rosing. 2012. Managing distributed

UPS energy for effective power capping in data centers. In 2012 39th Annual International Symposium on Computer Architecture (ISCA). 488–499.
https://doi.org/10.1109/ISCA.2012.6237042

[43] C. Li, X. Li, R. Wang, T. Li, N. Goswami, and D. Qian. 2013. Chameleon: Adapting throughput server to time-varying green power budget using
online learning. In International Symposium on Low Power Electronics and Design (ISLPED). 100–105. https://doi.org/10.1109/ISLPED.2013.6629274

[44] Chao Li, Amer Qouneh, and Tao Li. 2012. ISwitch: Coordinating and Optimizing Renewable Energy Powered Server Clusters. In Proceedings of the
39th Annual International Symposium on Computer Architecture (Portland, Oregon) (ISCA ’12). IEEE Computer Society, USA, 512–523.

Manuscript submitted to ACM

https://www.energy-storage.news/news/pjms-frequency-regulation-rule-changes-causing-significant-and-detrimental
https://www.energy-storage.news/news/pjms-frequency-regulation-rule-changes-causing-significant-and-detrimental
https://doi.org/10.1109/SCC.2012.47
https://www.foresternetwork.com/distributed-energy/article/13036367/data-center-demand-response
https://www.foresternetwork.com/distributed-energy/article/13036367/data-center-demand-response
https://doi.org/10.1145/2499368.2451123
http://www.greentechmedia.com/articles/read/in-california-solar-and-wind-boosts-the-price-for-frequency-regulation
http://www.greentechmedia.com/articles/read/in-california-solar-and-wind-boosts-the-price-for-frequency-regulation
http://www.intel.com/software/pcm
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
http://isonewswire.com/updates/2015/4/7/redesigned-regulation-market-now-in-effect.html
http://isonewswire.com/updates/2015/4/7/redesigned-regulation-market-now-in-effect.html
https://doi.org/10.1109/ISCA.2012.6237042
https://doi.org/10.1109/ISLPED.2013.6629274


24 A. Jahanshahi, N. Yu, and D. Wong

[45] Chao Li, Rui Wang, Tao Li, Depei Qian, and Jingling Yuan. 2014. Managing Green Datacenters Powered by Hybrid Renewable Energy Systems.
In 11th International Conference on Autonomic Computing (ICAC 14). USENIX Association, Philadelphia, PA, 261–272. http://www.usenix.org/
conference/icac14/technical-sessions/presentation/li_chao

[46] Chao Li, Zhenhua Wang, Xiaofeng Hou, Haopeng Chen, Xiaoyao Liang, and Minyi Guo. 2016. Power attack defense: Securing battery-backed data
centers. ACM SIGARCH Computer Architecture News 44, 3 (2016), 493–505.

[47] C. Li, W. Zhang, C. Cho, and T. Li. 2011. SolarCore: Solar energy driven multi-core architecture power management. In 2011 IEEE 17th International
Symposium on High Performance Computer Architecture. 205–216. https://doi.org/10.1109/HPCA.2011.5749729

[48] C. Li, R. Zhou, and T. Li. 2013. Enabling distributed generation powered sustainable high-performance data center. In 2013 IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA). 35–46. https://doi.org/10.1109/HPCA.2013.6522305

[49] Sen Li, M. Brocanelli, Wei Zhang, and X. Wang. 2013. Data Center Power Control for Frequency Regulation. In 2013 IEEE Power Energy Society
General Meeting. 1–5.

[50] Shaohong Li, Xi Wang, Faria Kalim, Xiao Zhang, Sangeetha Abdu Jyothi, Karan Grover, Vasileios Kontorinis, Nina Narodytska, Owolabi Legunsen,
Sreekumar Kodakara, et al. 2020. Thunderbolt:{Throughput-Optimized},{Quality-of-Service-Aware} Power Capping at Scale. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20). 1241–1255.

[51] Yang Li, Charles R Lefurgy, Karthick Rajamani, Malcolm S Allen-Ware, Guillermo J Silva, Daniel D Heimsoth, Saugata Ghose, and Onur Mutlu. 2019.
A scalable priority-aware approach to managing data center server power. In 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 701–714.

[52] Minghong Lin, Adam Wierman, Lachlan LH Andrew, and Eno Thereska. 2012. Dynamic right-sizing for power-proportional data centers. IEEE/ACM
Transactions on Networking 21, 5 (2012), 1378–1391.

[53] Chunhong Liu, Chuanchang Liu, Yanlei Shang, Shiping Chen, Bo Cheng, and Junliang Chen. 2017. An adaptive prediction approach based onworkload
pattern discrimination in the cloud. Journal of Network and Computer Applications 80 (Feb. 2017), 35–44. https://doi.org/10.1016/j.jnca.2016.12.017

[54] Zhenhua Liu, Iris Liu, Steven Low, and Adam Wierman. 2014. Pricing Data Center Demand Response. In The 2014 ACM International Conference on
Measurement and Modeling of Computer Systems (SIGMETRICS ’14). ACM, New York, NY, USA, 111–123.

[55] Q Llull, S Fan, S M Zahedi, and B C Lee. 2017. Cooper: Task Colocation with Cooperative Games. In 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 421–432.

[56] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso, and Christos Kozyrakis. 2014. Towards Energy Proportionality for Large-scale
Latency-critical Workloads. In Proceeding of the 41st Annual International Symposium on Computer Architecuture (Minneapolis, Minnesota, USA)
(ISCA ’14). IEEE Press, Piscataway, NJ, USA, 301–312. http://dl.acm.org/citation.cfm?id=2665671.2665718

[57] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and Christos Kozyrakis. 2015. Heracles: Improving Resource Efficiency at
Scale. In Proceedings of the 42Nd Annual International Symposium on Computer Architecture (ISCA ’15). ACM, New York, NY, USA, 450–462.

[58] K. T. Malladi, F. A. Nothaft, K. Periyathambi, B. C. Lee, C. Kozyrakis, and M. Horowitz. 2012. Towards energy-proportional datacenter memory with
mobile DRAM. In 2012 39th Annual International Symposium on Computer Architecture (ISCA). 37–48. https://doi.org/10.1109/ISCA.2012.6237004

[59] Josiah McClurg, Raghuraman Mudumbai, and Joseph Hall. 2016. Fast demand response with datacenter loads. In IEEE Power & Energy Society
Innovative Smart Grid Technologies Conference (ISGT). IEEE, Minneapolis, MN, USA, 1–5. https://doi.org/10.1109/ISGT.2016.7781219

[60] Kendall Mongird, Vilayanur V Viswanathan, Patrick J Balducci, Md Jan E Alam, Vanshika Fotedar, V S Koritarov, and Boualem Hadjerioua. 2019.
Energy storage technology and cost characterization report. Technical Report. Pacific Northwest National Lab.(PNNL), Richland, WA (United States).

[61] Rajiv Nishtala, Vinicius Petrucci, Paul Carpenter, and Magnus Själander. 2020. Twig: Multiagent task management for colocated latency-critical
cloud services. In Proceedings of the International Symposium High-Performance Computer Architecture (San Diego, CA, USA).

[62] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency for Latency-
sensitive Datacenter Workloads. In 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19). USENIX Association,
Boston, MA, 361–378. https://www.usenix.org/conference/nsdi19/presentation/ousterhout

[63] Ali Pahlevan, Marina Zapater, Ayse K Coskun, and David Atienza. 2020. ECOGreen: Electricity cost optimization for green datacenters in emerging
power markets. IEEE Transactions on Sustainable Computing 6, 2 (2020), 289–305.

[64] T. Palit and and M. Ferdman. 2016. Demystifying cloud benchmarking. In 2016 IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS). 122–132. https://doi.org/10.1109/ISPASS.2016.7482080

[65] Tirthak Patel and Devesh Tiwari. 2020. CLITE: Systematic and Efficient Co-location of Multiple Latency-Critical and Throughput-Oriented
Workloads. In Proceedings of the International Symposium High-Performance Computer Architecture (San Diego, CA, USA).

[66] PJM. 2022. Data Miner 2. https://dataminer2.pjm.com/list.
[67] PJM. 2022. PJM Manual 12: Balancing Operations. https://www.pjm.com/-/media/documents/manuals/m12.ashx.
[68] PJM. 2022. Real-Time Hourly LMPs. https://dataminer2.pjm.com/feed/rt_hrl_lmps/definition.
[69] George Prekas, Mia Primorac, Adam Belay, Christos Kozyrakis, and Edouard Bugnion. 2015. Energy proportionality and workload consolidation for

latency-critical applications. In Proceedings of the Sixth ACM symposium on cloud computing. 342–355.
[70] Kiran Ranganath, Joshua D Suetterlein, Joseph B Manzano, Shuaiwen Leon Song, and Daniel Wong. 2021. Mapa: Multi-accelerator pattern allocation

policy for multi-tenant gpu servers. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis.
1–14.

Manuscript submitted to ACM

http://www.usenix.org/conference/icac14/technical-sessions/presentation/li_chao
http://www.usenix.org/conference/icac14/technical-sessions/presentation/li_chao
https://doi.org/10.1109/HPCA.2011.5749729
https://doi.org/10.1109/HPCA.2013.6522305
https://doi.org/10.1016/j.jnca.2016.12.017
http://dl.acm.org/citation.cfm?id=2665671.2665718
https://doi.org/10.1109/ISCA.2012.6237004
https://doi.org/10.1109/ISGT.2016.7781219
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://doi.org/10.1109/ISPASS.2016.7482080
https://dataminer2.pjm.com/list
https://www.pjm.com/-/media/documents/manuals/m12.ashx
https://dataminer2.pjm.com/feed/rt_hrl_lmps/definition


PowerMorph: QoS-aware Server Power Reshaping for Data Center Regulation Service 25

[71] P. Ranganathan, P. Leech, D. Irwin, and J. Chase. 2006. Ensemble-level Power Management for Dense Blade Servers. In 33rd International Symposium
on Computer Architecture (ISCA’06). 66–77. https://doi.org/10.1109/ISCA.2006.20

[72] Francisco Romero and Christina Delimitrou. 2018. Mage: Online and Interference-aware Scheduling for Multi-scale Heterogeneous Systems. In
Proceedings of the 27th International Conference on Parallel Architectures and Compilation Techniques.

[73] Varun Sakalkar, Vasileios Kontorinis, David Landhuis, Shaohong Li, Darren De Ronde, Thomas Blooming, Anand Ramesh, James Kennedy, Christopher
Malone, Jimmy Clidaras, et al. 2020. Data center power oversubscription with a medium voltage power plane and priority-aware capping. In
Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems. 497–511.

[74] Rasool Sharifi and Zainalabedin Navabi. 2017. Online Profiling for cluster-specific variable rate refreshing in high-density DRAM systems. In 2017
22nd IEEE European Test Symposium (ETS).

[75] Navin Sharma, Sean Barker, David Irwin, and Prashant Shenoy. 2011. Blink: managing server clusters on intermittent power. In Proceedings of the
sixteenth international conference on Architectural support for programming languages and operating systems. 185–198.

[76] Yuanyuan Shi, Bolun Xu, Baosen Zhang, and Di Wang. 2016. Leveraging Energy Storage to Optimize Data Center Electricity Cost in Emerging
Power Markets. In Proceedings of the Seventh International Conference on Future Energy Systems (e-Energy ’16). ACM, New York, NY, USA, 18:1–18:13.
https://doi.org/10.1145/2934328.2934346

[77] Chandrasekar Subramanian, Arunchandar Vasan, and Anand Sivasubramaniam. 2010. Reducing data center power with server consolidation:
Approximation and evaluation. In 2010 International Conference on High Performance Computing. 1–10. https://doi.org/10.1109/HIPC.2010.5713161

[78] Niraj Tolia, Zhikui Wang, Manish Marwah, Cullen Bash, Parthasarathy Ranganathan, and Xiaoyun Zhu. 2008. Delivering energy proportionality
with non energy-proportional systems-optimizing the ensemble. HotPower 8 (2008), 2–2.

[79] Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, and Pawan Goyal. 2005. Dynamic provisioning of multi-tier internet applications. In
Second International Conference on Autonomic Computing (ICAC’05). IEEE, 217–228.

[80] Balajee Vamanan, Hamza Bin Sohail, Jahangir Hasan, and T. N. Vijaykumar. 2015. TimeTrader: Exploiting Latency Tail to Save Datacenter Energy
for Online Search. In Proceedings of the 48th International Symposium on Microarchitecture.

[81] G. M. Wamba, Y. Li, A. Orgerie, N. Beldiceanu, and J. Menaud. 2017. Cloud Workload Prediction and Generation Models. In 2017 29th International
Symposium on Computer Architecture and High Performance Computing (SBAC-PAD). 89–96. https://doi.org/10.1109/SBAC-PAD.2017.19

[82] Di Wang, Chuangang Ren, Anand Sivasubramaniam, Bhuvan Urgaonkar, and Hosam Fathy. 2012. Energy Storage in Datacenters: What, Where, and
How Much?. In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’12). ACM, New York, NY, USA, 187–198. https://doi.org/10.1145/2254756.2254780

[83] Wei Wang, Amirali Abdolrashidi, Nanpeng Yu, and Daniel Wong. 2019. Frequency regulation service provision in data center with computational
flexibility. Applied Energy 251 (2019), 113304.

[84] Xiaorui Wang, Ming Chen, Charles Lefurgy, and Tom W Keller. 2011. SHIP: A Scalable Hierarchical Power Control Architecture for Large-Scale
Data Centers—Supplementary File. (2011).

[85] A. Wierman, Z. Liu, I. Liu, and H. Mohsenian-Rad. 2014. Opportunities and challenges for data center demand response. In International Green
Computing Conference. 1–10. https://doi.org/10.1109/IGCC.2014.7039172

[86] Daniel Wong. 2016. Peak Efficiency Aware Scheduling for Highly Energy Proportional Servers. In International Symposium on Computer Architecture.
[87] D. Wong and M. Annavaram. 2012. KnightShift: Scaling the Energy Proportionality Wall through Server-Level Heterogeneity. In 2012 45th Annual

IEEE/ACM International Symposium on Microarchitecture. 119–130. https://doi.org/10.1109/MICRO.2012.20
[88] Qiang Wu, Qingyuan Deng, Lakshmi Ganesh, Chang-Hong Hsu, Yun Jin, Sanjeev Kumar, Bin Li, Justin Meza, and Yee Jiun Song. 2016. Dynamo:

Facebook’s data center-wide power management system. ACM SIGARCH Computer Architecture News 44, 3 (2016), 469–480.
[89] S. Wu, Y. Chen, X. Wang, H. Jin, F. Liu, H. Chen, and C. Yan. 2018. Precise Power Capping for Latency-Sensitive Applications in Datacenter. IEEE

Transactions on Sustainable Computing (2018), 1–1. https://doi.org/10.1109/TSUSC.2018.2881893
[90] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. 2013. Bubble-flux: Precise Online QoS Management for Increased Utilization inWarehouse

Scale Computers. In Proceedings of the 40th Annual International Symposium on Computer Architecture (ISCA ’13).
[91] Xi Yang, Stephen M. Blackburn, and Kathryn S. McKinley. 2016. Elfen Scheduling: Fine-Grain Principled Borrowing from Latency-Critical Workloads

Using Simultaneous Multithreading. In 2016 USENIX Annual Technical Conference (USENIX ATC 16).
[92] Chaojie Zhang, Alok Gautam Kumbhare, Ioannis Manousakis, Deli Zhang, Pulkit A Misra, Rod Assis, Kyle Woolcock, Nithish Mahalingam, Brijesh

Warrier, David Gauthier, et al. 2021. Flex: High-availability datacenters with zero reserved power. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 319–332.

[93] Q. Zhang, L. T. Yang, Z. Yan, Z. Chen, and P. Li. 2018. An Efficient Deep Learning Model to Predict Cloud Workload for Industry Informatics. IEEE
Transactions on Industrial Informatics 14, 7 (July 2018), 3170–3178. https://doi.org/10.1109/TII.2018.2808910

[94] Y Zhang, M A Laurenzano, J Mars, and L Tang. 2014. SMiTe: Precise QoS Prediction on Real-System SMT Processors to Improve Utilization in
Warehouse Scale Computers. In 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-47). IEEE Computer Society,
Washington, DC, USA, 406–418.

[95] Yijia Zhang, Ioannis Ch Paschalidis, and Ayse K Coskun. 2019. Data Center Participation in Demand Response Programs with Quality-of-Service
Guarantees. In Proceedings of the Tenth ACM International Conference on Future Energy Systems. 285–302.

[96] Yijia Zhang, Daniel C Wilson, Ioannis Ch Paschalidis, and Ayse K Coskun. 2021. A Data Center Demand Response Policy for Real-World Workload
Scenarios in HPC. In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 282–287.

Manuscript submitted to ACM

https://doi.org/10.1109/ISCA.2006.20
https://doi.org/10.1145/2934328.2934346
https://doi.org/10.1109/HIPC.2010.5713161
https://doi.org/10.1109/SBAC-PAD.2017.19
https://doi.org/10.1145/2254756.2254780
https://doi.org/10.1109/IGCC.2014.7039172
https://doi.org/10.1109/MICRO.2012.20
https://doi.org/10.1109/TSUSC.2018.2881893
https://doi.org/10.1109/TII.2018.2808910

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Overview of Frequency Regulation Service
	2.2 Overview of server co-location
	2.3 Overview of data center power capping

	3 Challenges Toward Practical Data Center Frequency Regulation under Latency-critical Constraints
	4 PowerMorph
	4.1 PowerMorph Profiler
	4.2 PowerMorph Optimizer
	4.3 PowerMorph Controller
	4.4 Data center-level regulation service

	5 Evaluation
	5.1 Comparative Results
	5.2 PowerMorph evaluation results
	5.3 Mixed workload cluster

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

