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Abstract—Extensive researches have been done on develop-
ing and optimizing algorithm-based fault tolerance (ABFT)
schemes for systolic arrays and general purpose micropro-
cessors. However, little has been done on developing and
optimizing ABFT schemes for heterogeneous systems with
GPU accelerators. While existing ABFT schemes can correct
computing errors like 1+1=3, we find that many memory
storage errors can not be corrected by existing ABFT schemes.
In this paper, we first develop a new ABFT scheme for Cholesky
decomposition that can correct both computing errors and
storage errors at the same time, and then develop several
optimization techniques to reduce the fault tolerance overhead
of ABFT for heterogeneous systems with GPU accelerators. Ex-
perimental results demonstrate that our fault tolerant Cholesky
decomposition is able to correct both computing errors and
storage errors in the middle of the computation and can achieve
better performance than the state-of-the-art vendor provided
version Cholesky decomposition library routine in CULA R18.

I. INTRODUCTION

Today’s computing systems are susceptible to errors. This
can be evidenced from the fact that ECC protected DRAMs
and RAID protected disks have been widely used to protect
errors in today’s computing systems. Heterogeneous systems
with both CPUs and GPUs have been proven to be efficient
to accelerate a variety of HPC applications. However, like
the traditional computing systems with only CPUs, errors
also occur frequently in heterogeneous systems. In [1], the
authors presented the first large-scale study of the error rate
for GPUs. Their test results show that there are two-third of
the tested GPU hardware exhibit pattern-sensitive soft errors
in GPU memory or logic part. Moreover, in [2], the authors
proposed a GPGPU-SODA framework to analysis the soft
error vulnerability of GPGPU micro-architecture. They ob-
served that GPUs exhibit high soft error susceptibility, and
the vulnerability is sensitive to workload characteristics.

When an error occur, if the computing system continues
without interruption, it is often called a fail-continue error.
Otherwise, it is often called a fail-stop error. While extensive
researches have been done to tolerate fail-stop errors [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], this paper restricts
its scope to tolerating fail-continue errors in Cholesky de-
composition. Cholesky decomposition has been widely used
to solve linear equations arising from linear least squares
problems, non-linear optimization, Monte Carlo simulations,
and Kalman filters.

Fail-continue errors are sometimes also called soft errors.
A simple general approach to tolerate soft errors is the Triple
Modular Redundancy (TMR) approach. In TMR, three iden-
tical computations are first performed on three different
hardware platforms (or on the same hardware platform but
replicated for 3 times for tolerating transient errors), then
the three computational results are compared and voted. The

correction computation result is the majority of the three
results. For the purpose of detecting errors, Double Modular
Redundancy (DMR) is a general approach that works by
comparing the results of two identical computations on two
different hardware platforms. While DMR and TMR are
general approaches that can be applied to any application,
they introduce very high overhead (i.e., 100% overhead to
detect errors and 200% overhead to correct errors).

It is very well known that, for matrix operations, the
algorithm-based fault tolerance (ABFT) technique developed
by Huang and Abraham in [13] introduces much lower fault
tolerance overhead than the general techniques DMR and
TMR. In [13], Huang and Abraham proved that, for many
matrix operations, the checksum relationship in the input
checksum matrices is still held in the final computation
results. Therefore, if the failed processor is able to continue
their work and finish the computation, errors can be detected
by verifying whether or not the checksum relationship is still
held in the final computation results. Because the original
computation complexity for the input matrix size n is in the
order of O(n3) but the error detection complexity is in the
order of O(n2), ABFT introduces much lower overhead than
DMR. ABFT is originally proposed to detect miscalculations
in matrix operations on systolic arrays offline after the
computation is finished. Because of its low overhead, it is
later extended to by many researchers detect and correct
soft errors offline on general purpose microprocessors [14]
and handle fail-stop errors on modern parallel computing
clusters [15]. In [16], ABFT is also extended to correct fail-
continue soft errors online in the middle of the computation
so that corrupted computations can be corrected in a much
more timely manner.

A. Limitations of the existing ABFT

Despite that tremendous progresses have been made in
the field of algorithm-based fault tolerance for matrix oper-
ations, existing ABFT schemes for Cholesky decomposition
have the following limitations:

1) Capability to correct storage errors is limited:
Traditional ABFT schemes [13] correct errors offline
at the end of the computation. They do not distinguish
between computing errors (i.e., 1+1=3) and storage
errors (i.e., 0 becomes 1). Because of the propagation
of the error, one error in one element often causes
numerous errors in the computation results. Further-
more multiple errors will accumulate. Therefore, it is
either impossible or very expensive to correct storage
errors at the end of the computation. While most recent
online ABFT scheme [17], [18], [19] can correct com-
puting errors online in the middle of the computation,



storage errors occurred between checksum verification
and the next data access can not be corrected.

2) Few schemes are developed and optimized for het-
erogeneous systems with GPU accelerators: Classi-
cal ABFT schemes [13] are originally developed for
systolic arrays. Because of their low overhead to detect
errors, they have been extended by many researchers
to detect and correct errors on modern general purpose
microprocessors. However, little has been done on
developing and optimizing ABFT schemes for hetero-
geneous systems with both CPUs and GPUs.

B. Our Contributions
This paper develops a new heterogeneous-system based

ABFT scheme for Cholesky decomposition to correct both
computing errors and storage errors at the same time. Several
optimization techniques are developed to reduce the fault tol-
erance overhead for heterogeneous computing systems with
both CPUs and GPUs. Experimental results demonstrate that
our fault tolerant Cholesky decomposition is able to correct
both computing errors and storage errors in the middle of the
computation and achieve better performance than the state-
of-the-art vendor provided version Cholesky decomposition
library routine in CULA R18 [20]. Cholesky decomposition
has been widely used to solve linear equations arising
from linear least squares problems, non-linear optimization
problems, Monte Carlo simulations, and Kalman filters.
An efficient and fault tolerant implementation of Cholesky
decomposition can therefore benefit a large number of users
and a wide range of scientific fields. More specifically, the
contributions of this paper include:

1) First Online-ABFT scheme to correct both com-
puting and storage errors: Current state-of-the-art
online-ABFT [18], [17], [21], [22], [23], [24], [25],
[26] is based on post-updating-verification scheme,
which verifies the data correctness immediately after
updating the matrix. However, the correctness of the
data between one verification and its immediate next
reading is not protected. Therefore, errors occurred
during this period will be propagated to pollute too
many elements to correct. We designed a new online
ABFT scheme that verifies the correctness of the
matrix elements immediately before the data are ac-
cessed. Therefore, both computing errors and storage
errors can all be detected and corrected before the
using the matrix elements for the next stage of the
computation. To the best of our knowledge, our ABFT
scheme is the first online ABFT scheme that is able to
correct both computing and storage errors at the same
time.

2) First Online-ABFT scheme for Cholesky decompo-
sition on heterogeneous systems with GPU acceler-
ators: Existing ABFT schemes for Cholesky factor-
ization are designed/optimized either for systolic ar-
rays [13] or for general purpose microprocessors [18].
To the best of our knowledge, our ABFT scheme is
the first ABFT scheme for Cholesky decomposition on
heterogeneous systems with GPU accelerators.

3) Innovative overhead reduction techniques for
ABFT: This paper developed three novel optimization
techniques to optimize ABFT overhead on hetero-
geneous systems with GPU accelerators. Checksums
recalculation is the key operation for data correctness

verification in ABFT. It is an relatively expensive
(i.e., O(n)) operation on the critical path. Because
it consists of several BLAS Level-2 operations, the
efficiency of executing checksums recalculation on
GPU is low. This paper designed an optimization
approach that allows several BLAS Level-2 checksums
recalculation operations being executed on the GPU
concurrently using CUDA concurrent kernel execution
feature. Checksum updating is another relatively ex-
pensive (i.e.,O(n)) operation in ABFT. It is non-trivial
to decide whether the checksum updating operation
should be executed on CPU or GPU. This paper
designed a model to help to make this decision based
on the relative speed of the involved CPU and GPU.
Existing online ABFT schemes introduce considerable
overhead because it verifies checksums at the end of
every outer iteration. This paper significantly reduces
the overhead for checksum verification by verifying
checksums every k iterations, where k is a parameter
related to the failure rate of the system.

II. BACKGROUND

In the section, we provide several backgrounds that are
necessary to understand the key ideas of this paper.

A. Cholesky Decomposition in MAGMA

Algorithm 1 MAGMA’s Cholesky Decomposition
Require: Positive-definite n× n matrix A

1: for j = 1 to N do
2: [GPU] Do rank-k update:

A[j, j]− = A[j, 0 : j − 1]×A[j, 0 : j − 1]T

3: Transfer A[j, j] to CPU main memory ACPU [j, j]
4: [GPU] Do matrix-matrix multiplication:

A[j + 1 : N, j]− = A[j + 1 : N, 0 : j − 1]× A[j, 0 :
j − 1]T

5: [CPU] Do single block Cholesky decomposition:
ACPU [j, j]→ LCPU [j, j]

6: Transfer LCPU [j, j] to GPU main memory L[j, j]
7: [GPU] Solve linear systems:

A[j + 1 : N, j] = A[j + 1 : N, j]× L[j, j]T
8: end for

Figure 1. MAGMA’s Cholesky decomposition
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MAGMA is a linear algebra library that utilizes the
heterogeneous systems with GPU. CPU and GPU have
different specialty in handling computation tasks: CPU is
more efficient at doing less parallelized irregular patterned
calculations; GPU, on the other hand, is better at han-
dling highly parallelized calculations. So, to better utilize
this characteristic of the heterogeneous systems, MAGMA
assigns different operations to different computation units
based on the degree of their parallelization. For Cholesky
decomposition, MAGMA chose the inner product version



because it has more BLAS Level-3 operations, hence, can
utilize the heterogeneous system more efficiently. As shown
in Figure 1 and Algorithm 1, less parallelized POTF2 (line
5) is assigned to CPU and high-parallelized TRSM (line 7),
SYRK (line 2) and GEMM (line 4) are assigned to GPU.
Moreover, most data transfer (line 3 and 6) and POTF2 (line
5) on CPU are hidden by the most time-consuming GEMM
(line 4) operation on GPU. So, the Cholesky decomposition
in MAGMA is very efficient on heterogeneous systems.

B. Offline-ABFT and Online-ABFT
Offline-ABFT was first introduced by Abraham and

Huang [13] to handle computing errors. The main idea
is that, for a matrix operation P (A1, A2, ..., An) =
(X1, X2, ..., Xm), if we encode the input matrices into their
checksum form, then apply the operation on the encoded
matrices, the results are still encoded with checksums, which
can be used to detect and correct error(s) in results.

P (A1
enc, A2

enc, ..., An
enc) = (X1

enc, X2
enc, ..., Xm

enc).

The detection and correction is done after the whole compu-
tation is complete. It can handle non-propagating soft errors,
but unable to handle errors that propagate.

Online-ABFT was first introduced by Davies and
Chen [16] to correct errors before they propagate. The key
idea is that checksums are not only ensured to be consistent
by the end of computation, they are also maintained during
computation. So they can be used to detect and correct errors
in the middle of computation. Thus, any error could be
corrected in a timely manner to avoid error propagation.

Figure 2. Enhanced Online-ABFT
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III. DESIGN OF ENHANCED ONLINE ABFT
In the current state-of-the-art Online-ABFT, checksums

are maintained in the middle of computation. After each
operation completes, those checksums are used to detect and
correct any error in the result. Basically, for each operation,
Online-ABFT consists 4 steps ordered as follow:

1) Original updating operation;
2) Corresponding checksums updating operation;
3) Checksums recalculation for result data;
4) Result error detection and correction.
However, the limitation of current Online-ABFT is that

the data stored in memory is not protected from memory
storage error, which could corrupt the result or even leads
to fail-stop failure. To illustrate this problem, we show a
general updating process, which is the kind of operation
that takes up the majority computation of almost any matrix
operation. For example, a data block A has just been updated
and it will be used to update a data block B in a moment.
The details in this process is shown as follow:

1) Data block A has just been completely updated;
2) As the result of updating, the errors in A are detected

and corrected by Online-ABFT immediately;
3) Data block A has to wait in the memory for some other

related tasks to complete before it can be referenced
for updating B;

4) Updating data block B using data block A;
5) Again, as the result of the updating, the errors in B are

detected and corrected by Online-ABFT immediately.
First, we can ensure the correctness of data block A after

Step 2. However, it has been stored in the memory for a
while in Step 3, so data block A could have memory storage
errors in it. Also, data block B is stored in memory and
may has not been verified recently. So, potentially both data
block A and B could have memory storage errors before
the updating in Step 4. Moreover, the updating in Step 4
potentially could generate computation errors in B. All these
errors could persist and eventually affect the correctness of
data block A and B in Step 4. Fortunately, Online-ABFT
can handle the errors in B in Step 5. However, no one can
guarantee the correctness of data block A now. Because A
has already been updated, and it will not be updated or
verified anymore in the future, so incorrect data will persist.
Even worse, if data block A is going be used to update other
part of the matrix, errors in A will propagate and in some
cases it would cause unrecoverable or even fail-stop error.
For example, a single memory error in a matrix block could
break the positive-definite property of that block before the
unblocked decomposition in Cholesky decomposition, which
leads to termination of the whole process.

Even thought, the time interval between a data block is
verified and referenced could be vary short and memory
storage error doesn’t occur often, however, as the problem
size increases with the memory space growth in current HPC
systems, this kind of time interval could be longer and the
probability of memory storage error could be higher.

Although some memory storage errors can be fixed by
the ECC feature in memory, ECC can only fix a single bit
error in a byte. If there are more than one bit flipped, ECC
cannot correct them, so the result is still incorrect.

To overcome this limitation in current Online-ABFT, we
designed an innovative Enhanced Online-ABFT, in which
both computation and memory storage error can be detected



and corrected. The main idea is that data blocks are no longer
verified after they are updated, instead, data blocks are
verified before each time they are referenced. So, any error
including calculation error from last operation or memory
bit-flips error occurred during storage can be corrected
before use. For specific, each operation in our Enhanced
Online-ABFT consists 4 steps and ordered as follow:

1) Checksums recalculation for input data;
2) Input error detection and correction;
3) Original updating operation;
4) Corresponding checksums updating.

IV. IMPLEMENTATION

Our implementation of Enhanced Online-ABFT Cholesky
decomposition is based on the MAGMA’s Cholesky de-
composition routine. We choose the version, in which the
initial matrix is stored on GPU memory. The overall design
is shown in Figure 2. (We use slight different assignment
strategies for different systems and we will explain it in
Optimization 2 of next section) As we can see, each data
input, including the data to be updated and the data to
be referenced, is verified by checksums at first to ensure
correctness. Then, the original updating operation is per-
formed. Finally, corresponding checksums is updated to
prepare for future correctness verification if it is referenced.
The error correction before the updating operation ensures
the correctness of the input for the immediate next upcoming
updating operation, which not only ensures the correctness
of the final result, but also prevents error propagation that
may causes unrecoverable errors or fail-stop failure. As for
the implementation details, we focus on three parts:

1) Encoding input matrix with checksums before
Cholesky decomposition

2) Updating checksums during the decomposition
3) Detecting and correcting errors using checksums after

each operation

A. Encoding Checksums
To encode a input matrix with checksum, the matrix is

multiplied by a specially designed checksum vector to get
the checksum. The resulted checksum can be row checksum,
column checksum and full checksum. In MAGMA’s blocked
Cholesky decomposition, the input matrix is divided into
blocks, which each one of them is treated as a updating unit.
So, similarly we choose to encode the input matrix using the
matrix block as a unit instead of the whole matrix. Although
this strategy brings slightly more memory space overhead,
it significantly strengthen the fault tolerance density.

Encoding one checksum is only good enough to verify the
correctness of matrix blocks. To locate and correct errors,
a second checksum with a different weight (calculated by a
different weighted checksum vector) need to be added. Gen-
erally, m+1 column/row checksums could locate and correct
up to m errors per column/row. As mentioned by [18], two
row checksums or two column checksums works the best
for Cholesky decomposition, so that they can locate and
correct up to one error per column in a matrix block. We
choose two column checksums in our Enhanced Online-
ABFT Cholesky decomposition. The process of checksums
encoding with two column checksums is illustrated as fol-
low: (It is similar for two row checksums). First, we choose
two weighted checksum vectors to be: v1 = [1, 1, 1...1] and
v2 = [1, 2, 3...B], where B is the matrix block size. The

matrix block to be encoded is A = [a1, a2, a3...aB ] with
ai represents the ith column of A. So, the two column
checksums can be calculated as:

chk1 = v1
TA = [r11, r12, r13...r1B ]

chk2 = v2
TA = [r21, r22, r23...r2B ]

For better efficiency, all checksums for an input matrix are
stored together in a checksum matrix, so they can be updated
together.

B. Updating Checksums
In this section, we describe the details in updating check-

sums for POTF2, TRSM, SYRK and GEMM. Inspired by
the checksum updating algorithm in outer product Cholesky
decomposition [18], we conduct the checksum updating
algorithms for inner product Cholesky decomposition as
follow. As an example, we show the process of the third
iteration of decomposition a 5 blocks× 5 blocks matrix in
Figure 3. Upper left gray areas represent decomposed slate
area, which will not be updated or referenced in the future. In
this iteration, area A(in red) and B(in blue) will be updated
to area LA(in red) and LB(in blue) using area LC(in green)
and LD(in yellow).

Figure 3. Example Matrix
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The first step, SYRK does rank-k update to the block on
the diagonal (Area A), which will be decomposed in the
current iteration. It can be described mathematically as:

A′ = A− LC × LCT

The checksums of C1 can be updated as (Figure 4):

chk(A′) = chk(A)− chk(LC)× LCT



Figure 7. TRSM
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The next step is GEMM, which updates the panel (Area
B) to be solved in the current iteration. It can be described
mathematically as:

B′ = B − LD × LCT

Obviously, the checksums update algorithm of GEMM
should be (Figure 5):

chk(B′) = chk(B)− chk(LD)× LCT

The third step, POTF2 operation is responsible for de-
compose a single block (Area A’). The checksum of the
decomposed single block can be updated as:

Algorithm 2 checksums updating algorithm for POTF2
Require: factorized n×n lower triangular matrix LA with

a column checksum chk
1: for j = 1 to N do
2: chk[j]← chk[j]/LA[j, j]
3: chk[j +1 : n]← chk[j +1 : n]− chk[j] ·LA[j +1 :

n, j]
4: end for

As shown in Figure 6, the checksum is updated to the
checksums of LA after the execution of Algorithm 2. Then,
the checksum is available to be used for detecting and
correcting errors in LA.

The final step, TRSM solves linear triangular systems. It
updates the panel sub-matrix B′using the result LA from
POTF2, which can be described as:

LB = B′ × (LAT )
−1

So, similarly, as shown in Figure 7 the checksums of B
should be updated with:

chk(LB) = chk(B′)× (LAT )
−1

C. Error Detection and Correction
Before each updating in Cholesky decomposition, verify-

ing and correcting input data is necessary in our Enhanced
Online-ABFT. We illustrate the process of error detecting,
locating and correcting in a matrix block as follow. First,
The matrix block to be detected is A and its corresponded
two column checksums are:

chk1 = [r11, r12, r13...r1B ]

chk2 = [r21, r22, r23...r2B ]

Next, we recalculate the two column checksums for A:

chk′1 = v1
TA = [r′11, r

′
12, r

′
13...r

′
1B ]

chk′2 = v2
TA = [r′21, r

′
22, r

′
23...r

′
2B ]

Then, we compare chk1 with chk′1 to see whether they are
close enough(within rounding error).

δ1i = r′1i − r1i
δ2i = r′2i − r2i

For instance, let’s say we have found that abs(δ1i) > e,
where e is the threshold of rounding error. So, an error is
detected on the ith column in the matrix block. By dividing
δ2i/δ1i = j, we could get the row index j of the error and
δ1i give us the difference between the correct value and error
value, so that we can correct it.

V. OPTIMIZATIONS

A. Optimization 1
We designed several innovative techniques aimed to min-

imize the overhead in our Enhanced Online-ABFT. Our
optimization techniques mainly focused on three parts:
checksums recalculation, checksums updating and the fault
tolerance algorithm. In this section, we focus on minimizing
the overhead brought by the checksums recalculation. In our
Enhanced Online-ABFT, checksums recalculation is the key
operation for data correctness verification. Optimizing its
execution time is really important for several reasons: (1)It
is on the critical path. For specific, it must be executed before
each data correctness verification and the following original
updating operation, so its execution cannot be overlapped
with any one of them; (2)It is one of the few operations that
bring majority overhead. However, the efficiency of execut-
ing checksums recalculation on GPU is low, since it con-
sists several BLAS Level-2 vector-matrix multiplications.
Moreover, due to the position of each block, these BLAS
Level-2 operations cannot be merged into a more efficient
BLAS Level-3 operation. To overcome this limitation, we
designed an optimization technique that can significantly
improve its efficiency. The key idea is that we allow several
BLAS Level-2 checksums recalculation operations being
executed on the GPU concurrently using CUDA concurrent
kernel execution feature. CUDA allows each GPU executes
multiple kernel functions concurrently [27] as long as two
requirements are met:

1) Each kernel function must be assigned to a separated
CUDA stream, which means each of them must not
have any data dependency between each other;

2) There is enough GPU computation resources available
for other kernel functions to execute.

The recalculation of each column checksums are inde-
pendent form each other, so any number of them can be
concurrently executed. For each GPU, there is a designed
max number N of concurrent kernel execution, determined
by its compute capability number. Moreover, depending on
the resource usage of each kernel function and the total
resources available on GPU, the max number of concurrent
kernel execution in resources perspective could be different:

M =
total resources on GPU

Max resources usage of each kernel function

So, the actual number of concurrent checksums recalculation
is:

P = min(N,M)

In practice, the cuBLAS library used in MAGMA is not
open sourced, so it is only possible to use profiling tools such



as nvprof to get the resources usage, however, it’s still hard to
accurately estimate the max number of concurrent execution
given resources usage of each function. So, for simplicity, we
just create N CUDA Streams to maximize the efficiency of
checksums recalculation. Since all checksums recalculation
operations are identical, we distribute them evenly among
N CUDA streams.

B. Optimization 2
To further lower the overhead of our Enhanced Online-

ABFT, we turn our focus on the checksum updating opera-
tions. Unlike checksums recalculation operations, checksum
updating operations are not on the critical path. So, theoreti-
cally once the input data is verified, checksums updating can
be executed concurrently with original updating operations
and it can be assigned to both CPU or GPU as shown in
Figure 2. If we put it on GPU as shown in Figure 2(a)(this
concurrent relation is not shown), we can create a separate
stream for it and use CUDA concurrent kernel execution
feature. So it is possible that the execution can be par-
tially/completely overlapped and the total overhead of it can
be reduced. On the other hand, since CPU is idle most
of the time in MAGMA’s Cholesky decomposition, it is
also possible to take the advantage of this and concurrently
update checksums on CPU while GPU is performing other
operations as shown in Figure 2(b), so the overhead can also
be reduced. However, in this case, we need to ensure that
CPU can complete its job close to the completion time of
GPU. Otherwise, it may not be worth to do it on CPU.

To choose between CPU or GPU for checksums updating
operation, we need to determine in which way we can gain
minimum overhead. We designed an estimation model to
help us make decision. First we define:

PGPU = Peak performance of GPU(GFLOPS)

PCPU = Peak performance of CPU(GFLOPS)

R = Data transfer rate between CPU and GPU

The number of FLOPS of the original MAGMA’s Cholesky
decomposition with n×n matrix input can be estimated as:

NCho = n3/3

For checksums updating, the number of FLOPS is:

NUpd = 2n3/(3B)

In which, B is the block size. Moreover, the number of
FLOPS for checksum recalculation is:

NRec = 2n3/(3B)

Finally, if CPU is chosen for checksums updating, the extra
data transfer overhead is:

Dupd = n3/(3KB2)

In which, K is number of iteration that we preform data
correction verification once, will be explained in optimiza-
tion 3. So, if we assign checksums updating on GPU, the
estimated execution time is:

TPick GPU =
NCho +NUpd +NRec

PGPU

If we let CPU concurrently do checksums updating, the
estimated execution time is:

TPick CPU = max(
NCho +NRec

PGPU
,
NUpd

PCPU
+
Dupd

R
)

So, the decision depends on the peak performance of specific
CPU and GPU and the data transfer rate between them.

C. Optimization 3
As our Enhanced Online-ABFT coveres more kinds of

silent error than the Online-ABFT, it inevitablly brings more
overhead. Let’s look at the read/write pattern of MAGMA’s
Cholesky decomposition: Each block is updated O(1) times
and read O(n) times on average. As a result, the Online-
ABFT verifies each block O(1) times on average and our
Enhanced Online-ABFT verifies each block O(n) times on
average. Each block is verified more times, so it brings
more overheads. The overhead of checksum encoding and
checksums updating are still the same as in Online-ABFT. To
lower the overhead in our Enhanced Online-ABFT, we focus
on data verification process, since it is the only part that
brings extra overhead. As shown in Table I, due to the extra
number of verification in SYRK and GEMM, the overhead
of our Enhanced Online-ABFT increases.

Table I
VERIFICATION COMPARISON

Operation Online-ABFT Enhanced Online-ABFT
verify # of blocks verify # of blocks

POTF2 L O(1) A O(1)
TRSM B O(n) L,B O(n)
SYRK A O(1) A,C O(n)
GEMM B O(n) B,C,D O(n2)

We noticed that memory errors may not occur so fre-
quently as our verification frequency. Verifying date correct-
ness every iteration may over protect the data. So, inspired
by the work [28], we designed an optimization, which allows
Enhanced Online-ABFT to adjust the strength of protection.
The basic idea is that instead of verifying input data every
time in every iteration, now we only verify it once for
every K iterations. Although both SYRK and GEMM bring
more overhead, we can only apply this optimization only to
GEMM and keep SYRK as same as before, since errors in
the input of SYRK can propagate and cause unrecoverable
situations or fail-stop failure if not corrected immediately.
Moreover, it is also safe to apply this optimization for
TRSM. There is a trade off between the overhead and the
error correction capability. For systems with low error rate,
we can increase K to lower the overhead. On the other hand,
we need to keep K low for systems with high error rate. By
properly adjusting the number K, we can achieve minimum
overhead and still get enough error correction capability.

VI. OVERHEAD ANALYSIS

In this section, we analyze the overhead of our Enhanced
Online-ABFT Cholesky decomposition and compare it with
the overhead of Online-ABFT Cholesky decomposition. We
show that our relative run-time and space overhead is similar
to the overhead of Online-ABFT Cholesky decomposition.
Table II defines the parameters we will use. The overhead of
different steps of our fault tolerance algorithm are as follows:



Table II
DESCRIPTION OF EACH SYMBOL

Symbol Description
n input matrix size
B matrix block size
K Verify data every K iterations

1) Checksums Encoding overhead
This step is done before the Cholesky decomposition
and it is the same for both Online-ABFT and En-
hanced Online-ABFT. Each block in the input matrix
is multiplied by the two checksum vectors to get the
checksums. The number of floating operations can be
calculated as:

Oencode = 1/2× 4×B2 × (n/B)
2
= 2n2

The whole Cholesky decomposition takes n3

3 , so the
relative overhead is 6

n .
2) Checksums updating overhead

This step is done after each operation during the
Cholesky decomposition, which is also same in both
ABFTs. Checksum matrix is updated as same as
the input matrix. The overhead of each operation in
checksums updating is (Table III):

Table III
OVERHEAD OF CHECKSUM UPDATING

Operation Oupdating Relative overhead
POTF2 2Bn 6B

n2

TRSM 2n2 6
n

SYRK 2n2 6
n

GEMM 2
3B

n3 2
B

Since POTF2 bring little overhead, it can be ignored
here. So the total updating relative overhead is: 12

n + 2
B .

3) Checksums recalculating overhead
a) Online-ABFT

This step is done after each operation in
Cholesky decomposition. The checksums are
recalculated after each block is updated. The
overhead of each step can be calculated as in
Table IV). Both the overhead of POTF2 and
SYRK can be ignored here, so the total relative
recalculation overhead is: 12

n .

Table IV
OVERHEAD OF CHECKSUMS RECALCULATION OF ONLINE-ABFT

Operation Orecal online Relative overhead
POTF2 4Bn 12B

n2

TRSM 2n2 6
n

SYRK 4Bn 12B
n2

GEMM 2n2 6
n

b) Enhanced Online-ABFT
This step is done before each operation in
Cholesky decomposition. The checksums are re-
calculated for blocks that will be read or updated.
The overhead of each step can be calculated
in Table V. After ignoring the minor overhead
brings by the POTF2, the total relative recalcu-
lation overhead is: 6K+6

nK + 2
BK

Table V
OVERHEAD OF CHECKSUMS RECALCULATION OF ENHANCED

ONLINE-ABFT

Operation Orecal enhanced Relative overhead
POTF2 4Bn 12B

n2

TRSM 2n2 6
n

SYRK 2n2

K
6

nK

GEMM 2n3

3BK
2

BK

4) Checksums verification overhead
It step is used for verify the correctness of each
operation in Cholesky decomposition. It only brings
slight overhead, thus it can be ignored here.

5) Space overhead
For both ABFTs, checksums are stored in a checksum
matrix, of which the size is: 2

Bn
2 and relative space

overhead is: 2
B .

6) Data Transfer overhead
If we choose to update checksums on GPU, it only
brings slight data transfer overhead, which can be
ignored here. If we choose to update checksums on
CPU, there also involves some data transfer overhead:

a) Initial checksums transfer: 2n2

B ;
b) Checksum updating related transfer: n2

2 ;
c) Verification related transfer:

i) Online-ABFT: n2

2B ;
ii) Enhanced Online-ABFT: n3

3KB2 .
7) Summary

The overall relative overhead is shown in Table VI.

Table VI
OVERALL OVERHEAD

Overall Relative overhead n→∞
Online-ABFT 30

n
+ 2

B
2
B

Enhanced Online-ABFT 24K+6
nK

+ 2K+2
BK

2K+2
BK

B is determined by the performance of hardware and
MAGMA’s implementation. So, we can see with fixed
B, if the matrix size is close to the block size, it
will affect the relative overhead. In that case, the
relative overhead will decrease with the increasing
of the input matrix size. When the input matrix
size is relatively large, the relative overheads of both
ABFTs will continue decrease and converging to small
constant. So, The Enhanced Online-ABFT Cholesky
decomposition should behave similar to the original
MAGMA Cholesky decomposition and current state-
of-the-art Online-ABFT Cholesky decomposition with
slightly lower efficiency.

VII. EXPERIMENTAL EVALUATIONS

A. Experiments Environments
Our Enhanced Online-ABFT Cholesky decomposition is

built based the latest MAGMA version 1.6.2. It is linked
with the cuBLAS 7.0 [29] on GPU and ACML 5.3.0 [30]
on the CPU. We implemented the double precision version
Cholesky decomposition. The interface of the routine is
not changed. For best performance, all checksums-related
operations are also implemented with ACML-equivalent and
cuBLAS-equivalent subroutines in MAGMA.



Table VII
FAULT TOLERANCE CAPABILITY COMPARISON ON TARDIS WITH

20480× 20480 CHOLESKY DECOMPOSITION

No Error Computation Error Memory Error
Enhanced

Online-ABFT 10.6572s 10.6614s 10.6678s

Online-ABFT 10.5067s 10.5244s 22.625s
Offline-ABFT 10.4489s 21.3942s 21.2631s

Table VIII
FAULT TOLERANCE CAPABILITY COMPARISON ON BULLDOZER64

WITH 30720× 30720 CHOLESKY DECOMPOSITION

No Error Computation Error Memory Error
Enhanced

Online-ABFT 8.84598s 8.9253s 8.91492s

Online-ABFT 8.64649s 8.69622s 21.4162s
Offline-ABFT 8.64265s 21.4472s 21.3511s

We evaluated our implementation on two heterogeneous
systems: TARDIS and BULLDOZER64. Tardis is a cluster
system with 4 GPU nodes. The GPU node is equipped
with two 16 cores 2.1GHz AMD 6272 Opteron Processors
with 64GB DRAM and a NVIDIA Tesla M2075 GPU
with 6GB memory. The micro-architecture of the GPU is
Fermi. Bulldozer64 is a heterogeneous system equipped with
four 16 cores 2.1GHz AMD 6272 Opteron Processors with
64GB DRAM and a NVIDIA Tesla K40c GPU with 12GB
memory. The micro-architecture of the GPU is Kepler.

We tested our implementations with several different input
matrix sizes from the largest our GPU memory allows to
relatively small sizes. For Tardis system, the test is from
5120×5120 to 23040×23040. For Bulldozer64 system, the
test is from 5120×5120 to 30720×30720. As for the block
size, MAGMA chooses different block sizes for different
GPUs. For Fermi GPU, the default block size is 256× 256
and for Kepler GPU, it uses larger block size 512× 512.

B. Fault tolerance capability comparison
This subsection compares the fault tolerance capability of

our Enhanced Online-ABFT with Offline-ABFT and Online-
ABFT by injecting different type of errors. As we can see in
Table VII and VIII, all three ABFTs have similar execution
time when there is no error. When a computating error is
injected, it soon propagates to other areas and cause unre-
coverable situation for Offline-ABFT. So it needs to repeat
the whole decomposition again, which doubles its execution
time. Since Online-ABFT can correct computating error in a
time manner, its execution is not affected. When we injected
a storage error between checksum verification and data
access, both Offline-ABFT and Online-ABFT cannot correct
it, so they need to re-do the decomposition again, which cost
twice of the time. However, our Enhanced Online-ABFT can
correct both types of errors without affecting execution time.

C. Optimization 1
We show the result of our first optimization technique.

In this optimization, we use the CUDA concurrent kernel
execution feature to let several checksums recalculations
execute concurrently on GPU. We show the relative overhead
of our Enhanced Online-ABFT before and after we apply
this optimization.As we can see in Figure 8 and 9, blue line
and red line represents the relative overhead before and after

Figure 8. Optimization 1 on Tardis
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Figure 9. Optimization 1 on Bulldozer64
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Figure 10. Optimization 2 on Tardis
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Figure 11. Optimization 2 on Bulldozer64
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Figure 12. Optimization 3 on Tardis
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Figure 13. Optimization 3 on Bulldozer64
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Figure 14. Relative Overhead on Tardis
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Figure 15. Relative Overhead on Bulldozer64
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Figure 16. Performance on Tardis
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Figure 17. Performance on Bulldozer64
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we apply this optimization. As we can see, optimization 1
reduces the relative overhead by about 2% on Tardis and
about 10% on Bulldozer64. Note that the relative overhead
is reduced a lot more on Bulldozer64. This is because
Bulldozer64 is equipped with more powerful and advanced
GPU, which could allow more checksum recalculations to
be executed together, so it has much more efficiency.

D. Optimization 2
In this section, we show our test result on applying our

second optimization technique, which aims to let CPU or
a separate GPU CUDA stream concurrently do checksums
updating with original updating and checksums recalcula-
tions. Determined by our testing system, we choose CPU
to update checksums on Tardis system and choose GPU
to update checksums on Bulldozer64 system. As shown in
Figure 10 and 11, our optimization 2 reduces the relative
overhead by about 5% on Tardis on average and about 8%
on Bulldozer64 on average.

E. Optimization 3
In this section, we show the benefit brings by the our third

optimization technique. This optimization aims to adjust the
frequency of checksum verification in our Enhanced Online-
ABFT. We only let our Enhanced Online-ABFT verify data
correctness for every K iteration. We show the overhead
change as we adjust K to be 1, 3, and 5. As we can see
in Figure 12 and 13, the relative overhead of our Enhanced
Online-ABFT has reduced significantly as we adjust K.

F. Overhead comparison
In this section, we compared the relative overhead

between Offline-ABFT Cholesky decomposition, Online-



ABFT Cholesky decomposition, and our Enhanced Online-
ABFT Cholesky decomposition. As shown in Figure 14
and 15, the overhead of our Enhanced Online-ABFT is close
to constant when the matrix size is large. our Enhanced
Online-ABFT only introduced less than 6% overhead on
Tardis and less than 4% overhead on Bulldozer. It is only
slightly higher than Offline-ABFT and Online-ABFT.

G. Performance comparison
Figure 16 and 17 compare the performance of the

Original MAGMA’s Cholesky decomposition, CULA’s
Cholesky decomposition, Offline-ABFT Cholesky decom-
position, Online-ABFT Cholesky decomposition, and our
Enhanced Online-ABFT Cholesky decomposition. Figure 16
and 17 indicate that the performance of Enhanced Online-
ABFT is comparable to Offline-ABFT and Online-ABFT.
Also, even with both computation error and memory error
tolerance capability, our Enhanced Online-ABFT is still
faster than CULA on both systems.

VIII. CONCLUSION

This paper presented a new ABFT scheme for Cholesky
decomposition that can correct both computing and storage
errors. Several optimization techniques were also developed
to reduce the fault tolerance overhead. Experimental results
demonstrate that our fault tolerant Cholesky decomposition
can achieve better performance than the state-of-the-art
Cholesky decomposition routine in CULA R18.
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