
Journal of Computational Physics (2024)

Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

1

Second order accurate particle-in-cell discretization of the Navier-Stokes2

equations3

Han Jianga, Craig Schroederb,∗
4

aThe Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong5
bComputer Science and Engineering, University of California, Riverside, 351 Winston Chung Hall, Riverside, CA 92521-04296

A R T I C L E I N F O

Article history:

7

A B S T R A C T
8

We propose the use of PolyPIC transfers [10] to construct a second order
accurate discretization of the Navier-Stokes equations within a particle-in-
cell framework on MAC grids. We investigate the accuracy of both APIC
[16, 17, 8] and quadratic PolyPIC [10] transfers and demonstrate that they are
suitable for constructing schemes converging with orders of approximately
1.5 and 2.5 respectively. We combine PolyPIC transfers with BDF-2 time in-
tegration and a splitting scheme for pressure and viscosity and demonstrate
that the resulting scheme is second order accurate. Prior high order particle-
in-cell schemes interpolate accelerations (not velocities) from the grid to par-
ticles and rely on moving least squares to transfer particle velocities to the
computational grid. The proposed method instead transfers velocities to parti-
cles, which avoids the accumulation of noise on particle velocities but requires
the polynomial reconstruction to be performed using polynomials that are one
degree higher. Since this polynomial reconstruction occurs over the regular
grid (rather than irregularly distributed particles), the resulting weighted least
squares problem has a fixed sparse structure, can be solved efficiently in closed
form, and is independent of particle coverage.

© 2024 Elsevier Inc. All rights reserved.
9

10

1. Introduction11

Early Material Point Method (MPM) formulations suffered from serious sources of errors and instabilities, espe-12

cially the finite grid instability [18, 21, 1] and ringing [3, 12]. These issues have largely been addressed with smoother13

and more accurate basis functions such as splines [25, 27, 11], GIMP [1], or CPDI variants [23, 20, 24]. Weighted14

least squares [30] and moving least squares (MLS) [9, 28, 14] provide a similar effect by using a least-squares fit to15

particle data instead of weighting kernels. In MLS, a polynomial is fit to the local particle data and then evaluated as16

needed. By using polynomials of suitable order, a fit of any accuracy can in theory be obtained, though in practice this17

will be strongly limited by particle seeding density. MLS is particularly attractive due to its ability to retain transfer18

accuracy with irregular particle sampling [9, 28]. See [6] for a thorough overview of the development of MPM.19

∗Corresponding authors: email: craigs@cs.ucr.edu

http://www.sciencedirect.com
http://www.elsevier.com/locate/jcp

2 / Journal of Computational Physics (2024)

Improving accuracy of MPM has generally proved to be very difficult. The first major challenge in achieving20

second order accuracy with MPM is the irregular distribution of the particles. Standard particle-to-grid transfers are21

not accurate enough when the particle distribution is irregular. The first real success at producing a higher order22

hybrid particle-grid scheme was [9], which succeeded at producing simulations up to fifth order accurate for a variety23

of PDEs in the absence of boundaries by using MLS for transfers, WENO for interpolation, and Runge-Kutta for24

temporal discretization. Although this scheme was not MPM (they did not consider solids), it demonstrated that MLS25

could be used to address the accuracy of particle-grid transfers, even with irregular particle distributions.26

Achieving second order accuracy for MPM is complicated by the use of particles to compute stresses. The27

deformation gradient tracked on particles depends on the velocity gradients, which must be computed with sufficient28

accuracy. In addition, the MPM particles play a similar role to the quadrature points used in traditional finite elements29

[25, 26]. This leads to accurate results when particles are regularly distributed but quickly drops to first order (or30

even worse) when the particles move from this ideal arrangement. This problem was addressed by [28], which used31

MLS for both the particle-to-grid transfer and for transferring stresses from particles to the centers of grid cells. In32

this way, their force computation behaved as a regular grid with quadrature points in the centers of cells; this also33

allowed them to impose standard boundary conditions at grid boundaries. They were able to demonstrate second34

order accurate convergence for MPM in 1D and 2D, but not with general boundary conditions. A similar approach35

based on Taylor series expansions was used by [31], which demonstrated higher order on 1D problems. Second order36

with axis-aligned boundaries was also demonstrated by [7]. General application of Neumann or Dirichlet boundary37

conditions for MPM remains challenging [2], and this has never to our knowledge been achieved with higher order.38

As with the finite element method, the natural boundary condition for MPM is the traction-free boundary con-39

dition. As a result, it is widespread practice for MPM methods to ignore boundary condition treatments. To apply40

inhomogeneous traction boundary (such as surface tension), it is necessary to integrate these forces over the bound-41

ary. The simplest way to do this is to simply spread out the interface forces over a region of particles near the42

boundary [15]. Another approach is to represent the boundary as part of the particle interpolation kernels as is done43

in CPDI/CPDI2 [23, 20, 24]. Though CPDI can be second order on perturbative problems with regularly distributed44

particles [29], these approaches are generally limited to first order accuracy. An alternative strategy is to construct an45

explicit surface representation [2], on which boundary conditions are readily applied. Another strategy is to compute46

boundary conditions from a level set [32, 30]. Moutsanidis et al. [19] used boundary-fitted curved grids based on47

NURBS, which can capture conic sections exactly, though second order convergence was only demonstrated for a48

vibrational test.49

Many MPM formulations found in engineering (and all of the higher order schemes) use FLIP-style updates,50

where accelerations or forces are transfered from grid to particles rather than velocity. This formulation has attractive51

conservative properties, but they introduce spurious null velocity modes on particles and lead to simulation errors52

[4, 1, 16, 8]. These errors can be managed by including filtering into the transfer algorithm (XPIC [13]) or through53

the use of stabilization [9]. However, these methods do not eliminate particle noise but merely seek to maintain it at an54

acceptable level. Alternatively, one may directly interpolate velocities from the grid back to particles, but this results55

in an unacceptably high level of dissipation, since velocities are repeatedly averaged across each transfer. Schemes56

such as Affine Particle In Cell (APIC) [16, 17, 8] or Polynomial Particle In Cell (PolyPIC) [10] avoid this by enriching57

the particle representation to include not only velocities but also estimates of their derivatives as well. In this way,58

particles effectively store a local polynomial reconstruction of the velocity field in the vacinity of the particle. APIC59

has been shown to be effective alternative to FLIP or XPIC transfers for a projection-based fluid solver [8]. Since60

information does not accumulate on particles with APIC transfers, noise is not able to build up there. At the same61

time, since particles are able to represent the underlying grid velocitity much more accurately, less energy is lost62

during the interpolations, which in turn dramatically reduces dissipation [8]. We note that APIC, PolyPIC, and MLS63

are all weighted least squares polynomial reconstructions. We discuss the differences between these strategies (and64

compare to [9] more generally) in Section 3.2.65

In this work, we investigate APIC and quadratic PolyPIC as transfer schemes for the second order accurate so-66

lution of the Navier-Stokes equations. This avoids the use of FLIP or XPIC for transfers and the particle noise that67

accompanies them. We demonstrate that the use of quadratic PolyPIC transfers combined with a standard second68

order backward difference formula (BDF-2) time integration scheme on the grid yields a scheme that is second order69

accurate in velocities in both the L2 and L∞ norms. We also demonstrate that using APIC instead of quadratic PolyPIC70

reduces the convergence order to approximately 1.5. As with [9], the focus of this work is on transfer accuracy, so we71

focus on periodic boundary conditions. We do not consider irregular boundary conditions, which would drastically72

/ Journal of Computational Physics (2024) 3

Name type location meaning
△t scalar - time step size
∆x scalar - grid resolution
µ scalar - viscosity coefficient
ρ scalar - fluid density
ea vector - axis vector
mp scalar particle mass
xn

p vector particle position
vn

p vector particle velocity
Cn

p matrix particle velocity gradient
Hn

p tensor particle velocity Hessian

vn+ 1
2

p vector particle advection velocity
vbd

p vector particle intermediate velocity
Cbd

p matrix particle intermediate velocity gradient
Hbd

p tensor particle intermediate velocity Hessian
mn

ia scalar MAC face mass
xn

ia vector MAC face MAC face location
ûn

ia scalar MAC face final grid velocity component
u⋆⋆ia scalar MAC face intermediate velocity component
u⋆ia scalar MAC face intermediate velocity component
ubd

ia scalar MAC face intermediate velocity component
an

ia scalar MAC face acceleration component
f n
ia scalar MAC face force component

pn
i scalar cell center pressure

wn
iap scalar mixed transfer weights
ξ scalar constant second moment of transfer weights
σpab scalar particle third moment of transfer weights
τpab scalar particle fourth moment of transfer weights
rpa scalar particle zeroth moment of grid velocity

Mpab scalar particle first moment of grid velocity
Tpabc scalar particle second moment of grid velocity

Table 1: Summary of notation used in this paper.

complicate the underlying Eulerian scheme. We also limit our study to fluids, which avoids the additional complica-73

tions involved in computing second order accurate stresses. Nevertheless, we observe that boundary conditions do not74

pose problems for the transfers and demonstrate second order accuracy with axis-aligned boundaries. In addition, we75

present efficient and explicit formulas for computing the required PolyPIC transfers, which makes PolyPIC transfers76

significantly less expensive than the equivalent MLS transfers. We demonstrate that quadratic splines are unsuitable77

for PolyPIC and that cubic splines are required instead. Finally, we compare quadratic PolyPIC with APIC and the78

XPIC family in terms of dissipation following the analysis of [8] in Section 4.1.79

2. Numerical method80

2.1. Notation81

The notation that we use is summarized in Table 1. As a general rule, bold lowercase symbols (xn
p) are vectors,82

bold uppercase symbols (Cn
p) are matrices or rank-3 tensors, and non-bold symbols (ṽn+1

ia , Mpab) are scalars. Subscripts83

are used to index grid nodes (i), particles (p), and spatial dimensions (a, b, c). The superscripts vn−1
p vn

p, vn+ 1
2

p , and vn+1
p84

indicate the time at which quantities naturally live. Other adornments are used to distinguish quantities that would85

otherwise get the same name. To avoid confusion, we will never use the summation convention in this document; all86

summation is specified explicitly.87

4 / Journal of Computational Physics (2024)

2.2. State variables88

Hybrid particle-grid methods store their primary state on particles; this is the information that persists from time89

step to time step. For the proposed scheme, each particle stores mass (mp), position (xn
p), velocity (vn

p), velocity90

gradient (Cn
p), and velocity Hessian (Hn

p). Since the discretization we propose is a multistep method, we also require91

velocity information for the previous time step (vn−1
p , Cn−1

p , Hn−1
p). Storing velocity and its first two spatial derivatives92

allows us to represent a quadratic polynomial velocity field on each particle, which approximates the local velocity93

field. Since particle mass mp never changes, we do not assign it a superscript. We do not consider any grid information94

to be simulation state; all information that must be used on the grid will be reconstructed from particles during the95

time step.96

2.3. Particle movement97

We begin the time step by moving our particles. The particles effectively behave as Lagrangian particles, and
moving the particles replaces the need to perform Eulerian advection. To achieve second order accuracy in time, it is
not sufficient to move positions using grid velocities (or by interpolating final grid velocities from the previous time
step). Instead, we must use a midpoint approximation of the velocity.

vn+ 1
2

p =
3
2

vn
p −

1
2

vn−1
p (1)

xn+1
p = xn

p + △tvn+ 1
2

p (2)

When particles move through a velocity gradient, the local velocity field will deform along with it. Unlike a typical98

hybrid scheme, we explicitly store a polynomial representation of the velocity, not merely a velocity sample. This99

suggests that it might be necessary to update this particle state, but we found that this is not necessary.100

2.4. Particle to grid transfers101

We discretize our time derivative using a standard second order backward difference ODE discretazation (which
we refer to as BDF-2), which approximates the time derivative of velocity as

∂vn+1
p

∂t
≈

3vn+1
p − 4vn

p + vn−1
p

2△t
=

vn+1
p − vbd

p

α△t
, (3)

where we have let α = 2
3 and introduced the intermediates

vbd
p =

4
3

vn
p −

1
3

vn−1
p Cbd

p =
4
3

Cn
p −

1
3

Cn−1
p Hbd

p =
4
3

Hn
p −

1
3

Hn−1
p . (4)

During the first time step, we bootstrap the multistep method with vbd
p = vn

p, Cbd
p = Cn

p, Hbd
p = Hn

p, and α = 1.102

Next, we must transfer our particle velocities to our background MAC grid. Each particle stores a quadratic
velocity field, which can be evaluated at nearby MAC faces. Multiplying by particle mass yields a per-MAC face
momentum. We also transfer mass the to grid.

mn
ia =

∑︂
p

wn
iapmp (5)

mn
iaun

ia =
∑︂

p

wn
iapmpeT

a

(︄
vbd

p + Cbd
p (xn

ia − xn+1
p) +

1
2

Hbd
p : ((xn

ia − xn+1
p)(xn

ia − xn+1
p)T)

)︄
(6)

Then, grid velocity is un
ia = (mn

iaun
ia)/mn

ia. We use cubic splines for our transfers, though we also consider quadratic103

splines for comparison purposes (See Section 4.2).104

/ Journal of Computational Physics (2024) 5

2.5. Grid evolution105

Once on the grid, we follow a standard second order accurate Eulerian discretization of the remaining terms of the
Navier-Stokes equations. First we apply explicit forces

u⋆ia = un
ia +
α△t
mn

ia
f n+1
ia . (7)

In this paper, we will use the forcing term f n+1
ia for the method of manufactured solutions [22]. Next we apply viscosity

u⋆⋆ia = u⋆ia +
△tαµ
ρ
∇2u⋆⋆ia . (8)

We complete the grid evolution by projecting the final grid velocity to make it divergence free.

∇

(︄
1
ρ
∇pn+1

i

)︄
=

1
△tα
∇ · u⋆⋆ia ûn+1

ia = u⋆⋆ia −
△tα
ρ
∇pn+1

i . (9)

This simple scheme on the background grid is sufficient to achieve second order accurate velocities. We note that the106

choice of grid scheme is largely independent of the transfers, which are our main focus.107

We note that the scheme as presented could be improved by including a predictor for the pressure, where the108

previous time step’s pressure would be added as an explicit force before computing viscosity. The pressure solve109

would then compute a pressure correction, which is added to the predicted pressure. This has the advantage of110

making the viscosity a bit more accurate and making the Poisson equation quicker to solve. The predicted pressure is111

not needed to achieve second order accuracy on the velocities. We chose to omit the predictor for the pressure, since112

this would have introduced a state variable on the grid. This is straightforward to handle in our case since we do not113

have moving boundaries, but we felt that this was out of the spirit of the scheme. Since our focus is on the transfers114

and not the grid portion of the scheme, we decided to omit the predictor. If performance is critical, a predictor could115

be included, or the pressure solver could be warm started using the pressure from the previous time step.116

2.6. Grid to particle transfers117

To complete the time step, we must transfer our grid velocities back to particles. We do this using quadratic118

PolyPIC [10] (also referred to as PolyPIC6 in that paper). For simplicity, completeness, and to develop efficient119

explicit formulas for computing it, we present a derivation of quadratic PolyPIC here.120

Since our particles store a quadratic polynomial velocity approximation, our transfers from grid to particle amount
to solving a weighted least squares problem (as one might do in a moving least squares (MLS) discretization). To
represent a quadratic velocity field in 3D, one needs 3 velocity samples, 9 gradient samples, and 18 Hessian samples.
Specifically, vp,Cp,Hp should be chosen to minimize

min
vp,Cp,Hp

∑︂
ia

wn
iap

⃦⃦⃦⃦⃦
eT

a vp + eT
a Cp(xn

ia − xn+1
p) +

1
2

eT
a Hp : ((xn

ia − xn+1
p)(xn

ia − xn+1
p)T) − uia

⃦⃦⃦⃦⃦2

(10)

Noting that these optimization problems are independent for all choices of a and p and using the notation Hpa = eT
a Hp,

min
vpa,Cpa,Hpa

∑︂
i

wn
iap

⃦⃦⃦⃦⃦
vpa + Cpa(xn

ia − xn+1
p) +

1
2

(xn
ia − xn+1

p)T Hpa(xn
ia − xn+1

p) − uia

⃦⃦⃦⃦⃦2

. (11)

A straightforward solution to this weighted least squares problem would requires inverting 10 × 10 linear system.121

Three of these (one per velocity component) are required per particle. While this scales linearly with the number122

of particles (and generally better than the pressure projection), this can be quite expensive. Because we are doing a123

weighted least squares fit to grid data (not particle data as with MLS), we can take advantage of the regularity of this124

data to efficiently solve the weighted least squares problem. In fact, the solution can be computed directly in closed125

form. Doing this will require some moments.126

6 / Journal of Computational Physics (2024)

Moments. Since we are fitting quadratic polynomials, we will need spline moments up to four:

1 =
∑︂

i

wn
iap 0 =

∑︂
i

wn
iap(xn

ia − xn
p)b ξ =

∑︂
i

wn
iap(xn

ia − xn
p)2

b σpab =
∑︂

i

wn
iap(xn

ia − xn
p)3

b τpab =
∑︂

i

wn
iap(xn

ia − xn
p)4

b.

(12)

Here, the notation (xn
ia−xn

p)2
b means evaluate the quantity in parenthesis (a vector in this case), take the b-th component127

of it, and square it. In the case of quadratic and cubic splines that we consider, the second moment is independent of128

the particle positions, so no indices are required. The third and fourth moments are simple polynomials that depend129

on the position of the particle within a cell. We provide simple polynomial formulas for these moments in Section 2.7130

which can be used to efficiently compute them; the moments are not computed by summing over grid values.131

We will also require moments of our final grid velocities

rpa =
∑︂

i

wn
iapûn+1

ia Mpab =
∑︂

i

wn
iapûn+1

ia (xn
ia − xn

p)b Tpabc =
∑︂

i

wn
iapûn+1

ia (xn
ia − xn

p)b(xn
ia − xn

p)c. (13)

Note that these moments are over the grid data and are computed by summing over the grid.132

Weighted least squares problem. With moments available, we can write the transfer as a matrix-vector multiply. At
the risk of notation reuse on i, for the rest of this section we denote the grid index as i = (i, j, k). Then, we may let
⟨xi, y j, zk⟩ = xn

ia − xn+1
p , noting that a and p are fixed during this least squares solve; the a and p indices are ignored

where convenient. The missing indices will be put back in the result. Noting that our weights have tensor product
structure, we can write wn

iap = wiw jwk. The least squares problem can now be expressed as minimizing E where

E =
∑︂

i

wn
iap∥A

T
i U − uia∥

2. (14)

and

Ai =

⎛⎜⎜⎝

1
xi

y j

zk

x2
i

y2
j

z2
k

y jzk

zk xi

xiy j

⎞⎟⎟⎠

U =

⎛⎜⎜⎝

vpa

Cpax

Cpay

Cpaz
1
2 Hpaxx
1
2 Hpayy
1
2 Hpazz

Hpayz

Hpazx

Hpaxy

⎞⎟⎟⎠

. (15)

Rewriting, we have

E =
∑︂

i

wn
iap∥A

T
i U − uia∥

2 (16)

=
∑︂

i

wn
iap(AT

i U − uia)T (AT
i U − uia) (17)

= UT

⎛⎜⎜⎜⎜⎜⎝∑︂
i

wn
iapAiAT

i

⎞⎟⎟⎟⎟⎟⎠ U − 2

⎛⎜⎜⎜⎜⎜⎝∑︂
i

wn
iapuiaAi

⎞⎟⎟⎟⎟⎟⎠T

U +
⎛⎜⎜⎜⎜⎜⎝∑︂

i

wn
iapu2

ia

⎞⎟⎟⎟⎟⎟⎠ (18)

0 =
∂E
∂U
= 2

⎛⎜⎜⎜⎜⎜⎝∑︂
i

wn
iapAiAT

i

⎞⎟⎟⎟⎟⎟⎠ U − 2

⎛⎜⎜⎜⎜⎜⎝∑︂
i

wn
iapuiaAi

⎞⎟⎟⎟⎟⎟⎠ (19)⎛⎜⎜⎜⎜⎜⎝∑︂
i

wn
iapAiAT

i

⎞⎟⎟⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
N

U =
∑︂

i

wn
iapuiaAi⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
B

(20)

/ Journal of Computational Physics (2024) 7

The vector B is just the moments over the data,

B =

⎛⎜⎜⎝

rpa

Mpax

Mpay

Mpaz

Tpaxx

Tpayy

Tpazz

Tpayz

Tpazx

Tpaxy

⎞⎟⎟⎠

. (21)

In the simplified notation of this section, we can write our moments as

1 =
∑︂

i

wi 0 =
∑︂

i

wixi ξ =
∑︂

i

wix2
i σx =

∑︂
i

wix3
i τx =

∑︂
i

wix4
i , (22)

with similar expressions for expressions for y and z. With these,

N =
∑︂

i

wn
iapAiAT

i (23)

=
∑︂
i jk

wiw jwk

⎛⎜⎜⎝

1 xi y j zk x2
i y2

j z2
k y jzk zk xi xiy j

xi x2
i xiy j zk xi x3

i xiy2
j xiz2

k xiy jzk zk x2
i x2

i y j

y j xiy j y2
j y jzk x2

i y j y3
j y jz2

k y2
jzk xiy jzk xiy2

j
zk zk xi y jzk z2

k zk x2
i y2

jzk z3
k y jz2

k xiz2
k xiy jzk

x2
i x3

i x2
i y j zk x2

i x4
i x2

i y2
j x2

i z2
k x2

i y jzk x3
i zk x3

i y j

y2
j xiy2

j y3
j y2

jzk x2
i y2

j y4
j y2

jz
2
k y3

jzk y2
jzk xi y3

j xi

z2
k xiz2

k y jz2
k z3

k x2
i z2

k y2
jz

2
k z4

k z3
ky j z3

k xi z2
k xiy j

y jzk xiy jzk y2
jzk y jz2

k x2
i y jzk y3

jzk z3
ky j y2

jz
2
k z2

k xiy j y2
jzk xi

zk xi zk x2
i xiy jzk xiz2

k x3
i zk y2

jzk xi z3
k xi z2

k xiy j x2
i z2

k x2
i y jzk

xiy j x2
i y j xiy2

j xiy jzk x3
i y j y3

j xi z2
k xiy j y2

jzk xi x2
i y jzk x2

i y2
j

⎞⎟⎟⎠

(24)

=

⎛⎜⎜⎝

1 0 0 0 ξ ξ ξ 0 0 0
0 ξ 0 0 σx 0 0 0 0 0
0 0 ξ 0 0 σy 0 0 0 0
0 0 0 ξ 0 0 σz 0 0 0
ξ σx 0 0 τx ξ2 ξ2 0 0 0
ξ 0 σy 0 ξ2 τy ξ2 0 0 0
ξ 0 0 σz ξ2 ξ2 τz 0 0 0
0 0 0 0 0 0 0 ξ2 0 0
0 0 0 0 0 0 0 0 ξ2 0
0 0 0 0 0 0 0 0 0 ξ2

⎞⎟⎟⎠

(25)

Letting

λx = σ
2
x + ξ(ξ

2 − τx) λy = σ
2
y + ξ(ξ

2 − τy) λz = σ
2
z + ξ(ξ

2 − τz), (26)

8 / Journal of Computational Physics (2024)

the solution can be written in closed form as

U = N−1B =

⎛⎜⎜⎝

1 − ξ
3

λz
−
ξ3

λy
−
ξ3

λx
−
σxξ
λx

−
σyξ

λy
−
σzξ
λz

ξ2

λx

ξ2

λy

ξ2

λz
0 0 0

−
σxξ
λx

ξ2−τx
λx

0 0 σx
λx

0 0 0 0 0

−
σyξ

λy
0 ξ2−τy

λy
0 0 σy

λy
0 0 0 0

−
σzξ
λz

0 0 ξ2−τz
λz

0 0 σz
λz

0 0 0
ξ2

λx

σx
λx

0 0 −
ξ
λx

0 0 0 0 0
ξ2

λy
0 σy

λy
0 0 −

ξ
λy

0 0 0 0
ξ2

λz
0 0 σz

λz
0 0 −

ξ
λz

0 0 0
0 0 0 0 0 0 0 1

ξ2
0 0

0 0 0 0 0 0 0 0 1
ξ2

0
0 0 0 0 0 0 0 0 0 1

ξ2

⎞⎟⎟⎠

⎛⎜⎜⎝

rpa

Mpax

Mpay

Mpaz

Tpaxx

Tpayy

Tpazz

Tpayz

Tpazx

Tpaxy

⎞⎟⎟⎠

. (27)

From this we can read off the solution directly,

(Hn+1
p)abb = 2

σpabMpab − ξ(Tpabb − ξrpa)

σ2
pab + ξ(ξ

2 − τpab)
(Hn+1

p)abc =
Tpabc

ξ2
b ≠ c (28)

(Cn+1
p)ab =

(ξ2 − τpab)Mpab + σpab(Tpabb − ξrpa)

σ2
pab + ξ(ξ

2 − τpab)
(vn+1

p)a = rpa − ξ
∑︂

b

(Hn+1
p)abb. (29)

Observe that in the case of cubic splines (which are the splines we recommend using; see Section 4.2), the third
moment of the transfer weights vanishes (σpab = 0), which leads to much simpler formulas for (Hn+1

p)abb and (Cn+1
p)ab:

(Hn+1
p)abb = 2

ξrpa − Tpabb

ξ2 − τpab
(Cn+1

p)ab =
Mpab

ξ
(Cubic splines only). (30)

Because of the existence of these simple closed-form formulas, the grid-to-particle transfers are inexpensive.133

2.7. Computing spline moments134

The choice of transfer splines that is used is important in achieving good numerical properties in the overall135

algorithm. Unlike HOPIC [9], where the underlying spline is largely arbitrary and mostly just serves to transition out136

influence from particles far away, the splines for APIC and PolyPIC are very important. The mathematical properties137

of the splines are important, beyond merely the overall shape. Throughout this paper, we assume quadratic or cubic138

splines due to their smoothness (avoiding cell-crossing instabilities [1]) and favorable second moment [16].139

The quadratic PolyPIC transfers rely on the spline moments up to order four, which we can summarize and name
as follows:

1 =
∑︂

i

wn
iap 0 =

∑︂
i

wn
iap(xn

ia − xn
p)b ξ =

∑︂
i

wn
iap(xn

ia − xn
p)2

b (31)

σpab =
∑︂

i

wn
iap(xn

ia − xn
p)3

b τpab =
∑︂

i

wn
iap(xn

ia − xn
p)4

b (32)

The zeroth moment must be one; this is the partition of unity property. It is essential for achieving basic conservation
properties (such as conservation of momentum). The first moment should be zero; this is the interpolation property.
It is also essential. The second moment is special in the case of quadratic and cubic splines, since it is independent of
the particle’s position on the grid. Fix i as a reference grid node for the particle p and let z = xn

ia − xn
pa. The reference

point is chosen such that −∆x
2 ≤ z < ∆x

2 for quadratic and such that 0 ≤ z < ∆x for cubic. For quadratic splines,

ξ =
∆x2

4
σpa =

1
4
∆x2z − z3 τpa = 3z4 −

3
2
∆x2z2 +

1
4
∆x4 (33)

/ Journal of Computational Physics (2024) 9

For cubic splines,

ξ =
∆x2

3
σpa = 0 τpa =

1
3
∆x4 − z2(z − ∆x)2 (34)

Note that for cubic splines, the vanishing cubic moment greatly simplifies the PolyPIC formulas.140

The moments above are scalars, but we can also define the corresponding tensors, which will be useful later.

ξI =
∑︂

i

wn
iap(xn

ia − xn
p)(xn

ia − xn
p)T (35)

(S pa)bcd =
∑︂

i

wn
iap(xn

ia − xn
p)b(xn

ia − xn
p)c(xn

ia − xn
p)d (36)

(Rpa)bcde =
∑︂

i

wn
iap(xn

ia − xn
p)b(xn

ia − xn
p)c(xn

ia − xn
p)d(xn

ia − xn
p)e (37)

Noting that the zero moment is one and the first moment is zero, most entries of the third and fourth order tensors
vanish, with the only nonzero entries being

(S pa)bbb = σpab (Rpa)bbbb = τpab (Rpa)bbcc = (Rpa)bcbc = (Rpa)bccb = ξ
2 b ≠ c. (38)

In the case of cubic splines, the third order tensor vanishes entirely.141

2.8. Summary142

For clarity, we summarize the full numerical method here.143

1. Move particles using a midpoint velocity approximation

vn+ 1
2

p =
3
2

vn
p −

1
2

vn−1
p xn+1

p = xn
p + △tvn+ 1

2
p (39)

2. During the first time step, let α = 1; thereafter, α = 2
3 .144

3. Compute the temporal intermediates on particles using the BDF-2 temporal derivative approximation.

vbd
p = (2 − α)vn

p − (α − 1)vn−1
p Cbd

p = (2 − α)Cn
p − (α − 1)Cn−1

p Hbd
p = (2 − α)Hn

p − (α − 1)Hn−1
p . (40)

4. Transfer mass and momentum from particles to grid, after which velocity is obtained by division.

mn
iaun

ia =
∑︂

p

wn
iapmpeT

a

(︄
vbd

p + Cbd
p (xn

ia − xn+1
p) +

1
2

Hbd
p : ((xn

ia − xn+1
p)(xn

ia − xn+1
p)T)

)︄
(41)

mn
ia =

∑︂
p

wn
iapmp un

ia =
mn

iaun
ia

mn
ia

(42)

5. Apply explicit forces

u⋆ia = un
ia +
α△t
mn

ia
f n+1
ia . (43)

6. Add viscosity by solving a Helmholtz equation

u⋆⋆ia = u⋆ia +
△tαµ
ρ
∇2u⋆⋆ia . (44)

7. Compute pressures and project the velocities to be divergence free by solving a Poisson equation.

∇

(︄
1
ρ
∇pn+1

i

)︄
=

1
△tα
∇ · u⋆⋆ia ûn+1

ia = u⋆⋆ia −
△tα
ρ
∇pn+1

i . (45)

10 / Journal of Computational Physics (2024)

8. Compute the grid velocity moments

rpa =
∑︂

i

wn
iapûn+1

ia Mpab =
∑︂

i

wn
iapûn+1

ia (xn
ia − xn

p)b Tpabc =
∑︂

i

wn
iapûn+1

ia (xn
ia − xn

p)b(xn
ia − xn

p)c. (46)

9. Compute the spline moments ξ, σpab, and τpab using the explicit polynomial formulas in Section 2.7.145

10. Complete the PolyPIC grid-to-particle transfers using the closed form solutions to compute the new particle
velocities vn+1

p , velocity gradients Cn+1
p , and velocity Hessians Hn+1

p .

(Hn+1
p)abb = 2

σpabMpab − ξ(Tpabb − ξrpa)

σ2
pab + ξ(ξ

2 − τpab)
(Hn+1

p)abc =
Tpabc

ξ2
b ≠ c (47)

(Cn+1
p)ab =

(ξ2 − τpab)Mpab + σpab(Tpabb − ξrpa)

σ2
pab + ξ(ξ

2 − τpab)
(vn+1

p)a = rpa − ξ
∑︂

b

(Hn+1
p)abb. (48)

3. Notes and analysis146

3.1. Stability of quadratic and cubic splines147

The stability of the transfers can be predicted by examining the denominators in the PolyPIC formulas: σ2
pa +

ξ(ξ2 − τpa). In the case of cubic,

denom = σ2
pa + ξ(ξ

2 − τpa) =
∆x2

27

(︂
−2∆x4 + 9z2(z − ∆x)2

)︂
(49)

−
2

27
∆x6 ≤ denom ≤ −

23
432
∆x6 0 ≤ z < ∆x (50)

This is safely bounded away from zero, so there are no numerical difficulties with PolyPIC transfers for cubic splines.
For quadratic splines, however,

denom = σ2
pa + ξ(ξ

2 − τpa) = −
1

64
(3∆x2 − 4z2)(∆x − 2z)2(∆x + 2z)2 −

∆x
2
≤ z <

∆x
2

(51)

In this case, we see that the denominator is zero at z = ±∆x
2 , which occurs when particles reach the edge of the support148

of the weighting functions. As a result, quadratic splines should not be used with PolyPIC. Our numerical studies149

bear this out; see Sections 4.2, 4.3 and 4.4.150

The reason for the numerical difficulties can be understood by counting degrees of freedom. In 1D, there are151

three coefficients in the quadratic polynomial being reconstructed for PolyPIC, and the quadratic basis splines will152

involve three grid nodes in their support. At the edge of this support, one of those nodes transitions to zero weight.153

In that limit, only two nodes have nonzero weight, and there are not enough points to fit the quadratic polynomial for154

PolyPIC. The weighted least squares problem becomes underdetermined.155

3.2. Comparison to MLS156

Both PolyPIC and MLS are used to perform grid-to-particle and particle-to-grid transfers, and both are based on157

weighted least squares. However, the resulting schemes are very different and have very different properties, which158

we discuss here. For purposes of comparison, we focus on [9] here, noting that details may differ somewhat between159

implementations.160

Noise vs dissipation. Edwards and Bridson [9] transfer accelerations from the grid back to particles, while our161

PolyPIC scheme transfers velocities back to particles instead. Transferring accelerations means information must162

be accumulated on particles, which allows noise to build up there. Edwards and Bridson [9] use a filter to encourage163

these noisy modes to decay away while keeping the errors below the truncation error. The velocity transfer strategy164

does not accumulate information on particles, so no noise develops there. However, the price of this is repeated av-165

eraging. Unlike the acceleration transfer strategy, velocities are effectively averaged twice per time step, which can166

cause significant dissipation.167

/ Journal of Computational Physics (2024) 11

Temporal errors. The difference between the two strategies has dramatic effects on the truncation errors of the overall168

scheme. A quadratic polynomial weighted least squares transfer results in O(∆x3) truncation error (see Section 4.2).169

Consider that both the MLS and PolyPIC schemes are run for one time step of size △t. In the PolyPIC scheme,170

this causes O(∆x3) truncation error. However, in the MLS case, only the velocity changes are being transferred,171

and those changes will be proportional to △t. In particular, if a time step were taken with △t = 0, no accelerations172

would be applied on the grid, so no changes to particle state would occur. Because of this, the resulting truncation173

error is only O(△t∆x3). Assuming refinement is performed using △t ∼ ∆x, MLS is able to achieve the same level174

of accuracy using a polynomial reconstruction that is one degree less. This is consistent with MLS using cubic175

polynomials for fourth order accuracy and our scheme using second order polynomials for second order accuracy.176

In practice, the accuracy loss is not a full order as this simple argument suggests; the actual loss is observed to be177

closer to half of an order (See Sections 4.3 and 4.4). In particular, APIC is observed to produce a full scheme whose178

convergence order is approximately 1.5, less than the second order one might expect from the spatial accuracy alone179

(APIC transfers introduce O(∆x2) truncation error), but better than the first order that the argument above suggests.180

Based on Section 4.3, we would expect quadratic PolyPIC to suffice up to a refinement order of about 2.5, but since181

the remainder of the scheme is only second order, that is what we observe.182

Properties of the weighted least squares problem. Edwards and Bridson [9] solves a weighted least squares problem183

during the transfer from particles to grid, whereas PolyPIC solves this problem during the transfer from grid to184

particles. There are several noteworthy consequences of this difference. (1) The least squares problem for MLS185

depends on all of the positions of the particles within the support radius, and the properties of the matrix that must be186

inverted depend on all of those positions. For PolyPIC, the data for the transfers is stored on a regular grid, only the187

position of the output particle affects the numerical properties of the matrix. (2) The PolyPIC matrix is sparse with a188

relatively simple fixed structure and many symmetries. This matrix can be inverted symbolically, and the result is also189

sparse with relatively simple structure and entries. As a result, the least squares problem can be solved in closed form190

without the need to assemble and solve a linear system at runtime. The explicit formulas for this solution are provided191

in Section 2.6. For MLS case, the matrix that must be inverted will be dense and must be inverted numerically. (3)192

PolyPIC grid-to-particle transfers must store a polynomial least squares solution in each particle so that they can be193

used during the particle-to-grid transfer. This increases the memory requirements by 27 floats per particle in 3D.194

Particle coverage. PolyPIC and MLS transfers differ significantly in terms of their sensitivity to particle coverage.195

PolyPIC transfers velocity information to the grid using the same kernels that it uses to transfer this information back196

to particles. As such, grid velocity information is always available at precisely the same grid locations where it is197

required during the least squares transfers. Provided cubic splines are used for interpolation, the least squares problem198

will always be well-conditioned. Since each particle carries a full polynomial approximation of the velocity field in its199

local neighborhood, accurate grid velocities can be obtained from even a single particle. Deficient particle coverage200

at the boundaries of domains does not cause problems (See Section 4.7). For MLS, adequate particle coverage is very201

important. If a grid location lacks sufficient neighboring particles within the kernel support radius (or those particles202

are arranged unfavorably), the least squares problem will be underdetermined, which can lead to errors and impede203

convergence. Edwards and Bridson [9] only considered periodic problems partly to avoid these complications.204

Importance of transfer kernel choice. Edwards and Bridson [9] chose an arbitrary kernel for their transfers, since205

they found the choice of transfer kernel to be relatively insignificant. PolyPIC, by contrast, depends significantly on206

the properties of the kernels. In particular, the least squares matrix is sparse because the first moment of the quadratic207

and cubic B-splines vanish (See Section 2.6). In addition, the transfer formulas for cubic B-splines are dramatically208

simplified because the third moment also vanishes (See Section 2.7).209

3.3. Momentum210

Under normal circumstances a particle with mass mp moving with velocity vn
p would be expected to contribute211

mpvn
p momentum and xn

p × mpvn
p angular momentum. Similarly, one might expect the particle to possess 1

2 mp∥vn
p∥

2
212

kinetic energy. With APIC, particles represent the usual amount of momentum but slightly more angular momentum213

(xn
p × mpvn

p + mpξ(Cn
p)T : ϵ) and kinetic energy (1

2 mp∥vn
p∥

2 + 1
2 mpξ∥Cn

p∥
2
F), where ϵ is the rank-3 permutation tensor.214

In that case, the quantities on the particle were defined based on what would exist on the grid if the particle were215

transferred to the grid in isolation. We use the same strategy to define these quantities on particles for PolyPIC.216

12 / Journal of Computational Physics (2024)

The mass and momentum that would be on the grid after transfers if there were only one particle p would be

mn
ia = wn

iapmp (52)

mn
iaun

ia = wn
iapmpeT

a

(︄
vbd

p + Cbd
p (xn

ia − xn+1
p) +

1
2

Hbd
p : ((xn

ia − xn+1
p)(xn

ia − xn+1
p)T)

)︄
(53)

un
ia = eT

a

(︄
vbd

p + Cbd
p (xn

ia − xn+1
p) +

1
2

Hbd
p : ((xn

ia − xn+1
p)(xn

ia − xn+1
p)T)

)︄
(54)

The particle’s momentum pbd
p is defined as the total grid momentum on the grid after this transfer, or

pbd
p =

∑︂
ia

mn
iaun

iaea (55)

=
∑︂

ia

wn
iapmpeaeT

a

(︄
vbd

p + Cbd
p (xn

ia − xn+1
p) +

1
2

Hbd
p : ((xn

ia − xn+1
p)(xn

ia − xn+1
p)T)

)︄
(56)

=

⎛⎜⎜⎜⎜⎜⎝∑︂
a

⎛⎜⎜⎜⎜⎜⎝∑︂
i

wn
iap

⎞⎟⎟⎟⎟⎟⎠ eaeT
a

⎞⎟⎟⎟⎟⎟⎠ mpvbd
p +

∑︂
a

mpeaeT
a Cbd

p

∑︂
i

wn
iap(xn

ia − xn+1
p) (57)

+
1
2

mp

⎛⎜⎜⎜⎜⎜⎝∑︂
a

eaeT
a

⎞⎟⎟⎟⎟⎟⎠ ⎛⎜⎜⎜⎜⎜⎝Hbd
p :

∑︂
i

wn
iap(xn

ia − xn+1
p)(xn

ia − xn+1
p)T

⎞⎟⎟⎟⎟⎟⎠ (58)

= mpvbd
p +

1
2

mpξ(Hbd
p : I) (59)

From this we deduce that PolyPIC particles effectively carry an amount of momentum equal to

pn
p = mpvn

p +
1
2

mpξ(Hn
p : I). (60)

The grid will then receive momentum equal to pbd
p =

4
3 pn

p −
1
3 pn−1

p . Since total momentum is conserved, the grid217

will have the same total momentum as the particles. This definition of momentum on particles allows us to track218

momentum conservation across transfers and also to analyze the momentum conservation properties of the transfers.219

3.4. Angular momentum220

Similarly for momentum, a particle’s angular velocity will be

lbd
p =

∑︂
ia

xn
ia × mn

iaun
iaea (61)

=
∑︂

ia

wn
iapmp(xn

ia × ea)eT
a

(︄
vbd

p + Cbd
p (xn

ia − xn+1
p) +

1
2

Hbd
p : ((xn

ia − xn+1
p)(xn

ia − xn+1
p)T)

)︄
(62)

Expanding the big parenthesis leads to three terms, which we simplify separately. The constant piece is∑︂
ia

wn
iapmp(xn

ia × ea)eT
a vbd

p =
∑︂

a

⎛⎜⎜⎜⎜⎜⎝⎛⎜⎜⎜⎜⎜⎝∑︂
i

wn
iapxn

ia

⎞⎟⎟⎟⎟⎟⎠ × ea

⎞⎟⎟⎟⎟⎟⎠ eT
a mpvbd

p = xn
p ×

⎛⎜⎜⎜⎜⎜⎝⎛⎜⎜⎜⎜⎜⎝∑︂
a

eaeT
a

⎞⎟⎟⎟⎟⎟⎠ mpvbd
p

⎞⎟⎟⎟⎟⎟⎠ = xn
p × mpvbd

p . (63)

The linear term is∑︂
ia

wn
iapmp(xn

ia × ea)(eT
a Cbd

p (xn
ia − xn+1

p)) (64)

=
∑︂

a

mpe∗Ta

⎛⎜⎜⎜⎜⎜⎝∑︂
i

wn
iapxn

ia(xn
ia − xn+1

p)T

⎞⎟⎟⎟⎟⎟⎠ (Cbd
p)T ea (65)

=
∑︂

a

mpe∗Ta

⎛⎜⎜⎜⎜⎜⎝∑︂
i

wn
iap(xn

ia − xn+1
p)(xn

ia − xn+1
p)T

⎞⎟⎟⎟⎟⎟⎠ (Cbd
p)T ea +

∑︂
a

mpe∗Ta

⎛⎜⎜⎜⎜⎜⎝∑︂
i

wn
iapxn+1

p (xn
ia − xn+1

p)T

⎞⎟⎟⎟⎟⎟⎠ (Cbd
p)T ea (66)

= ξmp

∑︂
a

e∗Ta (Cbd
p)T ea (67)

= ξmp(Cbd
p)T : ϵ (68)

/ Journal of Computational Physics (2024) 13

The third piece is ∑︂
ia

wn
iapmp(xn

ia × ea)eT
a

(︄
1
2

Hbd
p : ((xn

ia − xn+1
p)(xn

ia − xn+1
p)T)

)︄
. (69)

To make the notation and manipulations more manageable, we drop the superscripts and p subscript (which are
unambiguous).

b =
∑︂

ia

wiam(xia × ea)eT
a

(︄
1
2

H : ((xia − x)(xia − x)T)
)︄
. (70)

Next, we switch to index notation, applying the usual summation convention only to indices that are Greek letters.

br =
1
2

m
∑︂

ia

wiaerκaxiaκHaβγ(xiaβ − xβ)(xiaγ − xγ) (71)

=
1
2

merκaHaβγ

∑︂
ia

wiaxiaκ(xiaβ − xβ)(xiaγ − xγ) (72)

=
1
2

merκaHaβγ

∑︂
ia

wia(xiaκ − xκ)(xiaβ − xβ)(xiaγ − xγ) +
1
2

merκaHaβγ

∑︂
ia

wiaxκ(xiaβ − xβ)(xiaγ − xγ) (73)

=
1
2

m
∑︂

a

erκaHaβγS aκβγ +
1
2

m
∑︂

a

erκaHaβγxκξδβγ (74)

=
∑︂
ab

1
2

merbaHabbσab +
1
2

m
∑︂

a

erκaxκξHaβγδβγ (75)

b =
1
2

mϵ : K +
1
2

mξx × (H : I) (76)

bp =
1
2

mpϵ : Kp +
1
2

mpξxn+1
p × (Hbd

p : I) (77)

where we have defined (Kp)ba = Hpabbσpab (with no summation implied). The angular momentum on a particle is
then

lnp = xn
p × mpvn

p + ξmp(Cn
p)T : ϵ +

1
2

mpϵ : Kp +
1
2

mpξxn+1
p × (Hn

p : I). (78)

As with linear momentum, this particle-based definition of angular momentum allows us to track angular momentum221

conservation across the transfers.222

3.5. Kinetic energy223

As with momentum and angular momentum, kinetic energy for a particle is defined as the kinetic energy that
would be deposited onto the grid if the particle were transferred in isolation.

Ep =
1
2

∑︂
ia

mn
ia(un

ia)2 (79)

=
1
2

∑︂
ia

wn
iapmpeT

a

(︄
vbd

p + Cbd
p (xn

ia − xn+1
p) +

1
2

Hbd
p : ((xn

ia − xn+1
p)(xn

ia − xn+1
p)T)

)︄
(80)

eT
a

(︄
vbd

p + Cbd
p (xn

ia − xn+1
p) +

1
2

Hbd
p : ((xn

ia − xn+1
p)(xn

ia − xn+1
p)T)

)︄
(81)

After expanding and substituting in nonvanishing components of the moments,

Ep =
1
2

mp∥vbd
p ∥

2 +
1
2

mpξ∥Cbd
p ∥

2 +
1
2

mpξvbd
p ·H

bd
p : I +

1
2

mp

∑︂
ab

σpab(Cbd
p)ab(Hbd

p)abb (82)

+
1
8

mp

∑︂
ab

(τpab − 3ξ2)(Hbd
p)2

abb +
1
4

mpξ
2
∑︂
abc

(Hbd
p)2

abc +
1
8

mpξ
2∥Hbd

p : I∥2. (83)

14 / Journal of Computational Physics (2024)

PIC APIC PolyPIC
−0.5

0.5

0

−0.5 0 0.5 −0.5 0 0.5 −0.5 0 0.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 − 2−0 1 − 2−1 1 − 2−2 1 − 2−3 1 − 2−4 1 − 2−5 1 − 2−6 1 − 2−7 1 − 2−8

Fig. 1: This figure shows the rate at which PIC, APIC, and PolyPIC transfers dissipate different Fourier modes. The middle of the image corresponds
to low-frequency modes and the outside of the image corresponds to high frequency modes as in [8]. The dark red modes are not appreciably
dissipated; black modes are almost entirely filtered by transfers. As noted in [8], APIC is significantly less dissipative than PIC. Here we see that
PolyPIC is quite significantly less dissipative than APIC. Indeed, the range of frequencies that are not significantly dissipated is significantly wider.

Replacing bd quantities with time n quantities gives us an instantaneous measure of kinetic energy on particles. We224

use this measure of kinetic energy in Section 4.5, where we separately evaluate the kinetic energy on particles and the225

grid.226

4. Numerical examples227

In this section we demonstrate the numerical behavior of the proposed scheme and explore the behavior compared228

to alternatives. Throughout this section, we estimate errors for grid velocities uia and particle velocities vp under the229

L∞ and L2 error norms.230

In all examples, particles are seeded in the relevant portion of the domain using Poisson disk sampling [5] with231

n = 2d particles per cell (where d = 2, 3 is the dimension). All particles have the same mass mp =
∆xd

2d ρ. For analytic232

tests with nonzero initial velocity fields u(x), particle velocity information is initialized with vp = u(xp). For APIC233

or PolyPIC, Cp is sampled from the analytic velocity gradient, Cp = ∇u(xp). For PolyPIC, Hp is sampled from the234

analytic velocity Hessian, Hp = ∇∇u(xp). All physical quantities are assumed to be in SI units. Unless otherwise235

stated, all simulations use a domain of [−π, π]d with periodic boundary conditions. The initial grid resolution is 32×32236

in 2D and 16 × 16 × 16 in 3D. The initial time step size is △t = 1
24 in 2D and △t = 1

12 in 3D. Refinement is performed237

by doubling the resolution and taking twice as many time steps.238

4.1. PolyPIC dissipation239

One of the original motivations for PolyPIC was as a means for producing MPM simulations with reduced dissipa-240

tion as a result of transfers between the particles and grid [10]. While our motivation for using PolyPIC is its potential241

for more accurate transfers and not dissipation per se., it is interesting to consider how the improved accuracy the242

transfers affects the amount of dissipation that it produces. To do this, we follow the dissipation analysis of [8].243

Begin with an N ×N grid with four particles regularly seeded in each cell and periodic boundaries. Next, consider
the transfer from grid velocities to particles and back to the grid, without moving the particles. This mimics the
situation that occurs when very small time steps are taken, since velocities do not change much on the grid due to

/ Journal of Computational Physics (2024) 15

forces and particles do not move much. Under these conditions, the grid-particle-grid round-trip transfer matrix Mi j

is a linear mapping from grid velocities u j to grid velocities ui. Due to the periodic boundary conditions and identical
particle placement in each cell, all cells are identical, so that Mi j is circulant in the multidimensional sense. Let
i = (r, s) and j = (u, v) be grid indices in 2D, so that Mi j = M(r,s),(u,v) = M(r+k,s+m),(u+k,v+m) for any k and m (treating
indices as periodic). Thus, we can describe the transfer matrix by its first column ci j, noting that M(r,s),(u,v) = cr−u,s−v.
The eigenvalues λi = λrs of Mi j are given by the Fourier transform

λrs =

N−1∑︂
u=0

N−1∑︂
v=0

cuve
2πiru

N e
2πisv

N =

N−1−w∑︂
u=−w

N−1−w∑︂
v=−w

cuve
2πiru

N e
2πisv

N w =
⌊︃N

2

⌋︃
(84)

This gives us the eigenvalues for any size grid. If we index λ(x, y) instead with rational numbers in the range − 1
2 ≤

x, y < 1
2 , where x = r

N and y = s
N .

λ(x, y) =
w∑︂

u=−w

w∑︂
v=−w

cuve2πixue2πiyv. (85)

In the limit of increasing resolution, N → ∞, the function λ(x, y) converges to a continuous real-valued function.244

The transfers are local, so cuv contains only a fixed finite number of entries, so λ(x, y) is given by a finite number of245

sines and cosines. Due to the symmetrical particle layout, λ(x, y) is real-valued, and λ(x, y) = λ(−x, y) = λ(x,−y) =246

λ(−x,−y). A plot of λ(x, y) is shown in Figure 1, with the constant Fourier mode λ(0, 0) in the middle of the image.247

If the round trip transfers were perfect, the matrix describing the grid to particle to grid transfer would be the identity,248

and its eigenvalues would be identically 1 (dark red in the figure). In practice, the transfers result in some dissipation,249

which appears as eigenvalues between 0 and 1. Eigenmodes near zero are effectively filtered out entirely. Figure 1250

shows the eigenvalue images for PolyPIC alongside PIC and APIC transfers for comparison. The center is the constant251

mode, which is untouched by all three transfer algorithms. The dark red areas have the least dissipation, with the center252

of the image corresponding to low-frequency modes. The larger the dark red and red areas are, the less dissipative the253

transfers are. Note that the colors are on a logarithmic scale (centered around 1), since the modes very near 1 are the254

most important. We can see that just as APIC is far less dissipative than PIC, so too is PolyPIC far less dissipative255

than APIC. Compared to the XPIC results (See Figure 8 in [8]), APIC was around XPIC 2.3 (partway between 2 and256

3, but closer to 2), while PolyPIC is similar to XPIC 5.257

4.2. PolyPIC vs APIC single-transfer accuracy258

In this test, we investigate the spatial errors for APIC and PolyPIC transfers. The velocities are initialized on the259

grid as v(x) = ⟨cos(y) sin(x),− sin(y) cos(x)⟩ on a [−π, π]2 domain with periodic boundaries. All particles have the260

same mass. We disable all parts of the time integration other than particle to grid and grid to particle transfers. We do261

not move particles or apply viscosity or pressure. Thus, we are looking purely at the effects of the transfers. The initial262

grid resolution is 32× 32 and we double the resolution for each refinement level. For each level of spatial refinement,263

we perform one round of grid-to-particle-to-grid transfers and report the velocity errors on particles and the grid.264

Since only one set of transfers is performed, there is no refinement in time. In particular, this test is measuring only265

spatial discretization errors. The same test was run with APIC and PolyPIC transfers, as well as quadratic and cubic266

splines. Table 2 shows the convergence results. APIC transfers with both splines converges cleanly at second order on267

particle velocities and approximately second order on grid velocities. PolyPIC with cubic splines shows clean third-268

order convergence on particle velocities and approximate third-order convergence on grid velocities. These results269

show that an APIC transfer is O(∆x2) and a PolyPIC transfer is O(∆x3).270

For quadratic splines, however, particle velocity errors diverge as grid resolution increases. This is due to in-271

sufficient velocity information on the grid when particles approach the edge of the support of the transfer weights,272

effectively reducing the number of particles involved in the transfer. In 1D, PolyPIC would store three dofs on parti-273

cles (one for each of v,C,H, corresponding to the three coefficients of the cubic polynomial stored on the particle).274

This corresponds nicely with the three grid dofs that a quadratic spline would access from the grid. However, when275

the particle reaches the edge of the support of the weights, one of the weights vanishes, and effectively only two276

grid degrees of freedom are available for the transfer. The resulting problem is underdetermined, thus leading to the277

nullspace and the corresponding numerical accuracy problems. As refinement is increased, there are more opportuni-278

ties to encounter particles interacting with faces near the edge of their support. For this reason, PolyPIC should not279

16 / Journal of Computational Physics (2024)

uia-L2 uia-L∞ vp-L2 vp-L∞
res error order error order error order error order

Po
ly

PI
C

cu
bi

c
32 2.87 × 10−5 1.16 × 10−4 1.14 × 10−4 2.56 × 10−4

64 3.69 × 10−6 2.96 1.49 × 10−5 2.96 1.40 × 10−5 3.03 2.98 × 10−5 3.10
128 4.61 × 10−7 3.00 2.38 × 10−6 2.65 1.73 × 10−6 3.02 3.59 × 10−6 3.06
256 5.75 × 10−8 3.00 3.01 × 10−7 2.99 2.16 × 10−7 3.00 4.39 × 10−7 3.03
512 7.19 × 10−9 3.00 4.07 × 10−8 2.88 2.69 × 10−8 3.00 5.44 × 10−8 3.01

qu
ad

ra
tic

32 1.71 × 10−5 6.39 × 10−5 2.18 × 10−4 5.11 × 10−4

64 2.16 × 10−6 2.99 9.57 × 10−6 2.74 2.75 × 10−5 2.99 6.10 × 10−5 3.07
128 2.69 × 10−7 3.00 1.43 × 10−6 2.74 3.43 × 10−6 3.00 1.31 × 10−5 2.22
256 3.39 × 10−8 2.99 1.90 × 10−7 2.91 5.42 × 10−6 -0.66 3.43 × 10−3 -8.03
512 4.24 × 10−9 3.00 2.46 × 10−8 2.95 3.27 × 10−6 0.73 4.30 × 10−3 -0.33

A
PI

C
cu

bi
c

32 4.26 × 10−4 1.88 × 10−3 6.38 × 10−3 1.28 × 10−2

64 9.75 × 10−5 2.13 4.62 × 10−4 2.03 1.60 × 10−3 1.99 3.21 × 10−3 1.99
128 2.48 × 10−5 1.98 1.40 × 10−4 1.72 4.01 × 10−4 2.00 8.03 × 10−4 2.00
256 6.14 × 10−6 2.01 3.99 × 10−5 1.81 1.00 × 10−4 2.00 2.01 × 10−4 2.00
512 1.54 × 10−6 2.00 9.37 × 10−6 2.09 2.51 × 10−5 2.00 5.02 × 10−5 2.00

qu
ad

ra
tic

32 3.43 × 10−4 1.26 × 10−3 4.79 × 10−3 9.59 × 10−3

64 8.28 × 10−5 2.05 3.68 × 10−4 1.77 1.20 × 10−3 1.99 2.41 × 10−3 2.00
128 2.12 × 10−5 1.97 1.18 × 10−4 1.64 3.01 × 10−4 2.00 6.02 × 10−4 2.00
256 5.21 × 10−6 2.02 3.08 × 10−5 1.94 7.53 × 10−5 2.00 1.51 × 10−4 2.00
512 1.31 × 10−6 1.99 8.23 × 10−6 1.90 1.88 × 10−5 2.00 3.76 × 10−5 2.00

Table 2: This figure evaluates the accuracy of APIC and PolyPIC transfers across one round trip from grid to particles and back to grid. Both
quadratic and cubic B-splines basis functions are evaluated. APIC is consistently second order accurate regardless of basis function. PolyPIC is
third order when used with cubic B-splines, but the convergence order breaks down for quadratic B-splines.

be used with quadratic splines. We recommend using cubic splines instead, which also have the advantage of simpler280

transfers. We analyze the source of the instability in more detail in Section 3.1, where we also show that cubic splines281

do not suffer from this problem.282

4.3. PolyPIC vs APIC transfer accuracy under refinement283

In this test, we use the same setup as the previous test, except that we perform a proper refinement study. We284

simulate to a final time of T = 1 with all parts of the algorithm disabled except transfers between particles and285

grid. This allows us to observe the consequences of repeated transfers between particles and grid under refinement.286

The results are shown in table 3. Although we might expect that APIC is O(∆x2/△t) and PolyPIC is O(∆x3/△t),287

the actual convergence order is observed to be slightly higher than this, around 1.7 for APIC and 2.7 for PolyPIC.288

This is consistent with the errors being the result of filtering of high-frequency information from the grid that is not289

accurately represented on particles. Once this information is already filtered, subsequent transfers make less error.290

Thus, the accuracy observed is somewhat higher than our pessimistic estimate might suggest. For PolyPIC with291

quadratic splines, we again observe error divergence at higher refinement levels.292

4.4. PolyPIC vs APIC simulation and spline order293

In this test, we compare PolyPIC with APIC, as well as cubic splines with quadratic splines on a full simulation.
We choose an arbitrary analytic velocity and pressure fields

u =
⎛⎜⎜⎜⎜⎜⎝ 2 cos

(︂
t + π6

)︂
sin(2y) cos(x) + 1

5 et cos(y)
− cos

(︂
t + π6

)︂
sin(x) cos(2y) + 1

5 (1 − t + 5t2) sin(x)

⎞⎟⎟⎟⎟⎟⎠ p(x, t) = sin
(︃
t −
π

5

)︃
ecos(2x) cos(y)−t, (86)

/ Journal of Computational Physics (2024) 17

uia-L2 uia-L∞ vp-L2 vp-L∞
res error order error order error order error order

Po
ly

PI
C

cu
bi

c
32 9.25 × 10−3 1.89 × 10−2 9.32 × 10−3 1.89 × 10−2

64 2.37 × 10−3 1.96 4.82 × 10−3 1.97 2.39 × 10−3 1.96 4.81 × 10−3 1.97
128 5.99 × 10−4 1.99 1.21 × 10−3 1.99 6.01 × 10−4 1.99 1.21 × 10−3 1.99
256 1.50 × 10−4 2.00 3.02 × 10−4 2.00 1.51 × 10−4 2.00 3.02 × 10−4 2.00
512 3.76 × 10−5 2.00 7.57 × 10−5 2.00 3.76 × 10−5 2.00 7.57 × 10−5 2.00

qu
ad

ra
tic

32 7.00 × 10−3 1.54 × 10−2 7.06 × 10−3 1.53 × 10−2

64 1.79 × 10−3 1.97 3.74 × 10−3 2.04 1.79 × 10−3 1.98 3.76 × 10−3 2.02
128 4.50 × 10−4 1.99 9.49 × 10−4 1.98 4.51 × 10−4 1.99 9.48 × 10−4 1.99
256 1.13 × 10−4 2.00 2.34 × 10−4 2.02 1.13 × 10−4 2.00 3.48 × 10−3 -1.88
512 2.82 × 10−5 2.00 5.90 × 10−5 1.99 2.84 × 10−5 1.99 4.29 × 10−3 -0.30

A
PI

C
cu

bi
c

32 1.63 × 10−3 6.30 × 10−3 5.31 × 10−3 1.24 × 10−2

64 9.99 × 10−4 0.71 3.37 × 10−3 0.90 7.20 × 10−4 2.88 2.66 × 10−3 2.22
128 3.38 × 10−4 1.57 1.15 × 10−3 1.55 1.21 × 10−4 2.57 5.77 × 10−4 2.20
256 9.62 × 10−5 1.81 3.35 × 10−4 1.78 2.84 × 10−5 2.10 1.67 × 10−4 1.79
512 2.58 × 10−5 1.90 1.07 × 10−4 1.65 8.16 × 10−6 1.80 5.09 × 10−5 1.71

qu
ad

ra
tic

32 2.34 × 10−3 9.50 × 10−3 2.95 × 10−3 8.09 × 10−3

64 9.24 × 10−4 1.34 3.53 × 10−3 1.43 4.46 × 10−4 2.73 2.18 × 10−3 1.89
128 2.82 × 10−4 1.71 1.07 × 10−3 1.72 9.83 × 10−5 2.18 5.10 × 10−4 2.10
256 7.77 × 10−5 1.86 3.20 × 10−4 1.74 2.72 × 10−5 1.85 1.63 × 10−4 1.65
512 2.07 × 10−5 1.91 9.83 × 10−5 1.70 8.14 × 10−6 1.74 5.54 × 10−5 1.56

Table 3: This figure evaluates the performance of APIC and PolyPIC transfers with quadratic and cubic B-spline basis functions in the absence of
pressure, viscosity, or other forces. PolyPIC with cubic B-splines is second order accurate, as would be expected from the combination of second
order BDF-2 temporal discretization and third order accurate transfers. As in the single-transfer case, PolyPIC with quadratic B-splines breaks
down. Of interesting note here is the convergence of APIC, which is noticeably less than second order and appears to be somewhere between order
1.5 and 2.0.

where u is divergence free. Since these fields are not a solution to the Navier-Stokes equations, we use the method of
manufactured solutions [22] and add a body force f that is analytically computed to make these arbitrary fields satisfy
the Navier-Stokes equations

f = ρ
∂u
∂t
+ ρ(u · ∇)u + ∇p − µ∇2u. (87)

We use a constant density ρ = 1 and constant viscosity ν = 0.2 over the entire domain. The results are shown in294

table 4. Here we see that the results of the refinement study with only transfers extends to full simulations. APIC is295

around order 1.5 accurate in practice. To get full second order accuracy, PolyPIC is required. We also observe the296

same convergence problem of PolyPIC with quadratic splines. We do not consider quadratic splines further.297

4.5. Particle noise and dissipation298

In this test, we reproduce the inlet example from Section 5.2.3 of [8]. The 2D version of this test uses a [0, 1]2
299

domain with inlets and outflows along the bottom wall (y = 0). The inlet is at 1
2 ≤ x ≤ 3

4 , and the outlets are at300

11
80 ≤ x ≤ 21

80 and 67
80 ≤ x ≤ 77

80 . The 3D version of this test uses a [0, 1]3 domain with inlets and outflows along the301

bottom wall (z = 0). The inlet is at 1
2 ≤ x, y ≤ 3

4 , and the outlets are at 11
80 ≤ x, y ≤ 21

80 and 67
80 ≤ x, y ≤ 77

80 . See [8]302

for illustrations showing the domain layout. During the first 80 of simulation, fluid is pumped in through the inlet at303

a constant 0.2. After that time, the inlet is set to zero velocity. The outflows are implemented as Dirichlet pressure304

(p = 0) boundary conditions through the entire simulation. The simulation is run for 200. Particle kinetic energy for305

18 / Journal of Computational Physics (2024)

uia-L2 uia-L∞ vp-L2 vp-L∞
res error order error order error order error order

Po
ly

PI
C

cu
bi

c
32 1.02 × 10−2 2.51 × 10−2 1.02 × 10−2 2.51 × 10−2

64 2.66 × 10−3 1.94 6.59 × 10−3 1.93 2.67 × 10−3 1.94 6.59 × 10−3 1.93
128 6.72 × 10−4 1.99 1.66 × 10−3 1.99 6.72 × 10−4 1.99 1.66 × 10−3 1.99
256 1.68 × 10−4 2.00 4.15 × 10−4 2.00 1.69 × 10−4 2.00 4.15 × 10−4 2.00
512 4.22 × 10−5 2.00 1.04 × 10−4 2.00 4.22 × 10−5 2.00 1.04 × 10−4 2.00

qu
ad

ra
tic

32 8.49 × 10−3 2.08 × 10−2 8.51 × 10−3 2.08 × 10−2

64 2.18 × 10−3 1.96 5.36 × 10−3 1.96 2.18 × 10−3 1.96 5.36 × 10−3 1.96
128 5.49 × 10−4 1.99 1.34 × 10−3 1.99 5.48 × 10−4 1.99 1.35 × 10−3 1.99
256 1.44 × 10−4 1.93 3.58 × 10−4 1.91 1.44 × 10−4 1.93 3.59 × 10−4 1.91
512 3.55 × 10−5 2.02 1.57 × 10−4 1.19 3.63 × 10−5 1.99 9.69 × 10−3 -4.76

A
PI

C
cu

bi
c

32 4.28 × 10−3 1.02 × 10−2 5.24 × 10−3 1.41 × 10−2

64 1.17 × 10−3 1.87 2.74 × 10−3 1.90 9.00 × 10−4 2.54 2.34 × 10−3 2.59
128 5.67 × 10−4 1.05 1.43 × 10−3 0.94 4.82 × 10−4 0.90 1.22 × 10−3 0.94
256 2.03 × 10−4 1.48 5.16 × 10−4 1.47 1.80 × 10−4 1.42 4.52 × 10−4 1.44
512 7.14 × 10−5 1.51 1.84 × 10−4 1.49 6.50 × 10−5 1.47 1.63 × 10−4 1.47

qu
ad

ra
tic

32 2.44 × 10−3 7.35 × 10−3 1.76 × 10−3 4.69 × 10−3

64 1.46 × 10−3 0.74 3.54 × 10−3 1.06 1.18 × 10−3 0.58 3.00 × 10−3 0.64
128 5.37 × 10−4 1.44 1.34 × 10−3 1.40 4.65 × 10−4 1.34 1.17 × 10−3 1.36
256 1.79 × 10−4 1.59 4.51 × 10−4 1.57 1.60 × 10−4 1.54 3.96 × 10−4 1.56
512 6.15 × 10−5 1.54 1.58 × 10−4 1.52 5.64 × 10−5 1.50 1.42 × 10−4 1.48

Table 4: In this table, the full Navier-Stokes equations are simulated using all four transfer combinations evaluated in this paper. Including the full
set of forces does not change the results for PolyPIC; cubic splines are second order and quadratic splines encounter convergence problems. The
APIC convergence orders are now a bit lower and are convincingly 1.5.

PolyPIC is computed as described in Section 3.5. Otherwise, quantities are computed as in [8]. This test was run in306

five configurations. First, the test was run without using the second order in time discretization (the scheme used to307

start the multistep method) using APIC, PolyPIC, and FLIP transfers. Then, the test was repeated for APIC, PolyPIC308

transfers but using the BDF-2 discretization. Using FLIP transfers with the BDF-2 discretization is not a meaningful309

scheme, so this configuration was not run. All of the simulations were run at 64d resolution. As a neutral point of310

reference, we have also run the same test using an Eulerian solver at resolution 1282 in 2D and both 643 and 963 in311

3D. The Eulerian solver uses BDF-2 time integration with predicted pressures and fifth order WENO advection.312

2D. Figure 2 shows the vorticity and kinetic energy in the 2D case. Note that the Eulerian scheme has a significantly313

different qualitative profile compared to the particle-based schemes. Until about t = 20, the kinetic energy closely314

tracks the proposed scheme, after which the two schemes begin to deviate. The Eulerian scheme continues to ac-315

cumulate energy for longer before stabilizing. Overall, the Eulerian scheme accumulates significantly more energy316

than the other schemes, and it retains more of that energy when the source is closed. This suggests that the purely317

Eulerian scheme is less dissipative. It is worth noting that the Eulerian scheme was run at a higher resolution for318

reference, though the results at lower resolutions are qualitatively similar. Although the equations being solved in this319

example are inviscid, the numerical schemes employed are not. There is a small amount of dissipation inherent in the320

numerical methods, which sets the effective Reynolds number and thus the detailed flow and vortex structure for the321

solutions.322

The next observation is that FLIP always has the most energy of the hybrid schemes, which is not especially sur-323

prising, since repeated grid-particle-grid transfers would be expected to dissipate energy. The next observation is that324

PolyPIC is significantly less dissipative than APIC. This is also expected, since PolyPIC transfers better approximate325

/ Journal of Computational Physics (2024) 19

0 20 40 60 80 100 120 140 160 180 200
0.00

0.50

1.00

1.50

2.00

2.50

3.00

Time

V
o
rt
ic
it
y

APIC
PolyPIC-6
FLIP

APIC (BDF2)

PolyPIC-6 (BDF2)
Eulerian

0 20 40 60 80 100 120 140 160 180 200
0.00

0.50

1.00

1.50

2.00

2.50

3.00

×10−2

Time

K
in
et
ic

en
er
g
y

APIC
PolyPIC-6
FLIP grid
FLIP particle

APIC (BDF2)

PolyPIC-6 (BDF2)
Eulerian

Fig. 2: This figure shows the vorticity and kinetic energy for the 2D inlet test. During the first 80 s, fluid is pumped in through the inlet at the
bottom of the domain and is allowed to flow out passively through outflow holes. After this time, the pump is stopped and the fluid continues to
circulate.

the velocity field being transferred and therefore lose less energy. Perhaps surprising, however, is that the second order326

in time BDF-2 discretization is actually less energetic than the first order discretization. Since kinetic energy is readily327

computed on both the grid and the particles, one may compare the energy on the particles with the energy observed328

on the grid. In the case of FLIP transfers, there is a small discrepancy between the two, which decays away once the329

pump is stopped. In all other cases, the grid and particle energies are so close that the lines would be indistinguishable330

in the figure, so they have been omitted.331

3D. Figure 3 shows the vorticity and kinetic energy in the 3D case. In this case, the differences between the different332

transfers are much less significant, though BDF-2 retains notably less vorticity while maintaining similar energy.333

Note that the grid measure of kinetic energy for FLIP (dashed green line) is similar to the other schemes. The particle334

measure of kinetic energy, however, is significantly higher than the grid measure. This indicates that the particles are335

accumulating a great deal of noise. This is the reason velocity filtering is frequently used with FLIP transfers [9].336

It is interesting to note that in the 3D version of this test, BDF-2 has only a very modest impact on the results. By337

contrast, APIC retains far less vorticity than the other schemes. In particular, PolyPIC retains a comparable amount338

of energy and vorticity as FLIP on this test.339

In the 3D case, we have plotted the results for the Eulerian scheme at higher resolution (963) and the same340

resolution as the hybrid schemes (643). The The kinetic energy of the Eulerian schemes are similar across resolutions,341

and they are similar to the hybrid schemes, though the Eulerian scheme is observed to be less dissipative. The vorticity,342

however, looks quite different, with the vorticity changing markedly with resolution. This is a result of changes in the343

detailed vortex structures, which vary by resolution and change over time during the simulation.344

Quantifying noise. We can estimate the level of particle noise present in each scheme by dividing the grid kinetic345

energy by the particle kinetic energy. Ideally, this ratio will be 1, since both are supposed to be representations of346

the same velocity field. In all of the APIC and PolyPIC simulations, this ratio stays between 0.999 and 1.007, which347

suggests particles are not storing velocity modes that are at a higher frequency than the grid and that the particle-based348

kinetic energy formulas for these methods are very accurate.349

In the case of FLIP in 2D, the ratio is lowest at the beginning at 0.94 and rises to 0.96 by time 80 (when the source350

is shut off), and then rises further to 0.99 by the end of the simulation. As the velocity field becomes smoother, less351

energy is lost during the particle-to-grid transfer, and the ratio climbs closer to 1. On the 2D version of the simulation,352

FLIP does not accumulate significant noise. This provides a convenient point of reference for comparison.353

In the case of FLIP in 3D, the ratio at the beginning is also 0.94; as in 2D, this can be assumed to be free of any354

significant noise. By the time the source is shut off, the ratio has fallen to 0.61, indicating that 39% of the kinetic355

energy on particles is lost during the transfer. Using the initial ratio as an estimate of the expected averaging losses356

in the absence of noise, we conclude that about a third of the particle energy is high-frequency noise. By the end of357

20 / Journal of Computational Physics (2024)

0 20 40 60 80 100 120 140 160 180 200
0.00

2.00

4.00

6.00

8.00

10.00

Time

V
or
ti
ci
ty

APIC
PolyPIC-6
FLIP

APIC (BDF2)

PolyPIC-6 (BDF2)

Eulerian (963)

Eulerian (643)

0 20 40 60 80 100 120 140 160 180 200
0.00

0.50

1.00

1.50

2.00
×10−2

Time

K
in
et
ic

en
er
g
y

APIC
PolyPIC-6
FLIP grid
FLIP particle

APIC (BDF2)

PolyPIC-6 (BDF2)

Eulerian (963)

Eulerian (643)

Fig. 3: This figure shows the vorticity and kinetic energy for the 3D inlet test. During the first 80 s, fluid is pumped in through the inlet at the
bottom of the domain and is allowed to flow out passively through outflow holes. After this time, the pump is stopped and the fluid continues to
circulate. Note that the particle and grid measures of kinetic energy differ significantly for FLIP transfers on this test, with up to 1/3 of the particle
energy being noise.

the simulation, the ratio falls to 0.25, which is its lowest value during the entire simulation; about three-quarters of358

the particles’ kinetic energy is noise. Although both real kinetic energy and particle noise decay once the source is359

closed, particle noise is invisible to the grid and dissipates less efficiently, causing the noise fraction to rise.360

4.6. Taylor-Green361

Here we perform a refinement study on a Tayler-Green vortex. The analytic velocity and pressure fields are

u = e−νt
(︄

cos(y) sin(x)
− sin(y) cos(x)

)︄
p(x, t) =

1
4

e−2νt(cos(2x) + cos(2y)) (88)

on a [−π, π]2 domain with periodic boundaries. The initial velocity field is u0(x) = u(x, 0). This is a solution to the362

Navier-Stokes equations, so we don’t apply body forces. The fluid has physical properties ρ = 1 and ν = 0.001.363

Note that we use a small viscosity coefficient so that decay is relevant to the convergence order but does not create364

artificially low velocity errors by decaying the velocity too much. We use the same grid resolution and time step sizes365

as the previous tests. The results are shown in table 5, which demonstrates second-order accuracy on all velocity error366

measures.367

4.7. Non-periodic368

We focus on periodic tests in this paper to avoid the complexities of second order accurate treatments for boundary369

conditions for our pressure and viscosity solvers. Unlike MLS-type schemes, the lack of full particle coverage does370

PolyPIC+cubic

uia-L2 uia-L∞ vp-L2 vp-L∞
res error order error order error order error order
32 5.90 × 10−3 1.26 × 10−2 5.89 × 10−3 1.26 × 10−2

64 1.50 × 10−3 1.97 3.15 × 10−3 2.00 1.51 × 10−3 1.96 3.14 × 10−3 2.00
128 3.80 × 10−4 1.98 8.07 × 10−4 1.96 3.81 × 10−4 1.99 8.08 × 10−4 1.96
256 9.52 × 10−5 2.00 1.98 × 10−4 2.03 9.53 × 10−5 2.00 1.98 × 10−4 2.03
512 2.38 × 10−5 2.00 4.98 × 10−5 1.99 2.38 × 10−5 2.00 4.98 × 10−5 1.99

Table 5: This table shows the convergence results for the Taylor-Green vortex. PolyPIC transfers with cubic B-spline basis functions were used.
Second order accuracy is observed.

/ Journal of Computational Physics (2024) 21

not pose special problems for PolyPIC (or APIC); see the discussion in Section 3.2. In this test, we show that second371

order accuracy is achieved as long as the finite difference discretizations of pressure and viscosity are second order,372

even though the edges and corners of the domain have incomplete particle coverage. We do need to be careful to373

ensure that grid velocities in a band outside the fluid region are filled before the grid-to-particle transfers; for this we374

use the same reflection-based treatment as [8].375

We perform the “square” test from [8]. In this test, two stream functions are defined as

ϕ1(x) = f (x) f (y) ϕ2(x) = f (x)g(y) f (x) = x(1 − x)(x2 − x − 1) g(x) = x(1 − x)(x + 1)(3x2 − 7) (89)

The analytic velocity field is constructed form these stream functions as u = ⟨− ∂ϕ1
∂y ,

∂ϕ1
∂x ⟩ + t⟨− ∂ϕ2

∂y ,
∂ϕ2
∂x ⟩ on a [0, 1]2

376

domain with slip boundary conditions. This velocity field is divergence free. On the boundary, the velocities are377

zero along the normal direction to the boundary, compatible with the slip boundary condition. The pressure field is378

p(x, t) = xy(1 − x)(1 − y)(x − xy + y2 + t), which is zero at the boundaries. Unlike the inviscid setup in [8], we use379

ρ = 1 and ν = 0.1. Grid resolution and time step sizes are the same as in previous tests. The results are shown in380

table 6. We can see that second-order convergence is achieved with slip boundary conditions.381

For more complex boundaries, a more accurate spatial discretization for pressure and viscosity would be required.382

Particle transfers are generally unaware of and unaffected by the type and shape of boundary conditions, other than the383

effects it may have on particle arrangement and coverage. Since our focus is on transfer accuracy, we do not pursue384

other types of boundary conditions or curved boundaries in this paper.385

4.8. 3D Taylor-Green386

Our proposed second-order scheme extends automatically to 3D. In this test case, we demonstrate second order
accuracy on a 3D Taylor-Green vortex. We adopt a 3D Taylor-Green formulation

u = e−νt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝sin(z) + cos(y)
sin(x) + cos(z)
sin(y) + cos(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ p = −e−2νt (sin(z) cos(y) + sin(x) cos(z) + sin(y) cos(x)) . (90)

This is a solution to the Navier-Stokes equations, so no extra forces are applied. We use ρ = 1 and ν = 0.1. As shown387

in table 7, our method demonstrates second-order accuracy.388

4.9. 3D manufactured solution389

To test convergence in 3D more robustly, we set up arbitrary analytic velocity field and pressure fields as we did
in section 4.4, where

u =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 cos

(︂
t + π6

)︂
cos(2x) sin(3y) sin(z) + 1

5 et cos(y)
− cos

(︂
t + π6

)︂
sin(2x) cos(3y) sin(z) + 1

5 (1 − t + 10t2) sin(z)
− cos

(︂
t + π6

)︂
sin(2x) sin(3y) cos(z) + 1

5 (1 − t + 10t2) sin(x)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ p = sin
(︃
t −
π

5

)︃
ecos(2x) cos(y) sin(3z)−t (91)

As before, we use density ρ = 1 and viscosity ν = 0.1. The results are shown in table 8, which also demonstrates390

second-order accuracy in velocities.391

PolyPIC+cubic

uia-L2 uia-L∞ vp-L2 vp-L∞
res error order error order error order error order
32 2.99 × 10−2 6.34 × 10−2 3.15 × 10−2 6.35 × 10−2

64 8.03 × 10−3 1.90 1.71 × 10−2 1.89 8.28 × 10−3 1.93 1.71 × 10−2 1.89
128 2.05 × 10−3 1.97 4.36 × 10−3 1.97 2.09 × 10−3 1.99 4.36 × 10−3 1.97
256 5.17 × 10−4 1.99 1.10 × 10−3 1.99 5.22 × 10−4 2.00 1.10 × 10−3 1.99
512 1.30 × 10−4 2.00 2.74 × 10−4 2.00 1.30 × 10−4 2.00 2.74 × 10−4 2.00

Table 6: Convergence results for the full Navier-Stokes equations on non-periodic test case with slip boundary conditions. PolyPIC with cubic
B-splines were used, and second order convergence is observed. Although the number of neighbor particles will be reduced near the domain walls,
and especially corners, the convergence is not affected.

22 / Journal of Computational Physics (2024)

5. Conclusion392

We have presented a second order accurate discretization of the Navier-Stokes equations within the framework of393

a particle-in-cell method. The scheme avoids generating particle noise by using direct transfers of velocities from grid394

to particles instead of accelerations, which avoids the need for stabilization. We have provided explicit closed-form395

solutions for quadratic PolyPIC transfers.396

Performing velocity transfers from grid to particle reduces convergence order by about half an order in practice.397

So while APIC and quadratic PolyPIC have transfer errors of O(∆x2) and O(∆x3) across a single transfer, when398

used over many time steps, the order drops to about O(∆x1.5) and O(∆x2.5). This means that achieving second order399

accuracy requires the use of quadratic PolyPIC transfers instead of much simpler APIC transfers.400

We also repeated the Fourier analysis from [8] on quadratic PolyPIC to qualitatively characterize its dissipation401

relative to alternative transfers and found it significantly less dissipative than APIC (originally noted by [10]) and402

comparable to XPIC 5.403

5.1. Limitations404

Following Edwards and Bridson [9], this work focuses on particle-to-grid and grid-to-particle transfers and their405

effect on the order of accuracy of a Navier-Stokes fluid solver. As such, we have neglected many complications,406

including support for irregular boundary conditions, moving boundaries, and free surfaces. These do not create sig-407

nificant problems for PolyPIC particles transfers (other than filling ghost cells), but they very significantly complicate408

the grid discretizations for pressure and viscosity.409

The need for an extra polynomial order would normally be very expensive in the context of weighted least squares.410

We must also perform more reconstructions, since there are typically many particles per grid cell. However, because of411

the regularity of the transfers, we were able to perform the reconstruction in closed form, which significantly reduces412

the computational expense. In our implementation, the grid-to-particle transfer (where the polynomial reconstruction413

occurs) is actually less expensive than the particle-to-grid transfer.414

Unlike MLS, which throws the polynomial reconstruction away immediately after use, PolyPIC must store these415

polynomial reconstructions for each particle for use during the particle-to-grid transfers. This significantly increases416

the memory footprint and corresponding cost of our transfers.417

Edwards and Bridson [9] considered schemes as accurate as fourth order. Weighted least squares extends naturally418

to any polynomial order, allowing them to achieve higher convergence orders without obvious difficulty. They are able419

to choose a convenient and inexpensive kernel, and increasing the polynomial order is a simple matter of increasing420

the kernel’s support radius. Of course, the cost of the transfers grows rapidly with increased polynomial order.421

PolyPIC also naturally extends to higher order polynomials, but the system that must be solved grows rapidly in size422

and becomes less sparse. Implementing cubic PolyPIC in closed form, while entirely feasible, is significantly more423

complicated. It would also require switching to quartic B-spline basis functions in order to ensure enough neighboring424

grid velocities to perform the polynomial reconstruction. Quartic PolyPIC transfers (which would be needed for fourth425

order convergence) would be even more complex to implement and require quintic B-spline basis functions.426

6. Acknowledgements427

This work was supported in part by National Science Foundation award NSF-2006570 as well as University of428

California award M23PL6076.429

PolyPIC+cubic

uia-L2 uia-L∞ vp-L2 vp-L∞
res error order error order error order error order
16 2.18 × 10−2 4.32 × 10−2 2.15 × 10−2 4.31 × 10−2

32 5.66 × 10−3 1.94 1.12 × 10−2 1.94 5.65 × 10−3 1.93 1.12 × 10−2 1.94
64 1.43 × 10−3 1.99 2.81 × 10−3 2.00 1.43 × 10−3 1.99 2.82 × 10−3 2.00

128 3.57 × 10−4 2.00 6.93 × 10−4 2.02 3.57 × 10−4 2.00 6.93 × 10−4 2.02

Table 7: This table shows the convergence results for the 3D Taylor-Green vortex. PolyPIC transfers with cubic B-spline basis functions were used,
and second order accuracy is observed.

/ Journal of Computational Physics (2024) 23

PolyPIC+cubic

uia-L2 uia-L∞ vp-L2 vp-L∞
res error order error order error order error order
16 1.03 × 10−1 4.48 × 10−1 1.16 × 10−1 5.67 × 10−1

32 2.91 × 10−2 1.83 1.44 × 10−1 1.63 3.08 × 10−2 1.92 1.49 × 10−1 1.92
64 7.97 × 10−3 1.87 4.00 × 10−2 1.85 8.18 × 10−3 1.91 4.04 × 10−2 1.89
128 5.79 × 10−4 3.78 2.16 × 10−3 4.21 5.79 × 10−4 3.82 2.21 × 10−3 4.19

Table 8: This test shows the convergence orders for a fully general 3D Navier Stokes test constructed using the method of manufactured solutions.

References430

[1] SG. Bardenhagen and EM. Kober. The generalized interpolation material point method. Comp Mod in Eng and Sci, 5(6):477–496, 2004.431

[2] Y Bing, M Cortis, TJ Charlton, WM Coombs, and CE Augarde. B-spline based boundary conditions in the material point method. Computers432

& Structures, 212:257–274, 2019.433

[3] J. Brackbill. The ringing instability in particle-in-cell calculations of low-speed flow. J Comp Phys, 75(2):469–492, 1988.434

[4] J.U. Brackbill and G. Lapenta. Particle-in-cell magnetohydrodynamics. In 16th Int Conf on the Numer Sim of Plasmas, 1998.435

[5] R. Bridson. Fast poisson disk sampling in arbitrary dimensions. In SIGGRAPH sketches, page 22, 2007.436

[6] Alban de Vaucorbeil, Vinh Phu Nguyen, Sina Sinaie, and Jian Ying Wu. Material point method after 25 years: theory, implementation and437

applications. Submitted to Advances in Applied Mechanics, page 1, 2019.438

[7] Alban de Vaucorbeil, Vinh Phu Nguyen, and Christopher R Hutchinson. A total-lagrangian material point method for solid mechanics439

problems involving large deformations. Computer Methods in Applied Mechanics and Engineering, 360:112783, 2020.440

[8] O. Ding, T. Shinar, and C. Schroeder. Affine particle in cell method for mac grids and fluid simulation. Journal of Computational Physics, 408:441

109311, 2020. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2020.109311. URL https://www.sciencedirect.com/science/442

article/pii/S0021999120300851.443

[9] E. Edwards and R. Bridson. A high-order accurate particle-in-cell method. Int J Numer Meth Eng, 90:1073–1088, 2012.444

[10] C. Fu, Q. Guo, T. Gast, C. Jiang, and J. Teran. A polynomial particle-in-cell method. ACM Transactions on Graphics (TOG), 36(6):222,445

2017.446

[11] Yong Gan, Zheng Sun, Zhen Chen, Xiong Zhang, and Yu Liu. Enhancement of the material point method using b-spline basis functions.447

International Journal for numerical methods in engineering, 113(3):411–431, 2018.448

[12] C. Gritton. Ringing Instabilities in Particle Methods. PhD thesis, The University of Utah, 2014.449

[13] Chad C Hammerquist and John A Nairn. A new method for material point method particle updates that reduces noise and enhances stability.450

Computer Methods in Applied Mechanics and Engineering, 318:724–738, 2017.451

[14] Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chenfanfu Jiang. A moving least squares material point452

method with displacement discontinuity and two-way rigid body coupling. ACM Transactions on Graphics (TOG), 37(4):150, 2018.453

[15] Issam Jassim, Dieter Stolle, and Pieter Vermeer. Two-phase dynamic analysis by material point method. International journal for numerical454

and analytical methods in geomechanics, 37(15):2502–2522, 2013.455

[16] C. Jiang, C. Schroeder, A. Selle, J. Teran, and A. Stomakhin. The affine particle-in-cell method. ACM Trans Graph, 34(4):51:1–51:10, 2015.456

[17] C. Jiang, C. Schroeder, and J. Teran. An angular momentum conserving affine-particle-in-cell method. J Comp Phys, 338:137–164, 2017.457

[18] A. Langdon. Effects of spatial grid simulation in plasmas. J Comp Phys, 6(2):247–267, 1970.458

[19] Georgios Moutsanidis, Christopher C Long, and Yuri Bazilevs. Iga-mpm: The isogeometric material point method. Computer Methods in459

Applied Mechanics and Engineering, 372:113346, 2020.460

[20] Vinh Phu Nguyen, Chi Thanh Nguyen, Timon Rabczuk, and Sundararajan Natarajan. On a family of convected particle domain interpolations461

in the material point method. Finite Elements in Analysis and Design, 126:50–64, 2017.462

[21] H. Okuda. Nonphysical noises and instabilities in plasma simulation due to a spatial grid. J Comp Phys, 10(3):475–486, 1972.463

[22] Patrick J Roache. Code verification by the method of manufactured solutions. Journal of fluids engineering, 124(1):4–10, 2002.464

[23] A Sadeghirad, Rebecca M Brannon, and J Burghardt. A convected particle domain interpolation technique to extend applicability of the465

material point method for problems involving massive deformations. International Journal for numerical methods in Engineering, 86(12):466

1435–1456, 2011.467

[24] A Sadeghirad, Rebecca M Brannon, and JE Guilkey. Second-order convected particle domain interpolation (cpdi2) with enrichment for weak468

discontinuities at material interfaces. International Journal for numerical methods in Engineering, 95(11):928–952, 2013.469

[25] M. Steffen, R. Kirby, and M. Berzins. Analysis and reduction of quadrature errors in the material point method (MPM). Int J Numer Meth470

Eng, 76(6):922–948, 2008.471

[26] Michael Steffen, Robert M Kirby, and Martin Berzins. Decoupling and balancing of space and time errors in the material point method472

(mpm). International journal for numerical methods in engineering, 82(10):1207–1243, 2010.473

[27] A. Stomakhin, C. Schroeder, L. Chai, J. Teran, and A. Selle. A material point method for snow simulation. In ACM Transactions on Graphics474

(SIGGRAPH 2013), pages 102:1–10, 2013.475

[28] Deborah Sulsky and Ming Gong. Improving the material-point method. In Innovative numerical approaches for multi-field and multi-scale476

problems, pages 217–240. Springer, 2016.477

[29] Quoc Anh Tran, Wojciech Sołowski, Martin Berzins, and James Guilkey. A convected particle least square interpolation material point478

method. International Journal for Numerical Methods in Engineering, 121(6):1068–1100, 2020.479

[30] PC Wallstedt and JE Guilkey. A weighted least squares particle-in-cell method for solid mechanics. Int J Numer Meth Eng, 85(13):1687–480

1704, 2011.481

https://www.sciencedirect.com/science/article/pii/S0021999120300851
https://www.sciencedirect.com/science/article/pii/S0021999120300851
https://www.sciencedirect.com/science/article/pii/S0021999120300851

24 / Journal of Computational Physics (2024)

[31] Elizaveta Wobbes, Matthias Möller, Vahid Galavi, and Cornelis Vuik. Conservative taylor least squares reconstruction with application to482

material point methods. International Journal for Numerical Methods in Engineering, 117(3):271–290, 2019.483

[32] Fan Zhang, Xiong Zhang, Kam Yim Sze, Yanping Lian, and Yan Liu. Incompressible material point method for free surface flow. Journal of484

Computational Physics, 330:92–110, 2017.485

	Introduction
	Numerical method
	Notation
	State variables
	Particle movement
	Particle to grid transfers
	Grid evolution
	Grid to particle transfers
	Computing spline moments
	Summary

	Notes and analysis
	Stability of quadratic and cubic splines
	Comparison to MLS
	Momentum
	Angular momentum
	Kinetic energy

	Numerical examples
	PolyPIC dissipation
	PolyPIC vs APIC single-transfer accuracy
	PolyPIC vs APIC transfer accuracy under refinement
	PolyPIC vs APIC simulation and spline order
	Particle noise and dissipation
	Taylor-Green
	Non-periodic
	3D Taylor-Green
	3D manufactured solution

	Conclusion
	Limitations

	Acknowledgements

