
Section 2 − Binary Number System Page 1 of 8

2.1 Binary Numbers
The number system we use is a positional number system meaning that the position of each digit has an associated

weight.
The value of a given number is equivalent to the weighted sum of all its digits. e.g.

1234.5610 = 1×103 + 2×102 + 3×101 + 4×100 + 5×10-1 + 6×10-2

Here, 10 is the base or radix of the number system.
Use a subscript to indicate the radix of the number.
In general

∑
−

−=
−−−− ⋅=

1

i210121 d
m

ni

i
nmm rddddddd ��

The leftmost digit is called the most-significant digit (MSD).
The rightmost digit is called the least-significant digit (LSD).

Digital systems use binary digits with a binary radix.

110.1012 = 1×22 + 1×101 + 0×100 + 1×10-1 + 0×10-2 + 1×10-3 = 6.62510

2.3 Number System Conversion

From Binary to Decimal

100010112

= 1×27 + 0×26 + 0×25 + 0×24 + 1×23 + 0×22 + 1×21 + 1×20

= 128 + 8 + 2 + 1

From Decimal to Binary

1 3 9 1 L S D2

6 9 12

3 4 02

1 7 12

8 02

4 02

2 02

1 M S D

13910 = 100010112

Section 2 − Binary Number System Page 2 of 8

2.2 Octal and Hexadecimal Numbers
Binary numbers are too long to write so we use a shorthand notation:
Octal – base 8; needs 8 different values; 0 to 7.
Hexadecimal – base 16; needs 16 different values; 0 to 9, A to F.

Binary (radix 2) Octal (radix 8) Decimal (radix 10) Hexadecimal (radix 16)
0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 10 8 8
1001 11 9 9
1010 12 10 A
1011 13 11 B
1100 14 12 C
1101 15 13 D
1110 16 14 E
1111 17 15 F

2.3 Number System Conversion

From Binary to Octal
Starting at the binary point, separate the bits into groups of three and replace each group with the corresponding

octal digit.

100010112 = 010 001 011 = 2138

11.101112 = 011 . 101 110 = 3.568

From Octal to Binary
Replace each octal digit with the corresponding 3-bit binary string.

2138 = 010 001 011 = 100010112

From Binary to Hexadecimal
Starting at the binary point, separate the bits into groups of four and replace each group with the corresponding

hexadecimal digit.

100010112 = 1000 1011 = 8B16

11.101112 = 0011 . 1011 1000 = 3.B816

From Hexadecimal to Binary
Replace each hexadecimal digit with the corresponding 4-bit binary string.

8B16 = 1000 1011 = 100010112

Section 2 − Binary Number System Page 3 of 8

From Octal to Decimal

52218

= 5×83 + 2×82 + 2×81 + 1×80

= 2560 + 128 + 16 + 1

= 270510

From Decimal to Octal

2 7 0 5 1 L S D8

3 3 8 28

4 2 28

5 M S D

From Hexadecimal to Decimal

A9C16

= 10×162 + 9×161 + 12×160

= 2560 + 144 + 12

= 271610

From Decimal to Hexadecimal

2 7 1 6 C L S D1 6

1 6 9 91 6

A M S D

Examples:
Binary Octal Decimal Hex

10011010 232 154 9A
10111000101 2705 1477 5C5

101010010001 5221 2705 A91
1110111100 1674 956 3BC

270510 = 52218

271610 = A9C16

Section 2 − Binary Number System Page 4 of 8

2.4 Add

1 1 1 1 1 0 0 1 1

+ 1 0 0 1 + 1 1 1 0

1 1 0 0 0 1 0 0 0 0 1

2.4 Subtract

1 1 0 0 0 1 0 0 1 1

− 1 1 1 1 − 1 1 1 1

1 0 0 1 1 0 0

2.7 Multiply

normally for implementation - add the shifted

multiplicands one at a time.

1 1 1 0 = 14 1 1 1 0

* 1 1 0 1 = 13 * 1 1 0 1

1 1 1 0 1 1 1 0

0 0 0 0 + 0 0 0 0

1 1 1 0 0 1 1 1 0

+ 1 1 1 0 + 1 1 1 0

1 0 1 1 0 1 1 0 1 0 0 0 1 1 0

+ 1 1 1 0

1 0 1 1 0 1 1 0 (8 bits)

Section 2 − Binary Number System Page 5 of 8

2.8 Divide

 1 1 0 1 1 1 0

1 1 1 1) 1 1 0 0 0 1 0 1 | 1 1 0 1) 1 0 1 1 0 0 1 |

1 1 1 1 | 1 1 0 1 |

1 0 0 1 1 0 1 | 1 0 0 1 0 1 |

1 1 1 1 | 1 1 0 1 |

1 0 0 0 1 | 1 0 1 1 |

0 0 0 0 | 0 0 0 0 |

1 0 0 0 1 | 1 0 1 1

1 1 1 1 |

1 0

 1 0 0 1

1 1 0 1) 1 1 1 1 0 0 1 |

1 1 0 1 |

1 0 0 0 1 |

0 0 0 0 |

1 0 0 0 1 |

0 0 0 0 |

1 0 0 0 1 |

1 1 0 1 |

1 0 0

Section 2 − Binary Number System Page 6 of 8

2.5 Representation of Negative Numbers

Sign-Magnitude
The most significant bit is the sign bit and the rest of the number is the magnitude.
0 = positive
1 = negative
n bit range = -(2n-1-1) to +(2n-1-1)
4 bits range = -7 to +7
2 possible representation of zero, “+0” and “-0”.

2's Complement
flip bits and add one.
n bit range = -(2n-1) to +(2n-1-1)
4 bits range = -8 to +7

0 0 0 0 = 0
0 0 0 1 = 1
0 0 1 0 = 2
0 0 1 1 = 3
0 1 0 0 = 4
0 1 0 1 = 5
0 1 1 0 = 6
0 1 1 1 = 7
1 0 0 0 = -8
1 0 0 1 = -7
1 0 1 0 = -6
1 0 1 1 = -5
1 1 0 0 = -4
1 1 0 1 = -3
1 1 1 0 = -2
1 1 1 1 = -1

Example

0 1 1 0 = 6
1 0 0 1 flip bits
1 0 1 0 add one = -6

1 1 1 0 = 14
0 0 0 1 flip bits
0 0 1 0 add one WRONG this is not -14. Out of range. Need 5 bits

0 1 1 1 0 = 14
1 0 0 0 1 flip bits
1 0 0 1 0 add one. This is -14.

Sign Extend
add 0 for positive numbers
add 1 for negative numbers

Section 2 − Binary Number System Page 7 of 8

Add 2's Complement
1 1 1 0 = -2 1 1 1 0 = -2

 + 1 1 0 1 = -3 + 0 0 1 1 = 3

1 1 0 1 1 ignore carry = -5 10 0 0 1 ignore carry = 1

Be careful of overflow errors. An addition overflow occurs whenever the sign of the sum is different from the signs
of both operands. Ex.

0 1 0 0 = 4 1 1 0 0 = -4

 + 0 1 0 1 = 5 + 1 0 1 1 = -5

1 0 0 1 = -7 WRONG 10 1 1 1 ignore carry = 7 WRONG

Subtract 2's Complement
0 0 1 0 = 2

 + 1 1 1 0 = -2

1 0 0 0 0 ignore carry = 0

Multiply 2's Complement

1 1 1 0 = -2 1 1 1 0 = -2

 * 1 1 0 1 = -3 * 0 0 1 1 = 3

1 1 1 1 1 1 1 0 sign extend to 8 bits 1 1 1 1 1 1 1 0 sign extend to 8 bits

+ 0 0 0 0 0 0 0 + 1 1 1 1 1 1 0

1 1 1 1 1 1 1 0 11 1 1 1 1 0 1 0 ignore carry = -6

+ 1 1 1 1 1 0

1 1 1 1 1 0 1 1 0 ignore carry

+ 0 0 0 1 0 negate -2 for sign bit

1 0 0 0 0 0 1 1 0 ignore carry = 6

1 0 0 1 0 = -14

 * 1 0 0 1 1 = -13

1 1 1 1 1 1 0 0 1 0 sign extend to 10 bits

+ 1 1 1 1 1 0 0 1 0

1 1 1 1 1 0 1 0 1 1 0 ignore carry

+ 0 0 0 0 0 0 0 0

1 1 1 1 0 1 0 1 1 0

+ 0 0 0 0 0 0 0

1 1 1 1 0 1 0 1 1 0

+ 0 0 1 1 1 0 negate -14 for sign bit

1 0 0 1 0 1 1 0 1 1 0 ignore carry = 182

Section 2 − Binary Number System Page 8 of 8

2.9 Floating-Point Numbers

mantissa x (radix)exponent

The floating-point representation always gives us more range and less precision than the fixed-point
representation when using the SAME number of digits.

11-b i t excess
1023 characts t ic

Mant i ssa
s ign

52-b i t normal ized f rac t ion

S ign
exponen t

Mant i ssa
s ign

Mant i ssa magn i tude

8-b i t excess-127
character is t ic

Mant i ssa
s ign

23-b i t normal ized f rac t ion

Genera l fo rmat

32-b i t s tandard

64-b i t s tandard

0 1 1 2 6 3

3 1910

Impl ied b inary po in t

Normalized fraction - the fraction always starts with a nonzero bit. e.g.

0.01 … x 2e would be normalized to 0.1 … x 2e-1

1.01 … x 2e would be normalized to 0.101 … x 2e+1

Since the only nonzero bit is 1, it is usually omitted in all computers today. Thus, the 23-bit normalized fraction
in reality has 24 bits.

The exponent is represented in a biased form.

• If we take an m-bit exponent, there are 2m possible unsigned integer values.
• Re-label these numbers: 0 to 2m-1 → -2m-1 to 2m-1-1 by subtracting a constant value (or bias) of 2m-1 (or

sometimes 2m-1-1).
• Ex. using m=3, the bias = 23-1 = 4. Thus the series 0,1,2,3,4,5,6,7 becomes -4,-3,-2,-1,0,1,2,3. Therefore, the

true exponent -4 is represented by 0 in the bias form and -3 by +1, etc.
• zero is represented by 0.0 … x 20.

Ex. if n = 1010.1111, we normalize it to 0.10101111 x 24. The true exponent is +4. Using the 32-bit standard
and a bias of 2m-1-1 = 28-1-1 = 127, the true exponent (+4) is stored as a biased exponent of 4+127 = 131, or
10000011 in binary. Thus we have

0 | 1 0 0 0 0 0 1 1 | 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Notice that the first 1 in the normalized fraction is omitted.

The biased exponent representation is also called excess n, where n is 2m-1-1 (or 2m-1).

2.10 Binary Coded Decimals (BCD)

2.11 Character Codes (ASCII – The American Standard Code for Information Interchange)

