2.1 Binary Numbers

The number system we use is a **positional number system** meaning that the position of each digit has an associated weight.

The value of a given number is equivalent to the weighted sum of all its digits. e.g.

$$
1234.56_{10} = 1 \times 10^3 + 2 \times 10^2 + 3 \times 10^1 + 4 \times 10^0 + 5 \times 10^1 + 6 \times 10^2
$$

Here, 10 is the **base** or **radix** of the number system. Use a subscript to indicate the radix of the number. In general

$$
d_{m-1}d_{m-2}\cdots d_1d_0d_{-1}d_{-2}\cdots d_n=\sum_{i=-n}^{m-1}d_i\cdot r^i
$$

The leftmost digit is called the **most-significant digit** (**MSD**). The rightmost digit is called the **least-significant digit** (**LSD**).

Digital systems use binary digits with a binary radix.

$$
110.101_2 = 1 \times 2^2 + 1 \times 10^1 + 0 \times 10^0 + 1 \times 10^{-1} + 0 \times 10^{-2} + 1 \times 10^{-3} = 6.625_{10}
$$

2.3 Number System Conversion

From Binary to Decimal

$$
10001011_2
$$

$$
= 1 \times 27 + 0 \times 26 + 0 \times 25 + 0 \times 24 + 1 \times 23 + 0 \times 22 + 1 \times 21 + 1 \times 20
$$

= 128 + 8 + 2 + 1

From Decimal to Binary

2.2 Octal and Hexadecimal Numbers

Binary numbers are too long to write so we use a shorthand notation: **Octal** – base 8; needs 8 different values; 0 to 7.

Hexadecimal – base 16; needs 16 different values; 0 to 9, A to F.

2.3 Number System Conversion

From Binary to Octal

Starting at the binary point, separate the bits into groups of **three** and replace each group with the corresponding **octal** digit.

 $10001011_2 = 010\ 001\ 011 = 213_8$

 $11.10111_2 = 011.101110 = 3.56_8$

From Octal to Binary

Replace each **octal** digit with the corresponding **3-bit** binary string.

 $213_8 = 010\ 001\ 011 = 10001011_2$

From Binary to Hexadecimal

Starting at the binary point, separate the bits into groups of **four** and replace each group with the corresponding **hexadecimal** digit.

 $10001011_2 = 1000 1011 = 8B_{16}$

 $11.10111_2 = 0011$. 1011 $1000 = 3. B8_{16}$

From Hexadecimal to Binary

Replace each **hexadecimal** digit with the corresponding **4-bit** binary string.

 $8B_{16} = 1000$ $1011 = 10001011_2$

From Octal to Decimal

52218 $= 5 \times 8^3 + 2 \times 8^2 + 2 \times 8^1 + 1 \times 8^0$ $= 2560 + 128 + 16 + 1$ $= 2705_{10}$

From Decimal to Octal

$$
8 \begin{array}{|l|l|} \hline 2705 & 1 & \text{LSD} \\ \hline 8 & 338 & 2 \\ \hline 8 & 42 & 2 \\ \hline 5 & \text{MSD} \end{array}
$$
 2705₁₀ = 5221₈

From Hexadecimal to Decimal

 $A9C_{16}$ $= 10 \times 16^2 + 9 \times 16^1 + 12 \times 16^0$ $= 2560 + 144 + 12$ $= 2716_{10}$

From Decimal to Hexadecimal

$$
\begin{array}{c|c}\n16 & 2716 & C & LSD \\
16 & 169 & 9 \\
\hline\n & A & MSD\n\end{array}
$$
 2716₁₀ = A9C₁₆

Examples:

2.4 Add

2.4 Subtract

2.7 Multiply

normally for implementation - add the shifted

2.8 Divide

2.5 Representation of Negative Numbers

Sign-Magnitude

The most significant bit is the sign bit and the rest of the number is the magnitude.

- $0 = positive$
- $1 =$ negative
- *n* bit range = $-(2^{n-1}-1)$ to $+(2^{n-1}-1)$
- 4 bits range = -7 to $+7$
- 2 possible representation of zero, "+0" and "-0".

2's Complement

flip bits and add one.

n bit range = $-(2^{n-1})$ to $+(2^{n-1}-1)$ 4 bits range = -8 to $+7$

Example

Sign Extend

add 0 for positive numbers add 1 for negative numbers

Add 2's Complement

Be careful of overflow errors. An addition overflow occurs whenever the sign of the sum is different from the signs of both operands. Ex.

Subtract 2's Complement

Multiply 2's Complement

2.9 Floating-Point Numbers

mantissa x $(radix)^{exponent}$

The floating-point representation always gives us more range and less precision than the fixed-point representation when using the SAME number of digits.

Normalized fraction - the fraction always starts with a nonzero bit. e.g.

 $0.01...$ x 2^e would be normalized to $0.1...$ x 2^{e-1}

1.01... x 2^e would be normalized to 0.101 ... x 2^{e+1}

Since the only nonzero bit is 1, it is usually omitted in all computers today. Thus, the 23-bit normalized fraction in reality has 24 bits.

The exponent is represented in a **biased** form.

- If we take an m -bit exponent, there are 2^m possible unsigned integer values.
- Re-label these numbers: 0 to $2^m-1 \rightarrow -2^{m-1}$ to $2^{m-1}-1$ by subtracting a constant value (or bias) of 2^{m-1} (or sometimes $2^{m-1}-1$).
- Ex. using $m=3$, the bias $= 2^{3-1} = 4$. Thus the series 0,1,2,3,4,5,6,7 becomes -4,-3,-2,-1,0,1,2,3. Therefore, the true exponent -4 is represented by 0 in the bias form and -3 by $+1$, etc.
- zero is represented by $0.0 ... x 2^0$.

Ex. if $n = 1010.1111$, we normalize it to 0.10101111 x $2⁴$. The true exponent is +4. Using the 32-bit standard and a bias of $2^{m-1}-1 = 2^{8-1}-1 = 127$, the true exponent (+4) is stored as a biased exponent of $4+127 = 131$, or 10000011 in binary. Thus we have

0 | 1 0 0 0 0 0 1 1 | 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Notice that the first 1 in the normalized fraction is omitted.

The biased exponent representation is also called **excess** *n*, where *n* is 2^{m-1} -1 (or 2^{m-1}).

2.10 Binary Coded Decimals (BCD)

2.11 Character Codes (ASCII – The American Standard Code for Information Interchange)