2.1 Binary Numbers

The number system we use is a **positional number system** meaning that the position of each digit has an associated weight.

The value of a given number is equivalent to the weighted sum of all its digits. e.g.

$$1234.56_{10} = 1 \times 10^{3} + 2 \times 10^{2} + 3 \times 10^{1} + 4 \times 10^{0} + 5 \times 10^{-1} + 6 \times 10^{-2}$$

Here, 10 is the **base** or **radix** of the number system. Use a subscript to indicate the radix of the number. In general

$$d_{m-1}d_{m-2}\cdots d_1d_0d_{-1}d_{-2}\cdots d_n = \sum_{i=-n}^{m-1} \mathbf{d}_i \cdot r^i$$

The leftmost digit is called the **most-significant digit** (**MSD**). The rightmost digit is called the **least-significant digit** (**LSD**).

Digital systems use binary digits with a binary radix.

$$110.101_2 = 1 \times 2^2 + 1 \times 10^1 + 0 \times 10^0 + 1 \times 10^{-1} + 0 \times 10^{-2} + 1 \times 10^{-3} = 6.625_{10}$$

2.3 Number System Conversion

From Binary to Decimal

$$= 1 \times 2^{7} + 0 \times 2^{6} + 0 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0}$$
$$= 128 + 8 + 2 + 1$$

From Decimal to Binary

2.2 **Octal and Hexadecimal Numbers**

Binary numbers are too long to write so we use a shorthand notation: Octal – base 8; needs 8 different values; 0 to 7.

Hexadecimal - base 16; needs 16 different values; 0 to 9, A to F.

Binary (radix 2)	Octal (radix 8)	Decimal (radix 10)	Hexadecimal (radix 16)
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	10	А
1011	13	11	В
1100	14	12	С
1101	15	13	D
1110	16	14	Е
1111	17	15	F

2.3 **Number System Conversion**

From Binary to Octal

Starting at the binary point, separate the bits into groups of three and replace each group with the corresponding octal digit.

 $10001011_2 = 010 \ 001 \ 011 = 213_8$

 $11.10111_2 = 011.101 110 = 3.56_8$

From Octal to Binary

Replace each octal digit with the corresponding 3-bit binary string.

 $213_8 = \ 010 \ \ 001 \ \ 011 = 10001011_2$

From Binary to Hexadecimal

Starting at the binary point, separate the bits into groups of four and replace each group with the corresponding hexadecimal digit.

 $10001011_2 = 1000 \ 1011 = 8B_{16}$

 $11.10111_2 = 0011 \cdot 1011 \ 1000 = 3.B8_{16}$

From Hexadecimal to Binary

Replace each hexadecimal digit with the corresponding 4-bit binary string.

 $8B_{16} = 1000 \ 1011 = 10001011_2$

From Octal to Decimal

 5221_8 = 5×8³ + 2×8² + 2×8¹ + 1×8⁰ = 2560 + 128 + 16 + 1 = 2705₁₀

From Decimal to Octal

From Hexadecimal to Decimal

 $A9C_{16}$

 $= 10 \times 16^{2} + 9 \times 16^{1} + 12 \times 16^{0}$ = 2560 + 144 + 12 $= 2716_{10}$

From Decimal to Hexadecimal

Examples:

Binary	Octal	Decimal	Hex
10011010	232	154	9A
10111000101	2705	1477	5C5
101010010001	5221	2705	A91
1110111100	1674	956	3BC

2.4 Add

2.4 Subtract

	1	1	0	0	0	1	0	0	1	1
_		1	1	1	1		1	1	1	1
		1	0	0	1			1	0	0

2.7 Multiply

normally

				1	1	1	0	= 14
			*	1	1	0	1	= 13
				1	1	1	0	
			0	0	0	0		
		1	1	1	0			
+	1	1	1	0				
1	0	1	1	0	1	1	0	

for implementation -	add	the	shifted
for implementation	uuu	une	Sinnea

					mu	ltipli	cands	one	at a tin	ne.
				1	1	1	0			
			*	1	1	0	1			
				1	1	1	0			
		+	0	0	0	0	_			
			0	1	1	1	0			
	+	1	1	1	0		_			
	1	0	0	0	1	1	0			
+	1	1	1	0						
1	0	1	1	0	1	1	0		(8 bi	ts)

2.8 Divide

<u> </u>	1 1 0
$1 \ 1 \ 1 \ 1 \) \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ $	1 1 0 1) 1 0 1 1 0 0 1
<u>1111</u>	<u>1 1 0 1</u>
1 0 0 1 1 0 1	1 0 0 1 0 1
<u>1111</u>	<u>1 1 0 1</u>
10001	1011
0000	0000
1 0 0 0 1	1011
<u>1111</u>	
1 0	
1 0 0 1	
1 1 0 1) 1 1 1 1 0 0 1	
<u>1 1 0 1</u>	
1 0 0 0 1	
0000	
$1 \ 0 \ 0 \ 0 \ 1 \ $	
0000	
1 0 0 0 1	
1 1 0 1	
1 0 0	

2.5 Representation of Negative Numbers

Sign-Magnitude

The most significant bit is the sign bit and the rest of the number is the magnitude.

- 0 = positive
- 1 = negative
- *n* bit range = $-(2^{n-1}-1)$ to $+(2^{n-1}-1)$
- 4 bits range = -7 to +7
- 2 possible representation of zero, "+0" and "-0".

2's Complement

flip bits and add one. *n* bit range = $-(2^{n-1})$ to $+(2^{n-1}-1)$ 4 bits range = -8 to +7

0000	= 0
0001	= 1
0010	= 2
0011	= 3
0100	= 4
0101	= 5
0110	= 6
0111	= 7
$1\ 0\ 0\ 0$	= -8
1001	= -7
1010	= -6
1011	= -5
1100	= -4
1101	= -3
1110	= -2
1111	= -1

Example

$\begin{array}{c} 0 \ 1 \ 1 \ 0 \\ 1 \ 0 \ 0 \ 1 \\ 1 \ 0 \ 1 \ 0 \end{array}$	= 6 flip bits add one = -6
$\begin{array}{c}1 \ 1 \ 1 \ 0 \\ 0 \ 0 \ 0 \ 1 \\ 0 \ 0 \ 1 \ 0 \end{array}$	= 14 flip bits add one WRONG this is not -14. Out of range. Need 5 bits
$\begin{array}{c} 0 \ 1 \ 1 \ 1 \ 0 \\ 1 \ 0 \ 0 \ 0 \ 1 \\ 1 \ 0 \ 0 \ 1 \ 0 \end{array}$	= 14 flip bits add one. This is -14.

Sign Extend

add 0 for positive numbers add 1 for negative numbers

Add 2's Complement

1 1 1 0	= -2		1 1 1 0	= -2
+ 1101	= -3	+	0011	= 3
1 1011	ignore carry = -5		10001	ignore carry = 1

Be careful of overflow errors. An addition overflow occurs whenever the sign of the sum is different from the signs of both operands. Ex.

0 1 0 0	= 4	1 1 0 0	= -4
+ 0101	= 5	<u>+ 1011</u>	= -5
1 0 0 1	= -7 WRONG	1 0111	ignore carry = 7 WRONG

Subtract 2's Complement

0010	= 2
+ 1 1 1 0	= -2
10000	ignore carry = 0

Multiply 2's Complement

	1 1 1 0	= -2	1 1 1 0	= -2
	* 1101	= -3	* 0011	= 3
	$1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0$	sign extend to 8 bits	$1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0$	sign extend to 8 bits
+	0000000		<u>+ 1 1 1 1 1 1 0</u>	
	$1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0$		$\frac{1}{4}$ 1 1 1 1 1 1 0 1 0	ignore carry = -6
+	1 1 1 1 1 0			
	$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\$	ignore carry		
+	00010	negate -2 for sign bit		
	+00000110	ignore carry $= 6$		

	10010	= -14
*	10011	= -13
11111	$1 \ 0 \ 0 \ 1 \ 0$	sign extend to 10 bits
+ 11111	0010	
1 11110	10110	ignore carry
+ 00000	000	
1 1 1 1 0	10110	
+ 00000	00	
1 1 1 1 0	10110	
+ 00111	0	negate -14 for sign bit
<u>+</u> 00101	10110	ignore carry = 182

Floating-Point Numbers 2.9

mantissa x (radix)^{exponent}

The floating-point representation always gives us more range and less precision than the fixed-point representation when using the SAME number of digits.

Mantissa	Sign	Mantissa magnitude					
sign	exponent						
General format							
0	1	0	21				
0	1	9	51				
Mantissa	8-bit excess-127	23-bit normalized fractic					
sign	characteristic						
32-bit standard		Implied binary point					
0 1		12	63				
Mantissa	11-bit excess	52-bit normalized fraction					
sign	1023 charactstic						
64-bit stand	dard						

Normalized fraction - the fraction always starts with a nonzero bit. e.g.

 $0.01... \times 2^{e}$ would be normalized to $0.1... \times 2^{e-1}$

1.01... x 2^{e} would be normalized to 0.101 ... x 2^{e+1}

Since the only nonzero bit is 1, it is usually omitted in all computers today. Thus, the 23-bit normalized fraction in reality has 24 bits.

The exponent is represented in a **biased** form.

- If we take an *m*-bit exponent, there are 2^m possible unsigned integer values. Re-label these numbers: 0 to 2^m -1 $\rightarrow -2^{m-1}$ to 2^{m-1} -1 by subtracting a constant value (or bias) of 2^{m-1} (or sometimes 2^{m-1} -1).
- Ex. using m=3, the bias $= 2^{3-1} = 4$. Thus the series 0,1,2,3,4,5,6,7 becomes -4,-3,-2,-1,0,1,2,3. Therefore, the true exponent -4 is represented by 0 in the bias form and -3 by +1, etc.
- zero is represented by $0.0 \dots \ge 2^0$. •

Ex. if n = 1010.1111, we normalize it to 0.10101111 x 2⁴. The true exponent is +4. Using the 32-bit standard and a bias of $2^{m-1}-1 = 2^{8-1}-1 = 127$, the true exponent (+4) is stored as a biased exponent of 4+127 = 131, or 10000011 in binary. Thus we have

Notice that the first 1 in the normalized fraction is omitted.

The biased exponent representation is also called **excess** *n*, where *n* is 2^{m-1} -1 (or 2^{m-1}).

2.10 Binary Coded Decimals (BCD)

2.11 Character Codes (ASCII – The American Standard Code for Information Interchange)