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6.6 Analysis of Sequential Logic
Analysis is the process that starts with an implementation and generates the function or behavior of the sequential

circuit. i.e. given a logic schematic, to generate one or more functional descriptions, using state diagrams, state
and output tables, and input and output Boolean equations.

Synthesis, the reverse of analysis, starts with a behavioral description and generates an implementation.

Example 6.1: Circuit with no outputs . Derive the state table and state diagram for the (modulo-4 counter)
sequential circuit represented by the following schematic.
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Solution:
Step 1:

Derive excitation equations, i.e., boolean expressions for the inputs of each flip-flop in the schematic, in terms
of the external input Cnt and the ff outputs Q1 and Q0. Since there are two ffs in our example, we derive two
expressions for D1 and D0:
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Step 2:
Derive the next-state equations by substituting the excitation equations into the flip-flop characteristic
equations.
The characteristic equations formally describe the functional behavior of a latch or flip-flop. They specify the
flip-flop’s next state as a function of its current state and inputs.
For the D flip-flop, the characteristic equation is

Qnext = D

Thus, the next-state equations are:
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Step 3a:
Derive the next-state table from the next-state equations.
Each row corresponds to a state of the sequential circuit which is defined by the binary values stored in its ffs.
Each column represents one set of input values.
Each entry defines the value of the sequential circuit in the next clock cycle after the rising edge of the Clk.
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Present State Next State
Q1Q0 Q1 next Q0 next

Cnt = 0 Cnt = 1
00 00 01
01 01 10
10 10 11
11 11 00

Step 3b:
Instead of a next-state table, we could use a state diagram to represent the behavior of the sequential circuit. A
state diagram is basically a pictorial representation of the next-state table. It has exactly one node for each
present state in the next-state table.
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We can see that as long as Cnt=1, the sequential circuit visits the states in the sequence 0,1,2,3,0,1,2,…. When
Cnt=0, the circuit stays in its present state until Cnt changes to 1, at which point the counting continues.
We conclude that the circuit is a modulo-4 counter with one control signal, Cnt.

Step 4:
The timing diagram is shown below:
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Example 6.2: State-based or Moore-type sequential circuit. The output values depend solely on its present state.
Derive the next state, the output tables, and the state diagram for the (modulo-4 counter) sequential circuit
represented by the following schematic.
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Solution:
Step 1 (Moore):

Derive excitation equations. (same as last example)
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Step 2a (Moore):
Derive the next-state equations. (same as last example)
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Step 2b (Moore):
Derive the output equation.

Y = Q1Q0

Step 3a (Moore):
Derive the next-state/output table from the next-state equations and output equation. In general, we add one
column for each output signal to convert a next-state table to a next-state/output table.

Present State Next State Outputs
Q1Q0 Q1 next Q0 next Y

Cnt = 0 Cnt = 1
00 00 01 0
01 01 10 0
10 10 11 0
11 11 00 1

Step 3b (Moore):
Derive the State diagram.
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Step 4 (Moore):
The timing diagram is shown below:
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Example 6.3: Input-based or Mealy-type sequential circuit. The output values are dependent on the input values
as well as its present state. Derive the next state, the output tables, and the state diagram for the (modulo-4
counter) sequential circuit represented by the following schematic.

Solution:
Step 1 (Mealy):

Derive excitation equations. (same as first example)
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Step 2a (Mealy):
Derive the next-state equations. (same as first example)
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Step 2b (Mealy):
Derive the output equation.

Y = CntQ1Q0

Step 3a (Mealy):
Derive the next-state/output table. Every entry in the next-state table will represent the next-state and the
output value, separated by a slash (/).

Present State Next State / Outputs
Q1Q0 Q1 next Q0 next / Y

Cnt = 0 Cnt = 1
00 00 / 0 01 / 0
01 01 / 0 10 / 0
10 10 / 0 11 / 0
11 11 / 0 00 / 1
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Step 3b (Mealy):
Derive the State diagram. The output is not associated with the state but with the transition arc. Each arc is
labeled with both the input values that move the circuits from the present state to the next state, and the output
values, which correspond to the input-signal values in the present state.
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Step 4 (Mealy):
The timing diagram is shown below:

In clock cycle 3, the counter will be in state Q1Q0 = 11 and the output signal Y = 1. At t4, Y = 0 because the input
signal Cnt = 0 even though the counter is still in state Q1Q0 = 11.
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6.7 Finite-State-Machine Model

Finite-State-Machine (FSM) is another name used for sequential logic circuit. The FSM can be defined abstractly
as the quintuple

<S, I, O, f, h>
where S = set of states

I = set of inputs
O = set of outputs
f = next state function. S × I → S.
h = output functions. Determines the output values in the present state.

The FSM model assumes that time is divided into uniform intervals and that transitions from one state to another
occur only at the beginning of each time interval. Therefore, the next-state function f defines what the state of
the FSM will be in the next time interval given the state and input values in the present interval.

There are two different types of FSM, which correspond to two different definitions of the output function h.
1) Moore FSM or state-based FSM, for which h is defined as a mapping S → O.
2) Mealy FSM or input-based FSM, for which h is defined as a mapping S × I → O.

The content of the flip-flops defines the state S of the FSM.
I, and O are binary signals.
f and h are defined by Boolean expressions that will be implemented with logic gates.
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