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ABSTRACT
Graphics Processing Units (GPUs) excel at high-performance
computing tasks, including multimedia rendering, crypto-
mining, deep learning, and natural language processing, due
to their massive parallelism and high memory bandwidth.
However, the growing size of models and datasets in these do-
mains increasingly exceeds the memory capacity of a single
GPU, resulting in significant performance overheads. To mit-
igate this issue, developers are often forced to partition data
and manually manage transfers between GPU and host mem-
ory—a labor-intensive approach that becomes impractical for
workloads with irregular memory access patterns, such as
deep learning, recommendation systems, and graph process-
ing. Programming abstractions like Unified Virtual Memory
(UVM) simplify development by offering a unified memory
space across the system and handling data transfers automat-
ically. Unfortunately, UVM introduces substantial overhead
due to frequent OS involvement and inefficient data move-
ment, particularly when GPU memory is oversubscribed.
This paper presents DREAM, a GPU memory management
system that leverages an RDMA-capable network device
to implement a programmer-agnostic lightweight virtual
memory system, eliminating CPU/OS involvement. DREAM
supports on-demand page migration for GPU applications by
delegating memory management and page migration tasks
to GPU threads. Since current CPU architectures do not sup-
port GPU-initiated memory management, DREAM uses a
network interface card to enable efficient, transparent page
migration. By offloading memory management to the GPU,
DREAM achieves up to 4× higher performance than UVM
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1 INTRODUCTION
GPUs are popular platforms for accelerating data-intensive
high-performance applications, such as graph analytics [2,
7, 24, 62], recommender systems [14], machine learning [23]
and natural language processing [25, 56]. GPUs usemassively
parallel, high-throughput architectures that can provide high
computing performance andmemory bandwidth [1, 9]. GPUs
are widely employed to accelerate data-intensive applica-
tions, which frequently operate on large-scale datasets, typ-
ically ranging in size from several gigabytes to tens of ter-
abytes, and are likely to continue to increase in size in the
foreseeable future.
The memory demands of modern data-intensive appli-

cations continue to outpace available GPU memory, de-
spite increases in GPU memory capacity (e.g., up to 80 GBs
for NVIDIA A100 GPUs [40] and 94GB for NVIDIA H100
GPUs [41]). In such cases, the application’s memory does
not fit on the GPU and typically resides on the CPU and
programmers are responsible for moving data back and forth
to the GPU (using cudaMemCpy or similar APIs), to ensure
that the required data are available at the GPU when needed.
This approach substantially complicates programming and
requires careful optimization of data transfer operations,
which is often not possible when applications are irregular
with difficult-to-predict memory access patterns.

To ease these programming burdens, NVIDIA introduced
the Unified Virtual Memory (UVM) [39] abstraction, where
memory migration is automatically managed during run
time. While UVM improves programmability and portability,
it leads to substantial overheads [4, 5, 61]. Specifically, the
performance of UVM and prior related works [19, 26, 64]
is limited for generating as many requests as to utilize the

1

https://orcid.org/0009-0005-6229-1493
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


available PCIe bandwidth fully. The latencies associated with
handling transfer requests, as well as the inefficient use of
available bandwidth which is an order of magnitude or lower
than the GPU memory bandwidth [40] can substantially
limit performance when the working memory does not fit
within the GPU memory. We discuss the shortcomings of
current approaches for extending the effective size of the
GPU memory in more detail in Section 2.

As a result, the programmer is left with an unsatisfactory
choice of (1) sacrificing programmability and manually man-
aging and optimizing memory transfer operations between
the CPU and GPU. This approach is cumbersome, hardware-
specific, and may not be practical for applications where
the memory access patterns are irregular; or (2) sacrificing
performance and using UVM to ease programmability and
portability by having the system manage the data transfers.
In this paper, we introduce DREAM, a new GPU memory
management system that supports both programmability and
performance. It allows GPUs to directly manage memory,
using Remote Direct Memory Access (RDMA) [6] to substan-
tially reduce latency and improve data transfer throughput.
This represents a departure in the philosophy of treating
accelerators (including the GPU) as an offload device whose
resources are managed by the CPU, to empower it to directly
manage its application memory. DREAM eliminates CPU in-
volvement and the latencies associated with CPU-mediated
page fault handling. It also enables parallel fault handling to
allow operations to overlap with ongoing GPU computations,
thus improving overall system efficiency. DREAM incorpo-
rates several optimizations, including coalescing related data
transfers and overlapping them with computation. In addi-
tion, DREAM employs highly efficient memory management
and eviction schemes that deliver even higher advantages
with increasing pressure on the GPU memory.

DREAM addresses several key challenges stemming from
its programming model and the inherent limitations of cur-
rent hardware, which lacks native support for GPU-driven
memory management. On the GPU side, we have to build
a runtime library that handles page requests/faults, man-
ages the available memory space, and initiates communi-
cation to transfer memory pages. Specifically, DREAM im-
plements a high-throughput, highly parallel, low-latency
memory system to support on-demand page migration. The
paged-memory system is optimized to coalesce the access re-
quests and reuse the fetched pages. To handle oversubscribed
cases where the application memory exceeds the available
GPU memory, DREAM implements eviction logic to create
room for newly fetched pages. We note that current CPU
chipsets do not support GPU-managed data transfers be-
tween CPU and GPU memories without the involvement of
host OS. To overcome this challenge, DREAM uses a network
interface card to facilitate establishing RDMA connections

which are used to mediate the transfer of the data from the
CPU to the GPU. We provide more information about the
design and implementation of DREAM in Section 3.1. We
believe that future hardware support to enable direct RDMA
between the GPU and the CPU can further improve the per-
formance of DREAM.

We implement the DREAM software stack and evaluate it
using Cloudlab [16]. We demonstrate DREAM on a number
of benchmarks, demonstrating how it can directly support a
range of applications without substantial programming over-
head. DREAM achieves substantially higher performance
than UVM on a number of GPU benchmarks with multiple
datasets. It also outperforms optimized graph frameworks
such as Subway [50]. The source code of DREAM can be
found at https://github.com/nnurlan008/dream.

In summary, the contributions are as follows.
• We present DREAM, a new model for managing GPU
virtual memory, supporting on-demand page migra-
tion without CPU intervention. DREAM leverages
GPUDirect RDMA to enable GPUs to manage memory
directly, substantially reducing page fault latency and
improving PCIe utilization.

• We develop a high-level programming abstraction and
software APIs to facilitate the integration of DREAM
into existing applications.

• To support larger applications, we build a reuse-
oriented paged memory allowing efficient eviction of
pages when there is memory pressure on GPUs.

• We evaluate DREAM on a number of benchmarks,
showing that it substantially outperforms existing so-
lutions, including NVIDIA’s UVM. DREAM achieves
up to 4× speedup, which increases with the degree of
memory pressure on the GPU.

2 BACKGROUND
In this section, we provide background on currently used
paged memory systems for GPUs, which automate memory
management between GPUs and the host CPU. We then
explore how employing RDMA to manage virtual memory
can alleviate the GPU memory wall problem and hide the
memory access latency by allowing computations to coalesce
with memory operations.

2.1 Unified Virtual Memory (UVM)
Unified virtual memory (UVM) creates a common virtual
address space shared among all available memories in the
system. This shared address space facilitates seamless data
access and movement between devices and is utilized when
memory is allocated using cudaMallocManaged [39]. For a
system with a single GPU and CPU (host) shown in Figure 1,
the allocation results in two separate page tables: one in GPU
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Figure 1: UVM architecture. PU refers to GPU pro-
cessing units (Streaming Multiprocessors, or SMs on
NVIDIA GPUs). SM-group level TLBs, and GPU-wide
shared TLBs shown together as 𝜇𝑡𝑙𝑏 for simplicity.

memory and the other in host/CPU memory [3]. The UVM
driver manages these page tables and handles page faults
originating from the CPU side or the GPU side through the
PCIe bus. The simplified page fault workflow from the GPU
side is shown in Figure 1. When a thread accesses a remote
page (a page residing in host memory), the 𝜇tlb’s [45], which
are hardware units to cache recent page translations through
multi-level TLBs, are checked for the address translations.
When there is a TLB miss, the GMMU (GPU Memory Man-
agement Unit) is notified (1), which in turn writes the fault
information into a fault buffer (2). GPU hardware threads
treat this access request as any other outstanding memory
access and, in general, experience a fault-and-stall condi-
tion [38], leading to disruptive interruptions in GPU compu-
tation leading to large inefficiencies that cannot be hidden
using other warps.

To simplify conceptual presentation, only replayable faults
are considered in this section. Each request triggers a hard-
ware interrupt to the UVM driver (3) through a PCIe trans-
action. As the UVM driver retrieves a batch of faults from
the fault buffer (3), it caches them in the host memory and
initializes pages in the host memory (4). The UVM driver
then informs the OS (5) to handle page table updates and TLB
shootdowns (6). The host OS then directs the DMA engine to
migrate the pages to GPU memory (7). Previous works have
shown that the design of the UVM driver introduces delays in
GPU application performance [3–5, 36, 65]. These delays are
exacerbated by the lack of parallelism in CPU/OS in handling
many requests coming from massively parallel GPU threads.
We also analyzed the overheads of host involvement in page
fault handling to be up to around 7× that of page transfer
time, as shown in Figure 2, even at fairly large transfer sizes.
Allen et al. [3] break down these overheads (fetching the
faults from GPU fault buffer and preprocessing which in-
volves de-duplication of the faults in the batch; sorting the
faults by VA space, fault address, etc.), and show that they
constitute around 12% of the overall cost. The biggest portion
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Figure 2: Breakdown of UVM page transfer latency.
Note that host involvement overheads during the page
fault are around 7× higher than the transfer time at
64KB page size.

of the cost is spent on fault servicing which includes page
table updates (both CPU and GPU), page eviction (under
oversubscription pages have to be removed to make room
for new pages), and other necessary actions. DREAM aims to
reduce this overall cost by offloading memory management
tasks to GPU and RNIC, allowing direct access that removes
the CPU from the critical path.

2.2 Heterogeneous Memory Management
(HMM)

HMM [30, 42, 51] is a Linux kernel feature designed to
simplify memory management between different process-
ing units, such as CPUs and accelerators. HMM provides
programmer-agnostic memory management and on-demand
memory access by allowing transparent page migration. Un-
like UVM, HMM needs no vendor-specific driver calls for
memory allocation. Amemory region that has been allocated
with malloc can be accessed by the accelerators on systems
with HMM support. Similarly, HMM involves the OS and de-
vice driver for page fault handling. Both UVM and HMM are
based on 4KB pages for 𝑥86_64 systems. Conversely, HMM
does not natively support speculative prefetching, an op-
timization allowed by UVM that asynchronously migrates
large GPU page (multiples of 64KB), to hide some of the page
fault service cost. The responsibility of prefetching and asyn-
chronous page migration still lies with the device drivers or
userspace applications. Therefore, HMM is not an optimized
method.

2.3 RDMA support and alternatives
Accelerator devices, such as GPUs, currently cannot initiate
data transfers from host memory to device memory due to
their design nature. UVM depends on the host OS to manage
the on-demand memory accesses through the UVM driver.
To enable device-initiated memory access and data transfers
to/from device memory, our approach, on the other hand,
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Figure 3: Schematic representation of DREAM design.

leverages RDMA-capable network interface cards (RNICs
and NICs used interchangeably). This solution bypasses the
need for CPU involvement, allowing the GPU to directly
interact with the NIC for efficient data movement between
host memory and device memory.

RNICs have limited capability processors [68] and enable
direct access to host memory and other memories on remote
machines across the network [32]. RDMA can access both
local to a single system and remotememory over the network
(InfiniBand, Ethernet/RoCE, etc.) [20]. Using RDMA read
and write requests, a one-sided RDMA connection can be set
up in which RNICs can read from and write to application
memory without OS/kernel involvement. With GPUDirect
RDMA [37], RNICs can also access GPU memory, enabling
RNICs to mediate the transfer between a CPU and GPU.

3 DREAM SYSTEM DESIGN AND
ARCHITECTURE

DREAM provides efficient device-managed memory access
that automates memory management across GPU and host
memory while achieving high performance. Programmers
can use a high-level programming abstraction to gain access
to DREAM, which aims to extend the available memory of
GPUs or other accelerators to the host memory or available
memory over the network. DREAM uses an RNIC as a me-
diator of requests between GPU threads and memory, as
shown in Figure 3, since current systems do not support di-
rect device-initiated page migration to/from host memory on
demand1 without the initiation of migration by the host OS.
In this context, the available extended memory can either be
the CPU/host memory, remote memory of other nodes in the
cloud, or memory of other GPUs or accelerators connected
through an RDMA-capable network (in this paper, we only
explore the first alternative).

1GPUs do support direct access to host memory. However, this allows cache-
line data transfer from host memory to GPU cache only and requires the
pinning of the data on host memory.

DREAM needs to address a number of challenges: (1) Sup-
porting GPU-initiated memory transfers: Systems are
designed for the CPU to manage network-connected devices.
To use the NIC for memory request handling for DREAM,
GPU threads need to have access to the control resources of
the NICs. Additionally, we need to make sure DREAM can
efficiently generate parallel requests to be handled concur-
rently and efficiently by the RNIC. (2) Supporting oversub-
scribed accelerator memory: One of DREAM’s goals is to
provide efficient GPU memory oversubscription such that
it can support workloads with larger memory requirements
than are physically available in GPU memory. Since memory
is managed by the GPU, it must be able to evict pages to
make room for newly fetched pages. DREAM must ideally
map the pages in host memory to GPU memory, which can
possibly prevent early eviction of pages from GPU memory
before they are used under memory oversubscription. (3)
Programming Abstraction: Since the GPU threads are not
typically designed to make memory accesses/requests by
themselves, DREAM needs to offer high-level abstractions
that conceal its complexity and simplify the integration of
DREAM into existing GPU applications for programmers. In
the remainder of this section, we first present an overview
of DREAM, and then discuss how we address these three
challenges.

3.1 System Overview
In this section, we explain the high-level design of DREAM.
In systems such as UVM that rely on OS page fault han-
dling [8, 18, 19, 26, 28, 34, 67], the OS is primarily respon-
sible for memory allocation, controlling virtual-to-physical
address translations, and page table updates. DREAM aims
to shift the memory management to the GPU, removing the
host OS from the critical path, and has to reimplement the
page management functionality on the GPU side. Since cur-
rent hardware does not allow the GPU to initiate RDMA
transactions from CPU memory, DREAM uses an RNIC to
facilitate the transfer. RNICs support one-sided RDMA con-
nections to the CPU, which allow a device to move pages
from other memories directly (without OS involvement).
The incorporation of RNICs extends GPU accessibility

beyond local host memory, facilitating direct access to both
remote host memory and remote GPU memory across the
network. In this study, we focus on a specific scenario where
DREAM is leveraged to enable GPUs to efficiently access
local host memory on demand, thereby minimizing latency
and optimizing data locality in heterogeneous computing
environments.

As shown in Figure 3, DREAM enables GPU threads to di-
rectly communicate with the RNIC by submitting work/page
requests to the queue pair (QP). GPU threads are notified
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Figure 4: DREAM system workflow for a single thread

of the request completion through completion queue (CQ)
entries inserted by the RNIC once a request has been ser-
viced. DREAMuses amemory region called DREAMmemory
within devicememorywith device page tables and pagemaps
efficiently managed by parallel GPU threads. The GPU hosts
the DREAM memory region, queue metadata, and parallel
RDMA queues.

An important part of the abstraction is the DREAM::class
structure, which enables direct integration of DREAM into
existing GPU kernels. We show an example in Listing 1 for
a vector addition kernel; the code is minimally modified to
include DREAM’s array-like data structure. The DREAM
programming model provides users with the flexibility to
modify data on the CPU and launch kernels with DREAM
arrays - dream_ptr<float>. In the current implementation, the
responsibility of determining the GPU memory allocation is
delegated to the user. By default, the allocated GPU memory
is set to either match the size of the data on the CPU, the
actual size of the allocated data, or the maximum available
GPU memory in cases where the required memory exceeds
the available capacity. Once kernel execution begins on the
GPU/accelerator, data is migrated to device memory on de-
mand. After the kernel execution finishes, users have the
option to either transfer the entire dataset/buffer into CPU
memory or access data on demand from the CPU. Upon com-
pletion of the computation, the DREAM objects are properly
deallocated, and resources are released.
Figure 4 shows how a thread can access the page in

DREAM. First, the thread that accesses the DREAM::class
buffer at a specific index calculates the page address/number
and the offset (1) and checks the page table for this page
address (2). If the page is currently in the GPU memory, the
thread can safely access the offset within the page. Other-
wise, DREAM runtime synchronizes all threads that access
the same page (3). Within the synchronization block, a leader
thread is selected to handle the page fault, which starts with
obtaining a page frame in GPU memory (4). Once a page
frame is obtained, the leader thread prepares a work request
for the page, which includes a unique request number, page
frame address, host memory address, remote key for host
memory, and the QP ID. Once the leader thread inserts the

Listing 1: Vector addition with DREAM
__global__
void vectorAdd(dream_ptr<float> *A, dream_ptr<float> *B, dream_ptr<

float> *C, int N) {
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < N) {

C[i] = A[i] + B[i];
}

}

int main(){
dream_ptr<float> host_a, host_b, host_c;
dream_ptr<float> *dev_a, *dev_b, *dev_c;
// allocate data
host_a.allocate(size on CPU, size on GPU);
...

// populate the arrays
for (size_t i = 0; i<size on CPU; i++)

host_a[i] = rand_float_generator();
...

// allocate dev_a, dev_b, dev_c on GPU memory
cudaMalloc((void **) &dev_a, sizeof(dream_ptr<float>));
...

// copy metadata from host_a, host_b, host_c to dev_a, dev_b,
dev_c respectively to make them accessible from GPU

cudaMemcpy(dev_a, &host_a, sizeof(dream_ptr<float>),
cudaMemcpyHostToDevice);

...

//launch kernel - size is actual size of the buffer; size on CPU
vectorAdd<<<#ofblocks, block_size>>>(dev_a, dev_b, dev_c, size);

// bring data back to CPU if needed
host_c.toCPU();

// destroy a, b, and c:
host_a.destroy();
...

return 0;
}

request into the QP (5) and updates the doorbell register (6),
it starts polling the CQ entry associated with the request
number (7). More details are in Section 3.3.
On the RNIC side, when the doorbell update is received,

the RNIC starts fetching the work requests from the QP in
the GPU memory. The work requests for the page requests
from the GPU threads are served by the RNIC. For each page
request, the RNIC fetches the page from the CPU memory
and sends it to the GPU memory (DREAM memory in Fig-
ure 3). Once the page is delivered to the assigned page frame,
the RNIC updates the related CQ entry to notify the leader
thread that the work request has been serviced.
Note that the RNIC processing component can be substi-

tuted with alternative interfaces or hardware by appropri-
ately adapting the I/O pipeline. For instance, incorporating
FPGAs could enhance local memory access performance,
while leveraging SmartNICs may provide additional benefits
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in scenarios involving remote memory. Such hardware sub-
stitutions have the potential to further improve the efficacy
and versatility of DREAM as a comprehensive solution.

3.2 Efficient RDMA I/O Management
To achieve high transfer throughput, DREAMuses amemory-
efficient, streamlined I/O pipeline shown in Figure 4. This
pipeline enables GPU threads to manage page requests; post
requests and poll for their completion. The DREAM runtime
also has the GPU leader threads directly accessing RNIC I/O
resources and updating page table entries.

Sending a page request can be divided into two actions: in-
serting a work request for the page and ringing the doorbell
which means writing the number of the request and index
of the queue to the doorbell register. As the doorbell regis-
ters are located in the system memory, updating them for a
single request would cause a serialization, thus, increasing
the latency if the number of queues is not sufficient.
The leader thread gets assigned a queue index that iden-

tifies which QP and CQ the leader will use for posting and
polling, based on SM number. The leader atomically gets
a number for the request called post_number that it uses
as an ID of the page fault. Faults are handled in batches. If
the post number is less than the fault batch size, then the
leader can continue to insert the request into the send queue
with post_number. Otherwise, it must wait for the current
batch to finish. For a fault batch, several leader threads insert
requests for different pages. However, only one randomly
selected leader (the one that atomically gets the lock of the
queue) updates the doorbell. Once the queue is locked no
other request can be inserted.
All the leader threads within the batch atomically incre-

ment a variable called batch_counter to coordinate and en-
sure the completion of their insertions into the send queue,
which serves as the sole communication channel for one-
sided data transfers between the GPU and host memory. .

If this variable matches with the max post number, then all
the leaders have finished the insertion of page requests into
the send queue. At this stage, the leader with the queue lock
can update the doorbell. After the update of the doorbell, all
the leader threads in the batch start polling on completion
queue entries corresponding to post_number.
The period during which leader threads wait for comple-

tion is consistent, depending on the NIC, and threads release
the lock once their requests are fulfilled, leaving no opportu-
nity for security channels or performance slowdown attacks.

The queue depth to achieve the max available throughput
is covered by Little’s law [33], 𝐿 = 𝜆 ∗𝑊 , where 𝐿, 𝜆, and𝑊
represent the average queue depth, access latency, and target
throughput, respectively. The target throughput is 12𝐺𝐵𝑝𝑠
as we are using a PCIe-3-based machine. The latency 𝜆 is
23𝜇𝑠 empirically estimated on the testbed we use in our
experiments. From Little’s law, we obtain an average queue
depth of 36 for an 8KB page and 72 for a 4KB page. Therefore,
optimal performance can be achieved with a batch of one
fault with more than 72(23𝜇 ∗ 12𝐺𝐵𝑝𝑠/4𝐾𝐵) parallel queues
(for 4KB pages and, similarly, 36 queues for 8KB pages).

3.3 Device Virtual Memory Management
Systems that utilize OS virtual memory mechanisms for
data migration implement several key steps to facilitate on-
demand page migration. These steps include page table up-
dates, address translation, and other related operations, all
of which occur during application runtime, as illustrated
in Figure 1. However, these processes often involve critical
sections with significant serialization, resulting in increased
fault service latency. In contrast, DREAM leverages RNIC
hardware for address translation, enabling a substantially
higher degree of parallelism and in-flight request processing
by bypassing the host OS. The device memory page table is
updated directly by the device upon the completion of a work
request on the RNIC. Implementation details are provided in
Section 4.

Within the DREAM runtime, the host virtual memory can
be considered as "Physical Address Space" and GPU virtual
memory as "Virtual Address Space" as shown in Figure 5.
The host memory is assumed to be the backup and contains
all the application data. GPU memory can host all the data
and sometimes becomes limited as the workload sizes get
bigger than GPU memory.
Page mapping. The main goal of DREAM runtime is to

dynamically and efficiently map the pages from ’physical’
to ‘virtual’ address space which can be defined as mapping
the virtual page on host memory to a virtual page on GPU
memory as shown in Figure 5. Upon a request from GPU
threads, RNIC hardware has to bring the page to GPU mem-
ory (DREAM memory in Figure 3). After all the threads

6



Figure 6: DREAM runtime workflow. Threads access
DREAM::class and warp leaders are forwarded to
DREAM runtime. Obtaining a page involves acquiring
a mapping and posting and polling for a page request.

complete the read/write operation on the page, it can be
safely evicted if necessary. The page mapping is stored in
device memory for fast access and dynamically modified
by GPU threads during application execution. For current
implementation, DREAM keeps page mapping and tables
locally on device memory. However, for future implemen-
tations, this can be changed or even maintained by a new
interface/hardware if coherence is required across multiple
accelerator devices.
Eviction scheme. The DREAM implementation specifi-

cally aims to improve the ease of programming for developers
and eliminate the need for partitioning of the workload and
the manual transfers of the partitions that are needed when
the workload size is bigger than the available GPU mem-
ory. To achieve stable performance as the oversubscription
level increases, the efficient FIFO page eviction mechanism
is implemented.

The GPU virtual memory can be viewed as a circular queue
(ring buffer) with a global head cursor depicted in Figure 5.
Each entry in this queue represents a page mapping. When
the leader thread handles the page fault, a new page mapping
that maps the host page to the GPU page is established. The
leader thread is responsible for establishing the mapping
through DREAM runtime library. It is important to note that
the leader thread acquires the mapping atomically and is
restricted from arbitrarily mapping to any GPU page frame.
After mapping is established, the leader thread checks if the
page frame is mapped to another page. If the page frame
is already mapped to another page, it waits for that page
to be released. This happens through checking reference
counter which shows the number of warps that currently
access/need the page. Once the reference counter becomes
zero, the leader thread immediately evicts the page to the
host with a write-back request if necessary and creates the
new mapping.
Page access synchronization. We use the oppor-

tunistic warp-level synchronization primitive [11],
__match_any_sync, to select a leader within warp threads

with the same __activemask. DREAM runtime also
incorporates inter-warp coalescing, considering that there
might be more than one warp that accesses the same page;
within all the leaders from those warps, only one leader will
lock the page entry, as illustrated in Figure 6. Page fault
or page request in Figure 6 involves getting a mapping,
triggering a work request on RNIC, and eviction of another
page if necessary. Once the page request is complete, all
threads can continue processing the data.

3.4 Comparisons with UVM and Bulk
Transfer

Unified virtual memory makes the host and GPU memories
virtually connected, allowing the device code to directly
access the system memory and provide a programming-
agnostic development experience. The bulk transfer involves
partitioning the data and transferring the partitions to GPU
memory by CPU. There are several clear advantages of
DREAM over UVM and bulk transfer approaches.
Firstly, UVM transfer size is 4KB (for 𝑥86_64), and 60KB

is asynchronously transferred due to speculative prefetch-
ing to complete the size to GPU page size and boost the
performance [3, 52]. The eviction size is 2MB [3], which
is called a virtual address block (VABlock). This can some-
times be the bottleneck for oversubscription, as the newly
fetched page can be evicted within VABlock. However, since
in DREAM, GPU threads have direct access to the page table
and can monitor the page status and reference counter, evic-
tion becomes much more efficient. For example, if the page
is write-intensive, DREAM can delay its eviction and evict
one of the least needed read-intensive pages.

Secondly, to optimize the UVM, the application developer
should statically specify the access hints before the applica-
tion starts running on the GPU. Thus, UVM cannot leverage
dynamic memory optimizations, making it more developer-
dependent. On the other hand, DREAM can benefit from
dynamic and efficient page mapping optimizations, such as
reference counters for each page.
Furthermore, a widely adopted approach involves parti-

tioning the dataset and transferring the resulting partitions
into GPU memory for computation. This method leverages
the high memory bandwidth of GPUs to enhance applica-
tion performance. However, it necessitates that developers
manually partition or tile both the data and the algorithm,
which can pose significant challenges. In particular, for data-
dependent applications such as graph processing, recom-
mender systems, and data analytics, identifying an optimal
partitioning strategy is often complex and non-trivial. Conse-
quently, DREAM offers a compelling alternative by enabling
on-demand data access, thereby alleviating the burden of
manual partitioning.
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4 DREAM IMPLEMENTATION
Constructing Virtual Memory: As DREAM relies on vir-
tual memory, a large CPU/host memory region is allocated
using malloc to host application data and registered to
RNIC ibv_reg_mr verb with appropriate access flags.The
access information of host memory which includes remote
keys, starting address, and the length of the allocated/al-
lowed region, is copied into GPU memory for easy access
from GPU threads during runtime.
Access to RNIC from GPU Threads: To achieve high
throughput, GPU threads are expected to solve page fault
requests fast. The main high-latency part is where the GPU
threads start inserting the requests into the send queue and
update the doorbell as these steps involve host memory ac-
cesses. Prior work(s) [58] proposed to map the RNIC re-
sources such as QP and CQ buffers and doorbell registers to
boost the performance of network-related applications on
GPUs. However, GPU threads need to access these resources
through PCIe bus, and due to high access latencies and lack
of efficient concurrency, this approach cannot achieve high
throughput with low granularities (page size in our case). In-
stead, we allocate completion and queue pair buffers on GPU
memory using cudaMalloc and associate these buffers with
the RNIC resources, namely, ibv_cq and ibv_qp. To this end,
we modify the rdma_qp_create and ibv_cq_create functions
in the newest Mellanox Infiniband driver to include user-
defined buffers similar to the GPUrdma [12]. This makes
sure the GPU has access to the RNIC’s necessary buffers in
its memory.

To give GPU access to the doorbell registers, we map them
to CUDA address space using GPUDirect Async [43]. For
this, we register the doorbells using cudaHostRegister API
with cudaHostRegisterIoMemory flag to map them to GPU’s
BAR space and get device pointers using cudaGetDevice-
Pointer, enabling GPU threads to ring them on demand.
Discussion: Multi-kernel support. In the current DREAM
implementation, the GPU memory is statistically allocated.
The mapping of the pages from host memory to GPU mem-
ory happens dynamically during application run time. This
paper evaluates DREAM mostly on single-kernel applica-
tions and multi-kernel with kernels launched back-to-back.
However, the current implementation can be easily extended
for concurrently launched kernels in which a stream of con-
current kernels accesses the large dataset on demand.
Multi-GPU processing. DREAM currently supports 2

GPUs and 2 NICs enabling multi-GPU co-processing in the
system. The GPUs can share the NICs for data transfer and
concurrently work on the data independently without requir-
ing the programmer to manually create and transfer parti-
tions to the GPUs, separately to amplify the read throughput
and access data on demand.

System Memory

RNIC

GPU

1

2 3
4

1 & 2: Control Path
3 & 4: Data Path

Figure 7: Configuration of r7525 node in Cloudlab [16].
As 3 & 4 share the same PCIe bridge connecting NIC
to the system, the available bandwidth drops to 8GBps,
halving PCIe 3 bandwidth.

4.1 Limitations
We evaluate DREAM on an r7525-type node in Cloudlab [16].
The system configuration is shown in Figure 7. The perfor-
mance of DREAM is specific to this platform and may be
sensitive to the specific hardware. The node consists of 2
GPUs and 2 NICs that are connected to the root complex
through dedicated bridges. The page migration works as fol-
lows. While the kernel is executing on the GPU, any page
request will send/trigger a work request to the NIC (1). Upon
fetching the work request, NIC sends a request to memory
(2). Upon the request, memory DMA sends the requested
data to NIC (3). NIC finally sends the requested page to GPU
memory once received the data (4). The first drawback in
this transfer mechanism is the interruption of the NIC as it is
located on the data path. Another downside is that the data
incoming to and outgoing from the RNIC shares the same
PCIe bridge channel, decreasing the one-directional band-
width to half of the available bandwidth. To overcome this
issue, one possible solution is to modify the requests from
NIC to memory such that the page is delivered to GPU mem-
ory directly from system memory. However, with modern
NICs, this approach is not feasible, as it necessitates modi-
fications to the closed-source NIC firmware. Alternatively,
we use both RNICs available on the node for data transfers,
increasing the transfer throughput to the maximum avail-
able bandwidth as shown in Figure 8. DREAM also assumes
that host memory is pinned and that there is sufficient host
DRAM capacity to accommodate the working set.
This limitations can be relaxed in different ways, for ex-

ample pinning only the hot pages, and relying on page faults
for pages that are not pinned. We hope to explore such ideas
in future work.

5 EVALUATION
In this section, we provide the performance evaluation

of DREAM over different benchmarks and applications and
compare the results with other state-of-the-art. The experi-
ments have been conducted on r7225 nodes of Cloudlab [16],
a testbed with the configuration shown in Table 1.
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Table 1: System configuration for experiments

Component Specification
CPU 2× AMD 7542 (32 cores, 2.40 GHz)
GPU NVIDIA Tesla V100 32GB
RAM 512GB 3200MHz DDR4
NIC NVIDIA Mellanox ConnectX-5 25Gbps & ConnectX-6 100Gbps
Software Ubuntu 22.04 LTS, NVIDIA Driver 535.183.01, CUDA 12.2

5.1 Comparison with GPUDirect RDMA
First, we compare the performance of DREAM with NVIDIA
GPUDirect RDMA [37] on a simple data transfer benchmark
with different request sizes. Request size is given as input
in the scatter-gather entry and defines the data length to
be transferred from host/system memory to GPU memory
through RNIC. The benchmark includes the transfer of 12GB
of data from host memory to GPU memory with different
request sizes ranging from 4KB to 1MB. In the case of GPUDi-
rect RDMA, the transfers are initiated from 16 concurrent
threads in the CPU. For DREAM, each GPU warp initiates
a transfer with the same request size of GPUDirect RDMA
corresponding to consecutive addresses. DREAM launches
16 warps in each of the 84 SMs simultaneously. Each warp is
assigned a page. The benchmark is conducted using a single
NIC and 2 NICs. As shown in Figure 8, DREAM can achieve
the max usable bandwidth available for transfers through
a single NIC, which is 6.5 GBps, even with a 4KB page size.
Conversely, GDR can reach the maximum available band-
width utilization after requests of 512KB. DREAM can keep
a stable performance with almost all page sizes and fully
utilize the PCIe 3 bandwidth with 2 NICs.
In the case of UVM, we optimize the memory access pat-

terns such that each warp accesses 64KB of consequent data
and uses memory hints (memadvise) for optimization. UVM
does not allow flexible page sizes. Therefore, we can only re-
port the average throughput, which is observed to be around
6 GBps, achieving only 50% of the available bandwidth.

5.2 Graph Workloads
In this section, we evaluate DREAM on different graph an-
alytics workloads with various graphs listed in Table 2. All

|E|: number of edges, |V|: number of vertices

Dataset Name Abbr |E| |V| Size (GB)

Edges Weights

GAP-Urand [29] GU 4.29B 134.2M 16.0 16.0

GAP-Kron [29] GK 4.23B 134.2M 15.7 15.7

Friendster [63] FS 3.61B 65.6M 13.5 13.5

MOLIERE [59] MO 6.67B 30.2M 24.8 24.8

Table 2: Description of graph datasets.

4KB 8KB16KB 32KB 64KB 128KB 256KB 512KB 1MB
0
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10
12
14
16

Request/Page Size

PC
Ie
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in
G
Bp

s

GPUDirect RDMA Achievable bandwidth
DREAM 1-NIC DREAM 2-NIC

Figure 8: Achieved PCIe bandwidth. DREAM saturates
PCIe bandwidth even at 4KB page size. GPUDirect
RDMA can only saturate the interconnect after 512KB
granularity.

evaluated graphs are from the SuiteSparse Matrix collec-
tion [13]. The main goal of the DREAM paged-memory sys-
tem is to provide better results over the UVM solution and
approaches using bulk transfer. To this end, we choose a
well-optimized open-source UVM solution [35] as a UVM
baseline (U). Additionally, we also compare results with Sub-
way [50], which is an optimized graph framework that first
partitions and preprocesses the graph to create subgraphs of
smaller graphs on the CPU and then transfers the partitions
to the GPU for traversal.
For graph workloads, we choose Breadth First Search

(BFS), Connected Components (CC), and Single-Source-
Shortest-Path (SSSP). For BFS and SSSP, the application is
executed with more than 100 source vertices with at least 2
neighbors, and we take the average of the execution times.
The reported time for each approach is the average appli-
cation execution time and UVM memory advise API time
if applied. As Section §3.1 describes, the integration of the
existing state-of-the-art implementation into DREAM is easy.
We use 1 NIC and 2 NICs with 84 queue-pairs of 64 entries.

For DREAM (D), we evaluate two versions –baseline and
optimized– for graph workloads and compare them against
UVM alternatives [35] and partitioning-preprocessing-based
approaches [50]. The baseline approach (1N) uses CSR rep-
resentation of graphs and uses only 1 NIC. We observed that
the imbalance in the number of neighbor lists can become a
bottleneck for DREAM. Therefore, for the optimized version
(2N), we create a new representation called Balanced CSR
and use 2 NICs to be able to exploit the GPU PCIe band-
width. We use this representation for graphs with power
law edge distribution. For instance, the FS graph exhibits
a maximum vertex degree of approximately 5,200, whereas
the GU graph has a maximum degree of only 68. However,
GK and MO have a maximum vertex degree of around 7.5𝑀
and 2.1𝑀 neighbors, respectively. This means the number of
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Figure 9: Graph workload evaluation results. ’U’: UVM, ’wm’: with memory advise hint (applies to only UVM), ’nm’:
no memory advise hint, ’D’: DREAM, ’1N’: 1 NIC in CSR, ’2N’: 2 NIC in Balanced CSR. DREAM implementation
uses 4KB-sized pages. DREAM’s overall performance is 1.4× for BFS and 1.5× for CC better than UVM solution.

page requests per thread can be high as high degree nodes
are visited, resulting in request serialization. To prevent this
serialization, we introduce Balanced CSR representation, a
modified version of CSR that stores edges in chunks of equal
numbers as shown in Figure 10. This format partitions neigh-
bor lists –particularly long ones– into smaller, equally sized
segments and saves starting indices of these chunks in the
offset list. Each index in the vertex list indicates the start-
ing vertex. This format enables different threads or thread
groups to access and process these segments in parallel. This
parallelism improves load balancing and mitigates bottle-
necks associated with skewed degree distributions as the
number of serial page requests per thread or thread group is
reduced. The memory overhead of Balanced CSR is up to 400
MB for the graphs in Table 2, while substantially improving
the performance.

Figure 10: CSR vs. Balanced CSR. The Balanced CSR
representation allowsmultiple threads to concurrently
process the same neighbor list, thereby reducing tra-
versal latency for DREAM.

Benchmark Graph Total Time (s) Speedup
Subway DREAM

BFS
GK 3.86s 2.04 1.89×
GU 3.13s 2.80 1.12×
FS 2.52 2.15 1.17×

CC
GK 4.73s 2.81 1.68×
GU 5.21s 2.80 1.86×
FS 3.24s 2.40 1.35×

Table 3: Performance comparison to Subway [50]

Baseline UVM [35] uses optimizations for coalesced mem-
ory accesses and assigning each warp some number of ver-
tices (instead of a single thread single vertex model) to tra-
verse. It is also optimized (wm) for read-only accesses by
setting UVM memory as cudaMemAdviseSetReadMostly us-
ing cudaMemAdvise(). With this flag, the UVM driver will
make read-only copies of the pages on GPU memory, sub-
stantially reducing the page fault service cost and page mi-
gration time. Results shown in Figure 9 demonstrate that the
use of this flag increases the application performance by at
least 25% over the one without memadvise (nm). Although
the application runtime decreases significantly, setting this
memory advice hint incurs substantial initial delay, which is
also reported in our evaluation results but is not included in
the speedup calculation. UVM performance does not benefit
from the Balanced CSR representation, as it has speculative
prefetching and page request batching.
Evaluation. Figure 9 shows that DREAM’s performance
improves by an average of 1.5× when using the second NIC,
achieving an average 1.4× improvement for BFS and 1.5× for
CC. As DREAM provides a transparent coding experience for
application developers by abstracting away data transfers, it
is essential that its performance matches or exceeds that of
solutions utilizing explicit data transfers, such as cudaMem-
cpy. In this sense, we compare the results of the BFS and
CC applications with Subway [50]. Subway provides a solu-
tion for large graph traversal by first pinning and processing
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Figure 11: Sensitivity to number of QPs and CQs

the graph on the CPU to create smaller subgraphs of active
nodes that can fit into GPU memory and transferring these
subgraphs to GPU for traversal. As Table 3 shows DREAM
can achieve an average speedup of 1.4× for BFS and 1.6× for
CC over Subway [50]. Subway is limited to graphs of less
than 232 vertices; it cannot support theMO graph.

Impact of queue count. To understand the effect of the
number of queues on the performance, we measure the slow-
down in the performance of CC and BFS as the number of
queues is changed. As shown in Figure 11, the applications
start demonstrating near-optimal performance as the queue
count exceeds 48.

SSSP with limited GPU memory. To understand the ef-
fect of GPU memory limitation on application performance,
we evaluate DREAM and UVM for SSSP with GPU memory
limited to 16GB. Both approaches need to evict data from
the GPU memory to bring a new page. As Figure 12 presents
DREAM achieves an overall speedup of 1.9× on SSSP per-
formance on limited GPU memory. As the eviction size in
UVM is coarse-grain (2MB), it can evict the data that has
not been accessed by GPU threads and might be needed
later. However, since DREAM efficiently leverages the refer-
ence counter for each page and has an eviction size of 4KB,
DREAM reduces the redundant data transfer by 1.8×.

5.3 Transfer-bound Applications
In this section, we evaluate performance on CUDA bench-
marks: MVT (matrix-vector transpose), ATAX (matrix trans-
pose and vector multiplication), BIGC (big compute), and VA
(vector add). The performance of these applications depends
on efficient data transfer as they involve simple computa-
tions. Theworkloads in this benchmark suite can fit into GPU
memory. MVT, ATAX, and BIGC benchmarks [21] involve
the transpose of a matrix that requires memory accesses
through the columns of the matrix reducing the spatial lo-
cality. For these applications, DREAM performs up to 4×
better than UVM when using two NICs and up to 2× with
one NIC, achieving much better PCIe utilization as shown
in Figure 13. Vectoradd given in Listing 1 adds two DREAM
buffers with two billion floating-point elements and stores
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Figure 12: SSSP with 16GB GPU memory.
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Figure 13: Performance (bars) and PCIe Utilization
(lines) for UVM and DREAM

the results in another buffer. DREAM can provide just over
2× speedup and better PCIe utilization as depicted in Fig-
ure 13. When we restrict the GPU memory for VA, we obtain
around 1.7× speedup over UVM. The lower speed-up result is
achieved because DREAM is not optimized for efficient write-
backs under GPU memory pressure; specifically, we have
not yet implemented asynchronous writebacks, resulting in
increased latencies on these operations.

5.4 Oversubscription Analysis
In this analysis, the goal is to observe the performance slow-
down of different applications when the GPU memory gets
smaller than the workload size. For this, we artificially limit
the GPU memory and keep the workload size fixed. The
pressure on the GPU memory compared to the workload
size can be defined as in (1)

Workload Size
Available GPU memory

− 1 (1)

One of the goals of DREAM is to alleviate the programmers
from having to handle manual data partitioning and transfer
by offering efficient oversubscription of GPU memory with
stable performance. The existing approach is UVM oversub-
scription. Prior works [3, 27, 55] have shown the degradation
of application performance with UVM oversubscription. The
performance degradation can be directly related to the ineffi-
cient eviction mechanism which has a large page size of 2MB
and can often evict the pages even before they are accessed
by the GPU threads under memory pressure.
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Figure 14: Effect of oversubscription on GPU memory for different algorithms with UVM and DREAM.

DREAM, on the other hand, implements a FIFO-based
reference priority evictionmechanism as described in Section
§3.3. This eviction scheme happens when there is not enough
memory for DREAM runtime, and the thread needs to get a
new page frame that maps the page in host memory to a page
in GPU memory. In this case, the runtime atomically gets a
new page frame and checks the reference counter. Once the
counter becomes zero, no thread needs to access the page; it
is safe to evict the page, and the page frame is assigned to
the newly fetched page.
We run several different applications under increasing

oversubscription levels. The key observation from Figure
14 is that DREAM can provide consistent and predictable
performance even under highly pressured GPU memory.
However, with UVM, the performance is mostly dependent
on the data access patterns in the application. UVM can slow
down the performance of graph applications by 4× compared
to around 2× slowdown of DREAM. With MVT, ATAX, and
BIGC, Unified Virtual Memory (UVM) incurs exponential
slowdowns due to column-wise access patterns, which lack
spatial locality. As a result, these applications fail to benefit
from UVM’s speculative prefetching mechanisms, leading to
significant performance degradation. DREAM, on the other
hand, can keep the performance stable by introducing up
to 2× slowdown. The similar jumps in the slowdown for all
applications in DREAM happen because the leader threads
call eviction functions that introduce additional latency to
page request time.

5.5 Query Evaluation Benchmarks
For query evaluation, we compare the performance of
RAPIDS [46] by NVIDIA and custom query search with UVM
and DREAM. RAPIDS is a framework to make query searches
over the datasets using GPU. We provide 5 queries for the
Chicago Taxi Trips Dataset [10]. The main question in the
query is to find "The average dollar per mile a driver makes in
trips that take longer than 9000 seconds." To find the ultimate
result, firstly, (Q1) we find the total miles in such trips (>9000
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Figure 15: Query evaluation performance. DREAMuses
4KB pages. UVM uses a minimum size of 64KB (includ-
ing base page - 4KB + prefetch). ( 0.08% sparsity)

seconds); secondly, we find the total fares (Q2), then total
extras (negatives) (Q3), then the total tips (Q4), and finally,
total tolls (Q5). For all comparisons, the dataset is loaded into
the system memory. To optimize the run time of RAPIDS,
pinned buffers are employed. DREAM and UVM rely on host
memory as the backup and make on-demand page requests
to the data in host memory.

Results. Figure 15 shows that UVM performs on average
1.5× and 3× slower than RAPIDS and DREAM, respectively,
with no advantage for I/O amplification. DREAM benefits
from high-throughput, smaller granularity page transfers
leading to a performance improvement of over 1.5×with one
NIC and 2.5× with two NICs over RAPIDS (Q5). Although
RAPIDS can benefit from high-bandwidth data transfers due
to pinned buffers, it needs to transfer the whole data (entire
columns) for processing as it lacks on-demand access, leading
to significant I/O amplification (redundant data transfer).
UVM can have high I/O amplification as the page size is large
(4KB page fault + 60KB speculative prefetching). However,
DREAM halves I/O amplification for a sparsity of 0.08%.

5.6 Discussion
Overheads. DREAM allows GPU threads to interface di-
rectly with the NIC. Specifically, both page mappings and
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DREAM. No register spilling occurs.

page tables are stored in GPUmemory, enabling faster access
for GPU threads. In total, DREAM incurs memory overhead
of up to 8MB for page tables and mappings and 2MB for NIC
control resources. In addition, as Figure 16 illustrates, using
DREAM on GPUs does not cause any register spilling for the
applications studied in this paper.
Additional Insights. DREAM is a practical solution for

accelerators to access extended memory efficiently. Its per-
formance could be further improved with hardware support
like direct memory transfers between accelerators and the
CPU. We addressed this via the RNIC, which also enables
remote memory access and supports memory disaggregation
across GPU clusters.

6 RELATEDWORK
Unifiedmemory and storage. Prior works [8, 18, 19, 26, 28,
31, 34, 47, 64, 66, 67] have been proposed to enable efficient
memory access through unified memory and storage with
UVM. For example, Choi et al. [8] proposes a new system
for efficient unified memory systems for multi-GPU systems.
Koukos et al. [28] propose a novel scheme to facilitate hetero-
geneous systems (CPU-GPU) with unified virtual memory.
Ziabari et al. [67] proposes a new hardware-based unified
memory hierarchy for multi-GPU systems. Zhang et al. [66]
presents a unified GPU memory and storage architecture
for tensor migration in deep learning workloads. Markthub
et al. [34] extends the UVM to be able to make page-fault
requests to storage devices. Other works [19, 26, 64] mainly
leverage software modifications to improve the UVM perfor-
mance. The common part among these works is that they rely
on the host OS page fault handler for data migration. There-
fore, performance is limited due to the lack of page fault han-
dling parallelization and OS involvement delay. In addition,
the recently introduced Grace-Hopper Superchip [17, 52]
supports unified memory with hardware page tables and
creates coherent CPU-GPU memory by bringing together
the Grace CPU and Hopper GPU through NVLink-C2C [44].
However, it relies on a new and different CPU design that sup-
ports NVLink connection becoming an expensive hardware-
dependant solution.
Enabling direct storage access for larger memory.

Some prior works [48, 53, 57, 60] enable direct storage ac-
cess for GPUs. Silberstein et al. [57] proposed POSIX-like

file system APIs for GPU programs by integrating CPU’s
cache buffer into GPU memory. Active pointers by Shahar
et al. [53] are abstractions similar to memory-map to enable
GPU threads to access storage devices. Qureshi et al. [48] re-
cently proposed a software cache in GPU memory to enable
on-demand, fine-grain, and high-throughput access to stor-
age. DREAM differs from these works as it delivers efficient
on-demand access to system memory, rather than storage
and provides efficient oversubscription of GPU memories.

DREAM can be thought of as a form of memory disaggre-
gation, but driven by GPUs. The use of RNIC empowers ac-
celerators/GPUs to efficiently access the remote memory on
demand. Previous works [15, 49, 54] aim to provide efficient
fine-grain manipulation of remote data for CPU workloads.
DREAM shares similarities with these works in that they
also employ similar user-space mechanisms for managing
memory accesses for CPU workloads. However, DREAM dis-
tinguishes itself by specifically targeting efficient memory
management for GPUs within a single-node environment.

Other prior work [12, 22, 58] enable GPU direct access to
the network. GPUrdma [12] is a network library for GPUs,
while GPUnet [58] presents a native GPU networking layer
with socket abstraction and high-level networking APIs.

7 CONCLUDING REMARKS
In this paper, we address the data transfer bottleneck be-
tween the GPU and backup memory (typically located on
the CPU), which constrains performance, especially for work-
loads with datasets that exceed the capacity of GPU memory.
We propose a novel approach for allowing the GPU to man-
age this data transfer directly through RDMA. Since the CPU
motherboard does not support establishing RDMA connec-
tions directly, we leverage a Network Interface Card (NIC)
to facilitate this direct communication. With this support,
we show that DREAM can substantially outperform UVM
especially when the application memory footprint exceeds
the available physical memory on the GPU. In future work,
we plan to explore prefetching and caching the data near the
GPU to relax the requirement to have memory be pinned at
the host.
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