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ABSTRACT
Given a sparse tensor, how can we accurately capture complex la-
tent structures inherent in the tensor while maintaining the inter-
pretability of those structures? Tensor decomposition is a funda-
mental technique for analyzing tensors. Classical tensor models
provide multi-linear structures that are easy to interpret, but have
limitations in capturing complex structures present in real-world
sparse tensors. Recent neural tensor models have extended the ca-
pabilities of classical tensor models in capturing complex struc-
tures within the data. However, this has come at the cost of in-
terpretability: neural tensor models entangle interactions across
and within latent structures in a black-box manner, making it dif-
ficult to readily understand the discovered structures. Understand-
ing these structures, however, is crucial in applications such as
healthcare, which requires transparency in critical decision-making
processes.

To overcome this major limitation and bridge the gap between
the classical multi-linear models and neural tensor models, we pro-
pose NeuRal Additive TensoR Decomposition (NeAT), an ac-
curate and interpretable neural tensor model for sparse tensors.
The main idea of NeAT is to apply neural networks to each latent
component in an additive fashion. This not only captures diverse
patterns and complex structures in sparse tensors, but also pro-
vides a direct and intuitive interpretation of the structures by be-
ing close to the multi-linear tensor model. We conduct extensive
experiments on six large real-world sparse tensors. NeAT outper-
forms the state-of-the-art neural tensor models in link prediction,
surpassing a linear tensor model by 10% and the second-best neu-
ral tensor model by 4%, in accuracy. Through ablation studies, we
explore various model designs for NeAT to identify key factors
that impact generalization. Finally, we evaluate qualitatively and
quantitatively latent patterns discovered by NeAT, demonstrating
how to analyze the discovered latent patterns in real data obtained
from NeAT.
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1 INTRODUCTION
A tensor or multi-dimensional array is a natural way to represent
higher-order interactions betweenmulti-aspect data. In healthcare
domain, an example of such data includes (patients, medical diag-
nosis, procedure) tuples in Electronic Health Records (EHRs), indi-
cating whether a patient has been diagnosed with a specific medi-
cal procedure. Tensor decomposition is a fundamental method for
analyzing tensors by extracting latent structures. Canonical Polyadic
Decomposition (CPD) and Tucker are classical multi-linear tensor
decomposition models. They have been central to a diverse range
of applications such as healthcare analysis [2, 15], social networks
analysis [4, 27], knowledge base completion [22, 23, 26] and rec-
ommendation [7, 40, 41].

CPD [6, 12] specifically has gained popularity due to its sim-
plicity, uniqueness, and interpretability [20, 32, 35]. As depicted
in Figure 1(a), CPD reconstructs a tensor as a sum of rank-one
components, where each represents unique multi-linear relation-
ships and does not depend on other components. Importantly, this
additive nature of the decomposition simplifies understanding of
the relationships between latent factors within individual compo-
nents and identifying the entities that play a crucial role in these
components [4, 15, 29]. In the above example, CPD discovers soft
co-clustering of (patients, medical diagnosis, procedure) that share
similar interaction patterns within each component. The discov-
ered co-clusterings help to improve transparency in clinical deci-
sions and verify the correctness of the extracted patterns.

Even though CPD is preferred for its interpretability, many real-
world sparse tensors are better explained via complex non-linear
structures, which are often insufficiently represented by the ad-
dition of rank-one components. This limitation can lead to lower
accuracy of the model in various practical applications. Recent ten-
sor models based on neural networks for sparse tensors have gar-
nered attention, having successfully captured non-linear patterns
in sparse tensors [7, 9, 14, 24, 25, 30, 36, 38]. They have shown
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Figure 1: Comparison of model designs of CPD, NeAT, and neural tensor models with the third mode tensor. In NeAT,
a neural network is applied to each component to achieve interpretability similar to the rank-one component in CPD. In
contrast, the neural tensor model applies a neural network to all components simultaneously, which makes all components
interact within the neural network.

superior performance in tensor completion tasks compared to the
classical tensor models. Even though these approaches enhance
the conventional tensor models with the expressive power of neu-
ral networks, the way they are designed to use neural networks
intermixes components with each other thereby hindering the in-
terpretability of latent components, as illustrated in Figure 1(c).

To address this limitation, we propose NeuRal Additive Ten-
soR Decomposition (NeAT) to accurately model non-linear latent
structures while providing easily interpretable latent components
by respecting the separation of distinct components in a similar
vein as CPD. As illustrated in Figure 1(b), NeAT learns non-linear
structures present in each component by employing individually
parameterized neural networks, unlike existing neural tensor mod-
els that employ neural networks interacting with all components.
Also, NeAT designs the model leveraging the sparsity of tensors
to save significant computations by avoiding conventional tensor
operations. Our contributions are summarized as follows:
• Model. We propose NeAT, a novel neural tensor model that

can learn diverse non-linear structures while enhancing their
interpretability for sparse tensors.

• Performance. Extensive experiments on six large real-world
tensors demonstrate that NeAT shows the state-of-the-art per-
formance in accuracy for sparse tensor completion over all
baselines and shows its ability to capture meaningful patterns
in factors with downstream tasks.

• Interpretability. Finally, we show how NeAT can serve as
a glass-box model instead of a black-box model and provide
meaningful insights into its latent factors.

The rest of this paper is organized as follows. We introduce the
preliminaries and related works in Section 2. We propose NeAT in
Section 3 and present experimental results in Section 4. We sum-
marize the key points and results of our paper in Section 5. The
source code and datasets used in this paper are available at https:
//github.com/dawonahn/NeAT.

2 PRELIMINARIES & RELATEDWORK
We introduce preliminaries of tensor decompositions. We then dis-
cuss their interpretability from the perspective of tensor and addi-
tive models. We also provide an overview of neural tensor models.

2.1 Tensors
Tensors are defined as multi-dimensional arrays that generalize
one-dimensional arrays (or vectors) and two-dimensional arrays
(or matrices) to higher dimensions. Sparse tensors indicate tensors
where the majority of their entries are missing. Traditionally, the
dimension of a tensor is referred to as its order or the number of
modes; the size of each mode is called “dimensionality”. We use
boldface Euler script letters (e.g., X) to denote tensors, boldface
capitals (e.g., A) to denote matrices, boldface lower cases (e.g., a)
to denote vectors. We denote the 𝑖th row vector as a𝑖,:, 𝑟 th col-
umn vector as a𝑟 and (𝑖, 𝑟 )th entry as 𝑎𝑖𝑟 . The Frobenius norm
of a tensor X is given by | |X| |𝐹 =

√∑
𝛼 ∈Ω 𝑥2𝛼 , where 𝑥𝛼 is the

𝛼 = (𝑖1, · · · , 𝑖𝑁 )th entry of X and Ω is the set of indices of entries.

2.2 Tensor Decomposition
Weexplain two classicalmulti-linear tensormodels, CPD andTucker
decomposition. CPD [6, 12] approximates an 𝑁 -order tensor X ∈
R𝐼1×···×𝐼𝑁 as the sum of 𝑅 rank-one components as:

X ≈ JA(1) , . . . ,A(𝑁 )K = 𝑅∑
𝑟=1

a
(1)
𝑟 ◦ · · · ◦ a(𝑁 )

𝑟 , (1)

where ◦ denotes an outer product and a
(𝑛)
𝑟 ∈ R𝐼𝑛 is the 𝑟 th col-

umn or component of the 𝑛th factor matrix A(𝑛) ∈ R𝐼𝑛×𝑅 for
𝑛 = 1, · · · , 𝑁 . Each rank-one component (e.g., a(1)𝑟 ◦ · · · ◦ a

(𝑁 )
𝑟 )

corresponds to the unique latent pattern that simultaneously clus-
ters entities across 𝑁 modes. Elementwise, Equation (1) is written
as

𝑥𝛼 ≈
𝑅∑

𝑟=1

𝑎
(1)
𝑖1𝑟
𝑎
(2)
𝑖2𝑟

· · ·𝑎 (𝑁 )
𝑖𝑁 𝑟 , (2)

where 𝑥𝛼 indicates the 𝛼 = (𝑖1, · · · , 𝑖𝑁 )th entry of X and 𝑎 (𝑛)𝑖𝑛𝑟

indicates (𝑖𝑛, 𝑟 )th element of A(𝑛) .
TuckerDecomposition [37] approximates an𝑁 -order tensorX ∈

R𝐼1×···×𝐼𝑁 as a core tensor G ∈ R𝑅1×···×𝑅𝑁 multiplied by a factor
matrix A(𝑛) ∈ R𝐼𝑛×𝑅𝑛 along each mode 𝑛 as follows:

X ≈ JG; A(1) , . . . ,A(𝑁 )K = 𝑅1∑
𝑟1=1

· · ·
𝑅𝑁∑
𝑟𝑁 =1

𝑔𝑟1 · · ·𝑟𝑁 a
(1)
𝑟 ◦ · · · ◦ a(𝑁 )

𝑟 ,

(3)
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where 𝑅𝑛 denotes the number of components in the 𝑛th factor ma-
trix A(𝑛) ∈ R𝐼𝑛×𝑅𝑛 . Note that the entries of the core tensor G in-
dicate the level of interactions between different components. Ele-
mentwise, Equation (3) is written as

𝑥𝛼 ≈
𝑅1∑
𝑟1=1

· · ·
𝑅𝑁∑
𝑟𝑁 =1

𝑔𝑟1 · · ·𝑟𝑁 𝑎
(1)
𝑖𝑛𝑟1

· · ·𝑎 (𝑁 )
𝑖𝑛𝑟𝑁

. (4)

Note that CPD can be written as a constrained instance of the
Tucker decomposition where the core tensor is super-diagonal and
𝑅𝑛 is identical for all 𝑛.

The optimization problem of both tensor models is to find the
best factor matrices and a core tensor by minimizing the difference
between the given tensor and the reconstructed tensor, which is
formulated as:

min
G,A(1) , · · · ,A𝑁

∥X − X̃∥𝐹 ⇔ min
G,A(1) , · · · ,A𝑁

∑
𝛼 ∈Ω

(𝑥𝛼 − 𝑥𝛼 )2, (5)

where ∥·∥𝐹 denotes the Frobenius norm and X̃ or 𝑥𝛼 is the recon-
struction using either CPD in Equations (1) and (2) or Tucker in
Equations (3) and (4). Note that Ω denotes a set of indices of all en-
tries. Alternating least square (ALS) or gradient descent methods
are common approaches to solve this problem [20, 21]. A widely
used application of tensormodels is tensor completion, wheremiss-
ing entries of a tensor are predicted using factor matrices trained
with observed entries, also known as link prediction or missing
entry prediction [8, 10, 16, 17, 28, 34].

2.3 Interpretability
2.3.1 Tensor Models. In the realm of tensor decomposition and in
the context of this paper, interpretability refers to discovering hid-
den patterns in latent components related to original data more
readily. To understand the hidden patterns, we examine the most
influential entities in the components, where highermagnitude val-
ues indicate greater impact. In CPD, each latent component corre-
sponds directly to a unique hidden pattern and the contribution
of entities to each hidden pattern is easy to identify. On the other
hand, Tucker decomposition considers interactions between com-
ponents due to the core tensor, which complicates the interpreta-
tion. Inspired by the additive nature of CPD, we design the pro-
posed model to achieve interpretability. To further improve the in-
terpretability of latent components other than the model design,
various constraints such as non-negativity and sparsity can be ap-
plied to the components [2, 15].

2.3.2 Additive Models. Generalized Additive Models (GAMs) [13]
model non-linear relationships between features and outputs by
summing smooth functions of each feature. This additivity lends
interpretability to the relationships between features and outputs.
More recently, works like Neural Additive Models (NAMs) [3] ex-
tend GAMs to capture non-linear behavior in an additive manner
with neural networks. From the perspective of additive models,
CPD can be thought of as a multi-modal extension of GAMs for
multi-aspect data, and NeAT can be seen as a multi-modal exten-
sion of NAMs.The key difference between the additive models and
tensor models is that tensor models train features (factor matrices)
corresponding to entities.

2.4 Neural Tensor Models
Traditionally, CPD andTucker successfully fit low-rank linear struc-
tures while they often fail to fit tensors including non-linear la-
tent structures [25]. Thus, numerous methods replace multi-linear
operations with neural networks to capture complex structures.
NCF [14] is a matrix factorization model that employs Multi-Layer
Perceptrons (MLPs) to learn multi-linear and non-linear interac-
tions between users and items. NeuRalCP [24] is a Bayesian tensor
decomposition learning MLP where its input is a long concatena-
tion of row factors. NTF [24] exploits a Long Short-Term Memory
(LSTM) network for temporal interactions and MLP to model non-
linear interactions between components for predictive tasks in dy-
namic relational data. CoSTCo [25] leverages two Convolutional
Neural Networks (CNNs) to capture nonlinear interaction across
modes and ranks, and then uses MLPs for aggregating the out-
put of CNNs. It claimed and empirically showed that MLP-based
tensor models are prone to overfit to sparse tensors due to their
dense connections while CNNs avoid this problem. NTM [7] com-
bines two neural networks to learn multi-linear and non-linear re-
lations by considering the inner and outer products for recommen-
dation tasks. POND [36] is a probabilistic tensor decomposition
leveraging Gaussian processes for capturing complex interactions
and CNN to complete a given entry. M2DMTF [9] is a multi-mode
nonlinear deep tensor factorization where each factor matrix is
modeled with two-mode non-linear deep matrix factorization for
tensor completion. JULIA [30] is a framework for a tensor decom-
positionmodel to jointly capture linear and non-linear interactions
in the tensors by combining multi-linear and neural tensor models.
However, the way these models rely on the interaction of different
latent dimensions, makes it complicated to understand concepts of
those dimensions. In contrast, NeAT not only simplifies the discov-
ery of patterns in its latent dimensions as CPD does but also cap-
tures diverse complex structures within components. Furthermore,
we show that, via NeAT, even using MLPs produces the best gen-
eralization if an appropriate design with regularization techniques
is used in contrast to previous work [25].

3 PROPOSED METHOD
We propose NeuRal Additive TensoR Decomposition (NeAT)
to accurately learn non-linear structures present in sparse tensors
and to make those easy to interpret. We describe the details of the
model in the following sections.

3.1 Model
A key challenge in designing our model arises from the question:
How can we efficiently neuralize each rank-one component? In
other words, how can we efficiently apply neural networks to each
rank-one component? Given an 𝑁 -mode tensor X ∈ R𝐼1×···×𝐼𝑁 ,
applying a neural network to each rank-one component equals to
dealing with computations proportional to the size of the given
tensor. This is especially impractical for real-world sparse tensors
that have high dimensionality, due to the high computational costs.

To address this, NeAT leverages the sparsity of the tensor, con-
sidering only observed entries (nonzeros) instead of the entire ten-
sor; it replaces a linear product to neural network operations be-
tween elements of each component corresponding to indices of
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Figure 2: Illustration of a model architecture of NeAT. NeAT reconstructs observed entries by summing outputs of individ-
ually parameterized networks. While making components easy to interpretable, NeAT jointly captures various patterns in
components and learning complex interactions between them with neural networks.

nonzeros. This approach is scalable to large tensors since it is inde-
pendent of tensor size and more accurate than the one of treating
unobserved entries as 0 for sparse tensors [1, 31]. As illustrated
in Figure 2, given a nonzero 𝑥𝛼=(𝑖1, · · · ,𝑖𝑁 ) , NeAT gathers 𝑁 em-
beddings of dimension 𝑅 corresponding to an index 𝛼 . Then the
𝑟 th neural network uses only the 𝑟 th entries of embeddings to
learn non-linear interactions between them. NeAT reconstructs
the nonzero by summing all outputs from neural networks.

The formulation of NeAT is defined as follows. Given an 𝑁 -
mode tensorX ∈ R𝐼1×···×𝐼𝑁 with the set of the observed indices Ω
and a rank 𝑅, NeAT aims to learn a set of factor matrices {A(𝑛) ∈
R𝐼𝑛×𝑅 | 1 ≤ 𝑛 ≤ 𝑁 } and a set of neural networks {𝑓𝜃𝑟 | 1 ≤ 𝑟 ≤ 𝑅},
by reconstructing observed entries 𝑥𝛼 (∀𝛼 ∈ Ω) as follows:

𝑥𝛼 ≈ 𝑓𝜃1 (z
(1)
𝛼 ) + · · · + 𝑓𝜃𝑟 (z

(𝑟 )
𝛼 ) + · · · + 𝑓𝜃𝑅 (z

(𝑅)
𝛼 ), (6)

where z(𝑟 )𝛼 =
[
𝑎
(1)
𝑖1𝑟
, 𝑎

(2)
𝑖2𝑟
, . . . , 𝑎

(𝑁 )
𝑖𝑁 𝑟

]
∈ R1×𝑁 is a concatenation of

the 𝑟 th element 𝑎 (𝑛)𝑖𝑛𝑟
of embeddings corresponding to the 𝛼 . Each

individual neural network 𝑓𝜃𝑟 operates on the 𝑟 th concatenated
component z(𝑟 )𝛼 , and returns the 𝑟 th contribution to a given entry
𝑥𝛼 . Then, their all outputs are then aggregated to reconstruct to
𝑥𝛼 . It is important to note that each 𝑓𝜃𝑟 is individually parameter-
ized and does not share parameters with other neural networks.
This allows each component to act as an individual model, captur-
ing diverse patterns and interactions and thereby accurately recon-
structing a tensor. In Sections 4.2 and 4.4.1, Table 2 and Figures 4(a)
and 4(b) shows NeAT increase their performance when the rank
increases.

We employ MLPs to learn non-linear interactions between the
elements in the 𝑟 -th component, follows as:

𝑓𝜃𝑟 (z
(𝑟 )
𝛼 ) = h

(𝑙−1)
𝑟 W

(𝐿)
𝑟 + 𝑏 (𝐿)𝑟 , (7)

where W(𝐿)
𝑟 ∈ R𝑑𝐿−1×1 and b

(𝐿)
𝑟 ∈ R1×1 are a weight and bias of

the last 𝐿th layer. In the first layer, h(1)
𝑟 ∈ R1×𝑑1 is computed as:

h
(1)
𝑟 = 𝑔(z(𝑟 )𝛼 W

(0)
𝑟 + b

(0)
𝑟 ), (8)

where W(0)
𝑟 ∈ R𝑁×𝑑1 and b

(0)
𝑟 ∈ R1×𝑑1 , and for the subsequent

layers (𝑙 ≥ 2), we have:

h
(𝑙−1)
𝑟 = 𝑔(h(𝑙−2)

𝑟 W
(𝑙−1)
𝑟 + b

(𝑙−1)
𝑟 ), (9)

where W(𝑙−1)
𝑟 ∈ R𝑑𝑙−1×𝑑𝑙 and R1×𝑑𝑙 . Note that 𝑔 denotes an acti-

vation function, 𝑙 (1 ≤ 𝑙 ≤ 𝐿) denotes a depth of layers, and 𝑑𝑙
denotes the dimension size of the 𝑙th layer. We use the Rectified

Linear Unit (ReLU) as an activation function for each internal layer,
except for the last layer. In Section 4, we show that NeAT with 2-
layer MLPs excels compared to all the baselines; however, we note
that other types of neural networks can possibly replace the MLPs
to further improve the accuracy, and we leave it as a future work.
Furthermore, if we replace 𝑓𝜃𝑟 as the function that returns the prod-
uct of all entries in a vector, NeAT in Equation (6) is exactly the
same as CPD in Equation (2), therefore making NeAT a generaliz-
able extension of CPD. NeAT is able to express non-linear inter-
actions by employing neural networks while CPD is able to only
capture multi-linear interactions by computing an outer product
between factor matrices.

3.2 Training
In our experiments, we primarily focus on the completion of binary
tensors, also known as a link prediction, and as a result, we opt for
a binary cross-entropy loss function:

L (Θ) = − 1

|Ω |
∑
∀𝛼 ∈Ω

(𝑥𝛼 log 𝑥𝛼 + (1 − 𝑥𝛼 ) log(1 − 𝑥𝛼 )) + 𝜆𝑅(Θ),

(10)
where Θ includes all learnable parameters, factor matrices, and
weights of MLPs. Note that 𝑥𝛼 and 𝑥𝛼 indicates an observed en-
try and reconstruction entry corresponding to 𝛼 , respectively. We
apply the Sigmoid function to the entry 𝑥𝛼 to predict the proba-
bility of observed entries for the link prediction task. 𝜆𝑅(Θ) is a
regularization term for all parameters followed as:

𝑅(Θ) =
𝑁∑
𝑛=1

∥A(𝑛) ∥2𝐹 +
𝑅∑

𝑟=1

∑
W

(𝑙 )
𝑟 ∈𝜃𝑟

∥W(𝑙)
𝑟 ∥2𝐹 , (11)

where 𝜆 indicates a weight decay, A(𝑛) indicates the 𝑛th factor
matrix, andW(𝑙)

𝑟 indicates 𝑙th weights in each 𝑟 th neural network.
In the case of real-valued tensors, we would accordingly modify
our loss such as least squares.

We optimize Equation (10) of NeAT based on Adam [18] using
backpropagation and jointly train factor matrices and MLPs. Al-
though in principle a joint model like ours should be easier to train
with backpropagation, we observe that only specific components
are in utilization for loss minimization while others are not, result-
ing in poor performance. To avoid this, we apply dropout [33] to
all final outputs 𝑓𝜃𝑟 (z

(𝑟 )
𝛼 ) of MLPs. Dropout helps components to

be trained appropriately by randomly selecting different subsets
of components to reconstruct a tensor, preventing overfitting [19].
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Table 1: Summary of six real-world sparse tensors.

Name Dimensionality Nonzeros Sparsity

DBLP 1 4,057 × 14,328 × 7,723 94,022 2.1e-07
MovieLens 2 610 × 9,724 × 4,110 100,836 4.1e-06
YELP 3 70,818 × 15,580 × 109 335,022 7.1e-07
FS-NYC 4 1,084 × 38,334 × 7,641 225,701 2.8e-06
FS-TKY 4 2,294 × 61,859 × 7,641 570,743 5.3e-07
Yahoo-M 5 82,309 × 82,308 × 168 785,749 6.9e-07
1 https://github.com/Jhy1993/HAN
2 https://files.grouplens.org/datasets/movielens/ml-latest-small-README.html
3 https://www.yelp.com/dataset
4 https://sites.google.com/site/yangdingqi/home/foursquare-dataset
5 https://webscope.sandbox.yahoo.com/catalog.php?datatype=r

Also, Table 3 and Figure 6 in Section 4.6 exhibits that applying
dropout is highly effective in better generalization. We further nor-
malize inputs for MLPs and apply dropout to each layer inside neu-
ral networks, excluding the final one for further stable training.

3.3 Complexity Analysis
We analyze space and time complexities of our model. The total
dimensionality of an 𝑁 -mode tensor is denoted as 𝐼 = 𝐼1 + · · · 𝐼𝑁 ,
where 𝐼𝑛 represents the size of the 𝑛th mode, and the rank is de-
noted as 𝑅. The maximum size of the hidden dimension of neural
networks is denoted as 𝐷 = 𝑚𝑎𝑥 (𝑑1, · · · , 𝑑𝑙 ) and the depth is de-
noted as 𝐿. The total number of parameters in NeAT is O(𝐼𝑅 +
𝑅𝐿𝐷2). The number of parameters for factor matrices is 𝐼𝑅 and for
MLPs isO(𝑅𝐿𝐷2) where each has approximately equal to 𝐿𝐷2 pa-
rameters (𝑁𝑑1 + 𝑑1𝑑2 + · · · + 𝑑𝑙−1𝑑𝑙 + 𝑑𝑙 ). The time complexity of
NeAT is linear with regard to the number of observed entries and
independent to the size of a given tensor.Thus, the time complexity
for all observed entries, isO( |Ω |𝑅𝐿𝐷2), when forwarding a single
tensor entry through each neural network, it takesO(𝑅𝐿𝐷2) com-
putational cost.

We employ shallow networks (e.g., two layers) for most of ex-
periments, showing the best link prediction performance.With the
two-layer MLPs, computational costs for processing each entry be-
comes much smaller such as O(𝑅𝐷). Also, the parameters of neu-
ral networks are much less than the factors O(𝐼𝑅) since 𝐼 is much
larger than 𝐷 .

4 EXPERIMENTS
We conduct experiments to answer the following questions.

Q1 Performance (Section 4.2). How accurately does NeAT
perform in link prediction?

Q2 Interpretability (Section 4.3). Is NeAT interpretable?
Q3 Pattern Discovery (Section 4.4). Can NeAT learn mean-

ingful patterns in components?
Q4 Ablation Study (Section 4.5). How do model designs af-

fect performance?
Q5 Hyper-Parameter Study (Section 4.6). How do hyperpa-

rameter settings affect performance?

4.1 Experimental Setting
We conduct experiments on a machine equipped with an AMD
Ryzen CPU and an NVIDIA RTX A6000. We provide the details
of the experimental setup in the following paragraphs.

4.1.1 Datasets. We use six real-world sparse tensors to evaluate
the performance of the proposedmethod to the baselines.The datasets
are summarized in Table 1. MovieLens [11], YELP, and Yahoo-M
are movie, business, and music rating datasets consisting of (user,
item, timestamp). FS-NYC [39] and FS-TKY [39] are check-in datasets
consisting of (user, venue, timestamp), collected by Foursquare in
New York and Tokyo, respectively. Each entry 𝑥𝑖, 𝑗,𝑘 of each tensor
is binary indicating if a user 𝑖 is associated with an item 𝑗 (e.g.,
movie, venue) at the timestamp 𝑘 . DBLP is a computer science
bibliography network consisting of (author, paper, terminology)
, representing whether an author 𝑖 published a paper 𝑗 including a
terminology 𝑘 . We split a tensor into training, validation, and test
datasets with an 8:1:1 ratio. We randomly sample negative samples
with the same number of observed entries as in the split dataset.

4.1.2 Baselines. We compare NeAT to five baselines which con-
sist of multi-linear and neural tensor decomposition models.

• CPD is a standard CPD with an L2 regularization.
• TucKER [5]1 is a Tucker decomposition model without or-

thogonal constraints on factormatrices for knowledge graph
completion.

• NCF [14]2 is a collaborative filteringmodel extended for ten-
sors, learning linear and non-linear structures with MLP.

• CoSTCo [25]3 is a tensor completion model learning non-
linear structures with two 1-d CNNs and 2-layer MLPs.

• NTM [7] is a tensor decomposition model that combines the
inner product and the neuralized outer product via MLP to
learn both linear and non-linear structures.

4.1.3 Training. We employ Adam to optimize all models. We train
all baselines except for CPD with a binary cross entropy as speci-
fied in Equation (10) since CPD shows better performance with a
reconstruction loss. We select all hyper-parameters via a combina-
tion of grid search and Bayesian optimization based on early stop-
ping. We find learning rates from {10−2, 10−3, 10−4}, weight de-
cays from {10−3, 10−4, 10−5}, and ranks from {8, 16, 32, 64, 128}
for all models.We also find dimension sizes of layers from {8, 16, 32,
64, 128}, and layer depths from two to four, and batch sizes from
{512, 1024} for all neural tensor models.

4.1.4 Metrics. To evaluate the interpretability of NeAT and base-
lines, we examine the homogeneity of extracted patterns in compo-
nents. If each component consists of homogenous patterns, it is eas-
ier to distinguish it from the others, making the extracted pattern
more interpretable. In our experiment, we use auxiliary informa-
tion (e.g., labels) to evaluate homogeneity of components; we use
the labels of the top 𝐾 entities to create a top-𝐾 label distribution.
We derive two interpretability metrics: 1) AE (average entropy of
the top-𝐾 label distribution) and 2) JSD (average Jenson-Shannon
distance between the top-𝐾 label distributions). The AE evaluates
1https://github.com/ibalazevic/TuckER
2https://github.com/guoyang9/NCF
3https://github.com/USC-Melady/KDD19-CoSTCo

https://github.com/Jhy1993/HAN
https://files.grouplens.org/datasets/movielens/ml-latest-small-README.html
https://www.yelp.com/dataset
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
https://github.com/ibalazevic/TuckER
https://github.com/guoyang9/NCF
https://github.com/USC-Melady/KDD19-CoSTCo
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Table 2: Accuracy of NeAT and baselines in link prediction. NeAT is superior to all baselines in six real-world sparse tensors
across different rank sizes. Note that the best-performing method is denoted in bold.

DBLP MovieLens YELP

Model \ Rank 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

CPD 0.918 0.926 0.925 0.917 0.903 0.911 0.918 0.923 0.923 0.916 0.781 0.772 0.765 0.761 0.760
TucKER 0.834 0.837 0.946 0.966 0.965 0.902 0.919 0.934 0.941 0.944 0.829 0.831 0.831 0.833 0.826
NCF 0.834 0.836 0.821 0.937 0.879 0.981 0.985 0.987 0.989 0.988 0.840 0.846 0.849 0.849 0.852
CoSTCo 0.933 0.948 0.956 0.939 0.932 0.978 0.983 0.986 0.989 0.990 0.838 0.846 0.849 0.857 0.858
NTM 0.885 0.911 0.887 0.882 0.828 0.953 0.948 0.954 0.958 0.959 0.796 0.798 0.807 0.827 0.830
NeAT (Proposed) 0.942 0.960 0.969 0.973 0.976 0.981 0.984 0.988 0.990 0.991 0.835 0.836 0.854 0.857 0.864

FS-NYC FS-TKY Yahoo-M

Model \ Rank 8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

CPD 0.803 0.816 0.824 0.821 0.787 0.869 0.876 0.870 0.863 0.809 0.802 0.794 0.820 0.811 0.804
TucKER 0.805 0.811 0.816 0.829 0.838 0.852 0.854 0.870 0.876 0.881 0.866 0.879 0.886 0.891 0.908
NCF 0.794 0.796 0.817 0.818 0.825 0.854 0.860 0.859 0.861 0.875 0.826 0.851 0.845 0.870 0.888
CoSTCo 0.806 0.816 0.824 0.833 0.833 0.862 0.869 0.875 0.876 0.878 0.841 0.806 0.819 0.845 0.838
NTM 0.762 0.776 0.778 0.796 0.805 0.833 0.834 0.839 0.843 0.844 0.836 0.833 0.828 0.846 0.857
NeAT (Proposed) 0.811 0.830 0.845 0.851 0.849 0.861 0.873 0.881 0.887 0.887 0.917 0.927 0.925 0.918 0.915

whether each component per mode represents a distinct latent pat-
tern. Lower entropy indicates higher occurrence of certain labels,
making components more distinguishable. The JSD evaluates how
well the 𝑟 th component across the mode clusters together based
on specific labels. The lower the distance is, the better components
clusters. The AE is defined as follows.

𝐴𝐸 =
1

𝑁 × 𝑅

𝑁∑
𝑛=1

𝑅∑
𝑟=1

𝐻 (p(𝑛)
𝑟 ), (12)

where 𝐻 (p(𝑛)
𝑟 ) = −∑𝑀

𝑚=1 p
(𝑛)
𝑟 (𝑚) log p(𝑛)

𝑟 (𝑚) and 𝑁 , 𝑅, and 𝑀
denotes the number of modes, the rank, and the number of labels.
Here,

p
(𝑛)
𝑟 ∈ R𝑀×1 =

1

𝐾
[𝑝 (𝑛)𝑟1 · · · 𝑝 (𝑛)𝑟𝑀 ] (13)

indicates the top-𝐾 label distribution for 𝑟 th column in the 𝑛th fac-
tor matrix, where 𝑝 (𝑛)𝑟𝑚 = |{𝑖𝑛 ∈ 𝐼 ′𝑛 |𝑙𝑖𝑛 = 𝐿𝑚}| indicates the number
of indices having the label 𝐿𝑚 and 𝐼 ′𝑛 indicates a set of indices of
top-𝑘 values in a

(𝑛)
𝑟 . The JSD is defined as follows.

𝐽𝑆𝐷 =
1

𝑅

𝑅∑
𝑟=1

∑
𝑛∈𝑁,𝑛≠𝑛′

𝐷 (p(𝑛)
𝑟 | |p(𝑛′)

𝑟 ), (14)

where 𝐷 indicates Jenson-Shannon distance defined as

𝐷 (p(𝑛)
𝑟 | |p(𝑛′)

𝑟 ) = 1

2
𝐷 (p(𝑛)

𝑟 | |𝑄) + 1

2
𝐷 (p(𝑛′)

𝑟 | |𝑄), (15)

and 𝑄 = 1
2 (p

(𝑛)
𝑟 + p

(𝑛′)
𝑟 ).

4.2 Link Prediction
We evaluate NeAT and baselines on the link prediction task in
terms of accuracy with six real-world sparse tensors across differ-
ent ranks. For all models, we repeat experimental results averaged
over three runs with optimal hyper-parameters and a fixed rank.

Table 2 describes that NeAT consistently demonstrates superior
accuracy compared to all baselines including multi-linear models,

CPD and TucKER, and neural tensor models, NCF, CoSTCo, and
NTM, across all six datasets. NeAT consistently shows a stable and
increasing trend in performance as the rank increases. This can
be attributed to two factors: 1) the sum of individually parame-
terized components prevents the model from becoming overly ex-
pressive while capturing diverse patterns, and 2) dropout on com-
ponents prevents reliance on specific components when they are
training, resulting in a better generalization. For MovieLens and
YELP, neural tensor models show better accuracy over multi-linear
tensor models even at lower ranks (e.g., 8 or 16), indicating the
presence of complex latent patterns in these datasets. This demon-
strates that NeAT is able to capture complex structures without
underfitting, as other neural tensor models do. For DBLP and FS-
TKY, CPD performs well at lower ranks compared to neural ten-
sor models, and neural tensor models trained with even higher
ranks show marginal improvements in performance over multi-
linear models. This indicates these datasets present less complex
latent patterns. However, NeAT achieves better performance for
all competitors, which indicates that NeAT does not overfit tensors
when even inherent structures are not very complex. For FS-NYC
and Yahoo-M, NeAT shows the best accuracy while neural tensor
models and multi-linear tensor models show comparable perfor-
mance with each other.

According to the study [25], MLP-based neural tensor models
are prone to overfitting sparse tensors due toMLP’s excessive over-
parameterization in the form of redundant connections. CoSTCo
generally performs better than neural tensormodels based onMLP,
NCF and NTM, due to CNNs, learning informative patterns using
convolutional filters.Whereas, NeAT achieves both expressiveness
based on MLP and generalization due to its additivity and proper
regularization techniques. Overall, NeAT avoids two common pit-
falls: it effectively captures complex structures in tensors without
oversimplifying in contrast to classical tensormodels, and it avoids
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Figure 3: Comparison of NeAT and baselines in terms of AE and JSD of top-𝐾 label distribution. The lower, the better.
NeAT shows the second-best lower AE among baselines across the different 𝐾 and lower JSD between 𝑟th component across
the mode. This indicates that the components extracted in NeAT are easier to interpret since they are easier to separate from
each other. Note that each xtick indicates a mode-wise top-𝐾 settings and 𝐾 values increase toward the right of the x-axis.

the tendency to overfit simpler structures, a challenge often faced
by neural tensor models.

4.3 Interpretability
In our experiment, we evaluate interpretability of baselines by us-
ing a DBLP dataset consisting of (author, paper, conference) tuples.
Authors, papers, and conferences are labeledwith one of four study
areas of study: Information Retrieval (IR), Database (DB), DataMin-
ing (DM), and Artificial Intelligence (AI). We varies 𝐾 according to
the size of eachmode and use six settings of top-𝐾 such as [5, 10, 3],
[15, 30, 3], [30, 50, 5], [30, 100, 5], [50, 100, 10], and [100, 1000, 10].
Figure 3 demonstrates the comparison of NeAT with the baselines
in terms of AE and JSD of top-𝐾 label distribution over ranks 8 to
32. NeAT shows the second-best AE and a lower JSD compared to
CoSTCo, which shows the best AE among neural tensor baselines;
a lower value of AE indicates that for NeAT, just like CPD, each 𝑟 th
component is well separated with respect to true labels and a lower
value of JSD indicates that 𝑟 th components across themodes learns
similar distribution. For baselines such as NTM, NCF and TuckER,
a higher AE and lower JSD indicates that distributions learned by
respective models in each component are not separable. As sig-
naled by higher AE, but the lower JSD indicated that differences
between label distributions across 𝑟 th components are small. This
implies that even though all models learn similar clusters over 𝑟 th
components , i.e. co-clusters, those co-clusters aren’t easily identi-
fiable based on the labels for high entropy methods like NTM, NCF
and TuckER.

4.4 Pattern Discovery
We evaluate if NeAT is able to capture meaningful patterns in fac-
tors, rather than having neural networks absorb all available infor-
mation, through the quantitative and qualitative analyses.

4.4.1 Downstream task. WeevaluateNeAT and baselines for a down-
stream task using a DBLP dataset consisting of (author, paper, con-
ference) tuples. The task is to classify the research area of authors
using author embeddings obtained from tensor models. Authors
are labeled with one of four study areas of study: IR, DB, DM,
and AI. There are two settings: a transductive and inductive set-
ting. Under the transductive setting, an input tensor includes both
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Figure 4: Comparison of NeAT and baselines in terms of
Micro-F1 for the downstream task. NeAT presents better
generalization compared to multi-linear models for both in-
ductive and transductive settings since it captures diverse
patterns in factors and complex interactions with MLPs.

training and test author samples. We simultaneously obtain train-
ing and test embeddings from tensor models. In the inductive set-
ting, tensor models are trained with only a training tensor, con-
sisting of training authors. Test embeddings for new authors are
inferred using the trained models whose parameters are frozen;
test embeddings are trained with the frozen trained models by re-
constructing a test tensor until they converge. Note that the learn-
able parameters of multi-linear models are factor matrices and a
core tensor, and the ones of neural tensor models are factor matri-
ces and all weights of neural networks. To focus on evaluating the
embeddings themselves, we employ a linear classifier rather than
advanced classifiers.

Figure 4(a) exhibits stable classification performance with em-
beddings obtained from NeAT in a transductive setting, indicating
that the embeddings are able to capture meaningful patterns. Fig-
ure 4(b) shows that NeAT and neural tensor models have better
classification performance than multi-linear tensor models in an
inductive setting. This indicates that trained neural networks accu-
rately learn complex interactions between latent patterns. Also, as
rank increases, the classification performance also increases, which
indicates that NeAT learns diverse patterns in factors. Therefore,
NeAT is able to capture both meaningful diverse patterns and com-
plex interactions by jointly training MLP and factor matrices.
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Figure 5: Pattern discoveries obtained from NeAT exhibit coherent co-clusters. (a) and (b) indicates the label distributions of
top-𝑘 authors and conferences. (c) indicates a conference factor matrix where its y-axis is sorted in the order of AI, DB, DM,
and IR labels. (d) highlights the top-𝑘 authors in the second and the fourth components.

4.4.2 Visualization. We evaluate the discovered latent patterns by
visualizing them in factor matrices obtained from NeAT trained
with a rank of eight on DBLP used in Section 4.4.1. Authors and
conferences are categorized into four areas of study. Thanks to
the simplicity of NeAT, we can easily explore factor matrices to
discover patterns by considering only each column (component)
of factor matrices without interactions between components. We
note that other neural tensor models [7, 25, 38] and linear tensor
models [5] with the exception of CPD are not amenable to the
same co-clustering-based interpretation since those models inter-
act with all dimensions of embeddings.

To explore latent patterns, we consider the top-𝑘 highest valued
factors in each column of factor matrices; we set 𝑘 to 100 for au-
thors and 5 for conferences, respectively, and count the labels in
those top-𝑘 to identify their distribution.We use Inverse document
frequency (IDF) scores [29] to consider top-𝑘 entities that appear
in only a few columns, to further enhance the interpretability. Fig-
ure 5 present coherent pattern discoveries. By examining the top-𝑘
authors and conferences in each component, we observe that each
component exhibits homogeneity based on the majority votes for
specific labels. For example, Figures 5(a) and 5(b) reveal that the
second and fourth components are softly clustered based on DB
and IR labels, respectively. This indicates that we can discover the
meaningful patterns with NeAT using the same straightforward
analysis procedures as in CPD. Furthermore, we display the entire
conference factor matrix and top-𝑘 ranked authors.

4.5 Ablation Study
We perform an ablation study of the NeAT design to identify key
design elements that affect performance. It has three main fea-
tures: additivity, weight sharing, and Dropout. Additivity means
that there is no interaction between the components and those
components add together to reconstruct the tensor. To eliminate
additivity (to learn rank-wise interaction), we apply MLP to out-
puts of MLPs of all components in NeAT. Weight sharing means
using the same MLP instead of using individually parameterized
MLPs. Dropout refers to the dropout applied on components while
dropout for inner layers are added with 𝑝 = 0.5 by default. The (+)
and (-) in front of a feature indicate whether the respective feature

is included or not. We fixed the rank at 32 and used a two-layer
MLP with a maximum dimension of 32. Note that NeAT includes
features: additivity, no sharing weights, and dropout.

Table 3 shows the results of an ablation study for the three main
features considered in the model design with respect to the link
prediction task. There are three findings. 1) Removing additivity
does not improve performance. This indicates rank-wise interac-
tions do not help in capturing non-linear structures butmight over-
fit. 2) NeAT performs better than the one with shared weights, in-
dicating that more complex interactions can be captured with indi-
vidual MLPs. 3) applying dropout to components greatly improves
generalization.

4.6 Hyper-Parameter Study
We investigate the impact of major hyper-parameters in NeAT on
link prediction accuracy, focusing on dimensions of layers, layer
depth, and dropout ratio across different ranks. We increase the
the rank and dimension size within the range 8, 16, 32, 64, 128,
increase the depth from two to four layers, and vary the dropout
ratio ranging from 0 to 0.9. The first two heatmaps presented in
Figure 6 reveals that increasing the dimension size generally leads
to improved accuracy compared to varying the depth of layers.
The third heatmaps, sensitivity analysis regarding dropout ratio,
demonstrates consistent patterns across all datasets. Higher dropout
ratios provide significant accuracy enhancements, particularly for
larger ranks, indicating that dropout contributes to better general-
ization by ensuring balanced training of all components.

5 CONCLUSION
We propose NeAT, a neural tensor model that neuralizes each la-
tent component with MLP in an additive fashion. NeAT discovers
various patterns and complex interactions in real-world sparse ten-
sors, and lends themselves to direct and intuitive interpretations.
Experimental results demonstrate the generalization of NeAT for
link prediction and validate the applicability of its factor matrices
to downstream tasks. Through visualization of the discovered la-
tent patterns, we illustrate their coherent co-clusters and provide
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Table 3: Ablation study on combinations of different features of a model design. The feature of model designs are additivity
between components, dropout on components, and weight sharing between neural networks. Note that (+) and (-) indicates
each feature is included or not. NeAT shows the best performance among the combinations of features for link prediction.

Model \ Dataset DBLP MovieLens YELP FS-NYC FS-TKY Yahoo-M

Benchmark (NeAT) 0.964 0.986 0.848 0.843 0.877 0.909
(-)Dropout 0.914 (-5.0%) 0.981 (-0.5%) 0.826 (-2.2%) 0.823 (-2.0%) 0.826 (-5.1%) 0.870 (-3.9%)
(-)Additivity 0.941 (-2.3%) 0.986 (0.0%) 0.836 (-1.2%) 0.821 (-2.2%) 0.861 (-1.6%) 0.879 (-3.0%)
(-)Additivity, (-)Dropout 0.903 (-6.1%) 0.983 (-0.3%) 0.813 (-3.5%) 0.795 (-4.8%) 0.847 (-3.0%) 0.875 (-3.4%)
(+)Weight Sharing 0.963 (-0.1%) 0.989 (0.3%) 0.839 (-0.9%) 0.830 (-1.3%) 0.874 (-0.3%) 0.883 (-2.6%)
(+)Weight Sharing, (-)Dropout 0.947 (-1.7%) 0.979 (-0.7%) 0.821 (-2.7%) 0.791 (-5.2%) 0.847 (-3.0%) 0.839 (-7.0%)
(-)Additivity, (+)Weight Sharing 0.953 (-1.1%) 0.983 (-0.3%) 0.834 (-1.4%) 0.822 (-2.1%) 0.864 (-1.3%) 0.870 (-3.9%)
(-)Additivity, (+)Weight Sharing, (-)Dropout 0.926 (-3.8%) 0.979 (-0.7%) 0.826 (-2.2%) 0.809 (-3.4%) 0.855 (-2.2%) 0.867 (-4.2%)
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Figure 6: The impact of major hyper-parameters in NeAT on link prediction accuracy. From left to right, the heatmap describes
accuracy regarding dimensions of layers, layer depth, and dropout ratio across different ranks. NeAT improves accuracy with
larger ranks, dimension, and higher dropout ratio.

insights into understanding each component. Additionally, the ab-
lation study and hyper-parameter study highlight the importance
of proper model design and regularization techniques for general-
ization. In future work, we aim to study the generalization of the
proposed method in terms of ensemble learning. Also, we will ex-
tendNeAT to handle various types of tensors including counts, and
probability measures, which are commonly encountered in real-
world tensor data. Furthermore, we intend to enhance the inter-
pretability of interactions in MLP.

ACKNOWLEDGMENTS
The first author was a summer intern at CISCO. Research at UC River-
side was supported in part by the National Science Foundation under CA-
REER grant no. IIS 2046086 and CREST Center for Multidisciplinary Re-
search Excellence in Cyber-Physical Infrastructure Systems (MECIS) grant
no. 2112650, by the Agriculture and Food Research Initiative Competitive
Grant no. 2020-69012-31914 from the USDA National Institute of Food and
Agriculture, the University TransportationCenter for Railway Safety (UTCRS)
at UTRGV through theUSDOTUTCProgramunderGrantNo. 69A3552348340,
and by the Combat Capabilities Development Command Army Research
Laboratory and was accomplished under Cooperative Agreement Number

W911NF-13-2-0045 (ARL Cyber Security CRA). The views and conclusions
contained in this document are those of the authors and should not be in-
terpreted as representing the official policies, either expressed or implied,
of the Combat Capabilities Development Command Army Research Labo-
ratory or the U.S. Government. The U.S. Government is authorized to re-
produce and distribute reprints for Government purposes not withstanding
any copyright notation here on.

REFERENCES
[1] Evrim Acar, Daniel M Dunlavy, Tamara G Kolda, and Morten Mørup. 2011. Scal-

able tensor factorizations for incomplete data. Chemometrics and Intelligent Lab-
oratory Systems 106, 1 (2011), 41–56.

[2] Ardavan Afshar, Kejing Yin, Sherry Yan, Cheng Qian, Joyce Ho, Haesun Park,
and Jimeng Sun. 2021. Swift: Scalable wasserstein factorization for sparse non-
negative tensors. In Proceedings of the AAAI conference on artificial intelligence,
Vol. 35. 6548–6556.

[3] RishabhAgarwal, LeviMelnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich,
Rich Caruana, and Geoffrey Hinton. 2021. Neural AdditiveModels: Interpretable
Machine Learning with Neural Nets. arXiv:2004.13912 [cs.LG]

[4] Saba Al-Sayouri, Ekta Gujral, Danai Koutra, Evangelos E Papalexakis, and
Sarah S Lam. 2020. t-pine: Tensor-based predictable and interpretable node em-
beddings. Social Network Analysis and Mining 10 (2020), 1–11.

[5] Ivana Balažević, Carl Allen, and Timothy M Hospedales. 2019. Tucker: Tensor
factorization for knowledge graph completion. arXiv preprint arXiv:1901.09590
(2019).

https://arxiv.org/abs/2004.13912


CIKM ’24, October 21–25, 2024, Boise, ID, USA Dawon Ahn, Uday Singh Saini, Evangelos E. Papalexakis, and Ali Payani

[6] J Douglas Carroll and Jih-Jie Chang. 1970. Analysis of individual differences
in multidimensional scaling via an N-way generalization of “Eckart-Young” de-
composition. Psychometrika 35, 3 (1970), 283–319.

[7] Huiyuan Chen and Jing Li. 2020. Neural tensor model for learning multi-aspect
factors in recommender systems. In International Joint Conference on Artificial
Intelligence (IJCAI), Vol. 2020.

[8] Daniel M Dunlavy, Tamara G Kolda, and Evrim Acar. 2011. Temporal link pre-
diction using matrix and tensor factorizations. ACM Transactions on Knowledge
Discovery from Data (TKDD) 5, 2 (2011), 1–27.

[9] Jicong Fan. 2021. Multi-mode deep matrix and tensor factorization. In interna-
tional conference on learning representations.

[10] Shikai Fang, Xin Yu, Zheng Wang, Shibo Li, Mike Kirby, and Shandian Zhe.
2023. Functional Bayesian Tucker Decomposition for Continuous-indexed Ten-
sor Data. arXiv preprint arXiv:2311.04829 (2023).

[11] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[12] Richard A Harshman et al. 1970. Foundations of the PARAFAC procedure: Mod-
els and conditions for an” explanatory” multimodal factor analysis. (1970).

[13] Trevor Hastie and Robert Tibshirani. 1990. Generalized additive models. Wiley
Online Library.

[14] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[15] Joyce C Ho, Joydeep Ghosh, and Jimeng Sun. 2014. Marble: high-throughput
phenotyping from electronic health records via sparse nonnegative tensor fac-
torization. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. 115–124.

[16] Bo Hui and Wei-Shinn Ku. 2022. Low-rank Nonnegative Tensor Decomposi-
tion in Hyperbolic Space. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 646–654.

[17] Jun-Gi Jang and U Kang. 2020. D-tucker: Fast and memory-efficient tucker de-
composition for dense tensors. In 2020 IEEE 36th International Conference onData
Engineering (ICDE). IEEE, 1850–1853.

[18] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[19] Arinbjörn Kolbeinsson, Jean Kossaifi, Yannis Panagakis, Adrian Bulat, Ani-
mashree Anandkumar, Ioanna Tzoulaki, and Paul M Matthews. 2021. Tensor
dropout for robust learning. IEEE Journal of Selected Topics in Signal Processing
15, 3 (2021), 630–640.

[20] Tamara G Kolda and Brett W Bader. 2009. Tensor decompositions and applica-
tions. SIAM review 51, 3 (2009), 455–500.

[21] Tamara G Kolda and David Hong. 2020. Stochastic gradients for large-scale
tensor decomposition. SIAM Journal on Mathematics of Data Science 2, 4 (2020),
1066–1095.

[22] Timothée Lacroix, Guillaume Obozinski, and Nicolas Usunier. 2020. Ten-
sor decompositions for temporal knowledge base completion. arXiv preprint
arXiv:2004.04926 (2020).

[23] Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. 2018. Canonical
tensor decomposition for knowledge base completion. In International Confer-
ence on Machine Learning. PMLR, 2863–2872.

[24] Bin Liu, Lirong He, Yingming Li, Shandian Zhe, and Zenglin Xu. 2018. Neuralcp:
Bayesian multiway data analysis with neural tensor decomposition. Cognitive
Computation 10 (2018), 1051–1061.

[25] Hanpeng Liu, Yaguang Li, Michael Tsang, and Yan Liu. 2019. Costco: A neu-
ral tensor completion model for sparse tensors. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 324–
334.

[26] Madhav Nimishakavi, Uday Singh Saini, and Partha Talukdar. 2016. Rela-
tion schema induction using tensor factorization with side information. arXiv
preprint arXiv:1605.04227 (2016).

[27] Evangelos E Papalexakis, Leman Akoglu, and Dino Ience. 2013. Do more views
of a graph help? community detection and clustering inmulti-graphs. In Proceed-
ings of the 16th International Conference on Information Fusion. IEEE, 899–905.

[28] Moonjeong Park, Jun-Gi Jang, and Lee Sael. 2021. VeST: Very sparse tucker
factorization of large-scale tensors. In 2021 IEEE International Conference on Big
Data and Smart Computing (BigComp). IEEE, 172–179.

[29] Namyong Park, Byungsoo Jeon, Jungwoo Lee, and U Kang. 2016. Bigtensor: Min-
ing billion-scale tensor made easy. In Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management. 2457–2460.

[30] Cheng Qian, Kejun Huang, Lucas Glass, Rakshith S Srinivasa, and Jimeng Sun.
2022. Julia: Joint multi-linear and nonlinear identification for tensor completion.
arXiv preprint arXiv:2202.00071 (2022).

[31] Kijung Shin, Lee Sael, and U Kang. 2016. Fully scalable methods for distributed
tensor factorization. IEEE Transactions on Knowledge and Data Engineering 29, 1
(2016), 100–113.

[32] Nicholas D Sidiropoulos and Rasmus Bro. 2000. On the uniqueness of multilin-
ear decomposition of N-way arrays. Journal of Chemometrics: A Journal of the

Chemometrics Society 14, 3 (2000), 229–239.
[33] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. The journal of machine learning research 15, 1 (2014), 1929–1958.

[34] Zerui Tao, Toshihisa Tanaka, and Qibin Zhao. 2024. Efficient Nonparametric
Tensor Decomposition for Binary and Count Data. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 38. 15319–15327.

[35] Jos MF ten Berge. 2000. The typical rank of tall three-way arrays. Psychometrika
65 (2000), 525–532.

[36] Conor Tillinghast, Shikai Fang, Kai Zhang, and Shandian Zhe. 2020. Probabilistic
neural-kernel tensor decomposition. In 2020 IEEE International Conference on
Data Mining (ICDM). IEEE, 531–540.

[37] Ledyard R Tucker. 1966. Somemathematical notes on three-mode factor analysis.
Psychometrika 31, 3 (1966), 279–311.

[38] Xian Wu, Baoxu Shi, Yuxiao Dong, Chao Huang, and Nitesh V Chawla. 2019.
Neural tensor factorization for temporal interaction learning. In Proceedings of
the Twelfth ACM international conference on web search and data mining. 537–
545.

[39] Dingqi Yang, Daqing Zhang, Vincent. W. Zheng, and Zhiyong Yu. 2015. Model-
ing User Activity Preference by Leveraging User Spatial Temporal Characteris-
tics in LBSNs. IEEE Transactions on Systems, Man, and Cybernetics: Systems 45,
1 (2015), 129–142.

[40] Lina Yao, Quan Z Sheng, Yongrui Qin, Xianzhi Wang, Ali Shemshadi, and Qi He.
2015. Context-aware point-of-interest recommendation using tensor factoriza-
tionwith social regularization. In Proceedings of the 38th international ACMSIGIR
conference on research and development in information retrieval. 1007–1010.

[41] Ziwei Zhu, Xia Hu, and James Caverlee. 2018. Fairness-aware tensor-based rec-
ommendation. In Proceedings of the 27th ACM international conference on infor-
mation and knowledge management. 1153–1162.


	Abstract
	1 Introduction
	2 Preliminaries & Related Work
	2.1 Tensors
	2.2 Tensor Decomposition
	2.3 Interpretability
	2.4 Neural Tensor Models

	3 Proposed Method
	3.1 Model
	3.2 Training
	3.3 Complexity Analysis

	4 Experiments
	4.1 Experimental Setting
	4.2 Link Prediction
	4.3 Interpretability
	4.4 Pattern Discovery
	4.5 Ablation Study
	4.6 Hyper-Parameter Study

	5 Conclusion
	Acknowledgments
	References

