
1

Foundations of Software Testing

 Chapter 2: Test Generation: Requirements

Last update: September 3, 2007

These slides are copyrighted. They are for use
with the Foundations of Software Testing
book by Aditya Mathur. Please use the slides
but do not remove the copyright notice.

Aditya P. Mathur
Purdue University

© Aditya P. Mathur 2006
2

Learning Objectives

§  Test generation from predicates

§  Equivalence class partitioning

§  Boundary value analysis
Essential black-box techniques
for generating tests for
functional testing.

© Aditya P. Mathur 2006
3

Applications of test generation
techniques

Test generation techniques described in this chapter belong to

the black-box testing category.

These techniques are useful during functional testing where

the objective is to test whether or not an application, unit,

system, or subsystem, correctly implements the functionality

as per the given requirements

4

The test selection problem

2

© Aditya P. Mathur 2006
5

Requirements and test generation
Requirements serve as the starting point for the generation of
tests. During the initial phases of development, requirements may
exist only in the minds of one or more people.

These requirements, more aptly ideas, are then specified
rigorously using modeling elements such as use cases,
sequence diagrams, and statecharts in UML.

Rigorously specified requirements are often transformed into
formal requirements using requirements specification languages
such as Z, S, and RSML.

© Aditya P. Mathur 2006
6

Test generation techniques

© Aditya P. Mathur 2006
7

Test selection problem
Let D denote the input domain of a program P. The test
selection problem is to select a subset T of tests such that
execution of P against each element of T will reveal all errors
in P.

In general there does not exist any algorithm to construct
such a test set. However, there are heuristics and model
based methods that can be used to generate tests that will
reveal certain type of faults.

© Aditya P. Mathur 2006
8

Test selection problem (contd.)

The challenge is to construct a test set T ⊆ D that will reveal
as many errors in P as possible.

The problem of test selection is difficult due primarily to the
size and complexity of the input domain of P.

3

© Aditya P. Mathur 2006
9

Exhaustive testing

The large size of the input domain prevents a tester from
exhaustively testing the program under test against all possible
inputs. By ``exhaustive" testing we mean testing the given
program against every element in its input domain.

The complexity makes it harder to select individual tests.

© Aditya P. Mathur 2006
10

Large input domain

Consider program P that is required to sort a sequence of
integers into ascending order. Assuming that P will be executed
on a machine in which integers range from -32768 to 32767, the
input domain of pr consists of all possible sequences of integers
in the range [-32768, 32767].

If there is no limit on the size of the sequence that can be input,
then the input domain of P is infinitely large and P can never be
tested exhaustively. If the size of the input sequence is limited to,
say Nmax>1, then the size of the input domain depends on the value
of N.

© Aditya P. Mathur 2006
11

Complex input domain

Consider a procedure P in a payroll processing system that
takes an employee record as input and computes the weekly
salary. For simplicity, assume that the employee record consists
of the following items with their respective types and
constraints:

12

Equivalence class partitioning

4

© Aditya P. Mathur 2006
13

Equivalence partitioning

Test selection using equivalence partitioning allows a tester to
subdivide the input domain into a relatively small number of
sub-domains (say N).

In strict mathematical terms, the sub-domains by definition are
disjoint. Each subset is known as an equivalence class.

© Aditya P. Mathur 2006
14

Program behavior and equivalence
classes

The N equivalence classes are created assuming that the
program under test exhibits the same behavior on all
elements, i.e. tests, within a class.

This assumption allows the tester to select exactly one
test from each equivalence class resulting in a test
suite of exactly N tests.

© Aditya P. Mathur 2006
15

Faults targeted
The entire set of inputs to any application can be divided into at least
two subsets: one containing all the expected, or legal, inputs (E) and
the other containing all unexpected, or illegal, inputs (U).

Each of the two subsets, can be further subdivided into subsets on
which the application is required to behave differently (e.g. E1, E2,
E3, and U1, U2).

© Aditya P. Mathur 2006
16

Faults targeted (contd.)

Equivalence class partitioning selects tests that target any faults
in the application that cause it to behave incorrectly when the
input is in either of the two classes or their subsets.

5

© Aditya P. Mathur 2006
17

Example 1
Consider an application A that takes an integer denoted by age as
input. Let us suppose that the only legal values of age are in the range
[1..120]. The set of input values is now divided into a set E containing
all integers in the range [1..120] and a set U containing the remaining
integers.

All integers

[1..120]

Other integers

© Aditya P. Mathur 2006
18

Example 1 (contd.)

Further, assume that the application is required to process all values in
the range [1..61] in accordance with requirement R1 and those in the
range [62..120] according to requirement R2.
Thus E is further subdivided into two regions depending on the
expected behavior.

Similarly, it is expected that all invalid inputs less than or equal to 1
are to be treated in one way while all greater than 120 are to be treated
differently. This leads to a subdivision of U into two categories.

© Aditya P. Mathur 2006
19

Example 1 (contd.)

All integers

[62-120]

[1..61]

<1

>120

© Aditya P. Mathur 2006
20

Example 1 (contd.)

It is expected that any single test selected from the range [1..61]
will reveal any fault with respect to R1. Similarly, any test
selected from the region [62..120] will reveal any fault with
respect to R2. A similar expectation applies to the two regions
containing the unexpected inputs.

Tests selected using the equivalence partitioning technique aim at
targeting faults in the application under test with respect to inputs in
any of the four regions, i.e. two regions containing expected inputs
and two regions containing the unexpected inputs.

6

© Aditya P. Mathur 2006
21

Effectiveness
The effectiveness of tests generated using equivalence partitioning for
testing application A, is judged by the ratio of the number of faults
these tests are able to expose to the total faults lurking in A.

As is the case with any test selection technique in software testing,
the effectiveness of tests selected using equivalence partitioning is
less than 1 for most practical applications. The effectiveness can be
improved through an unambiguous and complete specification of the
requirements and carefully selected tests using the equivalence
partitioning technique described in the following sections.

© Aditya P. Mathur 2006
22

Example 2

Consider that wordCount method takes a word w and a filename
f as input and returns the number of occurrences of w in the text
contained in the file named f. An exception is raised if there is no
file with name f.

This example shows a few ways to define equivalence classes
based on the knowledge of requirements and the program text.

© Aditya P. Mathur 2006
23

Example 2 (contd.)

begin

String w, f

Input w, f

if (not exists(f) {raise exception; return(0);}

if(length(w)==0)return(0);

if(empty(f))return(0);

return(getCount(w,f));

end

Using the partitioning method
described in the examples above,
we obtain the following equivalence
classes.

© Aditya P. Mathur 2006
24

Example 2 (contd.)
Equivalence class w f

E1 non-null exists, not empty

E2 non-null does not exist

E3 non-null exists, empty

E4 null exists, not empty

E5 null does not exist

E6 null exists, empty

7

© Aditya P. Mathur 2006
25

Example 2 (contd.)
Note that the number of equivalence classes without
any knowledge of the program code may be fewer (e.g.,
2 for file exists and file does not exist), whereas the
number of equivalence classes derived with the
knowledge of partial code is 6.

Of course, an experienced tester will likely derive the
six equivalence classes given above, and perhaps
more, even before the code is available

© Aditya P. Mathur 2006
26

Equivalence classes based on
program output

In some cases the equivalence classes are based on the output
generated by the program. For example, suppose that a program
outputs an integer.

It is worth asking: ``Does the program ever generate a 0? What
are the maximum and minimum possible values of the output?"

These two questions lead to two the following equivalence
classes based on outputs:

© Aditya P. Mathur 2006
27

Equivalence classes based on
program output (contd.)

E1: Output value v is 0.
E2: Output value v is the maximum possible.
E3: Output value v is the minimum possible.
E4: All other output values.

Based on the output equivalence classes one may now derive
equivalence classes for the inputs. Thus each of the four classes
given above might lead to one equivalence class consisting of
inputs.

© Aditya P. Mathur 2006
28

Equivalence classes for variables:
range

Eq. Classes Example

One class with
values inside the
range and two with
values outside the
range.

speed
∈[60..90]

{50}, {75},
{92}

area: float
area≥0.0

{{-1.0},
{15.52}}

age: int {{-1}, {56},
{132}}

letter:char {{J}, {3}}

Constraints Classes

8

© Aditya P. Mathur 2006
29

Equivalence classes for variables:
strings

Eq. Classes Example

At least one
containing all legal
strings and one all
illegal strings based
on any constraints.

firstname:
string

{{ε}, {Sue},
{Loooong
Name}}

Constraints Classes

© Aditya P. Mathur 2006
30

Equivalence classes for variables:
enumeration

Eq. Classes Example

Each value in a separate
class

autocolor:{red,
blue, green}

{{red,} {blue},
{green}}

up:boolean {{true}, {false}}

Constraints Classes

© Aditya P. Mathur 2006
31

Equivalence classes for variables:
arrays
Eq. Classes Example

One class containing all
legal arrays, one
containing the empty
array, and one
containing a larger than
expected array.

int [] aName: new
int[3];

{[]}, {[-10, 20]},
{[-9, 0, 12, 15]}

Constraints Classes

© Aditya P. Mathur 2006
32

Equivalence classes for variables:
compound data type

Arrays in Java and structures in C++ are compound types. Such
input types may arise while testing components of an application
such as a function or an object.

While generating equivalence classes for such inputs, one must
consider legal and illegal values for each component of the
structure. The next example illustrates the derivation of equivalence
classes for an input variable that has a compound type.

9

© Aditya P. Mathur 2006
33

Equivalence classes for variables:
compound data type: Example

struct transcript
 {
 string fName; // First name.
 string lName; // Last name.
 string cTitle [200]; // Course titles.
 char grades [200]; // Letter grades corresponding
 to course titles.

}

© Aditya P. Mathur 2006
34

Unidimensional partitioning
One way to partition the input domain is to consider one input
variable at a time. Thus each input variable leads to a partition of
the input domain. We refer to this style of partitioning as
unidimensional equivalence partitioning or simply unidimensional
partitioning.

This type of partitioning is commonly used.

© Aditya P. Mathur 2006
35

Multidimensional partitioning

Another way is to consider the input domain I as the set product
of the input variables and define a relation on I. This procedure
creates one partition consisting of several equivalence classes.
We refer to this method as multidimensional equivalence
partitioning or simply multidimensional partitioning.

Multidimensional partitioning leads to a large number of
equivalence classes that are difficult to manage manually. Many
classes so created might be infeasible. Nevertheless, equivalence
classes so created offer an increased variety of tests as is
illustrated in the next section.

© Aditya P. Mathur 2006
36

Partitioning Example

Consider an application that requires two integer inputs x and y.
Each of these inputs is expected to lie in the following ranges:
3≤ x≤7 and 5≤y≤9.

For unidimensional partitioning we apply the partitioning
guidelines to x and y individually. This leads to the following
six equivalence classes.

10

© Aditya P. Mathur 2006
37

Partitioning Example (contd.)

E1: x<3 E2: 3≤x≤7 E3: x>7 y ignored.

E4: y<5 E5: 5≤y≤9 E6: y>9 x ignored.

For multidimensional partitioning we consider the input
domain to be the set product X x Y. This leads to 9
equivalence classes.

© Aditya P. Mathur 2006
38

Partitioning Example (contd.)

E1: x<3, y<5 E2: x<3, 5≤y≤9 E3: x<3, y>9

E4: 3≤x≤7, y<5 E5: 3≤x≤7, 5≤y≤9 E6: 3≤x≤7, y>9

E7: x>7, y<5 E8: x>7, 5≤y≤9 E9: x>7, y>9

© Aditya P. Mathur 2006
39

Systematic procedure for
equivalence partitioning

1. Identify the input domain: Read the requirements carefully
and identify all input and output variables, their types, and any
conditions associated with their use.

Environment variables, such as class variables used in the
method under test and environment variables in Unix,
Windows, and other operating systems, also serve as input
variables. Given the set of values each variable can assume, an
approximation to the input domain is the product of these sets.

© Aditya P. Mathur 2006
40

Systematic procedure for
equivalence partitioning (contd.)

2. Equivalence classing: Partition the set of values of each variable
into disjoint subsets. Each subset is an equivalence class. Together,
the equivalence classes based on an input variable partition the input
domain. Partitioning the input domain using values of one variable,
is done based on the expected behavior of the program.

Values for which the program is expected to behave in the ``same
way" are grouped together. Note that ``same way" needs to be
defined by the tester.

11

© Aditya P. Mathur 2006
41

Systematic procedure for
equivalence partitioning (contd.)

The equivalence classes are combined using the multidimensional
partitioning approach described earlier.

3. Combine equivalence classes: This step is usually omitted and
the equivalence classes defined for each variable are directly used to
select test cases. However, by not combining the equivalence
classes, one misses the opportunity to generate useful tests.

© Aditya P. Mathur 2006
42

Systematic procedure for
equivalence partitioning (contd.)

For example, suppose that an application is tested via its GUI, i.e.
data is input using commands available in the GUI. The GUI might
disallow invalid inputs by offering a palette of valid inputs only.
There might also be constraints in the requirements that render
certain equivalence infeasible.

4. Identify infeasible equivalence classes: An infeasible
equivalence class is one that contains a combination of input data
that cannot be generated during test. Such an equivalence class
might arise due to several reasons.

© Aditya P. Mathur 2006
43

Boiler control example (BCS)

Command temp causes CS to ask the operator to enter the
amount by which the temperature is to be changed (tempch).
Values of tempch are in the range -10..10 in increments of 5
degrees Fahrenheit. An temperature change of 0 is not an option.

The control software of BCS, abbreviated as CS, is required to
offer several options. One of the options, C (for control), is used
by a human operator to give one of three commands (cmd):
change the boiler temperature (temp), shut down the boiler
(shut), and cancel the request (cancel).

© Aditya P. Mathur 2006
44

BCS: example (contd.)

The command file may contain any one of the three commands,
together with the value of the temperature to be changed if the
command is temp. The file name is obtained from variable F.

Selection of option C forces the BCS to examine variable V.
If V is set to GUI, the operator is asked to enter one of the three
commands via a GUI. However, if V is set to file, BCS obtains
the command from a command file.

12

© Aditya P. Mathur 2006
45

BCS: example (contd.)

Control Software
(CS) G

U
I

datafile

cmd

tempch

V F cmd: command
(temp, shut, cancel)

tempch: desired
temperature change
(-10..10)

V, F: Environment variables

V ∈{GUI, file}

F: file name if V is set to “file.”

© Aditya P. Mathur 2006
46

BCS: example (contd.)

Values of V and F can be altered by a different module in BCS.

In response to temp and shut commands, the control software is
required to generate appropriate signals to be sent to the boiler
heating system.

© Aditya P. Mathur 2006
47

BCS: example (contd.)

The GUI forces the tester to select from a limited set of values as
specified in the requirements. For example, the only options
available for the value of tempch are -10, -5, 5, and 10. We refer
to these four values of tempch as tvalid while all other values as
tinvalid.

We assume that the control software is to be tested in a simulated
environment. The tester takes on the role of an operator and
interacts with the CS via a GUI.

© Aditya P. Mathur 2006
48

BCS: 1. Identify input domain

The first step in generating equivalence partitions is to identify
the (approximate) input domain. Recall that the domain
identified in this step will likely be a superset of the complete
input domain of the control software.

First we examine the requirements, identify input variables, their
types, and values. These are listed in the following table.

13

© Aditya P. Mathur 2006
49

BCS: Variables, types, values
Variable Kind Type Value(s)

V Environment Enumerated File, GUI

F Environment String A file name

cmd Input via GUI/
File

Enumerated {temp, cancel, shut}

tempch Input via GUI/
File

Enumerated {-10, -5, 5, 10}

© Aditya P. Mathur 2006
50

BCS: Input domain

Input domain ⊆ S = V × F × cmd × tempch

Sample values in the input domain (--: don’t care):

(GUI, --, shut, --), (file, cmdfile, shut, --)

(file, cmdfile, temp, 5)

© Aditya P. Mathur 2006
51

BCS: 2. Equivalence classing

Variable Partition

V {{GUI}, {file}, {undefined}}

F {{fvalid}, {finvalid}}

cmd {{temp}, {cancel}, {shut}, {cinvalid}}

tempch {{tvalid}, {tinvalid}}

© Aditya P. Mathur 2006
52

BCS: 3. Combine equivalence
classes (contd.)

There is a total of 3 × 4 × 2 × 5=120 equivalence classes.

Note that tinvalid, tvalid, finvalid, and fvalid denote sets of values.
“undefined” denotes one value.

Sample equivalence class: {(GUI, fvalid, temp, -10)}

Note that each of the classes listed above represents an infinite
number of input values for the control software. For example,
{(GUI, fvalid, temp, -10)} denotes an infinite set of values obtained
by replacing fvalid by a string that corresponds to the name of an
existing file. Each value is a potential input to the BCS.

14

© Aditya P. Mathur 2006
53

BCS: 4. Discard infeasible
equivalence classes

{(V, F, {cancel, shut, cinvalid}, tvalid∪ tinvalid)}

Note that the amount by which the boiler temperature is to be
changed is only considered when the operator selects temp for cmd.
Thus all equivalence classes that match the following template are
infeasible.

This parent-child relationship between cmd and tempch renders
infeasible a total of 3 × 2 × 3 × 5 = 90 equivalence classes.

© Aditya P. Mathur 2006
54

BCS: 4. Discard infeasible
equivalence classes (contd.)

After having discarded all infeasible equivalence classes, we are left
with the following testable (or feasible) equivalence classes.

{(GUI,_,temp,tvalid)} {(GUI,_,shut,NA)} {(GUI,_,cancel,NA)}
{(file,fvalid,temp,tvalid+tinvalid)} {(file,fvalid,shut,_)}
{(file,fvalid,cancel,_)} {(file,fvalid,cinvalid,_)}
{(file,finvalid,NA,NA)}
{(undefined,NA,NA,NA)}

_ Input Not Used
NA Input Not Allowed

© Aditya P. Mathur 2006
55

Selecting test data

Given a set of equivalence classes that form a partition of the
input domain, it is relatively straightforward to select tests.
However, options exist in the presence of _ values.

In the most general case, a tester simply selects one test that
serves as a representative of each equivalence class.

56

Boundary value analysis

15

© Aditya P. Mathur 2006
57

Errors at the boundaries
Experience indicates that programmers make mistakes in processing
values at and near the boundaries of equivalence classes.

For example, suppose that method M is required to compute a
function f1 when x≤ 0 is true and function f2 otherwise. However,
M has an error due to which it computes f1 for x<0 and f2
otherwise.

Obviously, this fault is revealed, though not necessarily, when M is
tested against x=0 but not if the input test set is, for example, {-4,7}
derived using equivalence partitioning. In this example, the value
x=0, lies at the boundary of the equivalence classes x≤0 and x>0.

© Aditya P. Mathur 2006
58

Boundary value analysis (BVA)
Boundary value analysis is a test selection technique that targets
faults in applications at the boundaries of equivalence classes.

While equivalence partitioning selects tests from within
equivalence classes, boundary value analysis focuses on tests at
and near the boundaries of equivalence classes.

Certainly, tests derived using either of the two techniques may
overlap.

© Aditya P. Mathur 2006
59

BVA: Procedure
1  Partition the input domain using unidimensional partitioning.

This leads to as many partitions as there are input variables.
Alternately, a single partition of an input domain can be created
using multidimensional partitioning. We will generate several
sub-domains in this step.

2  Identify the boundaries for each partition. Boundaries may also
be identified using special relationships amongst the inputs.

3  Select test data such that each boundary value occurs in at
least one test input.

© Aditya P. Mathur 2006
60

BVA: Example: 1. Create
equivalence classes

Assuming that an item code must be in the range 99..999 and
quantity in the range 1..100,

Equivalence classes for code:
E1: Values less than 99.
E2: Values in the range.
E3: Values greater than 999.

Equivalence classes for qty:
E4: Values less than 1.
E5: Values in the range.
E6: Values greater than 100.

16

© Aditya P. Mathur 2006
61

BVA: Example: 2. Identify boundaries

Equivalence classes and boundaries for findPrice. Boundaries are
indicated with an x. Points near the boundary are marked *.

E1
E2

E3

98 100 998 1000

99 999
x x * * * *

E4
E5

E6

0 2 99 101

1 100
x x * * * *

© Aditya P. Mathur 2006
62

BVA: Example: 3. Construct test set

Test selection based on the boundary value analysis technique
requires that tests must include, for each variable, values at and
around the boundary. Consider the following test set:

T={ t1: (code=98, qty=0),
 t2: (code=99, qty=1),
 t3: (code=100, qty=2),
 t4: (code=998, qty=99),
 t5: (code=999, qty=100),
 t6: (code=1000, qty=101) }

63

Testing predicates

© Aditya P. Mathur 2006
64

Where do predicates arise?

Predicates arise from requirements in a variety of applications.
Here is an example from Paradkar, Tai, and Vouk,
“Specification based testing using cause-effect graphs, Annals of
Software Engineering,” V 4, pp 133-157, 1997.

A boiler needs to be to be shut down when the following
conditions hold:

17

© Aditya P. Mathur 2006
65

Boiler shutdown conditions

1.  The water level in the boiler is below X lbs. (a)
2.  The water level in the boiler is above Y lbs. (b)
3.  A water pump has failed. (c)
4.  A pump monitor has failed. (d)
5.  Steam meter has failed. (e)

The boiler is to be shut down when a or b is true or the boiler is in
degraded mode and the steam meter fails. We combine these five
conditions to form a compound condition (predicate) for boiler
shutdown.

Boiler in degraded mode
when either is true.

© Aditya P. Mathur 2006
66

Boiler shutdown conditions

Denoting the five conditions above as a through e, we obtain the
following Boolean expression E that when true must force a
boiler shutdown:

 E = a + b + (c+d)e
where the + sign indicates “OR” and a multiplication indicates
“AND.”

The goal of predicate-based test generation is to generate tests
from a predicate p that guarantee the detection of any error that
belongs to a class of errors in the coding of p.

© Aditya P. Mathur 2006
67

Another example

A condition is represented formally as a predicate, also known as a
Boolean expression. For example, consider the requirement

``if the printer is ON and has paper then send document to printer."

This statement consists of a condition part and an action part. The
following predicate represents the condition part of the statement.

pr: (printerstatus=ON) ∧ (printertray!= empty)

© Aditya P. Mathur 2006
68

Test generation from predicates

We will now examine two techniques, named BOR and BRO for
generating tests that are guaranteed to detect certain faults in the
coding of conditions. The conditions from which tests are
generated might arise from requirements or might be embedded
in the program to be tested.

Conditions guard actions. For example,
 if condition then action
is a typical format of many functional requirements.

18

© Aditya P. Mathur 2006
69

Predicates
Relational operators (relop): {<, ≤, >, ≥, =, ≠.}

 = and == are equivalent.
Boolean operators (bop): {!,∧,∨, xor} also known as

 {not, AND, OR, XOR}.

Relational expression: e1 relop e2. (e.g. a+b<c)

 e1 and e2 are expressions whose values
 can be compared using relop.

Simple predicate: A Boolean variable or a relational
 expression. (x<0)

Compound predicate: Join one or more simple predicates
 using bop. (gender==“female”∧age>65)

© Aditya P. Mathur 2006
70

Boolean expressions
Boolean expression: one or more Boolean variables joined
 by bop. (a∧b∨!c)

a, b, and c are also known as literals. Negation is also denoted by
placing a bar over a Boolean expression such as in (a∧b). We
also write ab for a∧b and a+b for a∨b when there is no
confusion.

Singular Boolean expression: When each literal appears

 only once, e.g. (a∧b∨!c)

© Aditya P. Mathur 2006
71

Boolean expressions (contd.)

Disjunctive normal form (DNF): Sum of products:
 e.g. (p q) + (r s) + (a c).

Conjunctive normal form (CNF): Product of sums:

 e.g.: (p+q)(r+s)(a+c)

Any Boolean expression in DNF can be converted to an equivalent
CNF and vice versa.
e.g., CNF: (p+!r)(p+s)(q+!r)(q+s) is equivalent to DNF: (pq+!rs)

© Aditya P. Mathur 2006
72

Boolean expressions (contd.)

Mutually singular: Boolean expressions e1 and e2 are mutually
singular when they do not share any literal.

If expression E contains components e1, e2,..
then ei is considered a singular component only if
it is singular &
it is mutually singular with the remaining elements of E.

19

© Aditya P. Mathur 2006
73

Fault model for predicate testing
What faults are we targeting when testing for the
correct implementation of predicates?

Boolean operator fault: Suppose that the specification of a
software module requires that an action be performed when
the condition (a<b) ∨ (c>d) ∧e is true.

Here a, b, c, and d are integer variables and e is a Boolean
variable.

© Aditya P. Mathur 2006
74

Boolean operator faults

(a<b) ∧ (c>d) ∧e Incorrect Boolean operator

(a<b) ∨ ! (c>d) ∧e Incorrect negation operator

(a<b) ∧(c>d) ∨ e Incorrect Boolean operators

 (multiple faults).

Correct predicate: (a<b) ∨ (c>d) ∧e

© Aditya P. Mathur 2006
75

Relational operator faults

(a==b) ∨ (c>d) ∧e Incorrect relational operator

(a==b) ∨ (c≤d) ∧e Two relational operator faults

(a==b) ∨ (c>d) ∨ e Incorrect Boolean & relational

 operators

Correct predicate: (a<b) ∨ (c>d) ∧e

© Aditya P. Mathur 2006
76

Goal of predicate testing
Given a correct predicate pc, the goal of predicate testing is to
generate a test set T such that there is at least one test case t ∈ T
for which pc and its faulty version pi, evaluate to different truth
values.

Such a test set is said to guarantee the detection of any fault of
the kind in the fault model introduced above.

20

© Aditya P. Mathur 2006
77

Goal of predicate testing (contd.)
As an example, suppose that pc: a<b+c and pi: a>b+c. Consider
a test set T={t1, t2} where t1: <a=0, b=0, c=0> and t2: <a=0,
b=1, c=1>.

The fault in pi is not revealed by t1 as both pc and pi evaluate
to false when evaluated against t1.

However, the fault is revealed by t2 as pc evaluates to true and
pi to false when evaluated against t2.

© Aditya P. Mathur 2006
78

Missing or extra Boolean variable
faults

Correct predicate: a ∨ b

Extra Boolean variable fault: a ∨ b∧c

Missing Boolean variable fault: a

© Aditya P. Mathur 2006
79

Predicate constraints: BR symbols
Consider the following Boolean-Relational set of BR-symbols:
BR={t, f, <, =, >}

For example, consider the predicate E: a<b and the constraint
“>” . A test case that satisfies this constraint for E must cause
E to evaluate to false.

A BR symbol is a constraint on a Boolean variable or a
relational expression.

© Aditya P. Mathur 2006
80

Infeasible constraints

A constraint C is considered infeasible for predicate pr if there
exists no input values for the variables in pr that satisfy c.

For example, the constraint t is infeasible
for the predicate a>b∧ b>d
if it is known that d>a.

21

© Aditya P. Mathur 2006
81

Predicate constraints
Let pr denote a predicate with n, n>0, ∨ and ∧ operators.

A predicate constraint C for predicate pr is a sequence of (n
+1) BR symbols, one for each Boolean variable or relational
expression in pr.

Test case t satisfies C for predicate pr, if each component of pr
satisfies the corresponding constraint in C when evaluated
against t. Constraint C for predicate pr guides the development
of a test for pr, i.e. it offers hints on what the values of the
variables should be for pr to satisfy C.

© Aditya P. Mathur 2006
82

True and false constraints

pr(C) denotes the value of predicate pr evaluated using a test case
that satisfies constraint C.

C is referred to as a true constraint when pr(C) is true and a false
constraint otherwise.

A set of constraints S is partitioned into subsets St and Sf, such that
for each C in St, pr(C) =true, and for each C in Sf, pr(C) =false.
 S= St ∪ Sf.

© Aditya P. Mathur 2006
83

Predicate constraints: Example

Consider the predicate pr: b∧ (r<s) ∨ (u≥v) and a constraint
C: (t, =, >). The following test case satisfies C for pr.

<b=true, r=1, s=1, u=1, v=0>

<b=true, r=1, s=2, u=1, v=2>

The following test case does not satisfy C for pr.

© Aditya P. Mathur 2006
84

Predicate testing: criteria

We will discuss two such criteria named BOR and BRO.

Given a predicate pr, we want to generate a test set T such that

•  T is minimal and
•  T guarantees the detection of any fault in implementation of pr;

22

© Aditya P. Mathur 2006
85

Predicate testing: BOR testing
criterion

A test set T that satisfies the BOR testing criterion for a compound
predicate pr, guarantees the detection of single or multiple
Boolean operator faults in the implementation of pr.

T is referred to as a BOR-adequate test set and sometimes written

as TBOR.

© Aditya P. Mathur 2006
86

Predicate testing: BRO testing
criterion

A test set T that satisfies the BRO testing criterion for a compound
predicate pr, guarantees the detection of single or multiple
Boolean operator and relational operator faults in the
implementation of pr.

T is referred to as a BRO-adequate test set and sometimes written

as TBRO.

© Aditya P. Mathur 2006
87

Predicate testing: guaranteeing fault
detection

 Let Tx, x∈{BOR, BRO}, be a test set derived from predicate pr.

 Let pf be another predicate obtained from pr by injecting single or

multiple faults: Boolean operator fault and relational operator
fault.

 Tx is said to guarantee the detection of faults in pf if for
some t ∈ Tx, pr(t)≠ pf(t).

© Aditya P. Mathur 2006
88

Guaranteeing fault detection:
example

Let pr = a<b ∧ c>d

Let TBOR={t1, t2, t3} is a BOR adequate test set that satisfies S.

t1: <a=1, b=2, c=1, d=0 >; Satisfies (t, t), i.e. a<b is true and

 c<d is also true.
t2: <a=1, b=2, c=1, d=2 >; Satisfies (t, f)
t3: <a=1, b=0, c=1, d=0 >; Satisfies (f, t)

Constraint set S = {(t, t), (t,f), (f, t)}

23

© Aditya P. Mathur 2006
89

Guaranteeing fault detection

Generate single Boolean operator faults in
 pr: a<b ∧ c>d

and show that T guarantees the detection of each fault.

Example:

 a<b ∧ c>d a<b ∧ !c>d
 t, f, f f, t, f

See Table 2.6. page 158

outcomes of
test cases

© Aditya P. Mathur 2006
90

Algorithms for generating BOR and
BRO adequate tests

Review of a basic definition: The cross product of two sets A and
B is defined as:

 A×B={(a,b)|a∈A and b∈B}

The onto product of two sets A and B is defined as:

A⊗B={(u,v)|u∈A, v∈B, such that each element of A appears at least

once as u and each element of B appears at least once as v.}

Note that A⊗B is a minimal set.

© Aditya P. Mathur 2006
91

Set products: Example

Let A={t, =, >} and B={f, <}

A×B={(t, f), (t, <), (=, f), (=, <), (>,f), (>,<)}

A⊗B ={(t, f), (=,<), (>,<)}
A⊗B ={(t, <), (=,f), (>,<)}
A⊗B ={(t, f), (=,<), (>,f)}
A⊗B ={(t, <), (=,<), (>,f)}
A⊗B ={(t, <), (=,f), (>,f)}
A⊗B ={(t, f), (=,f), (>,<)}

© Aditya P. Mathur 2006
92

Generation of BOR constraint set

See page 160 for a formal algorithm. An illustration follows.

We want to generate TBOR for: pr: a<b ∧ c>d

First, generate syntax tree of pr.

a<b c>d

∧

24

© Aditya P. Mathur 2006
93

Generation of the BOR constraint set

We will use the following notation:

SN

 is the constraint set for node N in the syntax tree for pr.

SN
t is the true constraint set for node N in the syntax tree for pr.

SN
f is the false constraint set for node N in the syntax tree for pr.

SN= SN
t ∪ SN

f .

© Aditya P. Mathur 2006
94

Generation of the BOR constraint set
(contd.)

Second, label each leaf node with the constraint set {(t), (f)}.
We label the nodes as N1, N2, and so on for convenience.

a<b c>d

∧

N1 N2

N3

SN1= {(t), (f)} SN2= {(t), (f)}

© Aditya P. Mathur 2006
95

Generation of the BOR constraint set
(contd.)

Third, compute the constraint set for the next higher node in the
syntax tree (i.e., constraint set for N3 from those of its descendants).
Three possibilities for N3: AND; OR; and NOT.

SN3
t = SN1

t ⊗ SN2
t

SN3
f = (SN1

f ×{t2})∪({t1}× SN2
f)

SN3
f = SN1

f ⊗ SN2
f

SN3
t = (SN1

t ×{f2})∪({f1}× SN2
t)

SN3
f = SN1

t
SN3

t = SN1
f

AND: OR:

NOT:

© Aditya P. Mathur 2006
96

Generation of the BOR constraint set
(contd.)

SN3
t = SN1

t ⊗ SN2
t ={(t)} ⊗ {(t)}={(t, t)}

SN3
f = (SN1

f ×{t2})∪({t1}× SN2
f

 = ({(f)} ×{(t)})∪({(t)}× {(f)})

 = {(f, t)}∪{(t, f)}

 = {(f, t),{(t, f)}

a<b c>d

∧

N1 N2

N3

SN1= {(t), (f)} SN2= {(t), (f)}

25

© Aditya P. Mathur 2006
97

Generation of TBOR

As per our objective, we have computed the BOR constraint set
for the root node of the AST(pr). We can now generate a test set
using the BOR constraint set associated with the root node.

SN3 contains a sequence of three constraints
and hence we get a minimal test set
consisting of three test cases. Here is one
possible test set.

TBOR ={t1, t2, t3}
t1=<a=1, b=2, c=6, d=5> (t, t)
t2=<a=1, b=0, c=6, d=5> (f, t)
t3=<a=1, b=2, c=1, d=2> (t, f)

a<b c>d

∧

{(t), (f)} {(t), (f)}

N1 N2

N3

SN3={(t,t), (f, t), (t, f)}

© Aditya P. Mathur 2006
98

Generation of BRO constraint set

See page 163 for a formal algorithm. An illustration follows.

Recall that a test set adequate with respect to a BRO constraint
set for predicate pr, guarantees the detection of all combinations
of single or multiple Boolean operator and relational operator
faults.

© Aditya P. Mathur 2006
99

BRO constraint set

The BRO constraint set S for relational expression e1 relop e2:
 S={(>), (=), (<)}

Separation of S into its true (St) and false (Sf)components:

 relop: > St={(>)} Sf={(=), (<)}
 relop: ≥ St={(>), (=)} Sf={(<)}
 relop: = St={(=)} Sf={(<), (>)}
 relop: < St={(<)} Sf={(=), (>)}
 relop: ≤ St={(<), (=)} Sf={(>)}

Note: tN denotes an element of St
N. fN denotes an element of Sf

N
© Aditya P. Mathur 2006

100

BRO constraint set: Example

pr: (a+b<c)∧!p ∨ (r>s)

Step 1: Construct the AST for the given predicate.

p

r>s ∧

a+b<c !

∨

N1

N4

N2

N6

N5

N3

26

© Aditya P. Mathur 2006
101

BRO constraint set: Example (contd.)

Step 2: Label each leaf node with its constraint set S.

p

r>s ∧

a+b<c !

∨

N1

N4

N2

N6

N5

N3

{(>), (=), (<)}

{(>), (=), (<)}

{(t), (f)}
© Aditya P. Mathur 2006

102

BRO constraint set: Example (contd.)

Step 2: Traverse the tree and compute constraint set for each
internal node.

St
N4=SN1

t ⊗ SN3
t={(<)} ⊗{(f)}={(<, f)}

St
N3=SN2

f={(f)} Sf
N3=SN2

t= {(t)}

Sf
N4= (Sf

N1
 × {(tN3)}) ∪ ({(tN1)} × Sf

N3)
 =({(>,=)} ×{(f)}) ∪ {(<)} ×{(t)})
 ={(>, f), (=, f)} ∪ {(<, t)}
 ={(>, f), (=, f), (<, t)}

© Aditya P. Mathur 2006
103

BRO constraint set: Example (contd.)

{(<, f), (>, f), (=, f), (<, t)}

p

r>s ∧

a+b<c !

∨

N1

N4

N2

N6

N5

N3 {(f),
{t)}

{(>), (=), (<)}

{(>), (=), (<)}

{(t), (f)}

© Aditya P. Mathur 2006
104

BRO constraint set: Example (contd.)

Next compute the constraint set for the rot node (this is an OR-
node).

Sf
N6=Sf

N4
 ⊗ Sf

N5

 ={(>,f),(=,f),(<,t)} ⊗{(=),(<)}
 ={(>,f,=), (=,f,<),(<,t,=)}

St
N6= (St

N4
 × {(fN5)})∪ ({(fN4)} × St

N5)
 =({(<,f)} ×{(=)}) ∪ {(>,f)} ×{(>)})
 ={(<,f,=)} ∪ {(>,f,>)}
 ={(<,f,=),(>,f,>)}

27

© Aditya P. Mathur 2006
105

BRO constraint set: Example (contd.)

{(>,f,=), (=,f,<),(<,t,=), (<,f,=),(>,f,>)}

{(<, f), (>, f), (=, f), (<, t)}

p

r>s ∧

a+b<c !

∨

N1

N4

N2

N6

N5

N3 {(f),
{t)}

{(>), (=), (<)}

{(>), (=), (<)}

{(t), (f)}

Constraint set for pr: (a+b<c)∧!p ∨ (r>s)

© Aditya P. Mathur 2006
106

BRO constraint set

{(>,f,=), (=,f,<),(<,t,=), (<,f,=),(>,f,>)}

<a=1,b=1,c=1, p=true, r=1,s=1>
<a=1,b=0,c=1, p=true, r=1,s=2>
<a=1,b=1,c=3, p=false, r=1,s=1>
<a=0,b=2,c=3, p=true, r=0,s=0>
<a=1,b=1,c=0, p=true, r=2,s=0>

Given the constraint set for pr: (a+b<c)∧!p ∨ (r>s), construct TBRO.

© Aditya P. Mathur 2006
107

BOR constraints for non-singular
expressions

Test generation procedures described so far are for singular
predicates. Recall that a singular predicate contains only one
occurrence of each variable.

We will now learn how to generate BOR constraints for non-singular
predicates.

First, let us look at some non-singular expressions, their respective
disjunctive normal forms (DNF), and their mutually singular
components.

© Aditya P. Mathur 2006
108

Non-singular expressions and DNF:
Examples

Predicate (pr) DNF Mutually singular
components in pr

ab(b+c) abb+abc a; b(b+c)

a(bc+ bd) abc+abd a; (bc+bd)

a(bc+!b+de) abc+a!b+ade a; bc+!b; de

28

© Aditya P. Mathur 2006
109

Generating BOR constraints for non-
singular expressions

We proceed in two steps.

First we will examine the Meaning Impact (MI) procedure for
generating a minimal set of constraints from a possibly non-singular
predicate.

Next, we will examine the procedure to generate BOR constraint set
for a non-singular predicate.

© Aditya P. Mathur 2006
110

Meaning Impact (MI) procedure

Given Boolean expression E in DNF, the MI procedure produces a set
of constraints SE that guarantees the detection of missing or extra
NOT (!) operator faults in the implementation of E.

The MI procedure is on pages 168-169. We illustrate it with an
example.

© Aditya P. Mathur 2006
111

MI procedure: An Example

Consider the non-singular predicate: a(bc+!bd). Its DNF equivalent is:

 E = abc + a!bd.

Note that a, b, c, and d are Boolean variables and also referred to as
literals. Each literal represents a condition. For example, a could
represent r<s.

© Aditya P. Mathur 2006
112

MI procedure: Example (contd.)

Step 0: Express E in DNF notation. Clearly, we can write E=e1+e2,
where e1=abc and e2=a!bd.

Step 1: Construct a constraint set Te1 for e1 that makes e1 true.
Similarly construct Te2 for e2 that makes e2 true.

Note that the four t’s in the first element of Te1 denote the values of
the Boolean variables a, b,c, and d, respectively. The second element,
and others, are to be interpreted similarly.

Te1 ={(t,t,t,t), (t,t,t,f)} Te2 ={(t,f,t,t), (t,f,f,t)}

29

© Aditya P. Mathur 2006
113

MI procedure: Example (contd.)

Step 2: From each Tei , remove the constraints that are in any other
Tej. This gives us TSei and TSej. Note that this step will lead TSei ∩TSej
=∅.

There are no common constraints between Te1 and Te2 in our
example. Hence we get:

TSe1 ={(t,t,t,t), (t,t,t,f)} TSe2 ={(t,f,t,t), (t,f,f,t)}

© Aditya P. Mathur 2006
114

MI procedure: Example (contd.)

Step 3: Construct St
E by selecting one element from each TSe.

St
E ={(t,t,t,f), (t,f,f,t)}

Note that for each constraint x in St
E we get E(x)=true. Also, St

E is
minimal.

© Aditya P. Mathur 2006
115

MI procedure: Example (contd.)

Step 4: For each term in E, obtain terms by complementing each
literal, one at a time.

e1
1= !abc e2

1= a!bc e3
1= ab!c

e1
2= !a!bd e2

2= abd e3
2= a!b!d

From each term e above, derive constraints Fe that make e true. We
get the following six sets.

© Aditya P. Mathur 2006
116

MI procedure: Example (contd.)
Fe1

1= {(f,t,t,t), (f,t,t,f)}
Fe2

1= {(t,f,t,t), (t,f,t,f)}

Fe3
1= {(t,t,f,t), (t,t,f,f)}

Fe1
2= {(f,f,t,t), (f,f,f,t)}

Fe2
2= {(t,t,t,t), (t,t,f,t)}

Fe3
2= {(t,f,t,f), (t,f,f,f)}

30

© Aditya P. Mathur 2006
117

MI procedure: Example (contd.)

FSe1
1= Fe1

1

FSe2
1= {(t,f,t,f)}

FSe3
1= Fe1

3

FSe1
2= Fe1

2
FSe2

2= {(t,t,f,t)}

FSe3
2= Fe1

3

Step 5: Now construct FSe by removing from Fe any constraint that
appeared in any of the two sets Te constructed earlier.

Constraints common
with Te1 and Te2 are
removed.

© Aditya P. Mathur 2006
118

MI procedure: Example (contd.)
Step 6: Now construct Sf

E by selecting one constraint from each FSe

Sf
E ={(f,t,t,f), (t,f,t,f), (t,t,f,t), (f,f,t,t)}

Step 7: Now construct SE= St
E ∪Sf

E

SE={{(t,t,t,t), (t,f,f,f), (f,t,t,f), (t,f,t,f), (t,t,f,t), (f,f,t,t)}

Note: Each constraint in St
E makes E true and each constraint in Sf

E
makes E false. Check it out!
We are now done with the MI procedure.

© Aditya P. Mathur 2006
119

BOR-MI-CSET procedure

The BOR-MI-CSET procedure takes a non-singular expression E as
input and generates a constraint set that guarantees the detection of
Boolean operator faults in the implementation of E.

The entire procedure is described on page 171. We illustrate it with
an example.

© Aditya P. Mathur 2006
120

BOR-MI-CSET: Example

Consider a non-singular Boolean expression: E= a(bc+!bd)

Mutually singular components of E:

 e1 = a
 e2= bc + !bd

We use the BOR-CSET procedure to generate the constraint set for e1
(singular component) and MI-CSET procedure for e2 (non-singular
component).

31

© Aditya P. Mathur 2006
121

BOR-MI-CSET: Example (contd.)

Summary:

St
e1={(t)} Sf

e1={(f)} from BOR-CSET
 procedure.

St
e2={(t,t,f), (f, t, t)} Sf

e2={(f,t,f), (t,f,t)} from MI-CSET
 procedure.

We now apply Step 2 of the BOR-CSET procedure to obtain
the constraint set for the entire expression E.

© Aditya P. Mathur 2006
122

BOR-MI-CSET: Example (contd.)

{(t),(f)}

{(t,t,f), (f, t, t), (f,t,f), (t,f,t)}

a

∧

Apply MI-CSET

b c

∧

!b d

∧

∨

N1

N2

N3
{(t,t,t,f), (t,f,t,t), (f,t,t,f),(t,f,t,f),

 (t,t,f,t),(f,f,t,t)}

Obtained by applying Step 2 of BOR-CSET
to an AND node. St

N3=St
N1 ⊗ St

N22

Sf
N3=(Sf

N1 × {t2})∪({t1} × Sf
N2)

© Aditya P. Mathur 2006
123

Summary

Equivalence partitioning and boundary value analysis are the most

commonly used methods for test generation while doing functional

testing.

Given a function f to be tested in an application, one can apply

these techniques to generate tests for f.

© Aditya P. Mathur 2006
124

Summary (contd.)

Most requirements contain conditions under which functions are to

be executed. Predicate testing procedures covered are excellent

means to generate tests to ensure that each condition is tested

adequately.

32

© Aditya P. Mathur 2006
125

Summary (contd.)

Usually one would combine equivalence partitioning, boundary

value analysis, and predicate testing procedures to generate tests

for a requirement of the following type:

 if condition then action 1, action 2, …action n;

Apply predicate testing

Apply eq. partitioning, BVA, and
predicate testing if there are nested
conditions.

