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Learning Objectives 

§  Test generation from predicates 

§  Equivalence class  partitioning 

§  Boundary value analysis 
Essential black-box techniques 
for generating tests for 
functional testing. 
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Applications of test generation 
techniques 

Test generation techniques described in this chapter belong to 

the black-box testing category. 

These techniques are useful during functional testing where 

the objective is to test whether or not an application, unit, 

system, or subsystem, correctly implements the functionality 

as per the given requirements 
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The test selection problem 
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Requirements and test generation 
Requirements serve as the starting point for the generation of 
tests. During the initial phases of development, requirements may 
exist only in the minds of one or more people.  

These requirements, more aptly ideas, are then specified  
rigorously using modeling elements such as use cases, 
sequence diagrams, and statecharts in UML.  

Rigorously specified requirements are often transformed into 
formal requirements using requirements specification languages 
such as Z, S, and RSML. 
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Test generation techniques 
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Test selection problem 
Let D denote the input domain of a program P. The test 
selection problem is to select a subset T of tests such  that 
execution of P against each element of T will reveal all errors 
in  P.  

In general there does not exist any algorithm to construct 
such a test set. However, there are heuristics and model 
based methods that can be used to generate tests that will 
reveal certain type of faults.  
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Test selection problem (contd.) 

The challenge  is to construct a test set T ⊆ D that will reveal 
as many errors in P as possible.  
 
The problem of test selection is difficult due primarily to the 
size  and complexity of the input domain of P. 
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Exhaustive testing 

The large size of the input domain  prevents a tester from 
exhaustively testing the program under test against all possible 
inputs.  By ``exhaustive" testing we mean testing the given 
program against every element in its input domain.  

The complexity makes it harder to select individual tests.  
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Large input domain 

Consider  program  P that is required to sort a sequence  of 
integers into ascending order. Assuming that P will be executed 
on a machine in which integers range from -32768 to 32767, the 
input domain of pr consists of all possible sequences of integers 
in the range [-32768, 32767].  

If there is no limit on the size of the sequence that can be input, 
then the input domain of P is infinitely large and P can never be 
tested exhaustively. If the size of the input sequence is limited to, 
say Nmax>1, then the size of the input domain depends on the value 
of N.  
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Complex input domain 

Consider a procedure P in a  payroll processing system  that 
takes an employee record as input and computes  the weekly 
salary. For simplicity, assume that the employee record consists 
of the following items with their respective types and 
constraints: 
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Equivalence class partitioning 
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Equivalence partitioning 

Test selection using equivalence partitioning allows a tester to 
subdivide the input domain into a relatively small number of 
sub-domains (say N).   

In strict mathematical terms, the sub-domains by definition are 
disjoint.  Each subset is known as an equivalence class.  
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Program behavior and equivalence 
classes 

The N equivalence classes are created assuming that the 
program under test exhibits the same behavior on all 
elements, i.e. tests, within a class.  

This assumption allows the tester to select exactly one 
test from each equivalence class resulting in a test 
suite of exactly N tests.  
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Faults targeted 
The entire set of inputs to any application can be divided into at least 
two subsets: one containing all the expected, or legal, inputs (E) and 
the other containing all unexpected, or illegal, inputs (U).  
 
Each of the two subsets, can be further subdivided into subsets on 
which the application is required to behave differently (e.g. E1, E2, 
E3, and U1, U2).  
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Faults targeted (contd.) 

Equivalence class partitioning selects tests that target any faults 
in the application that cause it to behave incorrectly  when the 
input is in either of the two classes or their subsets. 
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Example 1 
Consider  an application A that takes an integer denoted by age as 
input. Let us suppose that the only legal values of age are in the range 
[1..120]. The set of input values is now divided into a set E containing 
all integers in the range [1..120] and a set U containing the remaining 
integers.  

All integers 

[1..120] 

Other integers 
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Example 1 (contd.) 

Further, assume that the application is required to process all values in 
the range [1..61] in accordance with requirement R1 and those in the 
range [62..120] according to requirement R2.  
Thus E is further subdivided into two regions depending on the 
expected behavior.   

Similarly, it is expected that all invalid inputs less than or equal to 1 
are to be treated in one way while all greater than 120 are to be treated 
differently.  This leads to a subdivision of U into two categories.  
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Example 1 (contd.) 

All integers 

[62-120] 

[1..61] 

<1 

>120 
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Example 1 (contd.) 

It is expected that any single test selected from the range [1..61] 
will reveal any fault with respect to R1. Similarly, any test 
selected from the region [62..120] will reveal any fault with 
respect to R2. A similar expectation applies to the two regions 
containing the  unexpected inputs. 

Tests selected using the equivalence partitioning technique aim at 
targeting  faults in the application under test with respect to inputs in 
any of the four regions, i.e. two regions containing expected inputs  
and two regions containing the unexpected inputs.   
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Effectiveness 
The effectiveness of tests generated using equivalence partitioning for 
testing  application A, is judged by the ratio of the number of faults 
these tests are able to expose to the total faults lurking in A.  

As is the case with any test selection technique in software testing, 
the effectiveness of tests selected using equivalence partitioning is 
less than 1 for most practical applications. The effectiveness can be 
improved through an unambiguous and complete specification of the 
requirements and carefully selected tests using the equivalence 
partitioning technique described in the following sections.  
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Example 2 

Consider that  wordCount  method takes a word w and a filename 
f as input and returns the number of occurrences of w in the text 
contained in the file named f. An exception is raised if there is no 
file with name f.  

This example shows a few ways to define equivalence classes 
based on the knowledge of requirements and the program text. 
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Example 2 (contd.) 

begin 

String w, f 

Input w, f 

if (not exists(f) {raise exception; return(0);} 

if(length(w)==0)return(0); 

if(empty(f))return(0); 

return(getCount(w,f)); 

end 

Using the partitioning method 
described in the examples above,  
we obtain the following equivalence 
classes. 
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Example 2 (contd.) 
Equivalence class w f 

E1 non-null exists, not empty 

E2 non-null does not exist 

E3 non-null exists, empty 

E4 null exists, not empty 

E5 null does not exist 

E6 null exists, empty 
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Example 2 (contd.) 
Note  that  the number of equivalence classes without 
any knowledge of the program code may be fewer (e.g., 
2 for file exists and file does not exist), whereas the 
number of equivalence classes derived with the 
knowledge of partial code is 6.  

Of course, an experienced tester will likely derive the 
six equivalence classes given above, and perhaps 
more,  even before the code is available  
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Equivalence classes based on 
program output 

In some cases the equivalence classes are based on the output 
generated by the program. For example, suppose that a program 
outputs an integer.  
 
It is worth asking: ``Does the program ever generate a 0? What 
are the maximum and minimum possible values of the output?" 

These two questions lead to two the following equivalence 
classes based on outputs: 
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Equivalence classes based on 
program output (contd.) 

E1: Output value v is 0. 
E2: Output value v  is the maximum possible.  
E3: Output value v  is the minimum  possible.  
E4: All other output values.  

Based on the output equivalence classes one may now derive 
equivalence classes for the inputs. Thus each of the four classes 
given above might lead to one equivalence class consisting of 
inputs. 
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Equivalence classes for variables: 
range 

Eq. Classes Example 

One class with 
values inside the 
range and two with 
values outside  the 
range. 

speed 
∈[60..90] 

{50}, {75}, 
{92} 

area: float 
area≥0.0 

{{-1.0}, 
{15.52}} 

age: int {{-1}, {56}, 
{132}} 

letter:char {{J}, {3}} 

Constraints Classes 
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Equivalence classes for variables: 
strings 

Eq. Classes Example 

At least one 
containing all legal 
strings and one all 
illegal strings based 
on any constraints. 

firstname: 
string 

{{ε}, {Sue}, 
{Loooong 
Name}} 

Constraints Classes 

© Aditya P. Mathur 2006 
30 

Equivalence classes for variables: 
enumeration 

Eq. Classes Example 

Each value in a separate 
class 

autocolor:{red, 
blue, green} 

{{red,} {blue}, 
{green}} 

up:boolean {{true}, {false}} 

Constraints Classes 
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Equivalence classes for variables: 
arrays 
Eq. Classes Example 

One class containing all 
legal arrays, one 
containing the empty 
array, and one 
containing a larger than 
expected array. 

int [ ] aName: new 
int[3]; 

{[ ]}, {[-10, 20]}, 
{[-9, 0, 12, 15]} 

Constraints Classes 
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Equivalence classes for variables: 
compound data type 

Arrays in Java and structures in C++ are compound types. Such 
input  types may arise while testing components of an application 
such as a function or an object.  

While generating equivalence classes for such inputs, one must 
consider legal and illegal values for each component of the 
structure. The next example illustrates the derivation of equivalence 
classes for an input variable that has a compound type. 
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Equivalence classes for variables: 
compound data type: Example 

struct transcript 
 { 
  string fName; // First name. 
  string lName; //  Last name. 
  string cTitle [200]; // Course titles. 
  char grades [200]; // Letter grades corresponding 
     to course titles. 

} 
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Unidimensional partitioning 
One way to partition the input domain is to consider one input 
variable at a time. Thus each input variable leads to a partition of 
the input domain. We refer to this style of partitioning as 
unidimensional equivalence partitioning or simply  unidimensional 
partitioning.   
 
This type of partitioning is commonly used. 
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Multidimensional partitioning 

Another way is to consider the input domain I as the set product 
of the input variables and define a relation on I. This procedure 
creates one partition consisting of several equivalence classes. 
We refer to this method as multidimensional equivalence 
partitioning or simply multidimensional partitioning.  

Multidimensional partitioning leads to a large number of 
equivalence classes that are difficult to manage manually.  Many 
classes so created might be infeasible. Nevertheless, equivalence 
classes so created offer an increased variety of tests as is 
illustrated in the next section.  
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Partitioning Example 

Consider an application that requires two integer inputs x and y. 
Each of these inputs is expected to lie in the following ranges: 
3≤ x≤7 and 5≤y≤9.  

For unidimensional partitioning we apply  the partitioning 
guidelines to x  and y individually. This leads to the following 
six equivalence classes. 
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Partitioning Example (contd.) 

E1: x<3  E2: 3≤x≤7 E3: x>7 y ignored. 

E4: y<5 E5: 5≤y≤9 E6: y>9 x ignored. 

For multidimensional partitioning we consider the input 
domain to be the set product X x Y. This leads to 9 
equivalence classes. 

© Aditya P. Mathur 2006 
38 

Partitioning Example (contd.) 

E1: x<3, y<5  E2: x<3, 5≤y≤9 E3: x<3, y>9 

E4: 3≤x≤7, y<5 E5: 3≤x≤7,  5≤y≤9 E6: 3≤x≤7, y>9 

E7: x>7, y<5 E8: x>7,  5≤y≤9 E9: x>7, y>9 
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Systematic procedure for 
equivalence partitioning 

1. Identify the input domain: Read the requirements carefully 
and identify all input and output variables, their types, and any 
conditions associated with their use.  

Environment variables, such as class variables used in the 
method under test and environment variables  in Unix, 
Windows, and other operating systems, also serve as input 
variables. Given the set of values each variable can assume, an 
approximation to the input domain is the product of these sets. 
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Systematic procedure for 
equivalence partitioning (contd.) 

2. Equivalence classing: Partition the set of values of each variable 
into disjoint subsets. Each subset is an equivalence class. Together, 
the equivalence classes based on an input variable partition the input 
domain. Partitioning the input domain using values of one variable,  
is done based on the expected behavior of the program.   

Values for which the program is expected to behave in the ``same 
way" are grouped together. Note that ``same way" needs to be 
defined by the tester.  
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Systematic procedure for 
equivalence partitioning (contd.) 

The  equivalence classes  are combined using the multidimensional 
partitioning approach described earlier. 

3. Combine equivalence classes:  This step is usually omitted and 
the equivalence classes defined for each variable are directly used to 
select test cases.  However, by not combining the equivalence 
classes, one misses the opportunity to generate useful tests.  
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Systematic procedure for 
equivalence partitioning (contd.) 

For example, suppose that an application is  tested via its GUI, i.e. 
data is input using commands available in the GUI. The GUI might  
disallow invalid inputs by offering a palette of valid inputs only.  
There might also be  constraints in the requirements that render  
certain equivalence  infeasible.  

4. Identify infeasible equivalence classes: An infeasible  
equivalence class is one that contains a combination of input data  
that  cannot be generated during test.   Such an equivalence class 
might arise due to several reasons.  
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Boiler control example (BCS) 

Command temp causes CS to ask the operator to enter the 
amount by which the temperature is to be changed (tempch).   
Values of tempch are in the range  -10..10   in increments of 5  
degrees Fahrenheit. An temperature change of 0 is not an option. 

The control software of BCS, abbreviated as CS,  is required to 
offer several options. One of the options, C (for control),  is used 
by a human  operator to give one of three commands (cmd):  
change  the boiler temperature (temp),  shut down the boiler 
(shut), and cancel the request (cancel).   
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BCS: example (contd.) 

The command file may contain any one of the three commands, 
together with the value of the temperature to be changed if the 
command is temp. The file name is obtained from variable F.  

Selection of option C  forces the  BCS to examine variable V.    
If V is set to GUI, the operator is asked to enter one of the three 
commands  via a GUI. However, if V is set to file, BCS obtains 
the command from a  command file.  
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BCS: example (contd.) 

Control Software 
(CS) G

U
I 

datafile 

cmd 

tempch 

V F cmd: command  
(temp, shut, cancel) 

tempch: desired  
temperature change 
(-10..10) 

V, F: Environment variables 

V ∈{GUI, file}  

F: file name if V is set to “file.” 
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BCS: example (contd.) 

Values of  V and F  can be altered by a different module in BCS. 
 
In response to temp and shut commands, the control software is 
required to generate appropriate signals to be sent to the boiler 
heating system.  
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BCS: example (contd.) 

The GUI forces the tester to select from a limited set of values as 
specified in the requirements. For example, the only options 
available for  the value of tempch are -10, -5, 5, and 10.  We refer    
to these four values of tempch as tvalid while all other values as 
tinvalid.  

We assume that the control software is to be tested in a simulated 
environment. The tester takes on the role of an operator and 
interacts with the CS via a GUI.  
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BCS: 1. Identify input domain 

The first step in generating equivalence partitions is to identify 
the (approximate)  input domain.  Recall that the domain 
identified in this step will likely be a superset of the complete 
input domain of the control software.  

First we examine the requirements, identify input variables, their 
types, and values. These are listed  in the  following table. 
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BCS:  Variables, types, values 
Variable Kind Type Value(s) 

V Environment Enumerated File, GUI 

F Environment String A file name 

cmd Input via GUI/
File 

Enumerated {temp, cancel, shut} 
 

tempch Input via GUI/
File 

Enumerated {-10, -5, 5, 10} 
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BCS:  Input domain  

Input domain ⊆ S = V × F × cmd × tempch  

Sample values in the input domain (--: don’t care): 

(GUI, --, shut, --), (file, cmdfile, shut, --) 

(file, cmdfile, temp, 5) 
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BCS:  2. Equivalence classing  

Variable Partition 

V {{GUI}, {file}, {undefined}} 

F {{fvalid}, {finvalid}} 

cmd {{temp}, {cancel}, {shut}, {cinvalid}} 

tempch {{tvalid}, {tinvalid}} 
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BCS:  3. Combine equivalence 
classes (contd.) 

There is a total of 3 × 4 × 2 × 5=120 equivalence classes. 

Note that tinvalid, tvalid, finvalid, and fvalid denote sets of values. 
“undefined” denotes one value. 

Sample equivalence class: {(GUI, fvalid, temp, -10)} 

Note that each of the classes listed above represents an infinite 
number of input values for the control software. For example, 
{(GUI, fvalid, temp, -10)} denotes an infinite  set of values obtained 
by replacing fvalid by a string that corresponds to the name of an 
existing  file. Each value is a potential input to the BCS. 
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BCS:  4. Discard infeasible 
equivalence classes 

{(V, F, {cancel, shut, cinvalid}, tvalid∪ tinvalid)} 

Note that the amount by which the boiler temperature is to be 
changed is only considered when the operator selects  temp for cmd. 
Thus all equivalence classes that match the following template are 
infeasible. 

This parent-child relationship between cmd and  tempch renders 
infeasible a total of 3 × 2 × 3 × 5 = 90 equivalence classes.   
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BCS:  4. Discard infeasible 
equivalence classes (contd.) 

After having discarded all infeasible equivalence classes, we are left 
with the following testable (or feasible) equivalence classes. 
 
{(GUI,_,temp,tvalid)} {(GUI,_,shut,NA)} {(GUI,_,cancel,NA)}
{(file,fvalid,temp,tvalid+tinvalid)} {(file,fvalid,shut,_)} 
{(file,fvalid,cancel,_)} {(file,fvalid,cinvalid,_)}    
{(file,finvalid,NA,NA)}    
{(undefined,NA,NA,NA)}   

  
_  Input Not Used 
NA  Input Not Allowed 
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Selecting test data 

Given a set of equivalence classes that form a partition of the 
input domain, it is relatively straightforward to select tests. 
However, options exist in the presence of _  values. 

In the most general case, a tester  simply selects one test that 
serves as a representative of each equivalence class. 

56 

Boundary value analysis 
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Errors at the boundaries 
Experience indicates that programmers make mistakes in processing 
values at and near the boundaries of equivalence classes.    

For example, suppose that  method M  is required to compute a 
function f1 when x≤ 0 is true and function f2 otherwise. However, 
M has an error due to which it computes f1 for x<0 and f2 
otherwise.  

Obviously, this fault is revealed, though not necessarily,  when M is 
tested against x=0  but not if the input test set is, for example, {-4,7} 
derived using equivalence partitioning. In  this example, the value 
x=0, lies at the boundary of the equivalence classes x≤0 and x>0. 
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Boundary value analysis (BVA) 
Boundary value analysis is a test selection technique that targets 
faults in applications at the boundaries of equivalence classes.  

While equivalence partitioning selects tests from within 
equivalence classes, boundary value analysis focuses on  tests at 
and near the boundaries of  equivalence classes.  

Certainly, tests derived using either of the two techniques may 
overlap. 
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BVA: Procedure 
1  Partition the input domain using unidimensional partitioning. 

This leads to as many partitions as there are input variables. 
Alternately, a single partition of an input domain can be created 
using multidimensional partitioning. We will generate several 
sub-domains in this step. 

2   Identify the boundaries for each partition. Boundaries may also 
be identified using special relationships amongst the inputs. 

3  Select test data such that each boundary value occurs in at 
least one test input.   
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BVA: Example: 1. Create 
equivalence classes 

Assuming that an item code must be in the range  99..999 and 
quantity in the range 1..100,  

Equivalence classes for code: 
E1: Values less than 99. 
E2: Values in the range. 
E3: Values greater than 999. 

Equivalence classes for qty: 
E4: Values less than 1. 
E5: Values in the range.  
E6: Values greater than 100. 
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BVA: Example: 2. Identify boundaries 

Equivalence classes and boundaries for findPrice. Boundaries are 
indicated with an x. Points near the boundary are marked *. 

E1 
E2 

E3 

98 100 998 1000 

99 999 
x x * * * * 

E4 
E5 

E6 

0 2 99 101 

1 100 
x x * * * * 
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BVA: Example: 3. Construct test set 

Test selection based on the boundary value analysis technique 
requires that tests must include, for each variable, values at and 
around the boundary. Consider the following test set: 

T={  t1: (code=98, qty=0),  
 t2: (code=99, qty=1),  
 t3: (code=100, qty=2),  
 t4: (code=998, qty=99),  
 t5: (code=999, qty=100),  
 t6: (code=1000, qty=101)     } 

63 

Testing predicates 
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Where do predicates arise? 

Predicates arise from requirements in a variety of applications. 
Here is an example from  Paradkar, Tai, and Vouk, 
“Specification based testing using cause-effect graphs, Annals of 
Software Engineering,” V 4,  pp 133-157, 1997. 

A boiler needs to be to be shut down when the following 
conditions hold: 
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Boiler shutdown conditions 

1.  The water level in the boiler is below X lbs. (a) 
2.  The water level in the boiler is above Y lbs. (b) 
3.  A water pump has failed. (c) 
4.  A pump monitor has failed. (d) 
5.  Steam meter has failed. (e) 

The boiler is to be shut down when a or b is true or the boiler is in 
degraded mode and the steam meter fails. We combine these five 
conditions to form a compound condition (predicate) for boiler 
shutdown.  

Boiler in degraded mode 
when either is true. 
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Boiler shutdown conditions 

Denoting the five conditions above as a through e, we obtain the 
following Boolean expression E  that when true must force a 
boiler shutdown: 

             E = a + b + (c+d)e 
where the + sign indicates “OR” and a multiplication indicates 
“AND.” 

The goal of predicate-based test generation is to generate tests 
from a predicate p that guarantee the detection of any error that 
belongs to a class of errors in the coding of p. 
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Another example 

A condition is  represented formally as a predicate, also known as a 
Boolean expression.  For example, consider the requirement  
 
``if the printer is ON and has paper then send document to printer."  
 
This statement consists of a condition part and an action part. The 
following predicate represents the condition part of the statement. 

pr: (printerstatus=ON) ∧ (printertray!= empty)  
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Test generation from predicates 

We will now examine two techniques, named BOR and  BRO for 
generating tests  that are guaranteed to detect certain faults in the 
coding of conditions. The conditions from which tests are 
generated might arise from requirements or might be embedded 
in the program to be tested. 

Conditions guard actions. For example,  
                    if condition then action 
is a typical format of many functional requirements. 
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Predicates 
Relational operators (relop):   {<, ≤, >, ≥, =, ≠.} 

     = and == are equivalent. 
Boolean operators (bop):  {!,∧,∨, xor} also known as  

         {not, AND, OR, XOR}. 
 
Relational expression: e1 relop  e2. (e.g. a+b<c) 

   e1 and e2 are expressions whose values 
   can be compared using relop. 

Simple predicate:  A Boolean variable or a relational 
   expression. (x<0) 

Compound predicate: Join one or more simple predicates  
   using bop. (gender==“female”∧age>65) 
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Boolean expressions 
Boolean expression: one or more Boolean variables joined 
    by bop. (a∧b∨!c) 
 
a, b, and c are also known as literals. Negation is also denoted by 
placing a bar over a Boolean expression such as in (a∧b). We 
also write ab for a∧b and a+b for a∨b when there is no 
confusion. 
 
Singular Boolean expression: When each literal appears  

  only once, e.g. (a∧b∨!c) 
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Boolean expressions (contd.) 

Disjunctive normal form (DNF): Sum of products: 
  e.g. (p q) + (r s) + (a c). 

 
Conjunctive normal form (CNF): Product of sums: 

  e.g.: (p+q)(r+s)(a+c) 
 
Any Boolean expression in DNF can be converted to an equivalent 
CNF and vice versa. 
e.g., CNF: (p+!r)(p+s)(q+!r)(q+s) is equivalent to DNF: (pq+!rs) 
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Boolean expressions (contd.) 

Mutually singular: Boolean expressions e1 and e2 are mutually 
singular when they do not share any literal. 
 
If expression E contains components e1, e2,..  
then ei is considered a singular component only if  
it is singular & 
it is mutually singular with the remaining elements of E. 



19 

© Aditya P. Mathur 2006 
73 

Fault model for predicate testing 
What faults are we targeting when testing for the 
correct implementation of predicates? 

Boolean operator fault: Suppose that the specification of a 
software module requires that an action be performed when 
the condition  (a<b) ∨ (c>d) ∧e is true.  
 
Here a, b, c, and d are integer variables and e is a Boolean 
variable.  
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Boolean operator faults 

(a<b) ∧ (c>d) ∧e   Incorrect Boolean operator 

(a<b) ∨ ! (c>d) ∧e   Incorrect  negation operator 

(a<b) ∧(c>d) ∨ e   Incorrect Boolean operators 

     (multiple faults). 

Correct predicate:  (a<b) ∨ (c>d) ∧e 
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Relational operator faults 

(a==b) ∨ (c>d) ∧e   Incorrect relational operator 

(a==b) ∨ (c≤d) ∧e   Two relational operator faults 

(a==b) ∨ (c>d) ∨ e   Incorrect Boolean & relational 

     operators 

Correct predicate:  (a<b) ∨ (c>d) ∧e 
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Goal of predicate testing 
Given a correct predicate pc, the goal of predicate testing is to 
generate a test set T such that there is at least one test case t ∈ T 
for which pc and its faulty version pi, evaluate to different truth 
values.   

Such a test set is said to guarantee the detection of any fault of 
the kind in the fault model introduced above.  
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Goal of predicate testing (contd.) 
As an example, suppose that pc: a<b+c and pi: a>b+c.  Consider 
a test set T={t1, t2} where  t1: <a=0, b=0, c=0> and  t2: <a=0, 
b=1, c=1>.  

The fault in pi is not revealed by t1 as both pc and pi  evaluate 
to false when evaluated against t1.  

However, the fault is revealed by t2 as pc evaluates to true and 
pi to false when evaluated against  t2. 
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Missing or extra Boolean variable 
faults 

Correct predicate:  a ∨ b 

Extra Boolean variable fault: a ∨ b∧c  

Missing Boolean variable fault: a  
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Predicate constraints: BR symbols 
Consider the following Boolean-Relational set of BR-symbols: 
BR={t, f, <, =, >} 

For example, consider the predicate E: a<b and the constraint 
“>” . A test case that satisfies this constraint for E must cause 
E to evaluate to false.  

A BR symbol is a constraint on a Boolean variable or a 
relational expression. 
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Infeasible constraints 

A constraint  C is considered infeasible for predicate pr  if there 
exists no input values for the variables in pr that satisfy  c.  
 
For example, the constraint t is infeasible  
for the predicate a>b∧ b>d  
if it is known that d>a. 
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Predicate constraints 
Let pr denote a predicate with n, n>0,  ∨  and ∧ operators.  
 
A   predicate constraint  C for predicate pr is a sequence of  (n
+1) BR symbols, one for each Boolean variable or relational 
expression in pr.    

Test case t satisfies  C  for predicate pr,  if each component of pr 
satisfies the corresponding constraint in C when evaluated 
against t. Constraint C  for predicate pr guides the development 
of a test for  pr, i.e. it offers hints on what the values of  the 
variables should be for pr to satisfy C. 
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True and false constraints 

pr(C) denotes the value of predicate pr evaluated using a test case 
that satisfies constraint C.  

C is referred to as a true constraint when pr(C) is true and a false 
constraint otherwise. 

A set of constraints S is partitioned into subsets St and Sf, such that 
for each  C in St, pr(C) =true, and for each C in Sf, pr(C) =false. 
                                         S= St ∪ Sf. 
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Predicate constraints: Example 

Consider the predicate pr: b∧ (r<s) ∨ (u≥v)  and a constraint     
C: (t, =, >). The following test case satisfies C for pr. 

<b=true, r=1, s=1, u=1, v=0> 

<b=true, r=1, s=2, u=1, v=2> 

The following test case does not satisfy C for pr. 
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Predicate testing: criteria 

We will discuss two such criteria named BOR and BRO. 

Given a predicate pr, we want to generate a test set T such that 
 
•  T is minimal and  
•  T guarantees the detection of any fault in implementation of pr;  
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Predicate testing: BOR testing 
criterion 

A test set T that satisfies the BOR testing criterion for a compound 
predicate pr, guarantees the detection of single or multiple 
Boolean operator faults in the implementation of pr.  

 
T is  referred to as  a BOR-adequate test set and sometimes written 

as TBOR. 
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Predicate testing: BRO testing 
criterion 

A test set T that satisfies the BRO testing criterion for a compound 
predicate pr, guarantees the detection of single or multiple 
Boolean operator and relational operator faults in the 
implementation of pr.  

 
T is  referred to as  a BRO-adequate test set and sometimes written 

as TBRO. 
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Predicate testing: guaranteeing fault 
detection 

 Let   Tx, x∈{BOR, BRO},  be a test set derived from predicate pr.  
 
      Let pf be another predicate obtained from pr by injecting single or 

multiple faults:  Boolean operator fault and relational operator 
fault.  

 Tx is said to guarantee the detection of  faults in pf if for 
some t ∈ Tx, pr(t)≠ pf(t). 
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Guaranteeing fault detection: 
example 

Let pr = a<b ∧ c>d 

Let TBOR={t1, t2, t3} is a BOR adequate test set that satisfies S. 
 
t1: <a=1, b=2, c=1, d=0 >; Satisfies (t, t), i.e. a<b is true and  

     c<d is also true.  
t2:  <a=1, b=2, c=1, d=2 >; Satisfies (t, f) 
t3:  <a=1, b=0, c=1, d=0 >; Satisfies (f, t) 

Constraint set S = {(t, t), (t,f), (f, t)} 
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Guaranteeing fault detection 

Generate single Boolean operator faults in  
 pr: a<b ∧ c>d  

and show that T guarantees the detection of each fault. 
 
Example: 

 a<b ∧ c>d    a<b ∧ !c>d  
     t, f, f         f, t, f 

 
See Table 2.6. page 158 
      

outcomes of 
test cases 
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Algorithms for generating BOR and 
BRO adequate tests 

Review of a basic definition: The cross product of two sets A and 
B is defined as: 

                                  A×B={(a,b)|a∈A and b∈B} 

The onto product of two sets A and B is defined as: 
 
A⊗B={(u,v)|u∈A, v∈B, such that each element of A appears at least 

once as u and each element of B appears at least once as v.} 

Note that A⊗B is a minimal set. 
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Set products: Example 

Let A={t, =, >} and B={f, <} 

A×B={(t, f), (t, <), (=, f), (=, <), (>,f), (>,<)} 

A⊗B ={(t, f), (=,<), (>,<)} 
A⊗B ={(t, <), (=,f), (>,<)} 
A⊗B ={(t, f), (=,<), (>,f)} 
A⊗B ={(t, <), (=,<), (>,f)} 
A⊗B ={(t, <), (=,f), (>,f)} 
A⊗B ={(t, f), (=,f), (>,<)} 
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Generation of BOR constraint set 

See page 160 for a formal algorithm. An illustration follows. 

We want to generate TBOR for: pr: a<b ∧ c>d 

First, generate syntax tree of pr. 

a<b  c>d 

∧ 
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Generation of the BOR constraint set 

We will use the following notation:  
 
SN

 is the constraint set for node N in the syntax tree for pr.  

SN
t is the true constraint set for node N in the syntax tree for pr. 

SN
f is the false constraint set for node N in the syntax tree for pr. 

SN= SN
t  ∪  SN

f . 
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Generation of the BOR constraint set 
(contd.) 

Second, label each leaf node with the constraint set {(t), (f)}.  
We label the nodes as N1, N2, and so on for convenience. 

a<b  c>d 

∧ 

N1 N2 

N3 

SN1= {(t), (f)} SN2= {(t), (f)} 
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Generation of the BOR constraint set 
(contd.) 

Third, compute the constraint set for the next higher node in the 
syntax tree (i.e., constraint set for N3 from those of its descendants). 
Three possibilities for N3: AND; OR; and NOT. 

SN3
t = SN1

t ⊗ SN2
t  

SN3
f = (SN1

f ×{t2})∪({t1}× SN2
f) 

SN3
f = SN1

f ⊗ SN2
f  

SN3
t = (SN1

t ×{f2})∪({f1}× SN2
t) 

SN3
f = SN1

t   
SN3

t = SN1
f  

AND: OR: 

NOT: 
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Generation of the BOR constraint set 
(contd.) 

SN3
t = SN1

t ⊗ SN2
t ={(t)} ⊗ {(t)}={(t, t)} 

SN3
f = (SN1

f ×{t2})∪({t1}× SN2
f 

      = ({(f)} ×{(t)})∪({(t)}× {(f)}) 

      = {(f, t)}∪{(t, f)} 

      = {(f, t),{(t, f)} 

a<b  c>d 

∧ 

N1 N2 

N3 

SN1= {(t), (f)} SN2= {(t), (f)} 
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Generation of  TBOR 

As per our objective, we have computed the BOR constraint set 
for the root node of the AST(pr). We can now generate a test set 
using the BOR constraint set associated with the root node. 

SN3 contains a sequence of three constraints 
and hence we get a minimal test set 
consisting of three test cases. Here is one 
possible test set. 

TBOR ={t1, t2, t3} 
t1=<a=1, b=2, c=6, d=5>  (t, t) 
t2=<a=1, b=0, c=6, d=5>  (f, t) 
t3=<a=1, b=2, c=1, d=2>  (t, f) 

a<b  c>d 

∧ 

{(t), (f)} {(t), (f)} 

N1 N2 

N3 

SN3={(t,t), (f, t), (t, f)} 
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Generation of BRO constraint set 

See page 163 for a formal algorithm. An illustration follows. 

Recall that a test set adequate with respect to a  BRO constraint 
set for predicate pr, guarantees the detection of all combinations 
of single or multiple Boolean operator and relational operator 
faults.  
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BRO constraint set 

The BRO constraint set S for relational expression e1 relop e2: 
  S={(>), (=), (<)} 

Separation of S into its true (St) and false (Sf)components: 

  relop: >  St={(>)}     Sf={(=), (<)} 
  relop: ≥  St={(>), (=)}   Sf={(<)} 
  relop: =  St={(=)}     Sf={(<), (>)} 
  relop: <  St={(<)}     Sf={(=), (>)} 
  relop: ≤  St={(<), (=)}    Sf={(>)} 

Note: tN denotes an element of St
N. fN denotes an element of Sf

N  
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BRO constraint set: Example 

pr: (a+b<c)∧!p ∨ (r>s) 

Step 1: Construct the AST for the given predicate. 

p 

r>s ∧ 

a+b<c ! 

∨ 

N1 

N4 

N2 

N6 

N5 

N3 
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BRO constraint set: Example (contd.) 

Step 2: Label each leaf node with its constraint set S. 

p 

r>s ∧ 

a+b<c ! 

∨ 

N1 

N4 

N2 

N6 

N5 

N3 

{(>), (=), (<)} 

{(>), (=), (<)} 

{(t), (f)} 
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BRO constraint set: Example (contd.) 

Step 2: Traverse the tree and compute constraint set for each 
internal node. 

St
N4=SN1

t ⊗ SN3
t={(<)} ⊗{(f)}={(<, f)} 

St
N3=SN2

f={(f)} Sf
N3=SN2

t= {(t)} 

Sf
N4=  (Sf

N1
 × {(tN3)}) ∪ ({(tN1)} × Sf

N3) 
 =({(>,=)} ×{(f)}) ∪ {(<)} ×{(t)}) 
 ={(>, f), (=, f)} ∪ {(<, t)} 
 ={(>, f), (=, f), (<, t)} 
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BRO constraint set: Example (contd.) 

{(<, f), (>, f), (=, f), (<, t)} 

p 

r>s ∧ 

a+b<c ! 

∨ 

N1 

N4 

N2 

N6 

N5 

N3 {(f), 
{t)} 

{(>), (=), (<)} 

{(>), (=), (<)} 

{(t), (f)} 
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BRO constraint set: Example (contd.) 

Next compute the constraint set for the rot node (this is an OR-
node). 

Sf
N6=Sf

N4
 ⊗ Sf

N5 

        ={(>,f),(=,f),(<,t)} ⊗{(=),(<)} 
     ={(>,f,=), (=,f,<),(<,t,=)} 

St
N6=  (St

N4
 × {(fN5)})∪ ({(fN4)} × St

N5) 
 =({(<,f)} ×{(=)}) ∪ {(>,f)} ×{(>)}) 
 ={(<,f,=)} ∪ {(>,f,>)} 
 ={(<,f,=),(>,f,>)} 
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BRO constraint set: Example (contd.) 

{(>,f,=), (=,f,<),(<,t,=), (<,f,=),(>,f,>)} 

{(<, f), (>, f), (=, f), (<, t)} 

p 

r>s ∧ 

a+b<c ! 

∨ 

N1 

N4 

N2 

N6 

N5 

N3 {(f), 
{t)} 

{(>), (=), (<)} 

{(>), (=), (<)} 

{(t), (f)} 

Constraint set for pr: (a+b<c)∧!p ∨ (r>s) 
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BRO constraint set 

{(>,f,=), (=,f,<),(<,t,=), (<,f,=),(>,f,>)} 
 
<a=1,b=1,c=1, p=true, r=1,s=1> 
<a=1,b=0,c=1, p=true, r=1,s=2> 
<a=1,b=1,c=3, p=false, r=1,s=1> 
<a=0,b=2,c=3, p=true, r=0,s=0> 
<a=1,b=1,c=0, p=true, r=2,s=0> 
 

Given the constraint set for pr: (a+b<c)∧!p ∨ (r>s), construct TBRO. 

© Aditya P. Mathur 2006 
107 

BOR constraints for non-singular 
expressions 

Test generation procedures described so far are for singular 
predicates. Recall that a singular predicate contains only one 
occurrence of each variable.    

We will now learn how to generate BOR constraints for non-singular 
predicates. 

First, let us look at some non-singular expressions, their respective 
disjunctive normal forms (DNF), and their mutually singular 
components. 
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Non-singular expressions and DNF: 
Examples 

Predicate (pr) DNF Mutually singular 
components in pr   

ab(b+c)   abb+abc   a; b(b+c) 

a(bc+ bd)   abc+abd a; (bc+bd) 

a(bc+!b+de)   abc+a!b+ade a; bc+!b; de 
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Generating BOR constraints for non-
singular expressions 

We proceed in two steps.  
 
First we will examine the Meaning Impact (MI) procedure for 
generating a minimal set of constraints from a possibly non-singular 
predicate.   
 
Next, we will examine the procedure to generate BOR constraint set 
for a non-singular predicate. 
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Meaning Impact (MI) procedure 

Given Boolean expression E in DNF, the MI procedure produces  a set 
of constraints SE that guarantees the detection of missing or extra 
NOT (!) operator faults in the implementation of E. 

The MI procedure is on pages 168-169. We illustrate it with an 
example. 
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MI procedure: An Example 

Consider the non-singular predicate: a(bc+!bd).  Its DNF equivalent is: 
 
                                E = abc + a!bd. 
 
Note that a, b, c, and d are Boolean variables and also referred to as 
literals. Each literal represents a condition. For example, a could 
represent r<s. 
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MI procedure: Example (contd.) 

Step 0: Express E in DNF notation. Clearly, we can write E=e1+e2, 
where e1=abc and e2=a!bd. 

Step 1: Construct a constraint set Te1 for e1 that makes e1 true. 
Similarly construct Te2 for e2 that makes e2 true.  

Note that the four t’s in the first element of Te1 denote the values of 
the Boolean variables a, b,c, and d, respectively. The second element, 
and others, are to be interpreted similarly. 

Te1 ={(t,t,t,t), (t,t,t,f)} Te2 ={(t,f,t,t), (t,f,f,t)} 
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MI procedure: Example (contd.) 

Step 2: From each Tei , remove the constraints that are in any other 
Tej. This gives us TSei and TSej. Note that this step will lead TSei ∩TSej 
=∅. 

There are no common constraints between Te1 and Te2 in our 
example. Hence we get: 

TSe1 ={(t,t,t,t), (t,t,t,f)} TSe2 ={(t,f,t,t), (t,f,f,t)} 
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MI procedure: Example (contd.) 

Step 3: Construct St
E by selecting one element from each TSe. 

St
E ={(t,t,t,f), (t,f,f,t)} 

Note that for each constraint x in St
E we get E(x)=true. Also, St

E  is 
minimal.  

© Aditya P. Mathur 2006 
115 

MI procedure: Example (contd.) 

Step 4: For each term in E, obtain terms by complementing each 
literal, one at a time. 

e1
1= !abc  e2

1= a!bc   e3
1= ab!c 

e1
2= !a!bd  e2

2= abd   e3
2= a!b!d 

From each term  e above, derive constraints  Fe that make e true. We 
get the following six sets. 
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MI procedure: Example (contd.) 
Fe1

1= {(f,t,t,t), (f,t,t,f)}  
Fe2

1= {(t,f,t,t), (t,f,t,f)}  

Fe3
1= {(t,t,f,t), (t,t,f,f)} 

Fe1
2= {(f,f,t,t), (f,f,f,t)}  

Fe2
2= {(t,t,t,t), (t,t,f,t)}  

Fe3
2= {(t,f,t,f), (t,f,f,f)} 
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MI procedure: Example (contd.) 

FSe1
1= Fe1

1 

FSe2
1= {(t,f,t,f)}  

FSe3
1= Fe1

3 

FSe1
2= Fe1

2 
FSe2

2= {(t,t,f,t)}  

FSe3
2= Fe1

3 

Step 5: Now construct FSe by removing from Fe any constraint that 
appeared in any of the two sets Te constructed earlier. 

Constraints common 
with Te1 and Te2 are 
removed. 
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MI procedure: Example (contd.) 
Step 6: Now construct Sf

E by selecting one constraint from each FSe 

Sf
E ={(f,t,t,f), (t,f,t,f), (t,t,f,t), (f,f,t,t)}  

Step 7: Now construct SE= St
E ∪Sf

E  

SE={{(t,t,t,t), (t,f,f,f), (f,t,t,f), (t,f,t,f), (t,t,f,t), (f,f,t,t)}  

Note: Each constraint in St
E makes E true and each constraint in Sf

E  
makes E false. Check it out!  
We are now done with the MI procedure. 
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BOR-MI-CSET procedure 

The BOR-MI-CSET procedure takes a non-singular expression  E as 
input and generates a constraint set that guarantees the detection of 
Boolean operator faults in the implementation of E. 

The entire procedure is described on page 171. We illustrate it with 
an example. 

© Aditya P. Mathur 2006 
120 

BOR-MI-CSET: Example 

Consider a non-singular Boolean expression: E= a(bc+!bd) 

Mutually singular components of E:  
 

  e1 = a  
  e2= bc + !bd 

We use the BOR-CSET procedure to generate the constraint set for e1 
(singular component)  and MI-CSET procedure for e2 (non-singular 
component). 
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BOR-MI-CSET: Example (contd.) 

Summary: 

St
e1={(t)}  Sf

e1={(f)}    from BOR-CSET 
      procedure. 

St
e2={(t,t,f), (f, t, t)}  Sf

e2={(f,t,f), (t,f,t)}  from MI-CSET  
      procedure. 

 
We now apply Step 2 of the BOR-CSET procedure to obtain 
the constraint set for the entire expression E. 
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BOR-MI-CSET: Example (contd.) 

{(t),(f)}  

{(t,t,f), (f, t, t), (f,t,f), (t,f,t)} 

a 

∧ 

Apply  MI-CSET 

b c 

∧ 

!b d 

∧ 

∨ 

N1 

N2 

N3 
{(t,t,t,f), (t,f,t,t), (f,t,t,f),(t,f,t,f),           

 (t,t,f,t),(f,f,t,t)} 

Obtained by applying Step 2 of BOR-CSET 
to an AND node. St

N3=St
N1 ⊗ St

N22 

Sf
N3=(Sf

N1 × {t2})∪({t1} × Sf
N2) 
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Summary 

Equivalence partitioning and boundary value analysis are the most 

commonly used methods for test generation while doing functional 

testing. 

Given a function f  to be tested in an application, one can apply 

these techniques to generate tests for f. 
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Summary (contd.) 

Most requirements contain conditions under which functions are to 

be executed. Predicate testing procedures covered are excellent 

means to generate tests to ensure that each condition is tested 

adequately. 
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Summary (contd.) 

Usually one would combine equivalence partitioning, boundary 

value analysis, and predicate testing procedures to generate tests 

for a requirement of the following type: 

 if condition then action 1, action 2, …action n; 

Apply predicate testing 

Apply eq. partitioning, BVA, and 
predicate testing if there are nested 
conditions. 


