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Code obfuscation is a technique used to protect software by making it difficult to understand and reverse
engineer. However, it can also be exploited for malicious purposes such as code plagiarism or developing mali-
cious programs. Learning-based techniques have achieved great success with the help of supervised learning
and labeled training sets. However, when faced with real-life environments involving privately developed and
undisclosed obfuscators, these supervised learning methods often raise concerns about generalizability and
robustness when facing unseen and unknown classes of obfuscation techniques.

This paper presents ALMOND, a novel zero-shot approach for detecting code obfuscation in binary executa-
bles. Unlike previous supervised learning methods, ALMOND does not require labeled obfuscated samples for
training. Instead, it leverages a language model pre-trained only on unobfuscated assembly code to identify
the linguistic deviations introduced by obfuscation. The key innovation is the use of "error-perplexity" as a
detection metric, which focuses on tokens the model fails to predict. Continuous Error Perplexity further
enhances this to capture consecutive prediction errors characteristic of obfuscated sequences. Experiments
show ALMOND achieves 96.3% accuracy on unseen obfuscation methods, outperforming supervised base-
lines. On real-world malware samples, it demonstrates an AUC of 0.869 and significantly outperforms the
supervise-learning baseline. Our Dataset, pre-trained model, and code of evaluation will be available at
https://github.com/palmtreemodel/ALMOND

CCS Concepts: • Security and privacy→ Software reverse engineering; Intrusion/anomaly detection and
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1 Introduction

Code obfuscation is a technique used to deliberately make source code, binary code, or program
logic difficult to understand, interpret, or reverse-engineer. It alters the code’s structure and syntax
without changing its functionality. The main objectives are to protect intellectual property, prevent
unauthorized access, and hinder reverse engineering by reducing code readability and analysis.
However, obfuscation is also commonly exploited for illegal purposes, including malware develop-
ment [57], code plagiarism [20], and intellectual property theft [54]. Detecting code obfuscation
helps security professionals identify hidden or malicious behaviors, making it a crucial element of
modern cybersecurity strategies.
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Obfuscation techniques are mainly divided into data obfuscation, static code rewriting, and
dynamic code rewriting [45]. Obfuscation detection for binaries mainly targets the latter two,
especially static code rewriting. Security researchers initially used certain statistical features, such
as entropy [26] and n-grams [18], to detect code obfuscation. However, these approaches often
only work well against specific obfuscation techniques. Some studies have also attempted to use
machine learning techniques [5, 11, 42, 49, 51], such as Naïve Bayes (NB), k-Nearest Neighbor
(KNN), and Decision Tree (DT), to detect obfuscated code.

In recent years, various deep learning models have been widely applied to the field of binary
static analysis at an astonishing speed and have quickly achieved state-of-the-art performance in
various tasks [56]. As one of the most important tasks at the forefront of the reverse engineering
workflow, obfuscation detection has also greatly benefited from the application of deep learning.
Researchers have attempted to use Convolutional Neural Network (CNN) and Recurrent Neural
Network (RNN) to encode assembly code [50, 60], along with word2vec [30, 31] word embedding
models, achieving better performance compared to traditional machine learning methods.
Many learning-based approaches to obfuscation detection frame the problem as a supervised

classification task, relying on known obfuscation methods for training. While this allows these
models to perform well on familiar obfuscation techniques, it limits their ability to generalize to
novel or proprietary methods. Commercial software vendors and malware authors, seeking to
protect their binaries from reverse engineering, often employ non-public, custom obfuscators. This
lack of sample diversity in supervised learning can introduce data bias, causing models to overlook
features that, while insignificant in the training set, may be critical for detecting previously unseen
obfuscation techniques. Consequently, existing learning-based obfuscation detection methods may
face similar limitations, raising concerns about their generalizability despite strong performance
on standard evaluations. Indeed, our evaluation in §4.6 shows that supervised learning methods
have very low detection rates (∼ 0.04) for realworld malware samples, which are often protected
by custom obfuscators.
In this work, we address the challenge of detecting code obfuscation from the perspective of

assembly language modeling. Although both regular and obfuscated binary code “speak” the same
assembly language (adhering to its syntax and grammar), how they speak differs significantly.
We believe that the assembly language produced by regular binary code is more straightforward,
concise, and comprehensible, as it originates from source code written by human developers
following sound software engineering practices and is compiled to maximize efficiency. In contrast,
obfuscated binary code tends to “speak” assembly in a more convoluted manner, deliberately
designed to obscure its logic and hinder analysis by human experts and reverse engineering tools.
Therefore, we propose to train an assembly language model, which can capture how regular

binary code “speaks” the assembly language. After training, this assembly languagemodel can detect
obfuscated binary code, because its style significantly deviates from that of the regular binary code
in training. Specifically, we train a Transformer-based language model using the causal language
modeling (CLM) task on a large corpus of regular binary code produced by different compilers and
compiler options. Consequently, this model captures the linguistic style of regular binary code. We
then detect if a given binary code is obfuscated by measuring how accurate this model predicts the
next token in its assembly code sequence. A common metric for this prediction is called “perplexity”.
So when the perplexity of a given binary code exceeds a predetermined threshold, this input binary
is deemed obfuscated. Evidently, the proposed obfuscation detector is a zero-shot detector and
is capable of detecting obfuscated code produced by custom and previously-unseen obfuscators,
because it is only trained on regular/unobfuscated code.

To further separate obfuscated code apart from regular code, we propose two new metrics: Error
Perplexity (EP) and Consecutive Error Perplexity (CEP). The error perplexity metric sets focus
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on error predictions only, whereas consecutive error perplexity further stresses on a sequence of
mis-predicted tokens. Our evaluation shows that these new metrics indeed improve the detection
accuracy.

To evaluate the efficacy of the proposed approach, we implement a prototype called ALMOND 1.
Specifically, we train a GPT-1.0 model on unobfuscated assembly code with a large dataset with
5,200 ELF binaries and 3,000 PE binaries over a wide variety of compilers and configurations, using
the causal language modeling (CLM) task. Using our newly proposed CEP metric, ALMOND has an
accuracy of 96.3% on binaries with unseen obfuscation methods which is much higher than machine
learning and deep learning approaches, and is also superior to the fine-tuned language model. In
real-world evaluation, ALMOND significantly outperforms the supervised fine-tuned language
model ALMOND-S, demonstrating its effectiveness with a 0.869 AUC score which significantly
outperforms fine-tuned language models. Our evaluations demonstrate that, although supervised
learning-based models can achieve excellent results on experimental datasets, in complex and
unknown real-world environments, an unsupervised, 0-shot model like ALMOND proves to be
more reliable.

2 Background and Motivation

2.1 Problem Scope

This paper focuses on the static detection of obfuscated binaries. Code obfuscation, a common
protection technique, transforms code to make it more difficult to understand, analyze, or reverse-
engineer without altering its functionality [3, 57]. Obfuscation techniques transform the existing
code and introduce redundant or junk code to achieve these goals. Broadly, there are three types of
obfuscation techniques: static code rewriting and dynamic code rewriting [45].

Static code rewriting is a type of obfuscation that modifies the syntax or control flow structures
of code without altering its semantics. Common techniques include control flow obfuscation, string
encryption, and code flattening. Strictly speaking, data obfuscation is also a type of static rewriting,
but the former primarily focuses on data, while static code rewriting focuses on code. These two
categories are also the main focus of this study.

DynamicCodeRewriting tries to obfuscate the actual execution of the codewhile still achieving
the intended functionality. By doing so, dynamic obfuscation makes it particularly difficult for
debuggers or static analysis tools to analyze or trace execution paths. Packers and virtual machine-
based obfuscations belong to this category. Dynamic obfuscation techniques are generally difficult
for static analysis tools, such as disassemblers, to analyze. This is because the obfuscated code is
often only decoded or fully revealed during runtime. Static tools lack the ability to capture the
program’s runtime behavior, making it hard to reconstruct the original code from a static snapshot.
As a result, techniques like dynamic code rewriting are not the primary focus of this paper, as
the detection and analysis of these methods require more advanced dynamic analysis approaches
rather than static inspection. However, most binaries that use dynamic obfuscation also employ
static obfuscation methods to protect their remaining logic. Therefore, static obfuscation detection
tools may still be able to detect samples using such techniques.

2.2 Obfuscators

An obfuscator is a tool that applies the aforementioned techniques to obfuscate source code or
binaries. Typically, an obfuscator offers various obfuscation techniques, allowing developers to use
one or combine multiple techniques as needed. Obfuscators can be categorized into three types
based on their target stage [27]: Source Code Obfuscation, Bytecode Obfuscation (Compilation

1ALMOND stands for Assembly Language Model for ObfuscatioN Detection.
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Stage), and Binary Obfuscation. Source code obfuscators, such as Tigress, generate obfuscated
source code. These tools can obfuscate not only static languages like C/C++ but also dynamic
languages like JavaScript. This paper will focus exclusively on obfuscation detection techniques
for C/C++ code. Bytecode obfuscation, also known as compilation-time obfuscation, involves
obfuscating intermediate code, such as LLVM IR, during the source code compilation process. For
example, OLLVM [17] performs obfuscation at this stage. On the other hand, binary obfuscation
tools, such as Alcatraz2 apply obfuscation methods directly by rewriting the binaries. Since this
type of tool modifies the binary directly, the available techniques are relatively limited, and it often
requires support from debug symbols. However, binary-based obfuscators can fill the binary section
with meaningless data or code to increase the cost of reverse engineering.

2.3 Existing Obfuscation Detection Techniques

Obfuscation detection methods can generally be divided into three categories: rule-based ap-
proaches, machine learning-based approaches, and deep learning-based approaches. We will discuss
each of these methods in detail.

2.3.1 Statistical approaches. As an essential step in obfuscation detection, early methods rely on
predefined rules or heuristics to identify patterns or anomalies in the code. Common techniques
include the analysis of statistical properties such as entropy, control flow graphs, or n-gram models.
To distinguish whether a binary has been packed or encrypted, Lyda et. al. [26] attempted to use
entropy as a statistical metric for obfuscation detection. The assumption is that obfuscated binaries
exhibit higher entropy than unobfuscated ones due to the randomness introduced by obfuscation
techniques. Kanzaki et al. [18] proposed a new metric called Code Artificiality to determine whether
the target code has been obfuscated, which is based on an n-gram model. The intuition is that
normal code exhibits predictable patterns of n-grams, while obfuscated code disrupts these patterns.
Statistical-based methods are straightforward but often limited in their ability to generalize across
different obfuscation techniques.

2.3.2 Machine learning based approaches. In subsequent research, researchers attempted to advance
the field by using supervised machine learning methods to classify the specific obfuscation methods
applied to binaries [5, 42, 49, 51]. The commonality among these methods is that they treat the
obfuscation detection task as a pattern recognition problem, employingmachine learning techniques
such as Naive Bayes (NB), k-Nearest Neighbor (KNN), Decision Tree (DT), and Random Forest (RF)
for supervised training, while introducing innovations in the pre-processing step, specifically in
how features were extracted. For instance, Salem et. al. [42] treated disassembly code as text and
attempted to use Term Frequency-Inverse Document Frequency (TF-IDF) to extract features. This
process generated a feature vector for each program, consisting of the TF-IDF values of the top 128
terms encountered across all disassembly files. This 128-dimensional feature vector is then used as
input for training and inference with Naive Bayes (NB) and Decision Tree (DT) models. Tofighi-
Shirazi et al. [51] chose to apply static symbolic execution to retrieve the semantic representation
of the disassembly code. For feature extraction, they used the Bag of Words (BoW) [28] approach
to extract features from the semantic-based raw data for machine learning models. Greco et al. [11]
employed 19 handcrafted features to train machine learning models. By studying the performance
of these different features across various obfuscation methods, they aimed to gain a comprehensive
understanding of how obfuscation methods affect the properties of target binaries. Last but not least,
on the Android platform, AndrODet [32] uses machine learning models to detect three common

2https://github.com/weak1337/Alcatraz
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types of obfuscation techniques in Android applications: identifier renaming, string encryption,
and control flow obfuscation.

2.3.3 Deep learning based approaches. With the increasing application of neural networks and
deep learning in the security domain, several works have emerged that train neural networks to
classify obfuscation methods. For instance, Bacci et al. [2] proposed an LSTM-RNN-based approach
to detect seven different Android obfuscation techniques. Zhao et al. [60] designed a composite
neural network model. They used a CNN to capture local characteristics and an LSTM to identify
the instruction sequence, thereby fully capturing the contextual semantic information of the entire
target program. Tian et al. [50] took the research a step further by proposing the Reduced Shortest
Path Extraction algorithm, which better samples instruction sequences as input for the neural
network. They used a network called BiGRU-CNN for classification, where a GRU is employed to
extract features from each reduced shortest path, and a CNN is used for aggregation. Compared to
traditional machine learning methods, deep learning approaches mostly utilize learned embeddings
rather than manually designed feature vectors. These embeddings not only enhance flexibility and
learning efficiency but also improve overall performance.

2.4 Challenges

Although the application of deep learning has not only improved the accuracy of obfuscation
detection, but learning-based embeddings have also brought flexibility and learning efficiency, the
fundamental issue of supervised learning models—generalizability—remains unsolved. Due to the
limitations of training data and labels, we can only base our samples and annotations on the data
collected. However, in the context of obfuscation detection, the presence of non-public obfuscation
tools means that obfuscation detectors must deal with numerous samples obfuscated by unknown
methods. Additionally, there is a significant disparity in both the difficulty of obtaining and the
number of unobfuscated samples compared to obfuscated samples, leading to dataset imbalance.
This poses a major challenge for the training of supervised models.

3 Design

To meet the challenges summarized in §2, we propose ALMOND, a novel zero-shot approach for
detecting code obfuscation in binary executables, which does not rely on labeled training data or
supervised learning. Figure 1 illustrates the pipeline of ALMOND. We start by training a language
model using unobfuscated assembly code. Once training is complete, we can directly use the model
for anomaly detection on obfuscated code. We predict the input tokens using the language model’s
pre-training task, evaluate the prediction results using metrics like error-perplexity, and classify
them based on a set threshold. In the following sections, we will provide a detailed explanation of
the design for each step. In §3.1 and §3.2, we will first introduce the preprocessing and pre-training
processes. In §3.3, we will focus on how we achieve zero-shot detection by reusing the pre-training
task and utilizing the newly proposed error-perplexity metric and the consecutive error-prediction
penalty operator.

3.1 Pre-processing

In the pre-processing stage, we disassemble the binary and tokenize the assembly code. Natural
language models require a tokenizer to convert raw text into numerical vectors, and tokenization
methods generally fall into two categories: word-based and subword-based. As the name implies,
word-based tokenization treats each word as a separate token, using spaces as delimiters along
with some auxiliary rules. While this approach is simple, it results in a large vocabulary size and
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Fig. 1. The Overview of ALMOND

introduces the issue of out-of-vocabulary (OOV) words. For instance, “dog” and “dogs” would be
considered entirely different tokens in a word-based tokenizer.

To address the OOV problem, modern NLP models typically use subword-based tokenizers, such
as Byte Pair Encoding (BPE) [10] or WordPiece [55]. BPE iteratively merges the most frequent pairs
of bytes or characters until the target vocabulary size is reached. Similarly, WordPiece constructs
subwords iteratively by selecting token sequences that maximize the likelihood of the text, based
on subword frequency data learned during training.
However, assembly language differs significantly from natural languages in terms of structure,

syntax, and vocabulary. Assembly code has amore rigid structure and amuch smaller vocabulary. For
example, in x86-64 assembly, there are only around 1,000 unique mnemonics and 100 registers and
symbols. As a result, word-based tokenizers do not encounter the same challenges as they do with
natural languages. In this context, subword-based tokenizers offer little advantage. On the contrary,
word-based tokenizers are more efficient due to their simplicity and lack of training requirements.
Consequently, previous research [7, 23, 52] on assembly language models has commonly adopted
the approach of separating opcodes and operands based on spaces.

The application of word-based tokenization to assembly code is not without challenges. Assembly
code contains many immediate values and addresses, which can still lead to significant out-of-
vocabulary (OOV) issues. Moreover, these tokens vary across different binaries, even when compiled
from the same source code, due to variations in compilers and platforms. Immediate values and
addresses will differ accordingly. Training a model to predict these specific values reduces its
accuracy on non-obfuscated code and increases perplexity, thereby impairing the model’s ability to
detect obfuscated code. This issue is present for both subword-based and word-based tokenizers.
Hence, we implemented token normalization [7, 23] to solve our OOV issue. Specifically, as

shown in Figure 1, we replace immediate numbers and string tokens within instructions with
special tokens. This allows the model to focus on the underlying semantics without being influenced
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by specific numerical or address information, which are often subject to configuration changes.
These normalized tokens make it easier for the model to learn and make accurate predictions.

3.2 Architecture

For our language model architecture, we choose to utilize state-of-the-art Transformer-based
models. There are three main types of popular Transformer architectures: pure Encoder models
(e.g., BERT [6]), also known as auto-encoding Transformers; pure Decoder models (e.g., GPT [38]),
also known as auto-regressive Transformers; and Encoder-Decoder models [53], which combine
elements of both.

Encoder-only models, such as BERT, utilize a bi-directional attention mechanism and are trained
through Masked Language Modeling (MLM). However, this approach is not well-suited for solving
our problem. The obfuscation detection task is more akin to a stylometric analysis problem, where
the goal is to differentiate between the language styles of typical compilers and obfuscators. BERT,
being trained on MLM tasks, focuses primarily on predicting masked tokens by leveraging the full
context. As a result, it emphasizes semantic and syntactic understanding, with little sensitivity to
variations in language style. This makes BERT less effective for obfuscation detection, as the model
is likely to predict masked tokens accurately, regardless of whether the code has been obfuscated,
as long as it understands the syntax and semantics of the input context.
In contrast, pure Decoder models like GPT use only the Decoder module of the Transformer

architecture. At each step, the attention layer can access only the preceding words in the sequence,
enabling the model to iteratively predict subsequent words based on the context already generated.
This approach is known as Causal Language Modeling (CLM). When predicting the next tokens,
the model must consider both fine-grained syntax and semantics, as well as generate sequences
that match the style of the preceding text. As a result, if the GPT model has been pre-trained
predominantly on unobfuscated code, it will face greater difficulty in predicting sequences for
obfuscated code, which exhibits a distinct language style.

Table 1. Accuracy(Top-1) and Perplexity on BERT and GPT

Model Obfuscated Unobfuscated

BERT(MLM) Accuracy 0.877 0.895
GPT-1.0(CLM) Accuracy 0.725 0.856

BERT(MLM) perplexity 2.728 2.014
GPT-1.0(CLM) perplexity 4.045 2.225

We conducted an experiment to
confirm this hypothesis. Table 1
presents the accuracy of GPT’s CLM
task and BERT’s MLM task on both
obfuscated and unobfuscated code
(on validation Dataset during pre-
training). The results show that for
the MLM task, the top-1 prediction
accuracy and perplexity are similar
for both types of sequences. This in-
dicates that BERT struggles to distinguish between the two styles. Consequently, GPT and the CLM
task are more appropriate design choices.

We only use unobfuscated assembly code to train the GPT model. As previously mentioned, this
allows our GPT model to learn only the language style of unobfuscated code, which will be used for
subsequent obfuscation detection. We train the GPT model using a causal language modeling (CLM)
task. More specifically, Transformer architecture is used to model the conditional probabilities
𝑃 (𝑤𝑡 | 𝑤1,𝑤2, . . . ,𝑤𝑡−1) The model is trained to predict the next word in a sequence, given the
previous words. The training objective is

Loss = −
𝑇∑︁
𝑡=1

log 𝑃 (𝑤𝑡 | 𝑤1,𝑤2, . . . ,𝑤𝑡−1) (1)
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3.3 0-Shot Obfuscation Detection

After training, the pre-training task will be reused to perform obfuscation detection. When a query
code snippet is fed into the GPT model, it will make predictions from𝑤2 to𝑤𝑛 if the input length
is 𝑛. Although obfuscated code functions the same as unobfuscated code, obfuscated instruction
sequences create significant logical differences. For a language model trained on unobfuscated code,
predicting the logic of obfuscated code becomes challenging. Therefore, in theory, we can evaluate
the model’s predictions using various metrics designed to assess language model predictions, and
then classify the code by setting a threshold. A common example of such a metric is perplexity. For
a particular token in a sequence, perplexity is calculated as:

Perplexity(𝑤𝑡 ) = exp (− log 𝑃 (𝑤𝑡 | 𝑤1,𝑤2, . . . ,𝑤𝑡−1)) (2)

For a sequence, perplexity is calculated as:

Perplexity(𝑤1,𝑤2, . . . ,𝑤𝑇 ) = exp

(
− 1
𝑇

𝑇∑︁
𝑡=1

log 𝑃 (𝑤𝑡 | 𝑤1,𝑤2, . . . ,𝑤𝑡−1)
)

(3)

If the perplexity exceeds the threshold, it indicates poor prediction results, leading us to classify
the input sample as obfuscated code.

0

0.5

1

(a) Probability of an obfuscated binary

0

0.5

1

(b) Probability of a regular binary

Fig. 2. Comparison of probability between obfuscated and regular binaries

3.4 Further improvement on Obfuscation Detection

Table 1 demonstrates that the perplexity predicted by the GPT model shows a marked difference
between obfuscated and unobfuscated code, indicating that perplexity is a suitable metric for
zero-shot obfuscation detection. To achieve even higher detection accuracy and robustness, we
would like to identify potential areas for improvement. Figure 2 displays the prediction probability
for ground truth tokens in an obfuscated code snippet, where each square represents the GPT
model’s probability of predicting the correct token at a specific position. Lighter colors indicate
higher probabilities, while darker colors reflect lower probabilities and may indicate incorrect
predictions. Comparing obfuscated code in Figure 2a and unobfuscated code in Figure 2b, some
notable differences and patterns emerge.

First, it is evident that for both obfuscated and unobfuscated code, the prediction probability for
most tokens is quite high, as supported by the data in Table 1. Both obfuscated and unobfuscated
code achieves over 70% accuracy. Our further tests reveal that the perplexity of these correctly
predicted tokens is very similar, as shown in Table 2. Therefore, we can conclude that these correctly
predicted tokens do not significantly contribute to obfuscation detection. However, the small subset
of incorrectly predicted tokens plays a crucial role, as low probabilities result in high perplexity.

Figure 3 presents a heatmap after masking all the correct predictions. We can see that, although
the number of dark squares in the obfuscated code is higher than in the unobfuscated code, the
unobfuscated code also contains many dark squares. However, the dark squares in the obfuscated
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0.3
0.4

(a) Probability of an obfuscated binary

0
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0.3
0.4

(b) Probability of a regular binary

Fig. 3. Comparison of probability with mispredictions only

code exhibit a clear consecutiveness, while those in the unobfuscated code are more scattered and
discrete(Only horizontally connected tokens represent consecutive tokens.).

Table 2. Perplexity on correct predictions

Code Mean Max Min

Regular 1.12 4.00 1.00
Obfuscated 1.28 4.14 1.00

3.4.1 Error-perplexity. Based on the previous observa-
tion, we propose error-perplexity as the metric for clas-
sification. Instead of using the perplexity of all tokens,
we only consider the perplexity of incorrectly predicted
tokens as the evaluation factor. As mentioned earlier, in
obfuscated code, many tokens can still be predicted by
the GPT model, and for these tokens, the perplexity will
be low regardless of whether the code is obfuscated, in-
troducing noise. However, for tokens that the GPT model predicts incorrectly, obfuscated and
unobfuscated codes fall into different scenarios. For non-obfuscated code, incorrect predictions for
a token are often due to the presence of multiple possibilities within normal logic. For example,
after a test instruction, various jump instructions may reasonably follow, leading to potential errors
in prediction. As a result, the ground truth token is typically among these possible tokens, leading
to a relatively low perplexity value. On the other hand, incorrect predictions are more frequent in
obfuscated code than in non-obfuscated code. These errors often arise because the language model
cannot predict the obfuscated code’s unique logic based on the previous tokens. In such cases, the
predictions tend to be more random, and the ground truth token’s probability is very low, resulting
in a significantly higher perplexity value. Error-perplexity uses Equation 4 as follows.

Error-Perplexity(𝑤1,𝑤2, . . . ,𝑤𝑇 ) = exp

(
− 1
|𝑀 |

∑︁
𝑡 ∈𝑀

log 𝑃 (𝑤𝑡 | 𝑤1,𝑤2, . . . ,𝑤𝑡−1)
)

(4)

Where:
• 𝑀 is the set of indices where the model made an incorrect prediction.
• |𝑀 | is the size of the set𝑀 , i.e., the number of mispredicted tokens.
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Fig. 4. Comparison of Distributions of Error-Perplexity with and without CEP
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We collected the distribution of error-perplexity for both unobfuscated and obfuscated code,
which can be found in Figure 4a. It can be observed that the obfuscated code is primarily distributed
in the region above 1000, while the unobfuscated code is concentrated in the range between 1 and
1000.

3.4.2 Consecutive Error Perplexity. On top of error-perplexity, we introduced a new metric called
Consecutive Error prediction (CEP). Our investigation into language model predictions highlights
two key scenarios where prediction errors arise. First, the semantics are correct, but the model faces
multiple valid choices. In this case, the model usually predicts the opcode correctly and can often
predict the operands as well. Even if it fails to predict the operands, the perplexity remains relatively
low. Second, when an obfuscator rewrites a sequence of instructions rarely seen in regular binaries,
the language model tends to make errors in both the opcodes and operands, and sometimes even in
subsequent instructions. As a result, the occurrence of consecutive prediction errors is significantly
higher in obfuscated code than in regular code. In Table 3, we present the average number of
consecutive token prediction errors for both obfuscated and unobfuscated code (This means that
a single token prediction error has a length of 1, two consecutive token prediction errors have a
length of 2, and so on, with the average being taken.).

Table 3. Avg. length of error predictions

Code Regular Obfuscated

Avg. length of error predictions 1.519 2.335

The general idea of consecutive error per-
plexity is to treat a sequence of consecutive
mispredicted tokens as one unit. The probabil-
ity for mispredicting one sequence of tokens
can be calculated as a joint probability of mis-
predicting individual tokens in the sequence.
Therefore, CEP can be defined as follows:

CEP(𝑤1,𝑤2, . . . ,𝑤𝑇 ) = exp

(
− 1
|S|

∑︁
𝑆𝑖 ∈S

log
|𝑆𝑖 |∏
𝑗=1

𝑃 (𝑤𝑡 𝑗 | 𝑤1,𝑤2, . . . ,𝑤𝑡 𝑗−1)
)

(5)

Where:
• S is the set of sequences of consecutive mispredicted tokens.
• 𝑆𝑖 = (𝑤𝑡1 ,𝑤𝑡2 , . . . ,𝑤 |𝑆𝑖 | )
• |S| is the number of sequences in S.

Using the logarithmic property log
∏

=
∑
log, the equation becomes:

CEP(𝑤1,𝑤2, . . . ,𝑤𝑇 ) = exp

(
− 1
|S|

∑︁
𝑆𝑖 ∈S

|𝑆𝑖 |∑︁
𝑗=1

log 𝑃 (𝑤𝑡 𝑗 | 𝑤1,𝑤2, . . . ,𝑤𝑡 𝑗−1)
)

(6)

So this equation effectively sums up the logarithm of probabilities for all tokens in all mispredicted
sequences. Therefore, it can be rewritten as follows:

CEP(𝑤1,𝑤2, . . . ,𝑤𝑇 ) = exp

(
− 1
|S|

∑︁
𝑡 ∈M

log 𝑃 (𝑤𝑡 | 𝑤1,𝑤2, . . . ,𝑤𝑡−1)
)

(7)

Compared to Equation 4 for Error Perplexity, Consecutive Error Perplexity essentially replaces
|M| with |S|. With a fixed number of incorrect predictions, if more mispredicted tokens are next
to each other, the number of error sequences |S| decreases, leading to a higher CEP.
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4 Evaluation

In this evaluation, we aim to answer the following research questions:
(1) RQ1: How does ALMOND’s performance compare to that of a supervised fine-tuned classifier

when applied to known obfuscation methods?
(2) RQ2: How does ALMOND perform compared to a supervised fine-tuned classifier on previ-

ously unseen obfuscation methods?
(3) RQ3: How does ALMOND perform under different configurations?
(4) RQ4: How does ALMOND perform on real-world cases?

4.1 Implementation

We employed the GPT-1.0 as our model architecture, which is considered small by contemporary
standards. It consists of 12 transformer layers, each with 12 heads. It has an output dimension of
768 and an intermediate layer dimension of 3072. We implemented the GPT model using Hugging
Face’s framework and conducted pre-training on a server with a single A100 40GB GPU.

4.2 Dataset Collection

Table 4. Obfuscators and Transformation Methods

Obfuscators Transformations

OLLVM Instruction Substitution, Bogus Control Flow
Control Flow Flattening

Hikari
Anti-Class Dump, Function Wrapper
Function Call Obfuscate
Indirect Branching, String Encryption

Tigress Add Opaque, Flatten Functions
Split Fucntions, Merge Functions

Alcatraz
Obfuscation of Immediate Moves,
Control Flow Flattening, ADD Mutation,
Lea obfuscation

Obfuscators. We collect four obfus-
cators for evaluation: OLLVM [17]3,
Hikari 4, Tigress 5, and Alcatraz 6. OL-
LVM, a modification of LLVM, inte-
grates obfuscation into the compila-
tion process and provides three main
obfuscation algorithms: Instructions
Substitution, Control Flow Flatten-
ing, and Bogus Control Flow. Hikari
builds upon OLLVM, offering five ad-
ditional obfuscation methods: Anti-
ClassDump, FunctionCallObfuscate,
FunctionWrapper, IndirectBranching,
and StringEncryption. Tigress, in con-
trast, is a source-to-source trans-
former designed for the C language.
Unlike OLLVM and Hikari, which operate during compilation, Tigress takes a C source program
as input and outputs an obfuscated C program. For this evaluation, we selected the AddOpaque,
Split, Merge, and Flatten obfuscation techniques from Tigress to obfuscate the source code and
then compiled it into binary form.

It is important to note that we used the O0 optimization level during compilation for both OLLVM
and Tigress. For source-to-source obfuscators like Tigress, subsequent compiler optimizations could
remove or reduce the effectiveness of the obfuscation techniques. Thus, using the O0 optimization
level ensures that the original obfuscation algorithms are preserved as much as possible. Table 4
summarizes the obfuscators and the respective transformations used in our training and testing
datasets.

3https://github.com/obfuscator-llvm/obfuscator
4https://github.com/HikariObfuscator/Hikari
5https://tigress.wtf/index.html
6https://github.com/weak1337/Alcatraz
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Alcatraz represents obfuscators that directly modify binaries. This tool works on x64 PE binaries,
which is the only platform supported by Alcatraz. It provides powerful obfuscation features includ-
ing obfuscation of immediate moves, control flow flattening, ADD mutation, and LEA obfuscation.
Since it targets PE binaries and is not derived from OLLVM, its implementation differs significantly
from OLLVM and Hikari, which were used in pre-training. Alcatraz also includes many dynamic
encryption features such as entry point obfuscation and anti-disassembly. However, since these
two obfuscation techniques are outside the scope of our research, we modified the Alcatraz source
code and recompiled it to disable these methods.

Pre-training Data. In evaluation of StateFormer [35], the authors collected 33 open-source projects
in their latest versions, including well-known and large projects such as OpenSSL, ImageMagic,
and Coreutils. These projects were compiled for four instruction set architectures including x86,
x64, MIPS, and ARM, each with four different optimizations using GCC-7.5. We used the x64
portion of the StateFormer training set. Additionally, the Stateformer dataset includes obfuscated
code generated using Hikari and OLLVM, we did not use these obfuscated binaries to pre-train
ALMOND.

It is worth noting that our language-based baseline models also used a portion of this dataset
set for fine-tuning. To further enhance data diversity, we additionally collected 3,000 PE binaries
from Windows systems for pre-training, with the goal of increasing the variety of binaries across
different platforms and compilers.

Testing Data. For testing, we selected binaries that were entirely distinct from those used in
pre-training. Specifically, we used the POJ-104 dataset, which originates from a pedagogical pro-
gramming open judge (OJ) system[33] designed to automate the evaluation of submitted source
code for specific problems. For our test set, we compiled over 14,000 POJ-104 binaries, encompassing
more than 25,000 functions.

Real-world dataset. For evaluations on real-world cases, we collect 5000 Real-world binaries
from Linux Distributions and Windows PE files. Similarly, we selected 5000 binaries labeled as
malware from VirusTotal feedings. These binaries were compiled for different platforms using
various compilers, and the malware likely employed various obfuscators or packers, resulting in
significant diversity.

4.3 RQ1: How does ALMOND perform on known obfuscation methods?

In this experiment, we investigate the performance gap betweenALMOND and supervised classifiers
when dealing with known obfuscation methods. To provide a basis for comparison, we established
the following baselines. First, we replicated the method proposed by Salem et al. [43] as the baseline
for traditional machine learning. This method encodes assembly code using TF-IDF [48] and utilizes
Multinomial Naïve Bayes (MNB) as the classifier. MNB is a variant of the Naïve Bayes algorithm
specifically designed for classification tasks involving discrete features and is commonly used in
text classification problems [19]. At the same time, it can also be effectively combined with TF-IDF.
We refer to this approach as Naïve Bayes.

Second, we implemented Tian et. al.’s OBOB [50] as the deep learning baseline. In this approach,
code sequences are sampled from the control flow graph using a shortest path algorithm. A Bi-
directional GRU network is then used to encode the sequences, followed by a CNN for further
dimensionality reduction. Finally, classification is performed using a softmax classifier. For clarity,
we refer to this model as BiGRU-CNN.

Finally, we utilized the pre-trained ALMOND model, attached it to a classifier with a Multi-
Layer Perceptron (MLP) network [41], and conducted fine-tuning. This model is referred to as
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ALMOND-S, in which S stands for Supervised Learning. For ALMOND, we determined the optimal
threshold using a set of labeled data from the Stateformer dataset (which contains unobfuscated
code and obfuscated code with Hikari and OLLVM), and we applied a fixed threshold value for
the evaluation of RQ1 and RQ2. However, different training sets may result in different thresholds.
Due to ALMOND’s flexibility, the threshold can be adjusted at any time based on the data. It is
worth noting that there is no overlap between the obfuscated binaries used during training and
fine-tuning and those used in the test set during evaluation.

Table 5. Performance on known obfuscation

methods. A: Accuracy, P: Precision, R: Recall

Model A P R F1

Naïve Bayes 0.942 0.911 0.975 0.958
BiGRU-CNN 0.933 0.936 0.932 0.934
ALMOND-S 0.988 0.988 0.984 0.985
ALMOND 0.962 0.953 0.975 0.963

Table 5 presents the results of different models
on a test set containing known obfuscation meth-
ods. We observe that, after 18 hours of fine-tuning,
ALMOND-S is the best performer, achieving an ac-
curacy of 0.988 and an F1-score of 0.985. Notably,
without any fine-tuning or supervision, ALMOND
achieves an accuracy of 0.962 and an F1-score of
0.963, demonstrating that in a zero-shot setting, AL-
MOND still delivers performance comparable to fine-
tuned models with the same architecture.

Although Naïve Bayes and BiGRU-CNN perform
slightly worse than ALMOND, they still achieve accuracy and F1-scores above 0.93, indicating
that both supervised learning and zero-shot learning approaches can effectively detect known
obfuscation methods.

4.4 RQ2: How does ALMOND perform on previously unseen obfuscation methods?

This experiment examines the performance gap between ALMOND and supervised classifiers when
dealing with unseen obfuscation methods. To ensure precise control over the unseen dataset, we
trained Naïve Bayes, BiGRU-CNN, and fine-tuned the language model using only the binaries
obfuscated with OLLVM. For testing, we used binaries obfuscated with Tigress and Alcatraz,
ensuring that the obfuscation methods employed in Tigress were not present in the OLLVM-based
training data.

Table 6. Performance on unseen obfuscation methods.

Models Tigress Alcatraz

A P R F1 A P R F1

Naïve Bayes 0.563 0.943 0.103 0.185 0.522 0.945 0.106 0.190
BiGRU-CNN 0.862 0.866 0.862 0.863 0.566 0.884 0.247 0.247
ALMOND-S 0.966 0.966 0.957 0.961 0.622 0.793 0.452 0.576
ALMOND 0.963 0.952 0.969 0.961 0.967 0.964 0.958 0.961

The experimental results are presented in Table 6. BiGRU-CNN and ALMOND-S demonstrated
relatively better generalizability on Tigress binaries. However, there was a significant performance
drop on Alcatraz binaries. ALMOND-S achieved the best results among the baselines, showcasing
the advantage of language models in semantic modeling.
In contrast, ALMOND remained unaffected when applied to previously unseen obfuscation

methods and significantly outperformed all other baselines. For binary-based obfuscation methods
with completely different implementations, ALMOND showed higher perplexity and reduced token
prediction accuracy. In comparison, supervised methods often classified these obfuscated binaries
as benign, resulting in a high false negative rate. This also confirms our earlier assertion that, in an
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environment with unknown obfuscation methods, the generalizability of unsupervised training is
superior to that of supervised training.

4.5 RQ3: How does ALMOND perform under different configurations?

Table 7. Performance of Different Metrics

Method Acc MRR PPL EP CEP

regular 0.750 0.836 9.434 570.481 4.53k
sub 0.715 0.801 22.657 2002.313 15.37k
fla 0.811 0.859 11.002 1801.224 24.28k
bcf 0.647 0.724 25.615 1816.941 22.25k
tigress 0.623 0.812 18.494 2295.242 38.80k

In this experiment, we examined how different
metrics and model sizes affect the performance
of ALMOND.

4.5.1 Performance of Different Metrics. Table 7
shows results for five metrics on both unobfus-
cated and obfuscated binaries across different
obfuscation methods, highlighting numerical
differences. Accuracy (Acc) and Mean Recipro-
cal Rank (MRR) show no significant difference
between the two groups. In some cases, binaries
obfuscated with control flow flattening (FLA)
even achieve higher accuracy and MRR than their unobfuscated counterparts. This suggests that
using accuracy or MRR as a classification metric could result in false negatives, where obfuscated
binaries—particularly those obfuscated using control flow flattening—are incorrectly classified as
unobfuscated. In contrast, for perplexity-based metrics (i.e., original perplexity (PPL), error per-
plexity (EP), and consecutive error perplexity (CEP)), we can observe wide numeric gaps between
regular and obfuscated binaries.
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Fig. 5. ROC curves on different metrics

To further evaluate how these metrics affect AL-
MOND’s performance, we plot their ROC curves in Fig-
ure 5 and compute the Area Under the Curve (AUC) for
each metric. We can observe that the original perplexity
achieves reasonable performance with an AUC of 0.947,
whereas error perplexity outperforms it by a big margin
with an AUC of 0.978, and consecutive error perplexity
further beats error perplexity with an AUC of 0.992.
In summary, this experiment demonstrates that both

the proposed error-perplexity and the Consecutive Error
Perplexity (CEP) significantly enhance the performance
of ALMOND.

4.5.2 Performance of Different Model Sizes. In this sub-
section, we will examine the model’s performance under
different sizes. We adjusted the model size by varying the
number of layers and self-attention heads. Including the default size, we trained a total of three
different model sizes, labeled as ALMOND-small, ALMOND, and ALMOND-large. Table 8 provides
detailed parameters for each of these models.

Table 8. Hyperparameters on different sized models

Models Layers Dimensions Heads Parameters

Small 6 768 4 14M
Standard 12 768 12 87M
Large 24 768 12 172M
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Table 9. Performance on different sizes

Models Recall Precision F1-score AUC

Small 0.944 0.927 0.935 0.982
Standard 0.963 0.958 0.960 0.991
Large 0.939 0.894 0.915 0.977

Table 9 shows the precision, recall, F1-score,
and AUC scores of ALMOND on different sizes.
We observed that in the zero-shot setting, a
larger model size does not always lead to better
performance; instead, there is a sweet spot. As
we scale from ALMOND-small to ALMOND,
performance improves with the increase in lay-
ers. However, further increasing the model size
results in a performance drop. This is because our model relies on its understanding of the semantics
of unobfuscated code to distinguish obfuscated code. If the model is too small, it lacks the capacity
to fully grasp the semantics of assembly code, leading to excessively high perplexity values on
unobfuscated code. Conversely, if the model is too large, its understanding of the assembly code
semantics becomes too strong, and its generalization ability too high. As a result, it predicts low
perplexity for obfuscated code. Therefore, there is a sweet spot in the model size of ALMOND,
where it can adequately understand the semantics of assembly code without losing its ability to
distinguish obfuscated code through error-perplexity due to overgeneralization.

4.6 RQ4: How does ALMOND perform on real-world cases
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Fig. 6. ROC curves on real-world binaries

This experiment evaluates the performance of
ALMOND on large-scale, real-world programs,
including both commercial off-the-shelf (COTS)
and open-source software. In practice, binaries
are typically unobfuscated, so even a low false
positive rate can undermine ALMOND’s effec-
tiveness due to the high volume of binaries.
Additionally, real-world binaries are compiled
with various compilers and configurations and
may include scientific computation libraries.
These libraries often contain extensive mathe-
matical operations that can resemble the logic
used by obfuscators. As a result, such opera-
tions could be mistakenly identified as obfus-
cated, leading to false positives. The experiment
aims to determine ALMOND’s applicability in
a real-world malware detection environment.
The purpose of the experiment is not to suggest
that we should use ALMOND alone for malware detection. Instead, it offers a new perspective on
zero-day detection. This is based on a previously discussed assumption that malware will inevitably
use some form of obfuscator or packer to obfuscate the source code in order to evade anti-virus
detection. Hence, ALMOND can be employed to identify potential zero-day malware, serving as an
initial filter. Once an alert is triggered, slower but more comprehensive program analysis tools and
reverse engineering techniques can be used to investigate and confirm the nature of the suspected
malware.
Unlike the previous experiments, this experiment requires classification at the binary level, so

we adjusted the calculation method for the metrics accordingly. Instead of calculating CEP at the
function level, we now compute CEP for the entire binary. Therefore, in this experiment, we plotted
ROC curves using different thresholds.
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Figure 6 shows ALMOND’s performance on real-world binaries. We observed that ALMOND
achieved an AUC of 0.869 and an F-1 score of 0.803 on this dataset, indicating that ALMOND can
also achieve high accuracy in real-world malware detection tasks. Overall, as an initial filter in a
comprehensive malware detection system, ALMOND is fully capable of fulfilling this role.

On the contrary, the classification accuracy of ALMOND-S dropped significantly. As a classifier
utilizing a language model, ALMOND-S possesses strong language modeling and feature extraction
capabilities, as demonstrated in RQ1. However, as a supervised model, ALMOND-S is unable to
handle such tasks in real-world environments.

Fig. 7. The heatmap of malware A

4.6.1 Real case: Packers.
Case 1 Figure 7 presents a heatmap of the per-
plexity with CEP on a malware sample. In the
heatmap, some distinct highlighted lines can be
observed. We extracted one segment for anal-
ysis. This function appears to be part of an en-
cryption/decryption or decompression routine,
containing complex operations such as multi-
plications, bit shifts and rotations, and bitwise
comparisons along with conditional jumps. It also makes use of bitwise instructions like LZCNT,
SWAP, NEG, etc. It is known to all that some packers typically decrypt or unpack compressed
executable data on the fly, so we believe this function might be responsible for part of that pro-
cess—transforming the packed data into executable code just before it is executed. It is worth
mentioning that we also studied the implementation of encryption algorithms in OpenSSL. How-
ever, we found that the encryption algorithms used in network communications are not the same
as the function in this case. Taking the x86_aes_encrypt function as an example, this function
primarily uses a combination of MOVZX, XOR, SHR, and similar instructions, mainly performing
logical and bitshift operations. However, the case function mainly involves various specialized
instructions with arithmetic and bit manipulation. Since OpenSSL-related functions are included in
ALMOND’s pre-training dataset, the language model can also accurately predict these operations.

Furthermore, we speculate that this segment was either manually crafted by the author or
generated using a specialized obfuscation tool, which is completely different from the obfuscated
segments observed in other experiments. Hence, ALMOND made consecutive prediction errors in
this segment. Besides this, we also observed a few similar segments in the binary. For the rest of
the program, ALMOND exhibited lower perplexity.

Case 2 Figure 8 presents the heatmap of another malware sample. Information from VirusTotal
indicates that this program likely used some VM-based techniques to protect and encrypt its logic.
However, there are still some functions that can be fully disassembled. The heatmap reveals that
one part of the binary has higher perplexity compared to other sections. Upon further investigation,
this function appears to be a part of a process injection routine, leveraging various Windows API
functions to inject code (likely a DLL or shellcode) into another process and execute it remotely.
It achieves this by creating a new process or accessing an existing one, allocating memory in
that process, writing the payload to the allocated memory, and finally creating a remote thread
to execute the injected payload. ALMOND exhibited clear anomalies when dealing with process
injection operations, as such operations are rarely found in typical programs. This resulted in very
high perplexity and consecutive prediction errors during inference.
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4.7 Efficiency

Fig. 8. The heatmap of malware B

In this experiment, we evaluated the efficiency of
ALMOND. We found that on an A100 40G GPU,
with a batch size of 32, ALMOND can achieve a
throughput of 173.808 inferences or 88989 tokens
per second, and with a batch size of 64, it can achieve
a throughput of 220.324 inferences or 112640 tokens
per second.

5 Related Works

5.1 Obfuscation Detection

As discussed in §2.3, prior research on obfuscation
detection primarily aimed to facilitate reverse engi-
neering, employing rule-based, machine learning-
based, and deep learning-based methods. The ap-
proach proposed in this paper builds on deep learn-
ing methods while also leveraging metrics used in
rule-based detection. Previous deep learning approaches, such as those by Zhao et al. [60] and Tian
et al. [50], utilized CNNs and LSTMs for supervised learning. However, with the application of
language models in binary analysis, the use of language models and the pre-training, fine-tuning
paradigm has become a superior solution. To our knowledge, this paper is the first to use a language
model for obfuscation detection. The connections and distinctions between this work and other
studies that apply language models to static binary analysis will be discussed in. After modeling
assembly language with a language model, this paper introduces a novel language model-based
metric, error perplexity, to detect obfuscated code. This approach is analogous to using rule-based
metrics like entropy [26] or n-gram models [18] for obfuscation detection, but with a key difference:
the proposed metric is designed to assess the predictions of the language model rather than directly
targeting assembly code or raw bytes.

5.2 Language Model for Static Binary Analysis

In recent years, numerous studies have explored the use of language models for static binary
analysis. PalmTree [23], for example, proposed using language models to generate instruction
embeddings, which can be applied to various downstream tasks. Most of these studies have focused
on leveraging language models by introducing specialized pre-training tasks or innovative model
architectures to target specific tasks, such as similarity detection [1, 15, 24, 29, 36, 52, 58], type
inference [35], function name recovery [4, 16], and value set analysis [12]. These tasks are typically
accomplished through fine-tuning or by introducing special pre-training tasks.
The key distinction between this work and those studies is that our approach does not involve

any additional pre-training tasks or fine-tuning. Instead, it relies solely on the default pre-training
of GPT, enabling obfuscation detection to be performed in a zero-shot manner.

5.3 Zero-shot Classification and Anomaly Detection

Zero-shot classification involves predicting a class the model has never encountered during training,
often requiring it to perform tasks not explicitly learned. A notable example is GPT-2, tested on
downstream tasks like machine translation without fine-tuning [39]. In this context, the model
classifies input text into unseen labels. Two primary approaches exist: Puri et al.[37] utilize genera-
tive capabilities of models like GPT by prompting the model with task descriptions and candidate
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labels, while Zhang et al. [59] map both labels and documents into a high-dimensional space to
predict labels using cosine similarity. Unlike Zhang et al. [59], ALMOND focuses on One-Class
Classification, avoiding the need for label mapping.

Similarly, in anomaly detection (AD), the task is to identify data instances that deviate from the
norm [40], with applications in security, such as detecting DDoS attacks or monitoring system
logs [9, 13, 14, 21]. Zero-shot anomaly detection employs two approaches: one utilizes large-scale
data and powerful models through meta-learning or in-context learning, as seen with Liu et al. [25]
and RAGLog [34]. The second, more computationally efficient approach studies sample features
and applies scoring methods for evaluation, enabling zero-shot detection in tasks like pixel-level
anomaly detection [8, 22, 46]. This feature analysis method is the focus of this paper.

6 Discussion

This paper proposes a zero-shot obfuscation detection method based on a pre-trained language
model, achieving results comparable to fine-tuned models with significantly less training data.
However, there are limitations to this work. Firstly, the paper only explores binary classification
using error-perplexity. In reality, the information predicted by the language model could be used
for more detailed classification tasks, such as identifying specific obfuscation methods, all without
requiring fine-tuning. We believe that building on this work, incorporating few-shot learning
algorithms such as Generalized Learning Vector Quantization [44] could enable the prediction of
obfuscation methods.

Secondly, this paper presents only a prototype of classification based on error-perplexity and does
not thoroughly investigate combining multiple metrics to further enhance performance. However,
we have already observed that combining perplexity and error-perplexity outperforms using either
metric alone.

Lastly, this paper does not include experiments to thoroughly examine the potential vulnerabilities
of ALMOND to evasion or adversarial attacks, which will be discussed here. First, adversarial
learning methods targeting binary classifiers must ensure that the modified binary can both mislead
the machine learning classifier and maintain functional integrity [47]. Consequently, these methods
typically avoid altering the original assembly code and instead insert data or code between the
assembly instructions to deceive the classifier. However, the classification method based on error-
perplexity proposed in this paper focuses solely on the language model’s incorrect predictions. As
a result, for an obfuscated binary, it would be challenging to deceive ALMOND by simply inserting
unobfuscated code. However, this does not imply that ALMOND is entirely immune to evasion.
Attackers would need to design obfuscation methods that more closely resemble regular code to
reduce the error-perplexity value, which inherently means a reduction in the effectiveness of the
obfuscation itself. Therefore, we have reason to believe that ALMOND offers stronger resistance to
adversarial attacks compared to other supervised-learning-based approaches.

7 Conclusion

We present ALMOND, a zero-shot obfuscation detector based on a transformer language model.
We employed a metric-based classification technique along with an anomaly detection approach
and proposed the error-perplexity and Continuous Error-prediction Penalty to further enhance
detection capabilities. Our evaluation demonstrates that ALMOND achieves an accuracy of 96.3% on
binaries with previously unseen obfuscation methods, surpassing traditional machine learning and
deep learning approaches. Moreover, in a real-world malware detection task, ALMOND achieved a
false negative rate of less than 0.001, while maintaining a false positive rate of just 0.269. ALMOND
has proven that obfuscation detection can be achieved in a zero-shot setting solely through metric
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evaluation of the language model. It has also demonstrated that, when faced with complex and
unknown real-world environments, it is more reliable than supervised learning-based models.
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