
Calico: Automated Knowledge Calibration and Diagnosis for
Elevating AI Mastery in Code Tasks

Yuxin Qiu
University of California at Riverside

Riverside, USA
yuxin.qiu@email.ucr.edu

Jie Hu
University of California at Riverside

Riverside, USA
jhu066@ucr.edu

Qian Zhang
University of California at Riverside

Riverside, USA
qzhang@cs.ucr.edu

Heng Yin
University of California at Riverside

Riverside, USA
heng@cs.ucr.edu

Abstract

Recent advancements in large language models (LLMs) have ex-
hibited promising capabilities in addressing various tasks such as
defect detection and program repair. Despite their prevalence, LLMs
still face limitations in e�ectively handling these tasks. Common
strategies to adapt them and improve their performance for speci�c
tasks involve �ne-tuning models based on user data or employing
in-context learning with examples of desired inputs and outputs.
However, they pose challenges for practical adoption due to the
need for extensive computational resources, high-quality data, and
continuous maintenance. Furthermore, neither strategy can explain
or reason about the de�ciencies of LLMs in the given tasks.

We propose Calico to address the high cost of �ne-tuning, elimi-
nate the necessity for task-speci�c examples, and provide explana-
tions of LLM de�ciency. At the heart of Calico is an evolutionary
approach that interleaves knowledge calibration and AI de�ciency
diagnosis. The key essence of Calico is as follows. First, it focuses
on identifying knowledge gaps in LLMs’ program comprehension.
Second, it conducts automated code refactoring to integrate the
overlooked knowledge into the source code for mitigating those
gaps. Third, it employs what-if analysis and counterfactual reason-
ing to determine aminimum set of overlooked knowledge necessary
to improve the performance of LLMs in code tasks.

We have extensively evaluated Calico over 8,938 programs on
three most commonly seen code tasks. Our experimental results
show that vanilla ChatGPT cannot fully understand code struc-
tures. With knowledge calibration, Calico improves it by 20% and
exhibits comparable pro�ciency compared to �ne-tuned LLMs. De-
�ciency diagnosis contributes to 8% reduction in program sizes
while ensuring performance. These impressive results demonstrate
the feasibility of utilizing a vanilla LLM for automated software
engineering (SE) tasks, thereby avoiding the high computational
costs associated with a �ne-tuned model.

ISSTA ’24, September 16–20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680399

CCS Concepts

• Software and its engineering→ Software development tech-

niques; Software testing and debugging; Dynamic analysis;
Search-based software engineering;

Keywords

Software engineering, software testing, large language model

ACM Reference Format:

Yuxin Qiu, Jie Hu, Qian Zhang, and Heng Yin. 2024. Calico: Automated
Knowledge Calibration and Diagnosis for Elevating AI Mastery in Code
Tasks. In Proceedings of the 33rd ACM SIGSOFT International Symposium

on Software Testing and Analysis (ISSTA ’24), September 16–20, 2024, Vienna,

Austria.ACM, NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3650212.
3680399

1 Introduction

Large language models (LLMs) have gained substantial traction
in software engineering (SE). These models, with their advanced
comprehension and generation capabilities, are stimulating innova-
tions in various areas of SE research and practices, such as defect
detection [14, 25, 36, 57], clone detection [18, 78], code summariza-
tion [42, 51], and program repair [17, 71]. For example, Copilot [7]
augments software developers’ productivity by providing code sug-
gestions derived from natural language descriptions and program
context such as comments, function names, and the surrounding
code.

Challenges and Current Practices. Despite their prevalence, re-
cent studies have found that LLMs’ e�ectiveness in handling SE
tasks is limited. For example, the state-of-the-art (SOTA) LLM Co-
TexT records an accuracy of 65.99% in defect detection [51]. In bug
�xing and code summarization tasks, the CodeT5 model correctly
completes the tasks with accuracies of only 17.79% and 19.55%,
respectively [51].

To enhance LLM performance in SE tasks, common strategies
include: (a) �ne-tuning pre-trained models with task-speci�c, user-
annotated data [11, 24]. For example, alongside the general lin-
guistic and commonsense knowledge acquired during pre-training,
Huang et al. [27] �ne-tune CodeBERT, GraphCodeBERT, PLBART,
CodeT5, and UniXcoder to make them concentrate on automated
program repair; and (b) utilizing in-context learning with a few rel-

evant examples such as illustrative questions and corresponding

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1785

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0001-3179-7433
https://orcid.org/0009-0009-3527-7396
https://orcid.org/0000-0002-1721-0907
https://orcid.org/0000-0002-8942-7742
https://doi.org/10.1145/3650212.3680399
https://doi.org/10.1145/3650212.3680399
https://doi.org/10.1145/3650212.3680399

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yuxin Qiu, Jie Hu, Qian Zhang, and Heng Yin

Overlooked Knowledge

N1: comment
Position:
Line 6; column 48-60
Content:
reset here

N2: import
Position:
Line 1; column 1-54
Content:
from
django.core.exceptions
import
ObjectDoesNotExist

1: from

django.core.exceptio

ns import

ObjectDoesNotExist

2:

3: @login_required

4:

@permission_required

5: def

add_conf(request):

6:

persons_tasks[k]['er

rors'] = None #

reset here

7: ...

8: try:

9: ...

10: except

(IntegrityError,

__HOLE__,

InternalError) as e:

11: ...

ValidationError

Code Completion

What exception should replace the
placeholder "__HOLE__"?

Parser

Query Generator

Basic Structure
#import?
#comment?
…
Control Flow
#if?
#for?
#try?
…
Variable
Name?
…

S2S Transformation

6: # CALICO NOTE: a comment below
7: persons_tasks[k]['errors'] = None # reset here

1: # CALICO NOTE: an import below
2: from django.core.exceptions import
ObjectDoesNotExist

1: # CALICO NOTE: an import below
2: from django.core.exceptions import
ObjectDoesNotExist
…
7: # CALICO NOTE: a comment below
8: persons_tasks[k]['errors'] = None # reset here

Pruned

N1

N2

N1 + N2

Why was the code
completed incorrectly?

Does the LLM really
understand the code?

Can LLM complete the task after
calibrating the knowledge?

Validation
Error

The overlooked N2
led to this issue.

Object
DoesNot

Exist

Calico

①

add_confirmation.py

1

6

⑥

1

6

N1 Identified

N2 Identified

Figure 1: Working Example.

answers to enrich contextual comprehension for the target tasks [10,
14, 67, 69, 71]. For example, the protocol fuzzer ChatAFL [44]
prompts ChatGPT to generate message grammar of internet proto-
cols by providing two grammar examples of di�erent protocols in
the required format. While both �ne-tuning and in-context learning
paradigms enhance LLM performance, their practical application
to code tasks in SE presents challenges. Such challenges typically
arise from the following sources:

• Computational Resources. Fine-tuning inevitably requires a sub-
stantial amount of computational e�ort. It can be costly and
sometimes infeasible for SOTA models with numerous parame-
ters. Additionally, maintaining the relevance of �ne-tunedmodels
over time is di�cult as new knowledge emerges, which often
requires continuous updates with fresh data.
• Data Availability and Similarity. Both �ne-tuning and in-context
learning require high-quality, task-speci�c data, which may not
always be readily available. Collecting such data often requires
signi�cant e�ort such as user annotations.
• Lack of Explanations. Both approaches work as a black box in code
tasks. They do not o�er explanations for the de�ciencies of LLMs
in certain scenarios, which creates a gap in our understanding of
models’ limitations and the strategies needed to overcome them.
• Model Generalizability. Both paradigms risk over�tting the LLM
to speci�c examples or tasks, potentially reducing the model’s
ability to generalize to a broader range of SE scenarios.

Calico.We propose to lay the groundwork for enhancing the perfor-
mance of LLMs in code tasks without �ne-tuning. Speci�cally, we
propose Calico, an evolutionary approach that interleaves knowl-
edge calibration and AI de�ciency diagnosis for code.

Indeed, the essence of �ne-tuning or in-context learning with a
few examples is to enhance an LLM’s ability to understand code.
We thus hypothesize that a similar improvement can be achieved

by identifying fundamental knowledge gaps, such as overlooked
code syntax, within the LLM’s current understanding and then
integrating the necessary information to �ll those gaps.

The overall insight of Calico lies in its innovative dual capability
to enhance LLM performance and provide explanations of task-
speci�c de�ciencies at the same time. Unlike in-context learning,
which is limited to question-answer examples within a speci�c
context to guide the LLM, Calico identi�es and �lls fundamental
knowledge gaps across a variety of contexts. Thus, we can improve
LLM performance in a broader range of tasks without the need
for extensive task-speci�c �ne-tuning. Calico also aims for the
minimal integration of knowledge necessary to produce correct
LLM responses, thereby addressing the explanations for de�ciencies.
Our key approach is three-fold as elaborated below.

1. AI Mastery Screening. Conventional in-context learning enhances
LLM performance by supplementing task-relevant examples, while
�ne-tuning improves LLM e�ectiveness by feeding task-speci�c
data. Based on the insight that a profound understanding of code
structure is a must for e�ectively executing any code tasks, Cal-
ico initiates its process by examining how well LLMs understand
source code. It �rst formulates queries that probe the structural
comprehension of code. Next, it contrasts LLM’s outputs with the
ground truth from treesitter [1], an abstract syntax tree (AST) parser.
This comparison allows Calico to identify the speci�c AST nodes
and structures where LLMs overlook critical knowledge, thus shed-
ding light on their limitations in code comprehension and o�ering
a pathway to targeted improvements.

Figure 1 shows a code completion example using ChatGPT 3.5 [2].
When tasked with replacing the placeholder __HOLE__ (Line 10) in
add_confirmation.py, ChatGPT incorrectly suggests Validation-
Error instead of the correct ObjectDoesNotExist exception. To

1786

Calico: Automated Knowledge Calibration and Diagnosis for Elevating AI Mastery in Code Tasks ISSTA ’24, September 16–20, 2024, Vienna, Austria

improve precision, Calico �rst evaluates ChatGPT’s code under-
standing by comparing its responses to queries about the AST
against the ground-truth results from the Python AST parser in
treesitter. The query generator in Calico generates these queries,
which can involve the identi�cation of library import, control �ows,
variable de�nitions, etc. This comparison uncovers ChatGPT’s over-
sight of crucial AST nodes, N1:comment corresponding to the inline
comment in Line 6 and N2:import corresponding to the library
import in Line 1, and their associated information. This indicates
the knowledge gaps {N1, N2} that need to be addressed.

2. Knowledge Calibration. Once Calico identi�es the knowledge
gaps, it integrates this information into the source code to refocus

the LLM’s attention on these speci�c areas. Such an integration is
achieved through AST-based source-to-source code transformation.
Calico inserts a comment node before each AST node associated
with overlooked knowledge. In other words, it adds an annotation
highlighting the subsequent line of code as needing extra attention.
For example, in Figure 1, to refocus ChatGPT’s attention to the
inline comment in Line 6, Calico adds a comment CALICO NOTE:

a comment below prior to the original line of comment.

3. De�ciency Diagnosis. Intuitively adding all overlooked knowledge
to LLMs can overload the model with task-irrelevant data and does
not o�er insights into the model’s task-speci�c de�ciency. Thus,
it is important to selectively integrate key information needed to
keep LLMs focused and e�ective. There have been developments
of counterfactual reasoning in AI [12] to �nd the smallest changes
needed to alter a model’s prediction. Calico utilizes such an ap-
proach through what-if analysis to investigate how �lling di�erent
knowledge gaps a�ects LLM responses. By doing so, we can en-
sure that prompts remain concise with only the most signi�cant
knowledge, which can concurrently serve as an explanation for per-
formance de�ciencies. In fact, Calico aims to answer "What would
happen to LLM responses if we were to �ll alternative knowledge
gaps?" To achieve this, Calico systematically generates all combi-
nations of overlooked knowledge. Next, it traverses them from the
smallest to the largest combination. When the smallest e�ective
combination is found that accomplishes the task, it indicates the
essential knowledge has been pinpointed and identi�ed, and Calico

concludes its process and explains the de�ciency as lacking such
identi�ed knowledge.

In Figure 1,Calico identi�es the overlooked knowledge {N1:com-
ment, N2:import} and their three possible combinations—C1 =

{N1}, C2 = {N2}, and C3 = {N1, N2}. It then systematically inte-
grates each combination into the source code via knowledge cali-
bration and subsequently prompts ChatGPT to re-evaluate its code
completion. Calico starts from the smallest set {N1} and observes
that emphasizing this inline comment does not yield the desired
response because ChatGPT still outputs the wrong exception type
ValidationError. Recognizing this persistence of incorrectness,
Calico moves on to evaluate the next set {N2} to refocus Chat-
GPT’s attention to the associated library import. Calico observes
that ChatGPT accurately identi�es the appropriate exception type,
ObjectDoesNotExist, to replace the placeholder __HOLE__. This
indicates that ChatGPT initially overlooked this library import,
which led to the incorrect code completion. Calico identi�es this

minimal knowledge as essential for enhancing ChatGPT’s ability
to ful�ll the code completion task e�ectively.

Results. We conduct an extensive evaluation over 8,938 programs
on three commonly seen code tasks—bug detection, code summa-
rization, and program repair. These programs are from �ve open-
source, widely-used datasets, including Bugs2Fix [60], CodeSearch-
Net [28], Devign [77], ETHPy150Open [30], and InferredBugs [29].
They span four most commonly used programming languages—C,
Java, JavaScript, and Python.

Our experimental results demonstrate that the vanilla ChatGPT
understands 90% basic structures and API calls, and 80% control
�ow, variables, and expressions. With knowledge calibration, Cal-
ico improves the vanilla LLM by up to 20% and exhibits comparable
performance with �ne-tuned LLMs. Using counterfactual reason-
ing to integrate a minimum set of knowledge, Calico decreases
the program size by an average of 8% compared to adding all over-
looked knowledge while ensuring LLM performance. Per the open
science policy, we make Calico’s artifacts, benchmark programs,
and datasets available at https://zenodo.org/records/13145331.

In summary, this work makes the following contributions.
• Calico presents a novel, lightweight, broadly accessible solution
to enhance vanilla LLMs across various tasks without the high
computational costs of �ne-tuning.
• Our extensive study on 8,938 programs assesses LLMs’ code
structure comprehension, revealing diverse pro�ciency across
programming languages.
• Calico examines LLMs’ understanding of code and integrates the
overlooked knowledge into the original code.
• Calico o�ers the �rst automated LLM diagnosis framework that
identi�es key information to keep LLMs focused and e�ective.

The rising demand for AI-enabled tools in the era of generative
AI highlights the importance of integrating LLMs in software de-
velopment e�ectively. To our knowledge, Calico stands out as a
pioneering approach that can reshape the utilization of LLMs in
SE by diminishing the necessity for �ne-tuning. It works by pin-
pointing knowledge gaps, supplementing this knowledge within
the current task, and employing counterfactual reasoning to explain
performance de�ciencies. While Calico initially targets gaps regard-
ing code structure understanding, its approach can be generalized
to other code-related knowledge, such as data�ow analysis, poten-
tially revolutionizing a broad range of software analysis practices.

2 Background

2.1 Code Tasks in Software Engineering

Prior work [50, 51] summarizes the key code tasks in SE, which
are classi�ed as understanding tasks and generation tasks. Under-
standing tasks refer to activities of comprehending source code
and include defect detection, clone detection, code search, etc. They
involve a variety of input-output types. For example, in defect detec-
tion where the objective is to identify if the provided code contains
any defects, the input is the source code, and the output yields a
speci�c predicted value such as True or False.

Generation tasks refer to code-related translations and include
code translation, bug �xing, code summarization, code generation,
etc. Similarly, they involve various input-output types. In bug �xing

1787

https://zenodo.org/records/13145331

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yuxin Qiu, Jie Hu, Qian Zhang, and Heng Yin

Deficiency Diagnosis

Code

Query Generator

Result Comparator

S2S Transformation

AI Mastery Screening Knowledge Calibration

What-if Analysis

General Data

Pre-trained LLM

Task-specific Data

Fine-tuned LLM

</> code example 1
Result: buggy
</> code example 2
Result: not buggy

buggy

Few-shot Prompt

(1) Fine-tuning Pre-trained LLMs

AST ParserLLM

Calico Workflow

(2) In-context Learning with Examples

Traditional Workflow

</> code 3
Result:

Figure 2: Calico Overview.

tasks for repairing buggy code by generating the correct version,
both the input and the output are source code.

2.2 Large Language Models for Code Tasks

LLMs are extensively applied in the �eld of natural language pro-
cessing [46, 64]. In SE, recent work [16, 19, 24, 27, 71, 72] have ex-
plored how to use LLMs for code tasks. For example, FuzzGPT [16]
is a fuzzer to detect bugs in deep learning (DL) libraries. It can be
either �ne-tuned with additional programs for triggering similar
bugs or prompted with a few context-aware examples.

LLMs o�er the potential for �ne-tuning task-speci�c models;
however, the signi�cant hardware resources and data required can
be prohibitive for those without privileged access. For example,
BERT [40] was built on top of one Nvidia P100 GPU, Yelp dataset,
and more than two days of �ne-tuning. In contrast, Calico explores
an innovative approach of using LLMs—conducting knowledge
screening and subsequent calibration without the expensive �ne-
tuning process. This approach could potentially make AI-assisted
research more accessible.

3 Calico

Calico aims to enhance the performance of LLMs in cross-domain
code tasks. As shown in Figure 2,Calico contains three novel compo-
nents that work in concert: (1) code structure screening by di�eren-
tial queries between LLMs and AST parsers (Section 3.1); (2) source-
to-source transformation to incorporate overlooked information
into original programs (Section 3.2); and (3) what-if analysis to
diagnose performance de�ciencies (Section 3.3). Its three-pronged
approach builds on two key insights. First, LLM’s performance can
be improved by supplementing overlooked knowledge. Second, we
can ensure that prompts remain concise by integrating only the
most signi�cant knowledge, which can concurrently serve as an
explanation for performance de�ciencies.

3.1 AI Mastery Screening

Successfully executing code tasks necessitates an in-depth under-
standing of various code aspects, where code structure is a critical
foundation. This structure is typically represented as an AST, with
nodes representing syntactic constructs such as variables and opera-
tors, and edges indicating the relationship between these constructs.
ASTs have been extensively used in prior research for various pur-
poses, including code representation [8], clone detection [26, 54],
and software evolution analysis [49]. Leveraging this insight, Calico
starts its process by evaluating LLM pro�ciency in understanding
code structures. Calico automates this process in two steps.

Step 1. Query Generation. Calico uses treesitter [1] parsing library
to analyze the structure of source code. Treesitter constructs an AST
for the given code and supports AST-based code editing. It is com-
patible with over 100 programming languages, which substantially
enhances Calico’s ability to process extensive codebases.

In treesitter’s ASTs, nodes corresponding to expressions fol-
low particular patterns that are represented as S-expressions [3].
These patterns are related to the language parsers supported within
treesitter. For instance, a C language parser contains examples [4]
of input source code and the expected output AST, written as an
S-expression. The binary expression 1 + 2 in a C program is rep-
resented as a binary_expression node, which branches into two
number_literal child nodes. This structure conforms to the pat-
tern (binary_expression (number_literal) (number_lite-

ral)). By identifying such patterns within ASTs, Calico locates
the desired code structures and generates queries to extract infor-
mation from these code regions. Calico analyzes 5 distinct types of
code structures, including:

• Basic Structure. Calico identi�es basic structures such as (1)
preprocessor directives (e.g.,#include <stdio.h>), (2) library
imports (e.g.,import ObjectDoesNotExist in Line 1 of Figure 1),
(3) annotations (e.g.,@login_required in Line 3 of Figure 1), and
(4) comments. These elements are essential for code understand-
ing. For example, given a macro de�nition #define PI 3.14,
LLMs should recognize that all occurrences of PI are consistently
replaced with 3.14. Calico �nds these structures by matching pat-
terns such as (preproc_include), (import_declaration),
(annotation), and (comment) in ASTs.
• API Call. API calls are the standard method of interacting with
external components (e.g., libraries in stdio.h). Understanding
API usage is bene�cial for various tasks. For example, when a
code uses strcpy without boundary checks, LLMs must recog-
nize the potential security risks such as bu�er over�ows. Calico
identi�es API calls by searching for the (call_expression) pat-
tern within ASTs.
• Control Flow. Control �ow indicates the order of a program’s
statement execution, which is often determined by conditional
statements (e.g.,if statements) and loops (e.g.,while loops). Un-
derstanding control �ow is critical to comprehending the pro-
gram’s logic, locating bugs, and identifying optimization op-
portunities. Calico detects control �ow by searching ASTs for
key statements such as (if_statement), (switch_statement),
(for_statement), etc.

1788

Calico: Automated Knowledge Calibration and Diagnosis for Elevating AI Mastery in Code Tasks ISSTA ’24, September 16–20, 2024, Vienna, Austria

from django.core.exceptions import ObjectDoesNotExist
@login_required
@permission_required('workshops.add_person',
raise_exception=True)
def person_bulk_add_confirmation(request):
 if request.method == 'POST':
 data_update = zip(personals, families, usernames,
emails, events, roles)
 for k, record in enumerate(data_update):
 persons_tasks[k]['errors'] = None # reset here

(b) LLM Prompt Example for Analyzing (a)

Query and Screening S2S Transformation

(a) Original Code

[SYSTEM ROLE] You will be given a Python program (a). I want you to work

as a Python program analysis tool and answer the questions between

[QUESTION] and [END QUESTION]. Surround your answer with no additional

words and with tags [ANSWER] and [END ANSWER].

[QUESTION]How many comments are there in the code? Enumerate all

occurrences using their line numbers. For example, Line 1. [END QUESTION]

[QUESTION]How many libraries are imported in the code? Enumerate all

occurrences using their line numbers. For example, Line 1. [END QUESTION]

(c) Transformed Program with Overlooked Library Import

CALICO NOTE: an import below
from django.core.exceptions import ObjectDoesNotExist
@login_required
@permission_required('workshops.add_person',
raise_exception=True)
def person_bulk_add_confirmation(request):
 if request.method == 'POST':
 data_update = zip(personals, families, usernames, emails,
events, roles)
 for k, record in enumerate(data_update):
 persons_tasks[k]['errors'] = None # reset here

from django.core.exceptions import ObjectDoesNotExist
@login_required
@permission_required('workshops.add_person',
raise_exception=True)
def person_bulk_add_confirmation(request):
 if request.method == 'POST':
 data_update = zip(personals, families, usernames, emails,
events, roles)
 for k, record in enumerate(data_update):
 # CALICO NOTE: a comment below
 persons_tasks[k]['errors'] = None # reset here

(d) Transformed Program with Overlooked Comment

Figure 3: LLM Prompt Example and S2S Transformation.

• Variable and Type. Variables and data types are fundamental
to programming because they de�ne and manage data essen-
tial for program execution. LLMs need to understand them for
optimizing code, �nding bugs, and solving other problems. For
example, LLMs should recognize type errors when dividing a
number by a string in the expression 10 / "1". Calico �nds
variables and their types in ASTs, located in (identifier) and
primitive_type respectively.
• Expression. Expressions, such as computations and assignments,
involve variables (i.e., operands) and operators. They are crucial
in assessing conditions in programs. Calico locates expressions by
matching the pattern (expression_statement (<operator>)),
where <operator> represents di�erent operators such as binary
_operator.

Calico automatically generates queries for each of the speci�ed
types. Calico assigns a system role to the LLM and compiles a list of
questions covering all AST nodes. These questions are structured
according to our speci�c format, marked by the tags QUESTION and
END QUESTION, as shown in Figure 3 (b).

Step 2. Result Collection and Comparison. After generating
queries, Calico extracts their ground-truth information by ana-
lyzing AST attributes. For example, to identify comments, Calico
matches the (comment) pattern and then extracts the content from
each AST node by reading the attribute text. It also determines the
comment’s location using start_point and end_point attributes.
As shown in Figure 1, Calico extracts details about an inline com-
ment in Line 6 of add_confirmation.py. This comment spans
from columns 48 to 60, with the content # reset here.

To evaluate the code comprehension of LLMs, Calico prompts
LLMs with all questions and checks their responses against the
correct answers. As shown in Figure 3 (b), line numbers and the
tags ANSWER and END ANSWER are used to simplify output parsing.

For example, Calico asks LLMs to list the line numbers of identi�ed
code structures. It then compares these line numbers against those
derived from the AST attribute start_point. This process veri�es
LLM’s ability to identify code elements within a given code struc-
ture. For example, in Figure 1, after promoting ChatGPT with 25
questions, it incorrectly answers 2 questions, one about library im-
ports and another about comments. Calico identi�es that ChatGPT
overlooks the library import in Line 1 and the comment in Line 6,
which correspond to the highlighted AST nodes in Figure 1.

Takeaway. Calico generates queries for 5 speci�ed types of code
structures to test LLMs’ code understanding. Its innovative design
is general and can be readily extended to a wide range of coding
knowledge by incorporating new queries, such as those for data�ow
analysis. We explore a novel approach to utilizing LLMs, evaluating
their comprehension, and pinpointing the insights they miss.

3.2 Knowledge Calibration

Prior e�orts to improve LLM’s performance have included �ne-
tuning LLMs with task-speci�c data and utilizing in-context learn-
ing with provided examples. However, these two approaches pro-
vide a broad understanding of tasks such as defect detection, rather
than concentrating on the actual, speci�c program in question.
Thus, LLMs’ understanding of a speci�c question remains unclear.
In other words, even with �ne-tuning or in-context learning, there
is no guarantee that LLMs can completely understand the program
add_confirmation.py in Figure 1.

Based on the insight that the information inherent in the current
question is critical for completing the task, Calico incorporates
details that are speci�c to the current question but missed by LLMs
into the source code being analyzed. Such integration refocuses
LLM’s attention on these speci�c areas. To aid this process, Calico
employs AST-based source-to-source transformation by leveraging

1789

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yuxin Qiu, Jie Hu, Qian Zhang, and Heng Yin

Algorithm 1: De�ciency Diagnosis

Input: = {:1, :2, ..., := }, all overlooked knowledge; % , the
original program

Output: ′ , the minimum set of overlooked knowledge to improve
LLM performance; % ′ , the program augmented with ′

1 begin

2 2><18=0C8>=B ← ∅

3 Add an empty set into 2><18=0C8>=B

4 while 2><18=0C8>=B ≠ ∅ do

5 � ← the smallest combination in 2><18=0C8>=B

6 Pop out� from 2><18=0C8>=B

7 if test_llm(�, %) passes then

8 ′ ← �

9 % ′ ← % + ′

10 Terminate the while loop

11 else

12 foreach :8 ∈ do

13 �′ ← � + {:8 }

14 Add�′ into 2><18=0C8>=B

15 end

16 end

17 end

18 return ′ , % ′

19 end

treesitter. It annotates each AST node that was previously over-
looked with a preceding comment node. This annotation serves as
a reminder that the subsequent code requires extra attention.

Figure 3 (a) presents a program that enables users to update
their information such as personals, families, and usernames. After
screening ChatGPT’s responses to query examples in Figure 3 (b),
Calico identi�es that ChatGPT overlooked AST nodes correspond-
ing to a library import (highlighted in the green box) and a comment
(highlighted in the purple box). Subsequently, Calico performs code
refactoring to insert comment-based annotations for knowledge
calibration. Such annotations are pre�xed with "#CALICO NOTE:."
For example, Calico generates a version of the program with an
annotation reminding of the library import in Figure 3 (c) and
another version highlighting the comment in Figure 3 (d). These
annotations direct attention to the speci�c areas that require further
investigation.

3.3 De�ciency Diagnosis

One straightforward way of calibrating the overlooked knowledge
is to add all of them into LLMs. However, this method poses two
problems: (1) it does not o�er insights into the model’s speci�c
de�ciencies in processing the current task; and (2) it may exceed the
token limitations inherent in LLMs which require concise prompts
that are still informative.

There have been developments of counterfactual reasoning tech-
niques in explainable AI [12] to pinpoint the minimal yet essential
changes needed to alter a model’s prediction. Calico leverages this
insight through what-if analysis to investigate how �lling di�erent
knowledge gaps a�ects LLM responses. In fact, Calico answers
"What would happen to the LLM’s response if we were to �ll al-
ternative knowledge gaps?" By doing so, we aim to �nd the most

signi�cant knowledge that helps LLM complete the current task, which
concurrently explains previous de�ciencies. In other words, if ad-
dressing a particular knowledge gap corrects an LLM’s response, it
is likely to be the underlying root cause of the previous error.

Algorithm. Algorithm 1 outlines the overall diagnosis process to
isolate a minimal set of overlooked knowledge. Starting with all
overlooked knowledge and the original program (Line Input), Cal-
ico employs breadth-�rst search and integrates the essential subset
into the original program (Line Output). For this, Calico iteratively
constructs powersets of the overlooked knowledge (Line 13-14) to
include all possible combinations. It evaluates each combination
from smallest (Line 5) to largest until a subset corrects the LLM’s re-
sponse (Line 7). As such, Calico successfully identi�es the required
minimum knowledge (Line 8) and augments the original program
by integrating this knowledge into the original program (Line 9).
At this point, Calico terminates the search-based diagnosis pro-
cess (Line 10). If the current combination fails to correct an LLM’s
response, Calico explores other combinations (Line 11-16). Calico
generates larger combinations by adding new overlooked knowl-
edge to the current combination (Line 13) and stores the newly
constructed combinations for future analysis (Line 14).

An execution of Algorithm 1 is shown in Figure 1. Calico starts
from the smallest combination {N1}, and the resulting augmented
code is shown in Figure 3 (d) where a comment annotation is high-
lighted in purple. Since ChatGPT’s response remains incorrect,
Calico proceeds to the combination {N2} and generates the aug-
mented code as shown in Figure 3 (c) where the overlooked library
import is highlighted in green. ChatGPT provides the correct an-
swer after prompting with this newly augmented code. Calico thus
concludes that the library import information is essential for this
task. Then, Calico terminates the search process, and the larger
combination {N1, N2} is pruned from the search space.

4 Evaluation Results

We seek to answer the following research questions.

RQ1 Can LLMs truly understand code structures?
RQ2 How e�ective is Calico in improving LLMs’ performance in

code-related tasks by performing knowledge calibration to
�ll knowledge gaps?

RQ3 What bene�ts can Calico obtain by performing counterfactual
reasoning based diagnosis to add an essential set of overlooked
knowledge, compared to adding all overlooked knowledge?

RQ4 How does Calico compare to �ne-tuned LLMs in code tasks?

Datasets. We extensively evaluate Calico on �ve open-source,
widely-used datasets, including Bugs2Fix [60], CodeSearchNet [28],
Devign [77], ETHPy150Open [30], and InferredBugs [29], with a to-
tal of 8,938 programs as shown in Table 1. These datasets span four

most commonly used programming languages—C, Java, JavaScript,
and Python. We use them across three code tasks—bug detection,
code summarization, and program repair.

• Bug Detection. This task leverages LLMs to identify if the given
source code contains bugs or not. Thus, the output is a binary
detection value such as True or False, where True indicates the
presence of bugs and Falsemeans their absence. To evaluate Cal-
ico’s capabilities of handling di�erent programming languages,

1790

Calico: Automated Knowledge Calibration and Diagnosis for Elevating AI Mastery in Code Tasks ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 1: Subject Programs.

Task ID Dataset Language Description # of Programs

Bug
Detection

BD1 Devign [77] C Identify if a function is vulnerable 1231
BD2 InferredBugs [29] Java Identify if a method is buggy 1004
BD3 ETHPy150Open [30] Python Identify if a binary operator is wrongly used as another 1690

Code
Summarization

CS1 CodeSearchNet [28] Java Given a code, generate its natural language docstring 1277
CS2 CodeSearchNet [28] JavaScript Given a code, generate its natural language docstring 1031
CS3 ETHPy150Open [30] Python Given a function, generate its natural language docstring 410

Program
Repair

PR1 Bugs2Fix [60] Java Re�ne the code by �xing bugs 1072
PR2 ETHPy150Open [30] Python Fix the bugs where some variables are misused as another 1223

Total 8938

we follow prior work [29, 30, 41, 50, 51] and select three widely
used datasets, as reported in Table 1. They include Devign [77]
for C, InferredBugs [29] for Java, and ETHPy150Open [30] for
Python.
• Code Summarization. This task creates concise natural lan-
guage descriptions for the source code [35, 43]. Thus, the output
is natural language. We follow prior work [30, 41, 50, 51] and se-
lect three commonly used datasets to evaluate Calico, as reported
in Table 1. They include CodeSearchNet [28]’s Java benchmarks
and JavaScript benchmarks, and ETHPy150Open for Python.
• Program Repair. This task aims to produce patches for buggy
code [76]. Thus, the output is the source code. We follow prior
work [30, 41, 50, 51] and select two widely used datasets for
evaluation, as reported in Table 1. They include Bugs2Fix [60]
for Java and ETHPy150Open for Python.

Baselines. We use Calico to enhance the e�ectiveness of Chat-
GPT [2] (based on the default GPT-3.5 model) and compare our
results with the following baselines.

• Calico-NoDiagnosis. This option disables the counterfactual
reasoning based diagnosis from Calico. It adds all the overlooked
knowledge into the source code for knowledge calibration.
• VanillaGPT. This option is the vanilla ChatGPT without Calico
for knowledge calibration and de�ciency diagnosis. We initiate a
new session with ChatGPT for every assessment (i.e., one session
only contains one prompt and the corresponding response) to
avoid potential bias from prior conversions.
• CoTexT. This is the SOTA �ne-tuned LLM for bug detection
tasks according to prior studies [50, 51]. We use its Huggingface
checkpoint [5] and deploy it to our local server for evaluation.
• CodeT5. This is the SOTA �ne-tuned LLM for code summariza-
tion and program repair tasks according to prior studies [50, 51].
We use its Huggingface checkpoint [6] and deploy it to our local
server for evaluation.

Metrics. Code tasks yield various types of outputs, i.e., prediction
values, source code, and text, as discussed in Section 2.1.We describe
our evaluation metrics as follows.

• Accuracy.We follow previous work [50, 51, 68] and use accuracy
to evaluate the results of bug detection tasks. We obtain accuracy
scores by comparing LLM’s bug detection prediction (i.e., buggy
or not) with the ground-truth results available in the datasets.
• BLEU. We follow previous work [37, 50, 51, 61, 62] and use
BLEU [53] (i.e., bilingual evaluation understudy) to evaluate the

generated docstring in code summarization tasks. BLEU assesses
the quality of generated text by calculating the overlaps between
the reference and generated texts. BLEU scores range from 0 to
1, where a higher value is better and 1 indicates an exact match
with the reference. We obtain BLEU scores by comparing LLM’s
generated docstring with the ground-truth one in the datasets.
• CodeBLEU.We following previous work [37, 50, 51, 61] and use
CodeBLEU [55] to evaluate the generated code in program repair
tasks. CodeBLEU considers the similarity in ASTs and data�ows
between the generated and reference code. A CodeBLEU value
ranges from 0 to 1, where higher values indicate better similarity.
We obtain CodeBLEU scores by comparing LLM’s generated code
with the ground-truth one in the datasets.

Experimental Environment.We conducted all our experiments
on a Linux server running Ubuntu 20.04 LTS. It is equipped with
Intel(R) Xeon(R) 2.00 GHz 96-core CPU, 354 GB RAM, and 8 Tesla
V100 SXM2 16 GB GPUs. The AST analysis of source code is based
on treesitter version 0.20.4. Calico requires Python version 3.8.10.
SOTA comparisons need CUDA version 12.0.

4.1 RQ1: Can LLMs understand Code

To assess the pro�ciency of VanillaGPT in code comprehension,
we prompt VanillaGPT with source code and the corresponding
queries generated by Calico. We use all 8,938 programs listed in
Table 1 and include one single program in each prompt. For each
program, we use Calico to generate queries that cover all of the �ve
types of queries discussed in Section 3.1. We measure the average
percentage of correct responses to these queries of each type for
each programming language.

Figure 4 shows VanillaGPT’s code comprehension on our se-
lected datasets, which include C, Java, JavaScript, and Python pro-
grams. Each radar chart illustrates VanillaGPT’s comprehension
performance, representing the percentage of correct responses for
a language. These charts consist of �ve radials, with each radial
representing a speci�c code structure that corresponds to one query
type. The position of the node on each radial re�ects the correct
rate (ranging from 0% to 100%) for the corresponding structure. The
larger the area of the pentagon, the more accurate the VanillaGPT.

In general, VanillaGPT demonstrates limited comprehension of
code structures, as it does not achieve 100% correctness in any
structure. VanillaGPT exhibits a good understanding of basic struc-
tures such as comments and annotations, as well as API calls
like isinstance() and len(). Across all languages, VanillaGPT

1791

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yuxin Qiu, Jie Hu, Qian Zhang, and Heng Yin

Basic Structure

API Call

Control FlowVariable and Type

Expression 20%
40%

60%
80%

100%

(a) C Programs.

Basic Structure

API Call

Control FlowVariable and Type

Expression 20%
40%

60%
80%

100%

(b) Java Programs.

Basic Structure

API Call

Control FlowVariable and Type

Expression 20%
40%

60%
80%

100%

(c) JavaScript Programs.

Basic Structure

API Call

Control FlowVariable and Type

Expression 20%
40%

60%
80%

100%

(d) Python Programs.

Figure 4: ChatGPT’s Code Comprehension for C, Java, JavaScript, and Python Programs.

achieves a correct rate exceeding 90% for these two structures. In
cases where unidenti�ed structures arise, we re-prompt VanillaGPT
with the same query, resulting in successful identi�cation. For ex-
ample, for the program Achilles in the dataset InferredBugs, when
we prompt VanillaGPT "How many APIs are called in the code?"
for the �rst time, VanillaGPT missed getPropertyName() but cor-
rectly identi�ed it upon repeating the same query. This indicates
VanillaGPT’s capabilities of comprehending basic structures and
API calls, albeit with occasional oversight that is probably due to
the need for further iterations to re�ne recognition.

For the remaining three code structures, including control �ow
for recognizing statements like while loops, variables and types
for identifying variables, and expressions for operand and operator
identi�cation, VanillaGPT’s correct rates are around 80%. Vanil-
laGPT performs less e�ectively in identifying expressions, with cor-
rect rates ranging from 68% to 80% across the four languages. For ex-
ample, in the ETHPy150Open dataset, VanillaGPT initially ignored
the nested expression (35*x**4/8 - 15*x**2/4 + S(3)/8)/(2*(y

+ 1)) and did not classify it even after re-prompting with the query
"How many expressions are there in the code?" Only upon ex-
plicitly asking VanillaGPT "Is this an expression? (35*x**4/8 -

15*x**2/4 + S(3)/8)/(2*(y + 1))" did it �nally recognize it as
such. This underscores the need for repeated exposure to identify
these more intricate structures. In contrast to basic structures iden-
ti�able through keywords like import or tokens such as #, or API
calls recognizable by parentheses, control �ow, variables, and ex-
pressions may necessitate additional information such as condition
evaluation and operation order comparison. These complexities
can pose challenges in understanding these structures.

Among the four languages examined, VanillaGPT exhibits similar
comprehension across Java, JavaScript, and Python, with average
correct rates for 5 structures at 85.6%, 88%, and 86.4%, respectively.
However, the average correct rate for understanding C structures
is lower, at 80.8%. This is potentially because of the comparatively
smaller number of C programs in VanillaGPT’s training dataset,
limiting its familiarity with C programming structures.

VanillaGPT understands 90% of basic structures and API
calls, while around 80% of control �ow, variables, and ex-
pressions. It understands Java, JavaScript, and Python better
than C.

Summary 1

4.2 RQ2: E�ectiveness of Knowledge
Calibration

To assess the e�ectiveness of Calico’s knowledge calibration to
�ll knowledge gaps, we compare the performance of VanillaGPT
and Calico on three code tasks, i.e., bug detection, code summariza-
tion, and program repair, using the datasets listed in Table 1. We
complete the experiments in two rounds: (1) round 1 involves evalu-
ating VanillaGPT by prompting it with the original source code and
asking it to complete the corresponding task; (2) round 2 involves
evaluating Calico: �rst, we use Calico to screen VanillaGPT for iden-
tifying any overlooked knowledge within each program; then, we
use Calico to add the minimum set of overlooked knowledge into
the original program; �nally, we prompt VanillaGPT with this aug-
mented program to complete the corresponding task. We calculate
average accuracy for bug detection, BLEU for code summarization,
and CodeBLEU for program repair.

We show the bene�ts of knowledge calibration in Figure 5.
Across all three tasks, Calico consistently outperforms VanillaGPT.
On average, Calico enhances accuracy for bug detection by 10%, im-
proves BLEU scores for code summarization by 15.35%, and boosts
CodeBLEU scores for program repair by 19.93%. These results indi-
cate that knowledge calibration of Calico enhances VanillaGPT’s
understanding of code structures.

For example, a Python program in ETHPy150Open has a bug
where the incorrect binary operator and is used instead of the cor-
rect or. Initially, VanillaGPT failed to identify this bug. After the
screening, Calico discovered that VanillaGPT had overlooked the
if add_missing and not item_present statement. Calico an-
notated this if statement to draw extra attention from VanillaGPT.
Subsequently, when prompting again with the augmented program,
VanillaGPT correctly recognized this program as buggy.

VanillaGPT’s code understanding can be improved by inte-
grating overlooked knowledge. On average, it achieves 10%
improvement for bug detection, 15.35% for code summariza-
tion, and 19.93% for program repair.

Summary 2

4.3 RQ3: Bene�ts of De�ciency Diagnosis

To assess the bene�ts of adding a minimum set of overlooked
knowledge instead of integrating all the overlooked knowledge, we
compare Calico against a downgraded version Calico-NoDiagnosis.

1792

Calico: Automated Knowledge Calibration and Diagnosis for Elevating AI Mastery in Code Tasks ISSTA ’24, September 16–20, 2024, Vienna, Austria

0.00

0.16

0.32

0.48

0.64

0.80

BD1 BD2 BD3

VanillaGPT Calico

(a) Acccuracy Bene�ts for Bug Detection.

0.00

0.05

0.10

0.15

0.20

0.25

CS1 CS2 CS3

VanillaGPT Calico

(b) BLEU Bene�ts for Code Summarization.

0.00

0.05

0.10

0.15

0.20

0.25

PR1 PR2

VanillaGPT Calico

(c) CodeBLEU Bene�ts for Program Repair.

Figure 5: Bene�ts of Knowledge Calibration.

Calico-NoDiagnosis augments code by adding all the overlooked
knowledge. Since Calico checks all knowledge combinations from
smallest to largest in an iterative manner, we measure the average
program size in terms of lines of code (LOC) when Calico achieves
the same performance as Calico-NoDiagnosis.

We report the program size in Table 2. Counterfactual reasoning
based de�ciency diagnosis in Calico leads to an average reduction
rate of 8.39%. Calico achieves a higher reduction rate for smaller
programs such as the Python programs in PR2 (ETHPy150Open)
that contain a single function. Based on our experiments, Calico
can achieve up to 14.81% reduction rate with de�ciency diagnosis.
This is because adding annotations can substantially increase their
code size relative to their original small size. In contrast, for larger
programs like the C programs in BD1 (Devign) and Java programs
in BD2 (InferredBugs), these annotations have a lesser impact on
program sizes compared to their original sizes.

Take the Java program DragonProxy of 186 LOC from the dataset
InferredBugs as an example. Its method initialize() has a bug
of resource leak where the resource fos is not released after acquir-
ing from FileOutputStream(). VanillaGPT overlooked the API
call FileOutputStream(), resulting in its inaccurate bug detec-
tion. Upon augmentation by Calico-NoDiagnosis, all overlooked
knowledge was integrated into DragonProxy, resulting in a new
program of 197 LOC. However, Calico incorporated only essential
knowledge, including the overlooked API call, generating an aug-
mented code of 192 LOC. In this way, Calico preserves su�cient
information to explain VanillaGPT’s de�ciencies while maintaining
the LLM prompt concise.

Calico explains the de�ciencies by identifying a minimum
set of overlooked knowledge and generates shorter aug-
mented code compared to Calico-NoDiagnosis. On average,
Calico achieves a reduction rate of 8.39%.

Summary 3

4.4 RQ4: E�ectiveness Compared with Fine
Tuning

With information encoded into parameters, �ne-tuning LLMs is still
one of the most e�ective approaches to teaching LLMs task-speci�c

Table 2: Bene�ts of De�ciency Diagnosis. Calico-ND stands

for Calico-NoDiagnosis.

Average Size (LOC) Reduction

Dataset Original Calico-ND Calico Rate

BD1 239 267 259 3.00%
BD2 366 436 417 4.56%
BD3 19 26 23 13.04%

CS1 87 102 96 6.25%
CS2 25 31 27 14.81%

CS3 48 57 53 7.55%

PR1 17 23 22 4.54%
PR2 13 17 15 13.33%

Table 3: Calico vs. Fine-tuned LLMs.

SOTA

Metric Dataset CoTexT CodeT5 Calico

BD1 0.527 N/A 0.656

Accuracy BD2 0.712 N/A 0.682
BD3 0.749 N/A 0.722

CS1 N/A 0.313 0.219
BLEU CS2 N/A 0.341 0.239

CS3 N/A 0.239 0.226

CodeBLEU PR1 N/A 0.241 0.247

PR2 N/A 0.235 0.226

knowledge. To assess the e�ectiveness of Calico compared with
�ne-tuned LLMs, we compare Calico against SOTA LLMs according
to the prior study [51], i.e.,CoTexT for bug detection and CodeT5 for
code summarization and program repair.

Table 3 reports our comparison results. In general, SOTA LLMs
outperform Calico. However, performance di�erences are small,
ranging from 0.009 to 0.102. Considering the substantial amount of
new data and computing resources required for model �ne-tuning,
Calico achieves notable performancewith knowledge calibration. In
particular, Calico outperforms the SOTA CodeT5 on PR1, enhancing
the CodeBLEU score by 0.006. Calico achieves a large improvement,
from 0.527 to 0.656, on BD1. This is probably because CoTexT is not

1793

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yuxin Qiu, Jie Hu, Qian Zhang, and Heng Yin

Table 4: Calico Average Latency.

Task Screening Calibration Total

Bug Detection 3.7s 26.6s 30.3s

Code Summarization 1.8s 9.7s 11.5s

Program Repair 0.6s 4.9s 5.5s

trained with C datasets such as BD1 and may lack familiarity with
the C language to e�ectively complete the bug detection task.

Compared to �ne-tuned models, Calico introduces extra over-
head in its AI mastery screening and knowledge calibration. We
report the average overhead of Calico in Table 4. For our evalua-
tion datasets, on average, Calico needs 2 seconds for identifying
the overlooked knowledge, which is a one-time e�ort, and 13 sec-
onds for generating the augmented code with a minimum set of
overlooked knowledge. However, Calico does not need model �ne-
tuning. Although the exact time required for �ne-tuning CoTexT

and CodeT5 is not explicitly reported in the prior study [51], we can
estimate from prior work [59] that �ne-tuning an LLM with 220
million parameters such as CoTexT and CodeT5 can take a whole
day on NVIDIA A100 GPU. This overhead signi�cantly exceeds that
of Calico, while Calico demonstrates similar performance to SOTA
LLMs. In conclusion, the screening and knowledge calibration in
Calico introduce minimal overhead.

Calico achieves comparable results to SOTA LLMs with no

�ne-tuning used. The performance di�erences are less than
0.102, and Calico outperforms CodeT5 on PR1. Screening
and knowledge calibration take less than 30 seconds, avoid-
ing days of model �ne-tuning.

Summary 4

5 Related Work

LLMs in SE. Recent work [16–18, 25, 36, 57, 71, 78] have explored
the application of LLMs to solve SE problems. Deng et al. [15] use
two LLMs, Codex and InCoder, to generate DL programs for test-
ing DL libraries PyTorch and TensorFlow. Yang et al. [73] locate
buggy lines of code by �ne-tuning the LLM CodeGen. Another
line of work [51, 58] leverages SE approaches to better understand
the capabilities of LLMs. Li et al. [38] investigate the feasibility of
extracting LLMs’ code abilities such as code synthesis and code
translation by launching imitation attacks. Wu et al. [70] analyze
the limits of ChatGPT in software security applications such as
decompilation and patching. Calico, however, investigates a new
way of using vanilla LLMs by �rst examining how well LLMs un-
derstand source code and then �lling knowledge gaps to improve
LLM performance.

Prompt Engineering. To address the limitations of model �ne-
tuning, many prompt engineering approaches have emerged [10,
44, 67, 69]. When leveraging prompt engineering, users can in-
corporate task descriptions and/or demonstration examples into
the prompt to equip LLMs with task-speci�c knowledge without
any parameter updates. For example, to test DL libraries, Deng et
al. [16] employ in-context zero-shot learning to autocomplete a

partial bug-triggering program and in-context few-shot learning
to generate a new code snippet based on the example programs.
To recover software architecture, Rukmono et al. [56] use GPT-4
to emulate deductive reasoning via chain-of-thoughts prompting.
These approaches aim to provide additional task context and �ll
the knowledge gaps by integrating more information into prompts.
Our work Calico shares a similar motivation. However, instead
of o�ering general context, Calico provides information directly
relevant to the source code under analysis. It begins by identifying
essential knowledge gaps within LLM’s current comprehension and
then integrates speci�c information necessary to bridge these gaps
e�ectively.

Automated Code Refactoring. Since pioneering work on auto-
mated refactoring in early 1990s [20, 45, 52], recent research �nds
that real-world refactorings often fail to preserve semantics [32, 33],
reply on manual intervention [63], prone to errors [31, 48], and
exceed the capabilities of existing refactoring engines. A study with
professional developers �nds that nearly 12% of refactorings are
motivated to improve performance [33]. Calico builds on this foun-
dation but repurposes it to knowledge calibration in the new land-
scape of LLM for SE. By systematically and automatically adding
AST nodes of comments, Calico ensures semantic preservation
while highlighting information overlooked by LLMs.

Counterfactual Reasoning. The black-box nature of deep neural
networks hinders their explainability and thus challenges their ap-
plications in areas such as healthcare and military [13]. To address
this problem, explainable AI [9, 13, 65] aims to promote techniques
that generate explanations of AI predictions. Recent work [12]
uses counterfactual reasoning to �gure out what changes are nec-
essary for obtaining speci�c model predictions, i.e., to answer a
what-if question that what would have been the e�ect of model
predictions if we had taken action or vice versa. Calico extends
this approach and adapts it to reveal why LLMs are struggling
with code tasks. By systematically adding di�erent combinations
of overlooked knowledge, Calico identi�es the minimum neces-
sary knowledge to improve LLM performance, which serves as an
explanation for their de�ciencies.

Delta Debugging.Delta debugging [74, 75] stands as the fundamen-
tal work of automated test or code reduction. It aims to locate the
minimum failure-inducing changes between two program versions.
Recent work [22, 23, 34, 47] has sought to enhance the e�ciency and
e�ectiveness of its core algorithm, ddmin. ProbDD [66] integrates
testing history to assign probabilities to code elements, prioritizing
those with a higher likelihood of being retained in the reduced pro-
gram. All of this existing work executes di�erent variants to �nd
the minimum parts that retain the symptom (e.g., program failures).
In contrast, Calico mutates programs to �nd the minimum changes
that alter the symptom (e.g., wrong LLM responses), indicating that
such changes are critical to the symptom and can be seen as the
root cause of LLM de�ciencies.

6 Threats to Validity

Models.We use ChatGPT to evaluate Calico. Since its training data
remains disclosed, the selection of evaluation datasets may impact
the quantitative results. To mitigate this potential bias, we have

1794

Calico: Automated Knowledge Calibration and Diagnosis for Elevating AI Mastery in Code Tasks ISSTA ’24, September 16–20, 2024, Vienna, Austria

selected �ve diverse datasets spanning four programming languages
and applied three evaluation metrics. Expanding the evaluation to
include more LLMs could facilitate further assessment.

Prompts. The performance of an LLM can be sensitive to prompts
and tasks. We follow prior work [21, 39] to design our prompts
of queries, explicitly specifying the system role, task description,
programming language, source code, and code structures for analy-
sis to mitigate bias and provide clear information and instructions.
Model randomness could be addressed via repeated prompting.

Queries and AST Parsers. The knowledge overlooked by LLMs is
identi�ed based on their responses to Calico’s generated queries.
We have designed queries for �ve kinds of code structures. The
quantitative results of code comprehension may change as addi-
tional code structures or other types of analysis techniques are
included.

7 Discussion

Calico evaluates AST-level knowledge as a �rst step. The insight is
that code structure is fundamental to completing code tasks. Since
this structure is inherently present in the code itself, Calico oper-
ates under the assumption that AST parsers can guide its process in
practical, real-world settings. De�ciency diagnosis is not intended
to improve LLM performance directly; instead, it seeks to explain
previous de�ciencies. Calico employs a what-if analysis to investi-
gate the impact of �lling di�erent knowledge gaps. For example,
when repairing buggy code, an LLM might initially propose a �x
that results in ten compilation errors. After Calico supplements
some previously overlooked knowledge, the LLM’s subsequent �x
may reduce the errors to nine. This improvement indicates that the
incorporated knowledge e�ectively addresses some of the issues,
thereby explaining the resolved errors.

Calico is independent of knowledge scopes. Its current func-
tionality is limited by the capabilities of AST parsers in processing
syntactic knowledge. However, it can easily extend to other knowl-
edge domains. For instance, Calico can integrate pointer analysis
tools for tasks to identify and address unauthorized memory access
issues. In scenarios requiring code refactoring due to updates in
external libraries, Calico can leverage tools that track library evo-
lution, such as API changes, and incorporate this information into
the code accordingly.

8 Conclusion

LLMs have gained substantial traction in code tasks such as bug
detection, code summarization, and program repair. However, they
still encounter challenges in e�ectively managing these tasks. To
address this problem, we propose Calico that identi�es the knowl-
edge gaps in LLM’s program comprehension and integrates a mini-
mum set of overlooked knowledge necessary for LLM performance
enhancement into the original program. Leveraging knowledge
calibration, Calico achieves improvements of up to 20% for vanilla
ChatGPT in bug detection, code summarization, and program repair
tasks, demonstrating comparable pro�ciency compared to SOTA
�ne-tuned LLMswithout the need for model �ne-tuning. De�ciency
diagnosis contributes to an average program reduction of 8.39%,
compared to integrating all knowledge into the source code.

Acknowledgement

The participants of this research are in part supported by Cisco
grant, Regents Faculty Fellowship o�ered by UCR Academic Senate,
and Omnibus Research Award.

References
[1] 2024. https://tree-sitter.github.io/tree-sitter/.
[2] 2024. https://chat.openai.com/.
[3] 2024. https://tree-sitter.github.io/tree-sitter/using-parsers#pattern-matching-

with-queries.
[4] 2024. https://github.com/tree-sitter/tree-sitter-c/blob/master/test/corpus/

statements.txt.
[5] 2024. https://huggingface.co/razent/cotext-2-cc.
[6] 2024. https://huggingface.co/Salesforce/codet5-base.
[7] 2024. GitHub Copilot. https://github.com/features/copilot.
[8] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: learning

distributed representations of code. Proc. ACM Program. Lang. 3, POPL, Article
40 (jan 2019), 29 pages. https://doi.org/10.1145/3290353

[9] Plamen P Angelov, Eduardo A Soares, Richard Jiang, Nicholas I Arnold, and
Peter M Atkinson. 2021. Explainable arti�cial intelligence: an analytical review.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 11, 5 (2021),
e1424.

[10] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Je�rey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
CoRR abs/2005.14165 (2020). arXiv:2005.14165 https://arxiv.org/abs/2005.14165

[11] Saikat Chakraborty, Tou�que Ahmed, Yangruibo Ding, Premkumar T. Devanbu,
and Baishakhi Ray. 2022. NatGen: generative pre-training by “naturalizing”
source code. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (<conf-loc>,
<city>Singapore</city>, <country>Singapore</country>, </conf-loc>) (ESEC/FSE
2022). Association for Computing Machinery, New York, NY, USA, 18–30. https:
//doi.org/10.1145/3540250.3549162

[12] Yu-Liang Chou, Catarina Moreira, Peter Bruza, Chun Ouyang, and Joaquim
Jorge. 2022. Counterfactuals and causability in explainable arti�cial intelligence:
Theory, algorithms, and applications. Information Fusion 81 (2022), 59–83. https:
//doi.org/10.1016/j.in�us.2021.11.003

[13] Arun Das and Paul Rad. 2020. Opportunities and Challenges in Explainable
Arti�cial Intelligence (XAI): A Survey. arXiv:2006.11371 [cs.CV]

[14] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming
Zhang. 2023. Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-
Learning Libraries via Large Language Models. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis (<conf-loc>,
<city>Seattle</city>, <state>WA</state>, <country>USA</country>, </conf-
loc>) (ISSTA 2023). Association for Computing Machinery, New York, NY, USA,
423–435. https://doi.org/10.1145/3597926.3598067

[15] Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming
Zhang. 2023. Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-
Learning Libraries via Large Language Models. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis (<conf-loc>,
<city>Seattle</city>, <state>WA</state>, <country>USA</country>, </conf-
loc>) (ISSTA 2023). Association for Computing Machinery, New York, NY, USA,
423–435. https://doi.org/10.1145/3597926.3598067

[16] Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shu-
jing Yang, and Lingming Zhang. 2024. Large Language Models are Edge-Case
Generators: Crafting Unusual Programs for Fuzzing Deep Learning Libraries. In
Proceedings of the 46th IEEE/ACM International Conference on Software Engineering
(<conf-loc>, <city>Lisbon</city>, <country>Portugal</country>, </conf-loc>)
(ICSE ’24). Association for Computing Machinery, New York, NY, USA, Article
70, 13 pages. https://doi.org/10.1145/3597503.3623343

[17] Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei
Tan. 2023. Automated Repair of Programs from Large Language Models. In
2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE).
1469–1481. https://doi.org/10.1109/ICSE48619.2023.00128

[18] S. Feng, W. Suo, Y. Wu, D. Zou, Y. Liu, and H. Jin. 2024. Machine Learning
is All You Need: A Simple Token-based Approach for E�ective Code Clone
Detection. In 2024 IEEE/ACM 46th International Conference on Software Engi-
neering (ICSE). IEEE Computer Society, Los Alamitos, CA, USA, 1006–1006.
https://doi.ieeecomputersociety.org/

[19] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming
Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020.

1795

https://tree-sitter.github.io/tree-sitter/
https://chat.openai.com/
https://tree-sitter.github.io/tree-sitter/using-parsers#pattern-matching-with-queries
https://tree-sitter.github.io/tree-sitter/using-parsers#pattern-matching-with-queries
https://github.com/tree-sitter/tree-sitter-c/blob/master/test/corpus/statements.txt
https://github.com/tree-sitter/tree-sitter-c/blob/master/test/corpus/statements.txt
https://huggingface.co/razent/cotext-2-cc
https://huggingface.co/Salesforce/codet5-base
https://github.com/features/copilot
https://doi.org/10.1145/3290353
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1145/3540250.3549162
https://doi.org/10.1145/3540250.3549162
https://doi.org/10.1016/j.inffus.2021.11.003
https://doi.org/10.1016/j.inffus.2021.11.003
https://arxiv.org/abs/2006.11371
https://doi.org/10.1145/3597926.3598067
https://doi.org/10.1145/3597926.3598067
https://doi.org/10.1145/3597503.3623343
https://doi.org/10.1109/ICSE48619.2023.00128
https://doi.ieeecomputersociety.org/

ISSTA ’24, September 16–20, 2024, Vienna, Austria Yuxin Qiu, Jie Hu, Qian Zhang, and Heng Yin

CodeBERT: A Pre-Trained Model for Programming and Natural Languages.
arXiv:2002.08155 [cs.CL]

[20] William G. Griswold. 1991. Program Restructuring as an Aid to Software Mainte-
nance. Ph. D. Dissertation. University of Washington.

[21] Alex Gu, Baptiste Rozière, Hugh Leather, Armando Solar-Lezama, Gabriel Syn-
naeve, and Sida I. Wang. 2024. CRUXEval: A Benchmark for Code Reasoning,
Understanding and Execution. arXiv:2401.03065 [cs.SE]

[22] Renáta Hodován and Ákos Kiss. 2016. Modernizing hierarchical delta debugging.
In Proceedings of the 7th International Workshop on Automating Test Case Design,
Selection, and Evaluation. 31–37.

[23] Renáta Hodován, Ákos Kiss, and Tibor Gyimóthy. 2017. Coarse hierarchical delta
debugging. In 2017 IEEE international conference on software maintenance and
evolution (ICSME). IEEE, 194–203.

[24] Jeremy Howard and Sebastian Ruder. 2018. Fine-tuned Language Models for Text
Classi�cation. CoRR abs/1801.06146 (2018). arXiv:1801.06146 http://arxiv.org/
abs/1801.06146

[25] Jie Hu, Qian Zhang, and Heng Yin. 2023. Augmenting Greybox Fuzzing with
Generative AI. arXiv:2306.06782 [cs.CR]

[26] Tiancheng Hu, Zijing Xu, Yilin Fang, Yueming Wu, Bin Yuan, Deqing Zou, and
Hai Jin. 2023. Fine-Grained Code Clone Detection with Block-Based Splitting
of Abstract Syntax Tree. In Proceedings of the 32nd ACM SIGSOFT International
Symposium on Software Testing and Analysis (<conf-loc>, <city>Seattle</city>,
<state>WA</state>, <country>USA</country>, </conf-loc>) (ISSTA 2023). As-
sociation for Computing Machinery, New York, NY, USA, 89–100. https:
//doi.org/10.1145/3597926.3598040

[27] Kai Huang, Xiangxin Meng, Jian Zhang, Yang Liu, Wenjie Wang, Shuhao Li, and
Yuqing Zhang. 2023. An Empirical Study on Fine-Tuning Large Language Models
of Code for Automated Program Repair. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE). 1162–1174. https://doi.org/
10.1109/ASE56229.2023.00181

[28] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2020. CodeSearchNet Challenge: Evaluating the State of Semantic
Code Search. arXiv:1909.09436 [cs.LG]

[29] Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan,
and Alexey Svyatkovskiy. 2023. InferFix: End-to-End Program Repair with LLMs.
In Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (, San Francisco, CA,
USA,) (ESEC/FSE 2023). Association for Computing Machinery, New York, NY,
USA, 1646–1656. https://doi.org/10.1145/3611643.3613892

[30] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. 2020.
Learning and evaluating contextual embedding of source code. In Proceedings
of the 37th International Conference on Machine Learning (ICML’20). JMLR.org,
Article 474, 12 pages.

[31] Miryung Kim, Dongxiang Cai, and Sunghun Kim. 2011. An Empirical Inves-
tigation into the Role of Refactorings during Software Evolution. In ICSE’ 11:
Proceedings of the 2011 ACM and IEEE 33rd International Conference on Software
Engineering.

[32] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2012. A �eld
study of refactoring challenges and bene�ts. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering (Cary,
North Carolina) (FSE ’12). ACM, New York, NY, USA, Article 50, 11 pages. https:
//doi.org/10.1145/2393596.2393655

[33] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. 2014. An
Empirical Study of Refactoring Challenges and Bene�ts at Microsoft. IEEE
Transactions on Software Engineering 40, 7 (2014), 1–1. https://doi.org/10.1109/
TSE.2014.2318734

[34] Ákos Kiss, Renáta Hodován, and Tibor Gyimóthy. 2018. HDDr: a recursive
variant of the hierarchical delta debugging algorithm. In Proceedings of the 9th
ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection,
and Evaluation. 16–22.

[35] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model for
generating natural language summaries of program subroutines. In Proceedings
of the 41st International Conference on Software Engineering (Montreal, Quebec,
Canada) (ICSE ’19). IEEE Press, 795–806. https://doi.org/10.1109/ICSE.2019.00087

[36] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri, and Siddhartha Sen.
2023. CodaMosa: Escaping Coverage Plateaus in Test Generation with Pre-
trained Large Language Models. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). 919–931. https://doi.org/10.1109/ICSE48619.2023.
00085

[37] Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep
Majumder, Jared Green, Alexey Svyatkovskiy, Shengyu Fu, and Neel Sundaresan.
2022. Automating code review activities by large-scale pre-training. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (, Singapore, Singapore,) (ESEC/FSE
2022). Association for Computing Machinery, New York, NY, USA, 1035–1047.
https://doi.org/10.1145/3540250.3549081

[38] Zongjie Li, ChaozhengWang, PingchuanMa, Chaowei Liu, ShuaiWang, Daoyuan
Wu, Cuiyun Gao, and Yang Liu. 2023. On Extracting Specialized Code Abilities

from Large Language Models: A Feasibility Study. arXiv:2303.03012 [cs.SE]
[39] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and

Graham Neubig. 2023. Pre-train, Prompt, and Predict: A Systematic Survey of
Prompting Methods in Natural Language Processing. ACM Comput. Surv. 55, 9,
Article 195 (jan 2023), 35 pages. https://doi.org/10.1145/3560815

[40] Yuhan Liu, Saurabh Agarwal, and Shivaram Venkataraman. 2021. Aut-
oFreeze: Automatically Freezing Model Blocks to Accelerate Fine-tuning.
arXiv:2102.01386 [cs.LG]

[41] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio
Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou,
Linjun Shou, Long Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan Duan,
Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie Liu. 2021. CodeXGLUE:
AMachine Learning Benchmark Dataset for Code Understanding and Generation.
arXiv:2102.04664 [cs.SE]

[42] Antonio Mastropaolo, Matteo Ciniselli, Massimiliano Di Penta, and Gabriele
Bavota. 2023. Evaluating Code Summarization Techniques: A New Metric and
an Empirical Characterization. arXiv:2312.15475 [cs.SE]

[43] Paul W. McBurney and Collin McMillan. 2016. Automatic Source Code Summa-
rization of Context for Java Methods. IEEE Transactions on Software Engineering
42, 2 (2016), 103–119. https://doi.org/10.1109/TSE.2015.2465386

[44] Ruijie Meng, Martin Mirchev, Marcel Böhme, and Abhik Roychoudhury. 2024.
Large language model guided protocol fuzzing. In Proceedings of the 31st Annual
Network and Distributed System Security Symposium (NDSS).

[45] Tom Mens and Tom Tourwe. 2004. A Survey of Software Refactoring. IEEE
Transactions on Software Engineering 30, 2 (2004), 126–139. https://doi.org/10.
1109/TSE.2004.1265817

[46] Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu
Nguyen, Oscar Sainz, Eneko Agirre, Ilana Heintz, and Dan Roth. 2023. Recent
Advances in Natural Language Processing via Large Pre-trained LanguageModels:
A Survey. ACM Comput. Surv. 56, 2, Article 30 (sep 2023), 40 pages. https:
//doi.org/10.1145/3605943

[47] Ghassan Misherghi and Zhendong Su. 2006. HDD: hierarchical delta debugging.
In Proceedings of the 28th international conference on Software engineering. 142–
151.

[48] EmersonMurphy-Hill, Chris Parnin, and Andrew P. Black. 2009. Howwe refactor,
and how we know it. In ICSE ’09: Proceedings of the 31st International Conference
on Software Engineering. IEEE Computer Society, Washington, DC, USA, 287–297.
https://doi.org/10.1109/ICSE.2009.5070529

[49] Iulian Neamtiu, Je�rey S. Foster, and Michael Hicks. 2005. Understanding source
code evolution using abstract syntax tree matching. SIGSOFT Softw. Eng. Notes
30, 4 (may 2005), 1–5. https://doi.org/10.1145/1082983.1083143

[50] Changan Niu, Chuanyi Li, Bin Luo, and Vincent Ng. 2022. Deep Learning
Meets Software Engineering: A Survey on Pre-Trained Models of Source Code.
arXiv:2205.11739 [cs.SE]

[51] Changan Niu, Chuanyi Li, Vincent Ng, Dongxiao Chen, Jidong Ge, and Bin
Luo. 2023. An Empirical Comparison of Pre-Trained Models of Source Code.
In Proceedings of the 45th International Conference on Software Engineering
(Melbourne, Victoria, Australia) (ICSE ’23). IEEE Press, 2136–2148. https:
//doi.org/10.1109/ICSE48619.2023.00180

[52] William F. Opdyke. 1992. Refactoring Object-Oriented Frameworks. Ph. D. Disser-
tation. University of Illinois, Urbana-Champaign, IL, USA. citeseer.ist.psu.edu/
opdyke92refactoring.html

[53] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics (Philadelphia, Penn-
sylvania) (ACL ’02). Association for Computational Linguistics, USA, 311–318.
https://doi.org/10.3115/1073083.1073135

[54] Daniel Perez and Shigeru Chiba. 2019. Cross-Language Clone Detection by Learn-
ing Over Abstract Syntax Trees. In 2019 IEEE/ACM 16th International Conference
on Mining Software Repositories (MSR). 518–528. https://doi.org/10.1109/MSR.
2019.00078

[55] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundare-
san, Ming Zhou, Ambrosio Blanco, and Shuai Ma. 2020. CodeBLEU: a Method
for Automatic Evaluation of Code Synthesis. arXiv:2009.10297 [cs.SE]

[56] Satrio Rukmono, Lina Ochoa Venegas, and MRV Chaudron. 2024. Deductive
Software Architecture Recovery via Chain-of-thought Prompting. In International
Conference on Software Engineering: New Ideas and Emerging Results.

[57] Mohammed Latif Siddiq, Joanna C. S. Santos, Ridwanul Hasan Tanvir, Noshin
Ulfat, Fahmid Al Rifat, and Vinicius Carvalho Lopes. 2024. Using Large Language
Models to Generate JUnit Tests: An Empirical Study. arXiv:2305.00418 [cs.SE]

[58] D. Sobania, M. Briesch, C. Hanna, and J. Petke. 2023. An Analysis of the Automatic
Bug Fixing Performance of ChatGPT. In 2023 IEEE/ACM International Workshop
on Automated Program Repair (APR). IEEE Computer Society, Los Alamitos, CA,
USA, 23–30. https://doi.org/10.1109/APR59189.2023.00012

[59] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yas-
mine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos-
ale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucu-
rull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia

1796

https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2401.03065
https://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1801.06146
https://arxiv.org/abs/2306.06782
https://doi.org/10.1145/3597926.3598040
https://doi.org/10.1145/3597926.3598040
https://doi.org/10.1109/ASE56229.2023.00181
https://doi.org/10.1109/ASE56229.2023.00181
https://arxiv.org/abs/1909.09436
https://doi.org/10.1145/3611643.3613892
https://doi.org/10.1145/2393596.2393655
https://doi.org/10.1145/2393596.2393655
https://doi.org/10.1109/TSE.2014.2318734
https://doi.org/10.1109/TSE.2014.2318734
https://doi.org/10.1109/ICSE.2019.00087
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1145/3540250.3549081
https://arxiv.org/abs/2303.03012
https://doi.org/10.1145/3560815
https://arxiv.org/abs/2102.01386
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2312.15475
https://doi.org/10.1109/TSE.2015.2465386
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.1145/3605943
https://doi.org/10.1145/3605943
https://doi.org/10.1109/ICSE.2009.5070529
https://doi.org/10.1145/1082983.1083143
https://arxiv.org/abs/2205.11739
https://doi.org/10.1109/ICSE48619.2023.00180
https://doi.org/10.1109/ICSE48619.2023.00180
citeseer.ist.psu.edu/opdyke92refactoring.html
citeseer.ist.psu.edu/opdyke92refactoring.html
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1109/MSR.2019.00078
https://doi.org/10.1109/MSR.2019.00078
https://arxiv.org/abs/2009.10297
https://arxiv.org/abs/2305.00418
https://doi.org/10.1109/APR59189.2023.00012

Calico: Automated Knowledge Calibration and Diagnosis for Elevating AI Mastery in Code Tasks ISSTA ’24, September 16–20, 2024, Vienna, Austria

Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini,
Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet,
Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov,
Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. 2023. Llama 2:
Open Foundation and Fine-Tuned Chat Models. arXiv:2307.09288 [cs.CL]

[60] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2019. An Empirical Study on Learning Bug-Fixing
Patches in the Wild via Neural Machine Translation. ACM Trans. Softw. Eng.
Methodol. 28, 4, Article 19 (sep 2019), 29 pages. https://doi.org/10.1145/3340544

[61] Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys
Poshyvanyk, and Gabriele Bavota. 2022. Using pre-trained models to boost code
review automation. In Proceedings of the 44th International Conference on Software
Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing
Machinery, New York, NY, USA, 2291–2302. https://doi.org/10.1145/3510003.
3510621

[62] Rosalia Tufano, Luca Pascarella, Michele Tufano, Denys Poshyvanyk, and
Gabriele Bavota. 2021. Towards Automating Code Review Activities. In Proceed-
ings of the 43rd International Conference on Software Engineering (Madrid, Spain)
(ICSE ’21). IEEE Press, 163–174. https://doi.org/10.1109/ICSE43902.2021.00027

[63] Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar, Brian P.
Bailey, and Ralph E. Johnson. 2012. Use, disuse, and misuse of automated refac-
torings. In Software Engineering (ICSE), 2012 34th International Conference on. 233
–243. https://doi.org/10.1109/ICSE.2012.6227190

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2023. Attention Is All
You Need. arXiv:1706.03762 [cs.CL]

[65] Giulia Vilone and Luca Longo. 2020. Explainable Arti�cial Intelligence: a Sys-
tematic Review. arXiv:2006.00093 [cs.AI]

[66] Guancheng Wang, Ruobing Shen, Junjie Chen, Yingfei Xiong, and Lu Zhang.
2021. Probabilistic delta debugging. In Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 881–892.

[67] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. 2023. Self-Consistency Improves Chain
of Thought Reasoning in Language Models. arXiv:2203.11171 [cs.CL]

[68] Yue Wang, Weishi Wang, Sha�q Joty, and Steven C. H. Hoi. 2021. CodeT5:
Identi�er-aware Uni�ed Pre-trained Encoder-Decoder Models for Code Under-
standing and Generation. arXiv:2109.00859 [cs.CL]

[69] JasonWei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia,
Ed Chi, Quoc Le, and Denny Zhou. 2023. Chain-of-Thought Prompting Elicits

Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL]
[70] Fangzhou Wu, Qingzhao Zhang, Ati Priya Bajaj, Ti�any Bao, Ning Zhang,

Ruoyu "Fish" Wang, and Chaowei Xiao. 2023. Exploring the Limits of Chat-
GPT in Software Security Applications. arXiv:2312.05275 [cs.CR]

[71] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2023. Automated
Program Repair in the Era of Large Pre-trained Language Models. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). 1482–
1494. https://doi.org/10.1109/ICSE48619.2023.00129

[72] Junjielong Xu, Ziang Cui, Yuan Zhao, Xu Zhang, Shilin He, Pinjia He, Liqun
Li, Yu Kang, Qingwei Lin, Yingnong Dang, Saravan Rajmohan, and Dongmei
Zhang. 2024. UniLog: Automatic Logging via LLM and In-Context Learning. In
Proceedings of the 46th IEEE/ACM International Conference on Software Engineering
(<conf-loc>, <city>Lisbon</city>, <country>Portugal</country>, </conf-loc>)
(ICSE ’24). Association for Computing Machinery, New York, NY, USA, Article
14, 12 pages. https://doi.org/10.1145/3597503.3623326

[73] Aidan Z. H. Yang, Claire Le Goues, Ruben Martins, and Vincent Hellendoorn.
2024. Large Language Models for Test-Free Fault Localization. In Proceedings
of the 46th IEEE/ACM International Conference on Software Engineering (<conf-
loc>, <city>Lisbon</city>, <country>Portugal</country>, </conf-loc>) (ICSE ’24).
Association for Computing Machinery, New York, NY, USA, Article 17, 12 pages.
https://doi.org/10.1145/3597503.3623342

[74] Andreas Zeller. 2002. Isolating Cause-E�ect Chains from Computer Programs.
In Proceedings of the 10th ACM SIGSOFT Symposium on Foundations of Software
Engineering (Charleston, South Carolina, USA) (SIGSOFT ’02/FSE-10). Association
for Computing Machinery, New York, NY, USA, 1–10. https://doi.org/10.1145/
587051.587053

[75] A. Zeller and R. Hildebrandt. 2002. Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering 28, 2 (2002), 183–200. https:
//doi.org/10.1109/32.988498

[76] Quanjun Zhang, Tongke Zhang, Juan Zhai, Chunrong Fang, Bowen Yu, Weisong
Sun, and Zhenyu Chen. 2023. A Critical Review of Large Language Model on
Software Engineering: An Example from ChatGPT and Automated Program
Repair. arXiv:2310.08879 [cs.SE]

[77] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019.
Devign: e�ective vulnerability identi�cation by learning comprehensive program
semantics via graph neural networks. Curran Associates Inc., Red Hook, NY, USA.

[78] Deqing Zou, Siyue Feng, Yueming Wu, Wenqi Suo, and Hai Jin. 2023. Tritor:
Detecting Semantic Code Clones by Building Social Network-Based Triads Model.
In Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (<conf-loc>, <city>San
Francisco</city>, <state>CA</state>, <country>USA</country>, </conf-loc>)
(ESEC/FSE 2023). Association for Computing Machinery, New York, NY, USA,
771–783. https://doi.org/10.1145/3611643.3616354

Received 2024-04-12; accepted 2024-07-03

1797

https://arxiv.org/abs/2307.09288
https://doi.org/10.1145/3340544
https://doi.org/10.1145/3510003.3510621
https://doi.org/10.1145/3510003.3510621
https://doi.org/10.1109/ICSE43902.2021.00027
https://doi.org/10.1109/ICSE.2012.6227190
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2006.00093
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2312.05275
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1145/3597503.3623326
https://doi.org/10.1145/3597503.3623342
https://doi.org/10.1145/587051.587053
https://doi.org/10.1145/587051.587053
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/32.988498
https://arxiv.org/abs/2310.08879
https://doi.org/10.1145/3611643.3616354

	Abstract
	1 Introduction
	2 Background
	2.1 Code Tasks in Software Engineering
	2.2 Large Language Models for Code Tasks

	3 Calico
	3.1 AI Mastery Screening
	3.2 Knowledge Calibration
	3.3 Deficiency Diagnosis

	4 Evaluation Results
	4.1 RQ1: Can LLMs understand Code
	4.2 RQ2: Effectiveness of Knowledge Calibration
	4.3 RQ3: Benefits of Deficiency Diagnosis
	4.4 RQ4: Effectiveness Compared with Fine Tuning

	5 Related Work
	6 Threats to Validity
	7 Discussion
	8 Conclusion
	References

