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The Problem with Modern Kernels

Modern Operating systems can no longer 
take serious advantage of the hardware 
they are running on
There exists a scalability issue in the 
shared memory model that many modern 
kernels abide by
Cache coherence overhead restricts the 
ability to scale to many-cores
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Solution: MultiKernel
Treat the machine as a network of 
independent cores

Make all inter-core communication explicit; 
use message passing

Make OS structure hardware-neutral

View state as replicated instead of shared
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But wait! Isn’t message passing 
slower than Shared Memory?

At scale it has been shown that message 
passing has surpassed shared memory 
efficiency
Shared memory at scale seems to be 
plagued by cache misses which cause core 
stalls
Hardware is starting to resemble a message-
passing network
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But wait! Isn’t message passing 
slower than Shared Memory? 
(cont.)
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But wait! Isn’t message passing 
slower than Shared Memory? 
(cont.)

6



The MultiKernel Model
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Make inter-core communication explicit

All inter-core communication is performed 
using explicit messages
No shared memory between cores aside from 
the memory used for messaging channels
Explicit communication allows the OS to 
deploy well-known networking optimizations 
to make more efficient use of the interconnect
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Make OS structure hardware-neutral
A multikernel separates the OS structure as 
much as possible from the hardware
Hardware-independence in a multikernel 
means that we can isolate the distributed 
communication algorithms from hardware 
details
Enable late binding of both the protocol 
implementation and message transport
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View state as replicated
Shared OS state across cores is replicated 
and consistency maintained by exchanging 
messages 
Updates are exposed in API as non-blocking 
and split-phase as they can be long 
operations 
Reduces load on system interconnect, 
contention for memory, overhead for 
synchronization; improves scalability 
Preserve OS structure as hardware evolves 
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In practice
Model represents an idea which may not be 
fully realizable
Certain platform-specific performance 
optimizations may be sacrificed – shared L2 
cache 
Cost and penalty of ensuring replica 
consistency varies on workload, data 
volumes and consistency model 
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Barrelfish
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Barrelfish Goals
Comparable performance to existing commodity OS on 
multicore hardware 
Scalability to large number of cores under considerable 
workload 
Ability to be re-targeted to different hardware without 
refactoring 
Exploit message-passing abstraction to achieve good 
performance by pipelining and batching messages 
Exploit modularity of OS and place OS functionality 
according to hardware topology or load 
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System Structure
• Multiple independent OS instances 
communicating via explicit messages 
• OS instance on each core factored into 

privileged-mode CPU driver which is hardware 
dependent 
user-mode Monitor process: responsible for intercore
communication, hardware independent 

System of monitors and CPU drivers provide 
scheduling, communication and low-level 
resource allocation 
Device drivers and system services run in user-
level processes 
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CPU Drivers
Enforces protection, performs authorization, time-slices 
processes and mediates access to core and hardware 
Completely event-driven, single-threaded and 
nonpremptable
Serially processes events in the form of traps from user 
processes or interrupts from devices or other cores 
Performs dispatch and fast local messaging between 
processes on core 
Implements lightweight, asynchronous (split-phase) 
same-core IPC facility 
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Monitors
Schedulable, single-core user-space 
processes 
Collectively coordinate consistency of 
replicated data structures through agreement 
protocols 
Responsible for IPC setup 
Idle the core when no other processes on the 
core are runnable, waiting for IPI 
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Process Structure
Process is represented by collection of 
dispatcher objects, one on each core which 
might execute it 
Communication is between dispatchers 
Dispatchers are scheduled by local CPU 
driver through upcall interface 
Dispatcher runs a core local user-level thread 
scheduler 

17



Inter-core communication
Variant of URPC for cache coherent memory 
– region of shared memory used as channel 
for cache-line-sized messages 
Implementation tailored to cache-coherence 
protocol to minimize number of interconnect 
messages
Dispatchers poll incoming channels for 
predetermined time before blocking with 
request to notify local monitor when message 
arrives 
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Memory Management
Manage set of global resources: physical 
memory shared by applications and system 
services across multiple cores 
OS code and data stored in same memory -
allocation of physical memory must be 
consistent 
Capability system – memory managed 
through system calls that manipulate 
capabilities 
All virtual memory management performed 
entirely by user-level code 

19



System Knowledge Base
System knowledge base (SKB) maintains knowledge of 
underlying hardware in subset of first-order logic 
Populated with information gathered through hardware 
discovery, online measurement, pre-asserted facts 
SKB allows concise expression of optimization queries

Allocation of device drivers to cores, NUMA-aware memory 
allocation in topology aware manner 
Selection of appropriate message transports for inter- core 
communication 
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Experiences from Barrelfish
implementation
• Separation of CPU driver and monitor adds constant 
overhead of local RPC rather than system calls 

Moving monitor into kernel space is at the cost of 
complex kernel-mode code base 
Differs from current OS designs on reliance on shared 
data as default communication mechanism 

Engineering effort to partition data is prohibitive 
Requires more effort to convert to replication model 
Shared-memory single-kernel model cannot deal with 
heterogeneous cores at ISA level 
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Evaluation of Barrelfish
The testing setup was not accurate

making any quantitative conclusions from their 
benchmarks would be bad

Barrelfish performs reasonably on 
contemporary hardware
Barrelfish can scale well with core count
Gives authors confidence that multikernel can 
be a feasible alternative 
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Evaluation
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An Analysis of Linux 
Scalability to Many Cores
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What are we going to talk about?
Scalability analysis of 7 system applications 
running on Linux on a 48-core computer

Exim, memcached, Apache, PostgreSQL, gmake, 
Psearchy and MapReduce

How can we improve the traditional Linux for 
better scalability
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Amdahl’s law
If  𝛼 is the fraction of a calculation that is 

sequential, and 1 − 𝛼 is the fraction that can 
be parallelized, the maximum speedup that 
can be achieved by using P processors is 
given according to Amdahl's Law

Speedup = !
"#!"#$
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Introduction
Popular belief that traditional kernel designs 
won’t scale well on multicore processors
Can traditional kernel designs be used and 
implemented in a way that allows applications 
to scale?
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Why Linux? Why these 
applications?

Linux has a traditional kernel design and the 
Linux community has made a great progress 
in making it scalable
The chosen applications are designed for 
parallel execution and stress many major 
Linux kernel components
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How can we decide if Linux is 
scalable?

Measure scalability of the applications on a 
recent Linux kernel 

2.6.35-rc5 (July 12,2010)

Understand and fix scalability problems
Kernel design is scalable if the changes are 
modest
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Kind of problems
Linux kernel implementation
Applications’ user-level design
Applications’ use of Linux kernel services
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The Applications
2 Types of applications

Applications that previous work has shown not to 
scale well on Linux

Memcached, Apache and Metis (MapReduce library)
Applications that are designed for parallel execution

gmake, PosgtreSQL, Exim and Psearchy

Use synthetic user workloads to cause them to 
use the kernel intensively

Stress the network stack, file name cache, page 
cache, memory manager, process manager and 
scheduler
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Exim
Exim is a mail server
Single master process listens for incoming 
SMTP connections via TCP
The master forks a new process for each 
connection
Has a good deal of parallelism
Spends 69% of its time in the kernel on a 
single core
Stresses process creation and small file 
creation and deletion
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memcached – Object cache 
In-memory key-value store used to improve 
web application performance
Has key-value hash table protected by 
internal lock
Stresses the network stack, spending 80% of 
its time processing packets in the kernel at 
one core

33



Apache – Web server
Popular web server
Single instance listening on port 80.
One process per core – each process has a 
thread pool to service connections
On a single core, a process spends 60% of 
the time in the kernel
Stresses network stack and the file system
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PostgreSQL
Popular open source SQL database
Makes extensive internal use of shared data 
structures and synchronization
Stores database tables as regular files 
accessed concurrently by all processes
For read-only workload, it spends 1.5% of the 
time in the kernel with one core, and 82% 
with 48 cores
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gmake

Implementation of the standard make utility 
that supports executing independent build 
rules concurrently

Unofficial default benchmark in the Linux 
community

Creates more processes than cores, and 
reads and writes many files
Spends 7.6% of the time in the kernel with one 
core
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Psearchy – File indexer
Parallel version of searchy, a program to 
index and query web pages
Version in the article runs searchy indexer on 
each core, sharing a work queue of input files
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Metis - MapReduce
MapReduce library for single multicore 
servers
Allocates large amount of memory to hold 
temporary tables, stressing the kernel 
memory allocator
Spends 3% of the time in the kernel with one 
core, 16% of the time with 48 cores
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Kernel Optimizations
Many of the bottlenecks are common to 
multiple applications
The solutions have not been implemented in 
the standard kernel because the problems 
are not serious on small-scale SMPs or are 
masked by I/O delays
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Quick intro to Linux file system
Superblock - The superblock is essentially file system metadata and 
defines the file system type, size, status, and information about 
other metadata structures (metadata of metadata)

Inode - An inode exists in a file system and represents metadata 
about a file.

Dentry - A dentry is the glue that holds inodes and files together by 
relating inode numbers to file names. Dentries also play a role in 
directory caching which, ideally, keeps the most frequently used files 
on-hand for faster access. File system traversal is another aspect of 
the dentry as it maintains a relationship between directories and 
their files.
Taken from: http://unix.stackexchange.com/questions/4402/what-is-a-superblock-inode-dentry-and-a-file
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Common problems
The tasks may lock shared data structures, so 
that increasing the number of cores increases 
the lock wait time

The tasks may write a shared memory location, 
so that increasing the number of cores increases 
the time spent waiting for the cache coherence 
protocol
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Common problems - cont
The tasks may compete for space in a limited 
size shared hardware cache, so that increasing 
the number of cores increases the cache miss 
rate

The tasks may compete for other shared 
hardware resources such as DRAM interface

There may be too few tasks to keep all cores 
busy
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Cache related problems
Many scaling problems are delays caused by 
cache misses when a core uses data that 
other core have written

Sometimes cache coherence related 
operation take about the same time as 
loading data from off-chip RAM

The cache coherence protocol serializes 
modifications to the same cache line
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Multicore packet processing
The Linux network stack connects different stages of 
packet processing with queues

A received packet typically passes through multiple queues 
before arriving at per-socket queue

The performance would be better if each packet, queue 
and connection be handled by just one core

Avoid cache misses and queue locking

Linux kernels take advantage of network cards with 
multiple hardware queues
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Multicore packet processing (2)
Transmitting – place outgoing packets on the 
hardware queue associated with the current 
core
Receiving – configure the hardware to 
enqueue incoming packets matching a 
particular criteria (source ip and port) on a 
specific queue

Sample outgoing packets and update hardware’s 
flow directing tables to deliver incoming packets 
from that connection directly to the core 
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