
The Multikernel: A New OS
Architecture for Scalable
Multicore Systems

By (last names): Baumann, Barham,
Dagand, Harris, Isaacs, Peter,
Roscoe, Schupbach, Singhania

1

The Problem with Modern Kernels

Modern Operating systems can no longer
take serious advantage of the hardware
they are running on
There exists a scalability issue in the
shared memory model that many modern
kernels abide by
Cache coherence overhead restricts the
ability to scale to many-cores

2

Solution: MultiKernel
Treat the machine as a network of
independent cores

Make all inter-core communication explicit;
use message passing

Make OS structure hardware-neutral

View state as replicated instead of shared

3

But wait! Isn’t message passing
slower than Shared Memory?

At scale it has been shown that message
passing has surpassed shared memory
efficiency
Shared memory at scale seems to be
plagued by cache misses which cause core
stalls
Hardware is starting to resemble a message-
passing network

4

But wait! Isn’t message passing
slower than Shared Memory?
(cont.)

5

But wait! Isn’t message passing
slower than Shared Memory?
(cont.)

6

The MultiKernel Model

7

Make inter-core communication explicit

All inter-core communication is performed
using explicit messages
No shared memory between cores aside from
the memory used for messaging channels
Explicit communication allows the OS to
deploy well-known networking optimizations
to make more efficient use of the interconnect

8

Make OS structure hardware-neutral
A multikernel separates the OS structure as
much as possible from the hardware
Hardware-independence in a multikernel
means that we can isolate the distributed
communication algorithms from hardware
details
Enable late binding of both the protocol
implementation and message transport

9

View state as replicated
Shared OS state across cores is replicated
and consistency maintained by exchanging
messages
Updates are exposed in API as non-blocking
and split-phase as they can be long
operations
Reduces load on system interconnect,
contention for memory, overhead for
synchronization; improves scalability
Preserve OS structure as hardware evolves

10

In practice
Model represents an idea which may not be
fully realizable
Certain platform-specific performance
optimizations may be sacrificed – shared L2
cache
Cost and penalty of ensuring replica
consistency varies on workload, data
volumes and consistency model

11

Barrelfish

12

Barrelfish Goals
Comparable performance to existing commodity OS on
multicore hardware
Scalability to large number of cores under considerable
workload
Ability to be re-targeted to different hardware without
refactoring
Exploit message-passing abstraction to achieve good
performance by pipelining and batching messages
Exploit modularity of OS and place OS functionality
according to hardware topology or load

13

System Structure
• Multiple independent OS instances
communicating via explicit messages
• OS instance on each core factored into

privileged-mode CPU driver which is hardware
dependent
user-mode Monitor process: responsible for intercore
communication, hardware independent

System of monitors and CPU drivers provide
scheduling, communication and low-level
resource allocation
Device drivers and system services run in user-
level processes

14

CPU Drivers
Enforces protection, performs authorization, time-slices
processes and mediates access to core and hardware
Completely event-driven, single-threaded and
nonpremptable
Serially processes events in the form of traps from user
processes or interrupts from devices or other cores
Performs dispatch and fast local messaging between
processes on core
Implements lightweight, asynchronous (split-phase)
same-core IPC facility

15

Monitors
Schedulable, single-core user-space
processes
Collectively coordinate consistency of
replicated data structures through agreement
protocols
Responsible for IPC setup
Idle the core when no other processes on the
core are runnable, waiting for IPI

16

Process Structure
Process is represented by collection of
dispatcher objects, one on each core which
might execute it
Communication is between dispatchers
Dispatchers are scheduled by local CPU
driver through upcall interface
Dispatcher runs a core local user-level thread
scheduler

17

Inter-core communication
Variant of URPC for cache coherent memory
– region of shared memory used as channel
for cache-line-sized messages
Implementation tailored to cache-coherence
protocol to minimize number of interconnect
messages
Dispatchers poll incoming channels for
predetermined time before blocking with
request to notify local monitor when message
arrives

18

Memory Management
Manage set of global resources: physical
memory shared by applications and system
services across multiple cores
OS code and data stored in same memory -
allocation of physical memory must be
consistent
Capability system – memory managed
through system calls that manipulate
capabilities
All virtual memory management performed
entirely by user-level code

19

System Knowledge Base
System knowledge base (SKB) maintains knowledge of
underlying hardware in subset of first-order logic
Populated with information gathered through hardware
discovery, online measurement, pre-asserted facts
SKB allows concise expression of optimization queries

Allocation of device drivers to cores, NUMA-aware memory
allocation in topology aware manner
Selection of appropriate message transports for inter- core
communication

20

Experiences from Barrelfish
implementation
• Separation of CPU driver and monitor adds constant
overhead of local RPC rather than system calls

Moving monitor into kernel space is at the cost of
complex kernel-mode code base
Differs from current OS designs on reliance on shared
data as default communication mechanism

Engineering effort to partition data is prohibitive
Requires more effort to convert to replication model
Shared-memory single-kernel model cannot deal with
heterogeneous cores at ISA level

21

Evaluation of Barrelfish
The testing setup was not accurate

making any quantitative conclusions from their
benchmarks would be bad

Barrelfish performs reasonably on
contemporary hardware
Barrelfish can scale well with core count
Gives authors confidence that multikernel can
be a feasible alternative

22

Evaluation

23

An Analysis of Linux
Scalability to Many Cores

24

What are we going to talk about?
Scalability analysis of 7 system applications
running on Linux on a 48-core computer

Exim, memcached, Apache, PostgreSQL, gmake,
Psearchy and MapReduce

How can we improve the traditional Linux for
better scalability

25

Amdahl’s law
If 𝛼 is the fraction of a calculation that is

sequential, and 1 − 𝛼 is the fraction that can
be parallelized, the maximum speedup that
can be achieved by using P processors is
given according to Amdahl's Law

Speedup = !
"#!"#$

26

Introduction
Popular belief that traditional kernel designs
won’t scale well on multicore processors
Can traditional kernel designs be used and
implemented in a way that allows applications
to scale?

27

Why Linux? Why these
applications?

Linux has a traditional kernel design and the
Linux community has made a great progress
in making it scalable
The chosen applications are designed for
parallel execution and stress many major
Linux kernel components

28

How can we decide if Linux is
scalable?

Measure scalability of the applications on a
recent Linux kernel

2.6.35-rc5 (July 12,2010)

Understand and fix scalability problems
Kernel design is scalable if the changes are
modest

29

Kind of problems
Linux kernel implementation
Applications’ user-level design
Applications’ use of Linux kernel services

30

The Applications
2 Types of applications

Applications that previous work has shown not to
scale well on Linux

Memcached, Apache and Metis (MapReduce library)
Applications that are designed for parallel execution

gmake, PosgtreSQL, Exim and Psearchy

Use synthetic user workloads to cause them to
use the kernel intensively

Stress the network stack, file name cache, page
cache, memory manager, process manager and
scheduler

31

Exim
Exim is a mail server
Single master process listens for incoming
SMTP connections via TCP
The master forks a new process for each
connection
Has a good deal of parallelism
Spends 69% of its time in the kernel on a
single core
Stresses process creation and small file
creation and deletion

32

memcached – Object cache
In-memory key-value store used to improve
web application performance
Has key-value hash table protected by
internal lock
Stresses the network stack, spending 80% of
its time processing packets in the kernel at
one core

33

Apache – Web server
Popular web server
Single instance listening on port 80.
One process per core – each process has a
thread pool to service connections
On a single core, a process spends 60% of
the time in the kernel
Stresses network stack and the file system

34

PostgreSQL
Popular open source SQL database
Makes extensive internal use of shared data
structures and synchronization
Stores database tables as regular files
accessed concurrently by all processes
For read-only workload, it spends 1.5% of the
time in the kernel with one core, and 82%
with 48 cores

35

gmake

Implementation of the standard make utility
that supports executing independent build
rules concurrently

Unofficial default benchmark in the Linux
community

Creates more processes than cores, and
reads and writes many files
Spends 7.6% of the time in the kernel with one
core

36

Psearchy – File indexer
Parallel version of searchy, a program to
index and query web pages
Version in the article runs searchy indexer on
each core, sharing a work queue of input files

37

Metis - MapReduce
MapReduce library for single multicore
servers
Allocates large amount of memory to hold
temporary tables, stressing the kernel
memory allocator
Spends 3% of the time in the kernel with one
core, 16% of the time with 48 cores

38

Kernel Optimizations
Many of the bottlenecks are common to
multiple applications
The solutions have not been implemented in
the standard kernel because the problems
are not serious on small-scale SMPs or are
masked by I/O delays

39

Quick intro to Linux file system
Superblock - The superblock is essentially file system metadata and
defines the file system type, size, status, and information about
other metadata structures (metadata of metadata)

Inode - An inode exists in a file system and represents metadata
about a file.

Dentry - A dentry is the glue that holds inodes and files together by
relating inode numbers to file names. Dentries also play a role in
directory caching which, ideally, keeps the most frequently used files
on-hand for faster access. File system traversal is another aspect of
the dentry as it maintains a relationship between directories and
their files.
Taken from: http://unix.stackexchange.com/questions/4402/what-is-a-superblock-inode-dentry-and-a-file

40

Common problems
The tasks may lock shared data structures, so
that increasing the number of cores increases
the lock wait time

The tasks may write a shared memory location,
so that increasing the number of cores increases
the time spent waiting for the cache coherence
protocol

41

Common problems - cont
The tasks may compete for space in a limited
size shared hardware cache, so that increasing
the number of cores increases the cache miss
rate

The tasks may compete for other shared
hardware resources such as DRAM interface

There may be too few tasks to keep all cores
busy

42

Cache related problems
Many scaling problems are delays caused by
cache misses when a core uses data that
other core have written

Sometimes cache coherence related
operation take about the same time as
loading data from off-chip RAM

The cache coherence protocol serializes
modifications to the same cache line

43

Multicore packet processing
The Linux network stack connects different stages of
packet processing with queues

A received packet typically passes through multiple queues
before arriving at per-socket queue

The performance would be better if each packet, queue
and connection be handled by just one core

Avoid cache misses and queue locking

Linux kernels take advantage of network cards with
multiple hardware queues

44

Multicore packet processing (2)
Transmitting – place outgoing packets on the
hardware queue associated with the current
core
Receiving – configure the hardware to
enqueue incoming packets matching a
particular criteria (source ip and port) on a
specific queue

Sample outgoing packets and update hardware’s
flow directing tables to deliver incoming packets
from that connection directly to the core

45

